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Abstract— Uncertainty quantification (UQ) for predictions gen-
erated by neural networks (NNs) is of vital importance in safety-
critical applications. An ideal model is supposed to generate
low uncertainty for correct predictions and high uncertainty for
incorrect predictions. The main focus of state-of-the-art training
algorithms is to optimize the NN parameters to improve the
accuracy-related metrics. Training based on uncertainty metrics
has been fully ignored or overlooked in the literature. This article
introduces a novel uncertainty-aware training algorithm for
classification tasks. A novel predictive uncertainty estimate-based
objective function is defined and optimized using the stochastic
gradient descent method. This new multiobjective loss function
covers both accuracy and uncertainty accuracy (UA) simul-
taneously during training. The performance of the proposed
training framework is compared from different aspects with
other UQ techniques for different benchmarks. The obtained
results demonstrate the effectiveness of the proposed framework
for developing the NN models capable of generating reliable
uncertainty estimates.

Index Terms— Classification, deep neural network (NN), uncer-
tainty accuracy (UA), uncertainty quantification (UQ).

I. INTRODUCTION

THE advent of artificial intelligence (AI)-based systems
has revolutionized the world in many aspects. Fields, such

as healthcare, transportation, entertainment, cybersecurity, and
education, have greatly benefited from recent advances in  the
field  of  AI  [1],  [2],  [3],  [4],  [5].  The  performance of  neural
networks  (NNs)  is  often  evaluated using  error-based metrics.
The frequently reported metrics in the literature for classifica-
tion are accuracy, sensitivity, specificity, and cross entropy [6].
Increasing  the  accuracy of  NN  predictions  is  considered one
of  the  great  challenges  in  the  AI  community  [7],  [8],  [9],

[10],  [11].  Traditionally,  NNs  are  forced  to  make  decisions
even  if  they do not have  sufficient  information. On  the other
hand,  as  uncertainty  is  an  inseparable  part  of  all  real-world
applications, the reliability of predictions generated by NNs is
always  questionable.  In  order  to  make  NN  predictions  more
reliable and trustworthy, novel metrics are required to evaluate
the NN performance, especially  for high-risk (edge) samples.
Quantifying  the  uncertainty  level  of  NN  predictions  is  of
vital importance for many safety-critical applications, such as
medical  diagnosis  and  autonomous  driving.  If  an  automated
AI-based medical diagnosis system  is  not  confident about  its
decision,  it  can  ask  for  a  second  opinion.  Communication
of  uncertainties  can  effectively  and  efficiently  minimize  the
number of  fatal mistakes,  reduce costs,  and  save  many  lives.
In the end, it will also contribute to developing trustworthy AI
systems.

Uncertainty  in  NN  predictions mainly originates  from  two 
factors: the model and the data [12]. The epistemic uncertainty 
represents what  the  system does not know due  to  incomplete 
data.  It  determines  how  much  the  user  can  trust  predictions 
in  regions  with  no  training  data.  The  epistemic  uncertainty 
is  relatively  higher  in  regions  where  there  is  little  or  no 
training  data  available  in  comparison  with  where  there  are 
sufficient training data available. Gathering more quality data 
will  reduce epistemic uncertainty [2]. On  the  other hand,  the 
aleatoric  uncertainty  represents  the  structural  uncertainty  in 
the  data  [13].  For  instance,  the  inherent  noise  or  mislabeled 
samples  in  the  training  data  will  cause  aleatoric  uncertainty. 
This type of uncertainty cannot be reduced by including more 
samples.  While  it  is  of  vital  importance  to  determine  how 
accurate the NN predictions are, it is highly desirable to know 
how trustworthy those predictions are.

