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ABSTRACT :  
 Utilizing renewable energy efficiently to meet the needs of mankind's living demands has be-
come an extremely hot topic since global warming is the most serious global environmental 
problem that human beings are facing today. Burning of fossil fuels, such as coal and oil directly 
for generating electricity leads to environment pollution and exacerbates global warming.  
This research is related to machine learning (ML) applications in wind power forecasting (WPF).  
The objective is to improve understanding of how artificial intelligence (AI) methods could po-
tentially be used to improve the accuracy of WPF. A pilot conceptual system combining meteor-
ological information and operations management has been formulated as a framework named 
Meteorological Information Service Decision Support System. This system consists of a meteor-
ological information module, wind power prediction module and operations management mod-
ule. This conceptual framework has been verified by quantitative analysis in empirical cases. This 
system has a potential to utilize meteorological information for decision-making based on con-
dition-based maintenance in operations and management for the purpose of optimizing energy 
management. It aims to analyze and predict the variation of wind power for the next day or the 
following week to develop scheduling planning services for wind power enterprises (WPEs) 
based on predicting wind speed for every six hours, which is short-term wind speed prediction, 
through training, validating, and testing dataset.  
Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This study 
presents a carefully designed wind speed prediction model which combines fully-connected neu-
ral network (FCNN), long short-term memory (LSTM) algorithm with eXtreme Gradient Boosting 
(XGBoost) technique, to predict wind speed. The performance of each model is tested by using 
reanalysis data from European Center for Medium-Range Weather Forecasts (ECMWF) for Me-
teorological observatory located in Vaasa in Finland. The results show that XGBoost algorithm 

has similar improved prediction performance as LSTM algorithm based on root mean square 
error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) compared 
to the commonly used traditional FCNN model. On the other hand, the XGBoost algorithm has a 
significant advantage on training time in this case study. Additionally, this sensitivity analysis in-
dicates great potential of the optimized deep learning (DL) method, which is a subset of ML, in 
improving local weather forecast on the coding platform of Python.  
The results indicate that, by using Meteorological Information Service Decision Support System, 
it is possible to support effective decision-making and create timely actions within the WPEs. 
The main outcome of this research can support decision optimization for an ML based decision 
support system. As a conclusion, the proposed system is very promising for potential applications 
in wind (power) energy management.  

KEYWORDS: Decision-making, Deep learning, Energy management, Machine learning, Oper-
ations management, Strategic management, Wind power forecasting, XGBoost. 
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1 Introduction  

1.1 Background 

With the deterioration of the global environment and the exhaustion of fossil energy, 

the mineral energy resources consumed in the future will gradually be replaced by re-

newable energy resources. The development and utilization of ecological energy is very 

important for environmental protection and has become a global issue. Renewable en-

ergy does not pollute the environment at the point of energy generation, and generally 

has a much lower pollution footprint than traditional energy from installing to decom-

missioning and can diversify the power generation technology (He et al., 2021). Increas-

ing population growth requires more sustainable development of energy. 

 

Wind energy stands out when compared with other energy because it is free, clean, in-

exhaustible, has the capacity to generate greater power, and has lower energy costs. 

Hence, wind power plays an important role as a source of energy supply (Adeyeye, 

Ijumba, & Colton, 2020; Bórawski, Bełdycka-Bórawska, Jankowski, Dubis, & Dunn, 2020). 

Wind energy resource is becoming a leader in the current energy transition process as 

the most significant characteristics of wind energy are, clean, ecological, and inexhaust-

ible (Gil-García, García-Cascales, Fernández-Guillamón, & Molina-García, 2019; Saleh 

Asheghabadi, Sahafnia, Bahadori, & Bakhshayeshi, 2019).  

 

Excessive consumption of traditional fossil energy, hydrocarbon fuel for energy produc-

tion has led to a severe global air pollution and climate change. However, wind energy is 

widely considered to be a qualified renewable as it can mitigate climate change impacts 

and achieve low-carbon transformation (Cui, Liu, Ali, Gao, & Chen, 2020; Saeed, Ahmed, 

& Zhang, 2020; N. Shen, Wang, Peng, & Hou, 2020). 
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1.2 Wind Power around the World 

According to Renewables 2021 Global Status Report from REN21, the estimated share of 

renewables in global electricity generation was more than 29% by the end of 2020. Fig-

ure 1 shows wind power global capacity and annual additions during 2010-2020. China 

and the United States accounted for a bit more than three quarters of the global elec-

tricity production rise in 2020. Wind power capacity and additions of top 10 countries in 

2020 can be seen in Figure 2. Demand of renewable energy resources (RERs) is growing 

as the global population grows continuously and on the other hand fulfilling the climate 

change mitigation aims agreed in UNFCC COP 21 Paris 2015 require that an even larger 

and larger share of energy production be based on renewable energy. According to Re-

newables 2016 Global Status Report, developed and developing countries have had in-

creased investment in solar power by 12% and wind power by 4% while biomass and 

waste to energy, ocean, biofuels, small hydro, geothermal power reduced respectively 

by 42%, 42%, 35%, 29%, 23% in 2015. Global Wind Energy Council claimed that global 

installed wind power capacity has increased by 63,467 MW in 2015, representing annual 

market growth of 22%. Although world electricity generation produced by wind power 

is still low, it is growing rapidly. Wind power capacity is 743 megawatts and ranked sec-

ondly among renewable power capacity while the hydropower capacity is 1,170 mega-

watts by the end of 2020. As well, U. S. Energy Information Administration data show 

that particularly some European countries had the largest portion of their electricity gen-

eration from wind: Denmark (48%), Portugal (25%), Spain (22%), Ireland (38%), Germany 

(27%). So far, the most important wind gross electricity producers in the EU are Germany 

and Spain. The highest increase of wind cumulative installed capacity in 2022 will be in 

Croatia (Bórawski et al., 2020). 
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Figure 1. Wind power global capacity and annual additions, 2010-2020. adopted from REN21, 
2021 

 

 

Figure 2. Wind power capacity, top 10 countries, 2020. adopted from REN21, 2021 

 

Changes in temperature, precipitation, sea level, and the frequency and severity of ex-

treme events will likely affect how much wind power generation is produced, delivered, 

and consumed. For example, various weather phenomena, such as rainstorm, hail, thun-

derstorm, and tornado, can generate damage more or less to wind turbines. Despite the 
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challenges the production of wind power is the foreseen trend (Kandpal & Broman, 

2014). 