Uncertainty quantification (UQ) methods are tools to check 
and  examine  the  trustworthiness  of  predictions  [12].  Using 
them,  an  NN  can  communicate  its  lack  of  confidence  in  its 
predictions (knowing when it does not know). As a principled 
way  for  UQ,  Bayesian  neural  networks  (BNNs)  bridge  deep 
learning and Bayesian probability theory and have been exten-
sively  used  to  generate  reliability  scores  for  NNs  [14],  [15], 
[16], [17], [18], [19], [20]. Bayesian methods are known to be 
computationally demanding and not perfectly suitable for large 
DNNs. To  address  this  issue,  the Monte Carlo dropout (MC-
dropout) algorithm [17] was proposed by adding dropout [21] 
for scoring. Instead of a single value prediction, a distribution 
of predictions is obtained that can be interpreted as a Bayesian
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approximation to measure uncertainties. The main advantage
of the MC-dropout is that it does not require any change
applied to common practice for NN development. This feature
and its ease of use are the main reasons for its popularity in
the last few years for UQ studies [22], [23], [24], [25].

McClure and Kriegeskorte [26] claim that using Bernoulli
or Gaussian dropout improves the classification accuracy and
propose a new model based on this conclusion. The batch
normalization is used in [27] as the Bayesian model. Markov
Chain Monte Carlo (MCMC) [28] and stochastic gradient
MCMC (SG-MCMC) [29], [30] are also popular UQ methods.
In variational inference (VI)-based methods, the Bayesian
inference is considered an optimization problem. This family
of UQ methods aims at approximating the posterior distri-
bution with the minimum computational burden [31], [32],
[33], [34]. The Bayes-by-Backprop (BbB) algorithm is another
effective UQ method that has been widely used in the litera-
ture. It applies a probability distribution for NN weights [16].
In [35], a simple method that is computationally cost-effective
and requires few hyperparameter tuning that is proposed as an
alternative to BNNs. In [36], an effective and simple method
for detecting out of distributions and adversarial samples is
proposed. A comprehensive review of UQ methods for NNs
could be found in [12].

The current UQ methods for NNs generate probabilistic
estimates covering both epistemic and aleatoric uncertainties
at the final step. The NN development process is purely
completed based on error-based performance metrics, such
as accuracy and cross entropy. Confusion matrix, accuracy,
specificity, and sensitivity metrics are widely used in the
literature to quantitatively check the performance of a model.
Unfortunately, there are not easy to understand and use eval-
uation metrics for uncertainty estimates. In some cases, the
UQ algorithms are compared based on the predicted epistemic
and aleatoric uncertainties for a specific dataset. The algorithm
generating higher uncertainties is often considered to be more
conservative and most of the time better. On the other hand,
the output of a UQ method is often a probability distribution.
This is then used to generate point estimates, such as mean,
median, and mode. So, the evaluation is finally done based on
point estimates. Some useful information is overlooked or lost
within this process.

In short, the UQ methods estimate the uncertainties of the
predictions, but the training procedure only aims to increase
the accuracy, and calibrating the uncertainty is not considered
in training. The uncertainty estimation performance cannot be
compared precisely, and the final evaluation is based on point
estimate.

A perfect uncertainty-aware algorithm is supposed to gener-
ate low uncertainty for correct predictions and high uncertainty
for incorrect predictions. This is the key characteristic of a
reliable UQ method. This can be well captured using a new
performance metric called uncertainty accuracy (UA).

In this article, we propose a novel uncertainty-aware training
framework for NNs. The proposed framework is built around
a novel multiobjective loss function aiming at increasing
the accuracy and UA simultaneously. To the best of our
knowledge, this is the first work trying to improve the quality

of uncertainty estimates by including their quality metrics in
the process of NN training. The usefulness of the proposed
training framework is comprehensively examined for four case
studies (two synthetic and two real datasets) and compared
with the common techniques used in the literature for uncer-
tainty estimate generation. These methods include backprop-
agation (BP), MC-dropout, Bayesian ensembling (BE), and
BbB.

The key contributions of this article are as follows.

1) Introducing novel metrics for quantitative evaluation of
uncertainty estimates.

2) Designing a novel multiobjective loss function covering
both the accuracy and the UA simultaneously.

3) Developing NNs using the proposed uncertainty-aware
loss function.

4) Confusion matrix, confusion uncertainty matrix, and
uncertainty density plots for correctly classified and
incorrectly classified samples are reported and compared
in all cases.

The rest of this article is organized as follows. Section II
illustrates the predictive uncertainty evaluation and introduces
some metrics for evaluating the UQ methods. The proposed
algorithm is described in Section III in detail. Simulation
results and experiments for four benchmark case studies are
reported and discussed in Section IV. Section V concludes this
article with some guidelines for future work.