 

The wind power construction In Finland began later than in many other European coun-

tries. However, from 2012 to 2013, wind power construction has gained momentum and 

national construction and production statistics have been broken year after year. In Fin-

land, the wind turbine capacity in offshore parks will increase to be over 7MW instead 

of the largest turbines currently 5MW in the future.   

 

According to Finnish wind power statistics 2021 from Suomen Tuulivoimayhdistys, at the 

end of 2021, there were 962 installed wind turbine generators, with a combined capacity 

of 3257 MW. They generated 11,7% of Finland’s electricity consumption in 2021. 141 

new wind farms were built in Finland in 2021, but annual wind power production in-

creased by 26 % comparing with previous year. They generated 9,3 % of Finland’s elec-

tricity consumption in 2021. Wind power production for the whole year was 8,061 TWh, 

or 11,7 % of all electricity production in Finland. Wind power covered 9,3 % of Finland’s 

electricity consumption and the amount is expected to increase to 25 % by 2025 at the 

latest. 

 

Suomen Tuulivoimayhdistys also pointed out that Finland has the potential to increase 

wind power capacity considerably. The objective of the wind power industry is to achieve 

at least 30 TWh of annual wind power production in Finland in 2030, which corresponds 

to approximately 30% of Finland's electricity consumption at that time. This means there 

is great potential in Finland’s wind power development.    

 

1.3 Meteorological Source 

Wind is a type of meteorological phenomena and wind energy is one kind of natural 

resource which is obtained from the wind. It is one of the oldest-exploited energy 

sources by humans and today is the most seasoned and efficient energy of all renewable 

energies. Wind energy results from horizontal air pressure differences, which means air 
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movement, have regional differences, and are affected by surrounding terrain. Wind 

power generation is the most efficient technology to produce energy in a safe and envi-

ronmentally sustainable manner. It is a process of converting the energy produced by 

the movement of wind turbine blades driven by the wind, namely as kinetic energy of 

the air, into electric energy (Emeis, 2018).   

 

Wind generated when the pressure gradient force, the Coriolis force and friction are 

combined. The greater pressure gradient force, the greater the wind force. The higher 

the latitude, the greater the Coriolis force. The rougher the underlying surface, the 

greater the friction and the smaller the wind force. Among them, the Coriolis force in-

fluences wind direction, friction influences wind speed while the pressure gradient force 

influences both wind speed and wind direction. 

 

There are many factors that affect wind speed, such as, topography, meteorological fac-

tors. Topography includes geomorphology, surface obstacles, and so on. For meteoro-

logical factors, temperature, humidity, pressure, etc. have a greater impact on the 

changes in wind speed, making the daily variation regularity of wind speed not good, 

and the prediction accuracy is not high.  

 

Wind farms, namely wind parks, where planted groups of wind turbines, are located on 

open land, on mountain ridges, or offshore in lakes or the ocean. Wind farms can be 

either onshore or offshore. 

 

According to the 8th edition of WMO Guide to Meteorological Instructions and Methods 

of Observation from World Meteorology Organization (WMO) in 2014, the measurement 

of wind speed should be taken from a site that is well exposed to the wind, and not in 

the lee of obstructions such as buildings, trees, and hillocks. If it is possible, the meas-

urement site should be a good distance from obstructions, namely at least 10 times of 

the obstructions’ height and upwind or sideways by at least twice of the obstruction’s 

height. Direction should be estimated from a vane (or banner) mounted on a pole that 
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has pointers indicating the principal points of the compass. The vane is observed from 

below, and wind direction may be estimated to the nearest of the 16 points of the com-

pass. 

 

There are advantages and disadvantages of developing wind power generation based on 

its own natural characteristics of wind energy.   

   a. Environment friendly: 

       Wind energy is a source of renewable energy. Wind turbines do not release emis-

sions that can pollute the air or water. Wind turbines may also reduce the amount of 

electricity generation from fossil fuels (Tong, Cheng, & Tong, 2021). 

   b. Inexhaustible:  

       Wind power provides energy from air movement and has the capacity to generate 

greater power. This process will continue as long as there is weather on planet Earth, 

meaning that energy can be gained from air movement forever (Oñederra, Asensio, Sal-

daña, Martín, & Zamora, 2020). 

   c. Unstable: 

       As the wind power is proportional to the cubic wind speed, even small errors in es-

timation of wind speed can have large effects on the energy. 

   d. Unpredictable 

       Renewable energy sources, such as wind energy, solar energy, are innately unpre-

dictable, owing to the uncertain nature of themselves and bring about more challenges 

in the distribution networks (Rezaeian-Marjani, Masoumzadehasl, Galvani, & Talavat, 

2020). Even wind energy is variable but intermittent, but not completely random and 

unpredictable. 

 

1.4 Decision Support 

To ensure the proper operation of renewable energy-based hybrid systems, and ensure 

demand and increase system performance, energy management techniques and a deci-

sion support element is needed for efficient management of energy. The strategic man-

agement process should be turned into a management tool with a decision support 
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element in terms of sustainability. A robust energy management strategy allows the sys-

tem to meet demand, to increase the lifetime of the components, increasing operating 

costs and, to ensure maximum use of renewable sources, to reduce energy costs output, 

to protect components from overload damage and enhance the reliability of the power 

system as a result, to optimize system performance (Ammari, Belatrache, Touhami, & 

Makhloufi, 2021; Çetin & Ziya Sogut, 2021). 

 

To establish an assessment model, find crucial solutions, support industrial decision-

makers highlighting specific actions, some models with proposed energy management 

strategy were designed, the energy management strategy was optimized, proved effec-

tive for intelligent energy systems (X. Huang, Zhang, & Zhang, 2021; Trianni, Cagno, Ber-

tolotti, Thollander, & Andersson, 2019). The tool may serve as a point of reference for 

energy and environmental decision support aids in communities where important cul-

tural resources, values, and traditions are potentially impacted by energy management 

decisions (Necefer, Wong-Parodi, Small, & Begay-Campbell, 2018).  

 

A powerful reliability management tool, to deal with the risk assessment, is indispensa-

ble in decision-making. Common requirements for an effective decision support plat-

form include credibility, relevance, legitimacy, model accessibility, end-user satisfaction, 

timeliness, and costs for maintenance and computing. Among these, accurate identifi-

cation of the risks and timely quality management of the risks play an important role in 

improving the quality, safety, and reducing loss costs. Strategic decision-making on long-

term drought risk management can be supported by integrated assessment models to 

explore uncertain future conditions and potential policy actions (Hamilton et al., 2019; 

P. Liu & Li, 2021; Mens, Minnema, Overmars, & van den Hurk, 2021). 

 

Deep learning (DL) algorithms train data longer than ML algorithms since training big 

data, so it is meaningless of decision-making in some cases of requiring results in a lim-

ited time. Results are only valuable if they can be obtained within a specified time- pe-

riod. By reviewing articles which related to relevant topics, it is found that lots of articles 
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related to decision support and ML are linked to the domain of clinics and medicine, such 

as, surgical decisions, triage for patients, emerging decision support, and diagnostic De-

cision Support in Radiology. Compared to those topics, fewer articles are relevant to the 

topic of WPF.  

 

The main objective of this research is to support grid dispatchers and decision-makers in 

electricity transition towards climate friendly economies by giving them suggestions and 

options in planning and designing low carbon solutions. To contribute to this objective , 

Meteorological Information Service Decision Support System integrates artificial intelli-

gence (AI) algorithms with meteorological information decision support platform while 

it develops optimal operational planning via predicting wind speed to optimize energy 

management decision-making.  

 

This decision support system consists of a meteorological information module, wind 

power prediction module and operations management module. It utilizes meteorologi-

cal information for decision-making based on condition-based maintenance in opera-

tions and management for the purpose of optimizing energy management. This research 

attempts to make full use of distributed new energy and rationalize the energy manage-

ment strategy of grid dispatching companies. In this research, decision maker refers to 

the level of person who is involved in the operational decision-making process, focuses 

on more strategic decisions, and makes the final decision organizationally to adopt the 

practice. 

 

The findings from this research contribute to WPF in WPEs. The main contribution of this 

research is to achieve decision optimization on a decision support system by using ML 

algorithms. 

 

1.5 Research Questions 

The main research objective of this research is to improve wind power prediction 

through increasing wind speed accuracy by using AI algorithm as the key research 
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method. To achieve its objectives, decision support platform of Meteorological Infor-

mation Service Decision Support System answers the following questions. 

 

Judging from the background and research objectives, the central research question (RQ) 

is as follows. 

Central RQ: How to improve the accuracy of wind power forecasting by using artificial 

intelligence methods? 

The five sub-questions can be formulated:  

Sub-question 1. What is the innovation in the development process of WPF among so 

much relevant research? 

Sub-question 2. How climate change influences WPEs and what factors affect wind 

power output?  

Sub-question 3. Can there be a general framework to help forecasting wind speed and 

wind power more effectively in decision-making?  

Sub-question 4. How to use the global atmospheric reanalysis data to analyze the poten-

tial of WERs in Finland? 

Sub-question 5. What is the sufficient ML algorithm to improve the accuracy of wind 

speed prediction? 

 

The five sub-questions are depicted as above and developed from the main research 

objective. The sub-question 1, 2, 3 and 4 are responded respectively by paper 1, 2, 3 and 

4 while sub-question 5 is answered in chapter 3. These four related papers are attached 

in the appendix. The structure of the research method used is presented in figure 3.   
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Figure 3. Research method for research questions. 

 

1.6 Opportunities and Challenges 

RERs are one of the solutions to solve the challenges related to energy production and 

mitigation of climate change. It is possible to replace fossil fuels by developing a variety 

of renewable energy, including hydro, wind, solar, wave and biomass, geothermal and 

ocean. Making strategies for converting present energy systems into a 100% sustainable 

renewable energy system is crucial (Dincer, 2000; Lund, 2007). As an example, since the 

early 1980s, Denmark has been one of the leading countries in the world in the field of 

wind energy utilization based on the management of development and diffusion of sus-

tainable technologies (Christensen & Lund, 1998). One research predicted that global 

energy demand in 2040 will be approximately 30% higher than it was in 2010. Because 

the typical characteristics of wind energy are stochastic and intermittent, it is important 

to know and use appropriate renewable energy technologies in the whole process of 

producing wind power generation (Dashwood, 2012). Another research in China showed 
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developing green energy business in emerging economies, with the aim being long term 

sustainability of a healthy level of overall flexibility of the wind power industry chain, pay 

special attention to competition flexibility, technology flexibility, and intellectual prop-

erty and talent flexibility (Z.-Y. Zhao, Zhu, & Zuo, 2014). In one word, the future develop-

ment of wind power presents a significant opportunity in terms of providing low carbon 

energy. 

 

As it known to everyone, challenges always go with opportunities. Wind power is fluctu-

ating, intermittent as wind has the characteristics of volatility, intermittent, and low en-

ergy density. These features do not have a significant impact on the grid when wind 

power accounts for a small proportion of the grid. However, as wind power develops 

rapidly in this decade, wind power production will face serious problems which are elec-

trical system safety, operations stability. Meanwhile, there exist also environmental 

challenges and technical challenges. 