II. PREDICTIVE UNCERTAINTY EVALUATION

Predictions generated by an NN are either correct or incor-
rect in a typical binary classification problem. The entropy of
these predictions is interpreted as the predictive uncertainty
estimate (Hi) for each sample. This value is compared with
a chosen threshold value (τ ), and the predicted samples are
categorized into two groups: ones that the model is certain
about their predictions (Hi < τ), and ones that the model
is uncertain (Hi > τ). So, the test samples are now in four
different groups:

1) certain and correct (CC);
2) incorrect and uncertain (IU);
3) correct and uncertain (CU);
4) incorrect and certain (IC).
In an ideal scenario, we would like the model to predict

all labels as CC. This means that the model has predicted
all labels correctly, and it is certain about its predictions.
The second preference is IU, which means that the model
flags incorrect predictions as being uncertain. The CU refers
to correct predictions that the model has not been confident
about them. This is the third preference (correctly classified by
chance). The IC is the worst scenario meaning that the model
confidently makes incorrect predictions.

Consider a classification problem where an
uncertainty-aware network trained on the training
set Dtrain = (X train, Ytrain). Receiving the test dataset
Dtest = (X test, Ytest), where X test = {x1, x2, . . . , xn} and
Ytest = {y1, y2, . . . , yn} represent the inputs and test labels,
respectively, and the total number of test samples is n. The
NN output in an uncertainty-aware classification setup is a



TABLE I

UNCERTAINTY CONFUSION MATRIX

probability distribution. pi(ŷi |xi , wi ) can be considered as
the NN output for the i th input. The entropy of predicted
probabilities (Hi ) is defined as the predictive uncertainty
estimate

Hi(ŷi |xi ,�) = −
∑

c

p(ŷi = c|xi,�)log(ŷi = c|xi,�) (1)

where Ŷ = {ŷ1, ŷ2, . . . , ŷn} indicates the NN’s predictions, and
c indicates all classes that y can take. � indicates the model
parameters adjusted based on the training set Dtrain, and Hi(·)
is the predictive uncertainty estimate for yi .

The uncertainty estimate for yi (Hi(ŷi |Xi ,�)) is compared
with a threshold value τ ∈ [0, 1]. Each prediction ŷi can be
then put into two groups:

1) certain when Hi(ŷi |xi ,�) < τ ;
2) uncertain when Hi(ŷi |xi ,�) ≥ τ .

Based on these, the quantitative values for CC, CU, IC, and
IU are calculated as follows:

CC =
∑

i

�(ŷi = yi & Hi(ŷi |xi,�) < τ) (2)

CU =
∑

i

�(ŷi = yi & Hi(ŷi |xi,�) ≥ τ ) (3)

IC =
∑

i

�(ŷi �= yi & Hi(ŷi |xi ,�) < τ) (4)

IU =
∑

i

�(ŷi �= yi & Hi(ŷi |xi ,�) ≥ τ ) (5)

where i = 1, . . . , N . It is important to note that CC, CU, IC,
and IU are all smaller than N .

A. Uncertainty Confusion Matrix

Similar to the concept of confusion matrix, CC, IC, CU,
and IU can be used to build the uncertainty confusion matrix.
This is shown in Table I. It is desired to have all samples in
CC and IU cells [37], [38], [39].

B. Correct-Certain Ratio

The correct-certain ratio (RCC) is defined as the ratio of CC
predictions to all certain predictions

RCC = P(Correct|Certain) = P(Correct, Certain)

P(Certain)

= CC

CC+ IC
.

The best value of RCC is one.

C. Incorrect-Uncertain Ratio

The incorrect-uncertain ratio (RIU) is defined as the ratio of
IU predictions to all uncertain predictions

RIU = P(Incorrect|Uncertain)

= P(Incorrect, Uncertain)

P(Uncertain)
= IU

IU+ CU
.

RIU should be ideally one.