 

1.7 Structure of the Study 

This study is published as articles based. The structure of this study is divided into six 

chapters as follows. 

 

Chapter one presents an introduction and background of this research. After describing 

the opportunities and challenges, depicting the function of strategic decision support in 

risk management, it also displays the central research question, five sub-questions, op-

portunities, and challenges. 

 

Chapter two firstly reviews, makes a statistic and analysis on the relevant articles, and 

presents circumstances of mainstream research towards relevant topics. Then it de-

scribes the research gap of this research.  

Chapter three presents the research methodology. It includes research philosophy, re-

search approach, research strategy, research methods, research design and data collec-

tion. Research process is described also. 
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Chapter four depicts the results and findings of the case study. 

 

Chapter five provides the summary of the publications. This section interprets the logic 

connections and depicts the main content of each article. 

 

Chapter six makes conclusions for this study, provides contribution, managerial implica-

tions, and research limitations, gives some final remarks, and proposes for the future 

research.  

 

The Appendix consists of four original articles (paper 1-4) and author’s role in the whole 

research. 
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2 Literature Review 

This chapter firstly makes a statistic of related articles, and then classifies them into dif-

ferent categories by time-period, research methodologies and research topics. Chapter 

2 also summarizes and reviews state-of-art articles on wind energy resources (WERs), 

wind power prediction, commonly used wind power forecast (WPF) algorithms, energy 

storage system, wind turbine control system, errors, and risk management.  Research 

gap is depicted after reviewing literatures. 

 

2.1 Focused Literatures 

There exist large number of issues in aspects of wind energy that must be examined. For 

example, studies may focus on installed capacity, mathematical models, optimization of 

energy output, facility maintenance, or excessive energy storage. On the other hand, 

there also exist many literature reviews investigated in the same areas. For instance, re-

view on forecasting wind speed, wind power density (WPD) and generated power, re-

view wind energy resources (WERs) in the urban environment, review on wind power 

short-time prediction, specific wind power forecasting (WPF) models, local energy plans 

and policies. Besides reviewing papers, this study also reviews the state of the art of wind 

energy conversion systems and technologies, wind energy status in a specific year, global 

renewable electricity scenario, wind speed probability distributions in application, etc. 

This research gives a comprehensive review on the WERs, WPF, whole developing pro-

cess, innovative technologies, and the related areas in Chapter 2.  

 

Based on more than 500 selected articles, the main objectives of this review work can 

be formulated as follows: (i) a summary of the previous studies, (ii) a construction frame-

work of related research topics, and (iii) the identification of the future research. These 

articles were mainly chosen from SCOPUS (Elsevier), ScienceDirect (Elsevier), Web of Sci-

ence (ISI Web of Knowledge) and Google Scholar, classified by Mendeley, and analyzed 

by Microsoft Excel statistical function. The earlier publications may not be displayed on 

the Internet, and this may have a small influence on the reviewed literature work. 
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2.2  Description of Material Reviewed 

2.2.1 Distribution across time-period  

After searching by relevant keywords, the number of reviewed papers is 506. The tem-

poral variation of reviewed publications during the period 1976-2021 is shown in Figure 

4. These are incomplete statistics since the papers produced in 2020 continue to be pub-

lished. Thus, high numbers of publications are found for the time-period between 2011 

and 2021. In general, the total number of papers increases steadily year by year during 

2014-2020. The review of publications was based on articles from SCOPUS (Elsevier), 

ScienceDirect (Elsevier), Web of Science (ISI Web of Knowledge), Google Scholar, na-

tional and international renewable energy reports. 

 

 

Figure 4. Distribution of publications per year across the period studied. 

 

2.2.2 Distribution of research methodologies 

Five research methodologies were differentiated in this research: (1) theoretical and 

conceptual papers; (2) empirical papers and case studies; (3) surveys and review papers; 

and (4) books. It shows the classification of publications according to the research 
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methodologies. Among them, the number of empirical papers was the largest group is 

421 while the number of theoretical papers is 33 and the number of review papers is 42, 

and the number of books is 10. 

 

2.2.3 Classification of research topics 

While reviewing the research publications, it ended up with classifying the publications 

into seven categories. The seven main topics include: (1) Wind resource assessment; (2) 

Wind speed prediction, numerical weather forecast, climate changes; (3) Wind power 

prediction methods; (4) Wind-solar complementary; (5) Wind energy storage; (6) Wind 

turbine control and service; and (7) Wind power forecast errors and risk management. 

Figure 6 shows the framework and classification of the framework of the publications, 

which based on the inductive analysis approach, revealed that there is a cluster of inno-

vative technologies pertaining to wind power generation. 
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Figure 5. Mind map of related research topics for this article based upon variation of research 
field. adopted from Liu  & Yang, 2015 (Paper 3) 
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2.3 Circumstances of Mainly Research 

2.3.1 Assessment for wind resources 

Previous research has been done on assessing the potential WERs all around the world. 

Various geographic characteristics also cause a wide variety of temperature and climate 

differences. Among the publications identified in the related searching, some evaluated 

the installed wind capacity, some interpreted wind power assessment metrics, while 

some reviewed the global renewable resources. 

 

The capacity of installed wind turbines is increasing in many wind farms all around the 

world. Through statistical methods, Staid and Guikema (Staid & Guikema, 2013) had in-

vestigated the factors that influence the installed wind capacity in each state of U. S. are 

the physical and geographic characteristics of the state. Flora, Marques, & Fuinhas (2014) 

studied the wind idle capacity during the year of 1998-2011 among 18 European coun-

tries to help policymakers when adjusting energy policy. In China, there existed a large 

discrepancy between installed capacity and wind power generation even with the dra-

matic increasing installed wind capacity (M. Yang, Patiño-Echeverri, & Yang, 2012). Tur-

key had an extremely low installed wind power capacity 0.22% of the total economy 

power capacity (Güler, 2009).  