D. Uncertainty Accuracy

According to Table I, the accuracy of predictive uncertainty
estimates can be defined as follows [37], [38], [39]:

UA = CC+ IU

CC+ IU+ CU+ IC
. (6)

It is worth mentioning that the UA can be interpreted as
the ratio of favorable results (CC and IU) to all possible
results. For all the above metrics, higher values indicate better
performance.

III. PROPOSED ALGORITHM

In this section, the details of the proposed algorithm are pro-
vided. We first define a multiobjective loss function covering
both the accuracy and the UA simultaneously. The main chal-
lenge is finding a proper term for UA in the loss function. The
uncertainty density plots of correctly and incorrectly classified
samples indicate that the UA increases, as the overlap between
these density plots decreases (strong negative correlation). So,
we could potentially consider the distance of these density
plots as a UA representative.

The Kullback–Leibler (KL) divergence is applied here to
measure the distance between uncertainty density estimates
for correct and incorrect predictions

KL(p||q) = �N
i=1 p(xi)log

(
p(xi)

q(xi)

)
(7)

where p(xi) and q(xi) are related to correctly and incorrectly
classified samples. So, the proposed loss function is defined
as follows:

LossUA = L+ β KL(�C,�I ) (8)

where β is a constant coefficient. Also, L is a conventional
loss function

L = α C(yi , ŷi). (9)

This could be the cross entropy, or it is defined based on
the prediction error (difference between the prediction ŷi and
the target yi ). �C and �I represent correctly and incorrectly
classified samples, respectively.

KL(�C ,�I ) is the KL divergence of uncertainty density
estimates of correct and incorrect predictions. It is the UA
representative in the proposed loss function. The details of
the proposed algorithm are described in Algorithm 1.

Alpha and beta can be considered to regularize the emphasis
on the loss function terms. For instance, if it is desirable
that the first term in the loss function is dominant (plays the
main role), a very higher value can be chosen for alpha in



Fig. 1. 2-D synthetic dataset used in this study. (a) Two-moon dataset. (b) Random two-class classification dataset.

Algorithm 1 Uncertainty-Aware Training Algorithm (Frame-
work) for NNs
1: Choose the dataset D(X, Y )
2: Split the data into Dtrain and Dtest

3: ϕ train
C ← {}

4: ϕ train
I ← {}

5: Randomly initialize the network parameters (�0).
6: while Training criteria not met do
7: Generate predictions for Dtrain

8: if ytrain
i == ŷtrain

i then
9: ϕ train

C .append(Dtrain
i )

10: end if
11: if ytrain

i �= ŷ Dtrain
i then

12: ϕ train
I .append(ytrain

i )
13: end if
14: Calculate H

train
C for samples in ϕ train

C
15: Calculate H

train
I for samples in ϕ train

I
16: LossU A ← L+ β K L(Htrain

C , H
train
I )

17: Update � through minimization of this loss
18: end while
19: Generate prediction for Dtest

20: Evaluate predictive uncertainty estimates for Dtest

comparison with beta. A higher value for alpha means that
the main emphasis of the loss function is on optimizing the
accuracy. In case the second term of loss function should play
the main role, a higher value for beta is chosen in comparison
with alpha. A higher value for beta means that the main
emphasis is on optimizing the UA. However, in most cases,
including our work, similar values are chosen for alpha and
beta (equal importance).

IV. EXPERIMENTS

In this section, the proposed algorithm is applied to different
synthetic and real-world datasets. Considered datasets are as
follows:

1) two-moon dataset [see Fig. 1(a)];
2) random two-class classification dataset [see Fig. 1(b)];
3) COVID-19 dataset [40];
4) breast cancer dataset [41].
The first two datasets are synthetic ones widely used in the

relevant literature. The other two are real medical datasets used
for analyzing the performance of deep NNs.

Fig. 2. Convergence plots for the validation set were obtained from
NNs developed using the proposed uncertainty-aware training algorithm. For
synthetic case studies, the more the uncertainty, the greater the validation loss.