 

Chadee and Clarke (Chadee & Clarke, 2014) assessed regional wind resources through 

comparing statistical wind power density (WPD). They used reanalysis wind data for the 

period 1979–2010. The results show that although the prevailing winds are from the 

east-north-east over the eastern Caribbean islands, their wind direction distributions are 

bimodal. Moreover, other papers (Carta & Mentado, 2007; Hennessey, 1977; Lu, Yang, 

& Burnett, 2002; Sedefian, 1980; Shamshirband et al., 2016) also estimated the WPD 

distribution function in different districts. 

 

J. Zhang, Chowdhury, & Messac (2014) proposed to use a more comprehensive metric 

named Wind Power Potential (WPP). Compared to WPD, WPP is more credible because 
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it not only accounts for wind speed information but also considers the joint distribution 

of wind speed and direction. The results from four sites of North Dakota, that WPD and 

WPP follow different trends, and that the realistic resource potential measure was not 

captured by WPD. Additionally, Ucar & Balo, 2010; W. Zhou, Yang, & Fang (2006) meas-

ured the wind energy resource via WPP. 

 

2.3.2 Wind power forecasting 

In practice, ultra-short-term, short-term, medium-term, and long-term time scales are 

used to predict wind power in WPEs (Soman, Zareipour, Malik, & Mandal, 2010). There 

are different timescales when classifying WPF species according to time periods and one 

example is as follows (Colak, Sagiroglu, & Yesilbudak, 2012; De Giorgi, Ficarella, & Tar-

antino, 2011).  

a. Long-term forecasting 

It predicts from one day to one week ahead and aims to optimize maintenance 

and repair of wind turbines. It is usually used for planning and designing wind farms. 

b. Medium-term forecasting 

It predicts from six hours to one day ahead and aims to optimize power system 

management and energy trading. It is usually used for dispatching the electricity grid 

rationally. 

c. Short-term forecasting 

It predicts from thirty minutes to six hours ahead and aims to optimize pre-load 

sharing. It is usually used for repairing and debugging.  

d. Ultra-short-term forecasting 

It predicts from a few seconds to thirty minutes ahead and aims to optimize tur-

bine control and load tracking. It is usually used for controlling wind turbines and stabi-

lizing electrical energy. 

 

The methods of wind power prediction are mainly divided into the following three 

groups (González-Mingueza & Muñoz-Gutiérrez, 2014; Jung & Broadwater, 2014; Lei, 

Shiyan, Chuanwen, Hongling, & Yan, 2009): 
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• Physical forecasting approach: 

In contrast to statistic approach, the physical approach is based on the use of 

physical considerations.  It needs detailed physical descriptions of the wind farm and 

their surroundings, including description of the wind farm (wind farm layout and wind 

turbine power curve, etc.) and description of the terrain (orography, roughness, obsta-

cles, etc.). This approach aims to get the optimized predicting wind speed and direction 

in different hub height of wind turbine generator system. 

• Statistic forecasting approach: 

The statistical approach is based on mathematical statistics analysis of the main 

variables associated with the relationship between energy generation and meteorologi-

cal information. The meteorological data, obtained from historical data or output of Nu-

merical Weather Forecast (NWP), mostly used as input. For example, wind speed, wind 

direction, temperature, and atmospheric pressure in the wind farm.  

• Combination approach:  

The hybrid method is a useful predicting way as it can improve the WPF accuracy 

by offsetting random error with one method from each other. In some models, a com-

bined approach is used to integrate advantages of both approaches. 

 

2.3.3 Commonly used wind power forecasting algorithms  

Based on different input data, which means whether to use NWF, the WPF can be divided 

into NWF forecasting method and historical meteorological data forecasting method. 

From 1977 until now, many articles described different algorithms of WPF. Some of the 

representative models are reviewed in this section. 

 

a. Kalman filters 

Kalman filters (KF) is an optimal recursive data processing algorithm, and it has 

been firstly achieved by Stanley Schmidt in 1958. Some papers regarded the KF model 

as an algorithm which applied to wind speed numerical prediction to improve prediction 

accuracy. Cassola and Burlando (Cassola & Burlando, 2012) reported that meteorological 
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models are usually unable to provide reliable surface wind speed forecasts due to the 

shortcomings in horizontal resolution, physical parameterizations, initial and boundary 

conditions. Thus, they used KF wind speed data to forecast the wind energy output, and 

the percentage error between simulated and measured wind energy values was still very 

low and showed a stable evolution. Louka et al. (2008) developed a wind speed forecasts 

method, which includes two limited-area atmospheric models based on KF, efficiently 

eliminating systematic errors, even in the lower resolution cases, and contributing fur-

ther to the significant reduction of the required CPU time. To improve the performance 

of KF models, Poncela, Poncela, & Perán (2013) substituted the traditional way of setting 

the values of the model parameters by estimating them by quasi maximum likelihood 

methods for a certain forecast horizon. They showed that the improved model is close 

to an optimum for all the horizons and provides more accurate predictions, with up to 

60% of improvement for the RMSE.  

 

b. Time series model 

Commonly used time series models include auto regressive (AR), moving average 

(MA), auto regressive moving-average model (ARMA) and auto regressive integrated 

moving average (ARIMA).  

 

Among these, one ARIMA model established by Box and Jenkins (Box & Jenkins, 1976) 

have been widely used for the purpose of time series forecasting. Meanwhile, this book 

is extremely comprehensive because it interprets each kind of time series model in detail 

and gives examples. Huang and Chalabi (Z. Huang & Chalabi, 1995) used AR model to 

forecast wind speed from one hour to a few hours ahead because it takes into account 

the non-stationary nature of wind speed. Based on multidimensional ARMA series, 

Soder (Kavasseri & Seetharaman, 2009) provided a method that can simulate possible 

outcomes of wind speeds based on available forecasts. This method was established 

based on the assumption that wind speed forecasts are available in several regions and 

that the forecast errors in different regions are correlated. Kavasseri and Seetharaman 

(Kavasseri & Seetharaman, 2009) forecasted wind speeds on the day-ahead (24 h) and 
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two-days-ahead (48 h) by using a fractional-ARIMA model. The results showed that sig-

nificant improvements in forecasting accuracy are obtained with the proposed models 

compared to the persistence method. (Kamal & Jafri, 1997) found the ARMA model is 

suitable for predicting intervals and probability forecasts.  

 

c. Artificial neural network 

Various Artificial neural network (ANN) models are widely used, such as back 

propagation (BP) and radial basis function (RBF) neural networks. The ANN is an infor-

mation-processing method, which works like a human brain processes to find an algo-

rithmic solution to select the structure from the existing data (Kavasseri & Seetharaman, 

2009; Olaofe, 2014). Based on the original BP network, one new wind power prediction 

model which optimized the tabu search algorithm with memory function was developed 

by Han, Li, & Liu (2011). Guo, Wu, Lu, & Wang (2011) proposed a new hybrid wind speed 

forecasting method based on a BP neural network and the idea of eliminating seasonal 

effects from actual wind speed datasets using seasonal exponential adjustment then get 

lower mean absolute errors. By investigating the use of weather ensemble predictions 

in the application of ANNs, Taylor and Buizza (Taylor & Buizza, 2002) found that the av-

erage of the load scenarios is a more accurate load forecast than that produced using 

traditional weather forecasts. Alexiadis, Dokopoulos, & Sahsamanoglou (1999) devel-

oped an ANN algorithm that significantly improved forecasting accuracy compared to 

the persistence forecasting model. Salcedo-Sanz (Salcedo-Sanz, Ortiz-García, Portilla-

Figueras, Prieto, & Paredes, 2009) presented the hybridization of the fifth-generation 

mesoscale model (MM5) with ANN to address a problem of short-term wind speed pre-

diction. The adopted strategies were individual ANN and hybrid strategy based on the 

physical and the statistical methods. Peng, Liu, & Yang (2013) comprehensively com-

pared the performance of two prediction methods and his calculated results showed 

that the individual ANN prediction method can quickly produce the prediction results.  

 

d. Support vector machine (SVM) 
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Support Vector Machine (SVM) was firstly developed by Corinna Cortes and Vap-

nik in 1995. The most apparent difference between SVM and ANN is that the former 

focuses on mathematical methods and optimization mechanisms even though they are 

similar.  

Mohandes, Halawani, Rehman, & Hussain (2004) introduced SVM, the latest neural net-

work algorithm, to wind speed prediction. The result indicated that SVM compared to 

multilayer perceptron (MLP) neural networks is closer to the actual wind speed. Ortiz-

García et al. (Ortiz-García et al., 2011) proposed an improvement to an existing wind 

speed prediction system, using banks of regression Support Vector Machines (SVMr) to 

manage the diversity in input data arising from the use of different global forecasting 

models and several parameterizations of a mesoscale model. They showed that the sys-

tem implementing SVMr banks outperforms the basic system without taking diversity 

into account in the input data. (Q. Hu, Zhang, Xie, Mi, & Wan, 2014) developed a tech-

nique of the uniform model of ν-support vector regression for the general noise model 

(N-SVR). The existing studies on using SVM for wind speed prediction are very limited as 

these studies usually only use one particular kernel function and a specific combination 

of parameters. J. Zhou, Shi, & Li (2011) applied Least-squares Support Vector Machines 

(LS-SVM) with linear, Gaussian, and polynomial kernels to perform short-term wind 

speed forecasting. 

 

e. Fuzzy logic 

Initially, one approach draws definite conclusions from vague, ambiguous, or im-

precise information, however it is not widely used because of the low accuracy as low 

ability of fuzzy logic prediction is low when studying (Klir & Folger, 1988). Metternicht 

developed a useful and practical technique for modelling complex phenomena that may 

not yet be fully understood owing to its ability to deal with imprecise, uncertain data, or 

ambiguous relationships among data sets (Metternicht, 2001). Fuzzy logic is a new and 

logical approach, which when applied in the field of engineering, a fuzzy logic model is 

useful for predicting wind speed, electrical power, or rotor's speed. There are few up-to-
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date literature reviews about this algorithm for predicting wind power. Therefore, this is 

a promising research gap. 

 

f. Fuzzy logic control 

The Fuzzy logic controller (FLC) approach, which tracks the generator speed with 

the wind velocity to extract the maximum power, takes into account the grid demands 

and power generation predictions, are used for efficiency optimization and performance 

enhancement control in wind generation systems (Sarrias-Mena, Fernández-Ramírez, 

García-Vázquez, & Jurado, 2014; Simoes, Bose, & Spiegel, 1997a, 1997b). Mohamed, 

Eskander, & Ghali (2001) designed the tracking controller of the wind energy conversion 

system based upon fuzzy logic control (FLC) technique and this system has been tested 

to have robustness and effectiveness by simulation. Kamel, Chaouachi, & Nagasaka 

(2010) proposed and developed a new fuzzy logic pitch controller and an energy storage 

ultra-capacitor to smooth the output power of wind turbines and enhance Micro-Grid 

(MG)'s performance in islanding mode, and the results proved that the proposed strate-

gies are effective. 