The proposed algorithm is also compared with several
benchmark algorithms, including BP, MC-dropout [22], [23],
[24], [25], BE [42], and BbB [16]. The accuracy, UA, the
confusion matrix, and the uncertainty confusion matrix are
reported and compared in all cases to evaluate the performance
of different algorithms. In addition, the uncertainty density
plots for correctly and incorrectly classified samples are
reported for all datasets and methods. The distance between
these two uncertainty density plots has a positive correlation
with the UA. The average predicted uncertainty for correctly
and incorrectly classified samples is also reported for all
cases. It is worth mentioning that choosing a suitable value
for the threshold may improve the results. The comparative
results for all datasets and models are shown in Table II. The
convergence plots of the loss function for the validation are
shown in Fig. 2. For two synthetic case studies, the higher the
uncertainty level, the larger the validation loss. This indicates
that the proposed training methods properly capture different
sources of uncertainty in the data and assign more predictive
uncertainty to less certain predictions. It is worth mentioning
that in all scenarios, the τ value is selected at 0.6, and a fully
connected NN is considered.

A. COVID-19 Dataset

The purpose is to automatically diagnose COVID-19 cases
using chest computerized tomography (CT) images. The
dataset contains only 275 positive cases out of 470 cases. The



TABLE II

COMPARISON OF FIVE UNCERTAINTY-AWARE ALGORITHMS FOR COVID-19, BREAST CANCER, TWO-MOON, AND RANDOM TWO-CLASS CLASSIFICA-
TION DATASETS

VGG16 [43] is applied for extracting features from chest CT
images. The extracted features are used as input for developing
the classifier (an NN model in this case). Due to the limited
number of training samples, the data augmentation is applied
to increase the number and diversity of training samples [44].
The extracted features are then fed to five different UQ
algorithms. The results of the proposed algorithm, BP, MC-
dropout, BE, and BbB are compared in terms of accuracy and
UA in Table II. The proposed method achieves an accuracy
of 79%, which is much higher than those of the BP and BbB,
but it is slightly lower than those of the MC-dropout (83%)
and BE (81.9%). However, the latter two perform poorly based
on UA metrics (64% and 57%, respectively). In contrast, the
UA for the proposed method is 72%, which is the highest UA
for this dataset. It can be concluded that for this dataset, the
proposed method gains a better performance considering both
accuracy and UA at the same time.

In an ideal case, the correct predictions must have high
confidence (low uncertainty), and the incorrect predictions
must have low confidence (high uncertainty). Fig. 3 displays
the average uncertainty for correct and incorrect predictions of
the test set. The uncertainty density plots of correctly classified
and incorrectly classified test samples for all methods are also
reported in Fig. 4. It is worth mentioning that there is a positive
correlation between the distance of these density plots and
UA. The proposed UQ algorithm generates more reliable and
accurate uncertainty estimates on average in comparison with
other UQ methods. Two density plots for MC-dropout, BE,
and BbB algorithms have a high overlap, which means that
the uncertainty estimates generated by these models are not
indicative of the prediction correctness. For the proposed UQ
method, the uncertainty estimates are also much higher for
the incorrectly predicted samples. So, in general, the proposed
method performs better in uncertainty estimation on average.
Also, it is noted that the uncertainty for correct predictions is
much lower for the proposed, BP, and MC-dropout algorithms
than for other methods. The BE and BbB algorithms do not
have a good performance in this regard, as they predict high
uncertainty on average for correctly classified samples.

B. Breast Cancer Dataset

According to the results in Table II, the proposed algorithm
achieves the highest accuracy (94%) and UA (93%) for the
breast cancer dataset. The BP and BE also reach the com-
petitive accuracy at 92% and 93%, respectively, but their UA
values are much lower (88%).

According to Figs. 3 and 5, all algorithms predict relatively
lower uncertainty for correctly classified samples in compar-
ison with the incorrectly classified samples. The best perfor-
mance in this regard is reported for the proposed algorithm.
This is followed by the BP and BE methods. The BbB obtains
the poorest results in terms of UA, indicating that it cannot
well separate two classes in terms of uncertainty estimates.