 

g. Hybrid algorithm 

A combined, nonlinear hybrid KF-ANN model was found to be a better way of 

forecasting wind speed than KF and ANN separately, to solve the inaccuracy wind power 

forecasting of linear ARIMA (Shukur & Lee, 2015). A hybrid wind speed forecasting model 

consists of ARIMA model and ANN model, predicted the wind velocities with a higher 

accuracy than the ARIMA and ANN model separately (Cadenas & Rivera, 2010). Two hy-

brid methods namely ARIMA-ANN model and ARIMA-Kalman model, which were based 

on single time series model, ANN model and KF model, had good forecasting accuracy 

and were suitable for the jumping wind samplings. One hybrid model named PMERNN 

and PAERNN, combine SVM with seasonal index adjustment (SIA) and Elman recurrent 

neural network (ERNN) methods, forecasted the daily wind velocities with a higher de-

gree of accuracy over the prediction horizon (J. Wang, Qin, Zhou, & Jiang, 2015).  
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Two hybrid models, namely, ARIMA–ANN and ARIMA–SVM, were selected to compare 

with the single ARIMA, ANN, and SVM forecasting models, showed that the hybrid meth-

odology does not always outperform the individual forecasting models based on ARIMA, 

ANN, or SVM (Shi, Guo, & Zheng, 2012). 

 

A novel hybrid modelling method named SVR–UKF was proposed for integrating un-

scented Kalman filter (UKF) with SVR to precisely update the short-term estimation of 

wind speed sequence. With this method, the prediction errors were closer to zero with 

significantly smaller variations, whereas the prediction errors of the other methods were 

widely scattered (K. Chen & Yu, 2014). 

 

According to Guo et al. (2011), there is no single best forecasting algorithm that can be 

applied to any wind farm since wind speed patterns can be very different between wind 

farms and are usually influenced by many factors that are location-specific and difficult 

to control. Each of the physical models, statistical models, spatial correlation models and 

artificial intelligence models has advantages and disadvantages. For example, the time 

series model is one kind of statistical model, and it is popular because its computation is 

simple. But ANN and KF are more widely used for their good nonlinear performance. 

 

2.3.4 State-of-art of machine learning 

DL has higher recognition accuracy on large sample data sets Comparing with traditional 

ML, such as SVM, convolutional neural network (CNN) has a better solution and effect 

on recognizing objects (P. Wang, Fan, & Wang, 2021). 

 

One new research proposed by Jiang et al develops a short-term wind speed forecasting 

method which combines statistical method, ANN, and DL. This system consists of four 

parts: optimal sub-model selection, point prediction based on a modified multi-objective 

optimization algorithm, interval forecasting based on distribution fitting, and forecasting 

system evaluation (Jiang, Liu, Niu, & Zhang, 2021). 
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In a photovoltaic power generation system, Shin et al.  demonstrate that RNN and LSTM 

are more suitable for the time series data structures compared with dynamic neural net-

works to achieve the best prediction results (D. Shin, Ha, Kim, & Kim, 2021).  

Accurate wind speed forecasting. This study proposes a hybrid model named VMD-DE-

ESN incorporating variational mode decomposition (VMD) and differential evolution (DE) 

and echo state network (ESN) for wind speed forecasting. This hybrid model was vali-

dated, mean absolute percentage errors (MAE) are 2.0161%, 3.4153%, 2.1544%, and 

2.8478% respectively, which are much lower than several others (H. Hu, Wang, & Tao, 

2021). 

 

By combining AI methods with statistical knowledge, Zhang et al. proposes a new interval 

prediction model based on the Fast Correlation Based Filter (FCBF) algorithm, the opti-

mized Radial Basis Function (RBF) model and Fourier distribution for wind speed. The 

results show that the maximum and average value of the prediction error are only 0.8430 

m/s, 0.1749 m/s, which are significantly better than several others (Y. Zhang, Pan, Zhao, 

Li, & Wang, 2020). 

 

2.3.5 Wind-solar complementary 

The site selection plays an important role in wind power farms, photovoltaic power farms, 

and wind-solar hybrid power stations. Matlab, Simulink Software are commonly used to 

evaluate the performance of hybrid systems (Akyuz, Oktay, & Dincer, 2012; Dihrab & 

Sopian, 2010). 

 

In March 1995, Kimura, Onai, & Ushiyama (1996) documented complementary relation-

ships between solar energy and wind energy in a small-scale wind-solar hybrid power 

system. Ma, Yang, Lu, & Peng, 2014; H. Yang, Lu, & Zhou (2007) utilized the model of Loss 

of Power Supply Probability (LPSP) to minimize the cost of energy and help reduce the 

size of energy storage based on a techno-economic evaluation. Q. Huang, Shi, Wang, Lu, 

& Cui (2015) proposed an approach which used multiple small wind turbines instead of 
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one bigger one. The results showed that at low wind speed, the former one has more 

power production.  

 

(Chávez-Ramírez et al., 2013) focused on the integration of photovoltaic (PV) system, 

micro-wind turbine (WT), Polymeric Exchange Membrane Fuel Cell (PEM-FC) stack and 

PEM water electrolyzer (PEM-WE), for a sustained power generation system. Bhattachar-

jee and Acharya (Bhattacharjee & Acharya, 2015) performed a small-scale application of 

wind-solar hybrid simulation model in an educational building to alleviate grid depend-

ence. Maouedj’s (Maouedj, Mammeri, Draou, & Benyoucef, 2014) hybrid system consists 

of PV and wind subsystems, battery energy storage, load and a hybrid system, controller 

for battery charging and discharging condition. The experimental results showed that 

the photovoltaic panel group constituted the primary energy supplier of the system; 

while the wind turbine was the secondary supplier since the contribution of the wind 

turbine was small compared to the share of the photovoltaic subsystem.  

 

To evaluate system efficiency, Xydis (Xydis, 2013) identified the overall Exergetic Capacity 

Factor (ExCF) for a wind-solar power generation complementary system. ExCF is a new 

parameter which can be used for better classification and evaluation of RESs. One re-

search (Y. Shin, Koo, Kim, Jung, & Kim, 2015) presented one PV-wind-battery-diesel 

power generation system which optimizes power generation by sparse matrices and the 

linear programming algorithm. 