C. Two-Moon Dataset

The first synthetic dataset is the well-known two-moon
dataset [see Fig. 1(a)]. It consists of 1000 samples of two
classes. To better examine the performance of the proposed
method, the uncertainty level of this dataset is considered
in three levels: low, medium, and high. The training and
testing sets include 70% and 30% of samples, respectively. The
performance results for the proposed method and benchmark
methods are reported in Table II. For the case of low uncer-
tainty, the proposed method achieves the highest accuracy
(100%) and the UA (99.6%). The BP and BbB obtain similar
results as well. Fig. 3 also shows that the proposed method
and the BP are certain in their predictions and predict all
the labels correctly. The lowest performance is related to
MC-dropout whose accuracy and UA are 90% and 87%,
respectively.

For medium uncertainty, the accuracy and the UA of the
proposed algorithm are the highest (93% and 92%, respec-
tively). The lowest UA is at 72%, which is related to BP. The
average uncertainties reported in Fig. 3 show that the BbB is
in the second rank.

For the case of high uncertainty, the best-reported accu-
racy (83%) belongs to MC-dropout and BE. However, these
methods perform poorly based on UA metrics (70% and 78%,



Fig. 3. Comparing the average uncertainty for correctly classified and misclassified samples for all datasets and methods.

Fig. 4. Entropy density plots of correct and incorrect predictions for the COVID-19 dataset. (a) Proposed. (b) BP. (c) MC-dropout. (d) BE. (e) BbB.

Fig. 5. Entropy density plots of correct and incorrect predictions for the breast cancer dataset. (a) Proposed. (b) BP. (c) MC-dropout. (d) BE. (e) Bayes-
by-Backprop.

Fig. 6. Entropy density plots of correct and incorrect predictions for the two-moon dataset. (a) Proposed. (b) BP. (c) MC-dropout. (d) BE. (e) BbB.

respectively). The proposed method achieves a very reasonable
performance in terms of accuracy (82%) and UA (80%). Its
UA is the best among all investigated methods. Considering
Fig. 3, the proposed method generates smaller uncertainty
estimates for correct predictions than incorrect predictions.

The uncertainty density plots of correctly classified and
incorrectly classified test samples are shown in Fig. 6 for
all methods. The MC-dropout is the weakest in terms of
separation between two densities.

D. Random Two-Class Dataset

The random two-class dataset includes 1000 samples,
as shown in Fig. 1(b). Again, three levels of uncertainty (low,

medium, and high) are considered for this case study. For the
case of low uncertainty, the best performance is reported for
BbB with the accuracy and UA of 96%. The proposed method
performs competitively well and achieves the accuracy and
UA of 95%. Fig. 3 also shows that the proposed algorithm
on average predicts lower uncertainty for correct predictions
compared with incorrect predictions. It is also noted that the
MC-dropout, BE, and BbB predict higher uncertainties for
correct predictions in comparison with incorrect predictions.
This simply means that they can confidently make wrong
predictions.

For the case of medium uncertainty, the best accuracy results
are reported for the proposed and BbB methods. The BbB



Fig. 7. Entropy density plots of correct and incorrect predictions for the random two-class dataset. (a) Proposed. (b) BP. (c) MC-dropout. (d) BE. (e) BbB.

achieves a UA of 84%, while it is 83% for the proposed
method (second rank). The BP algorithm obtains the poorest
results.

The proposed method achieves the best results for the case
of high uncertainty. The accuracy and UA are 78% and 77%,
respectively. The MC-dropout algorithm also reaches good
accuracy of 77%, but its UA value is very low (29%). The
bar plots in Fig. 3 and density plots in Fig. 7 carry the same
information.

V. CONCLUSION

In this article, a novel uncertainty-aware training framework
is proposed for developing NNs. The uncertainty confusion
matrix and uncertainty-related metrics, such as UA, are defined
for evaluating the quality of predictive uncertainty estimates.
Based on these metrics, a novel multiobjective loss function
is defined, covering both the prediction accuracy and the
UA simultaneously. The NN parameters are then adjusted by
minimizing the multiobjective loss function using the gradient
descent method. The comprehensive and comparative studies
demonstrate the competency of the proposed framework in
generating quality uncertainty estimates.

The framework proposed in this article opens up many
research opportunities. The multiobjective uncertainty-aware
loss function and its variations could be used for redesigning
and rebuilding traditional UQ techniques, such as density
mixture networks. Also, it could be utilized for optimal neural
architecture search.
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