 

2.3.6 Energy storage system 

Zahedi (Ahmad Zahedi, 2014) interpreted several benefits of integrating intermittent 

sources of energy such as solar and wind with energy storage has several benefits for the 

electricity grid. (Wu et al., 2014) identified the distribution of probabilistic methods to 

determine the optimal size of the Energy storage system ESS for a wind farm in electricity 

markets.  Maleki and Askarzadeh (Maleki & Askarzadeh, 2014) used a discrete version of 

harmony search (HS) to optimize the size. The decision variables (number of PV panels, 



38 

wind turbines, and batteries) are optimized by use of HS for having a cost-effective sys-

tem. 

 

• Battery storage 

In 2010, Khalid and Savkin (Khalid & Savkin, 2010) designed a controller which was based 

on model predictive control (MPC) to smooth the wind power output. The proposed 

controller is capable of smoothing wind power by utilizing inputs from our prediction 

system, optimizes the maximum ramp rate requirement and the state of the charge of 

the battery under practical constraints. Four years later, they proposed a new semi-dis-

tributed battery energy storage system (BESS) scheme to minimize the capacity of BESS 

to ensure the lower cost of the system (Khalid & Savkin, 2014).  

 

Ge et al. (2013) used a dynamic mathematical model of Vanadium redox flow battery 

(VRB) in an energy storage system (ESS) to provide a stable and smooth power flow in-

jected into the grid though the wind power fluctuated. X. Y. Wang, Mahinda Vi-

lathgamuwa, & Choi (2008) illustrated using the proposed design method, a BESS in a 

buffer scheme, to attenuate the effects of unsteady input power from wind farms. Jan-

nati, Hosseinian, Vahidi, & Li (2016) reduced the cost of BESS by using Smart Parking Lots 

(SPLs).  

 

Two researchers explored the benefit of optimally integrating wind power with pumped 

hydro storage (PHS) because the daily wind speed patterns do not match the average 

daily load pattern. The results of the survey revealed that PHS, in conjunction with the 

wind farm, can reduce the system’s total power output shortage and increase the ex-

pected daily revenue (Gao et al., 2014; Murage & Anderson, 2014).   

 

Kaldellis, Kapsali, & Kavadias (2010) used an integrated computational algorithm for siz-

ing of PHS systems that exploit the excess wind energy produced by local wind farms, 

the contribution to the electrification of the remote islands becomes evident.   
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• Wind-compressed air energy storage 

Wind-compressed air energy storage (Wind-CAES) is an inexpensive way to store 

massive amounts of energy for long periods of time. Satkin, Noorollahi, Abbaspour, & 

Yousefi (2014) developed a site selection method for wind-CAES power plants to identify 

the wind energy potential for wind-CAES sites. The case study from Fertigand and Apt 

(Fertig & Apt, 2011) in the U.S. showed CAES brought social benefits including avoiding 

construction of new generation capacity, improving air quality during peak times, and 

increasing economic surplus. In Germany, a stochastic electricity market model has been 

applied to estimate the effects of significant wind power generation on system operation 

and on economic value of investments in CAES. This case showed that CAES can be eco-

nomically beneficial in the case of large-scale wind power deployment (Swider, 2007). 

 

• Flywheels 

Flywheel based energy storage systems (FESSs) are designed to smooth the net 

power flow injected to the grid by a variable speed wind turbine. In a wind diesel power 

system (Sebastián & Peña-Alzola, 2015), the main components of FESS include electrical 

machine, flywheel, grid converter and electrical machine converter, improving the power 

quality of the isolated micro-grid. According to the intermittency of the wind, research-

ers integrated and validated the energy storage systems. For instance, Zhao et al. devel-

oped one hybrid energy storage system, which was based on adiabatic compressed air 

energy storage and flywheel energy storage system, to deal with the wind power fluctu-

ations (P. Zhao, Dai, & Wang, 2014; P. Zhao, Wang, Wang, & Dai, 2015).  

 

More RESs will be integrated into the electricity grid worldwide in future. Taking the lim-

ited storage unit to find a more effective solution to handle the reliability and stability 

for the hybrid energy storage system is important. 

 

2.3.7 Wind turbine control system 

Eriksson and Bernhoff (Eriksson, Bernhoff, & Leijon, 2008) compared three different 

wind turbines through a case study. The vertical axis wind turbine appears to be 
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advantageous to the horizontal axis wind turbine in several aspects. Uddin and Kumar 

found out that life cycle assessment (LCA) study varied from location to location due to 

industrial performance, countries energy mix and related issues (Uddin & Kumar, 2014). 

Demir and Taşkın thought that environmental impacts are low for the turbines with high 

hub heights due to increase in electricity production of those turbines (Demir & Taşkın, 

2013). Novak, Ekelund, Jovik, & Schmidtbauer (1995) proposed a model to design and 

evaluate the number of linear and nonlinear control schemes for wind-turbine speed 

regulation. 

 

Normally, wind turbines will reach the end of their service lives after 20-40 years. Or-

tegon, Nies, & Sutherland (2013) considered the management of end-of-service (-) life 

of wind turbines (EOSLWTs) should also be considered by the wind power industry. Ac-

cording to ISO 14040 standard, which allows us to make an LCA study quantifying the 

overall impact of a wind turbine and each of its components, Martínez et al. (Martínez, 

Sanz, Pellegrini, Jiménez, & Blanco, 2009) analyzed the wind turbine during all the phases 

of its life cycle, from cradle to grave, with regard to the manufacture of its key compo-

nents (through the incorporation of cut-off criteria), transport to the wind farm, subse-

quent installation, start-up, maintenance and final dismantling and stripping down into 

waste materials and their treatment. Schleisner developed a model to assess the life 

cycle of the production and manufacture of materials in a wind farm in Denmark (Schleis-

ner, 2000). Bonou, Skelton, & Olsen (2016) proposed an eco-design framework which 

was based on LCA to drive sustainable innovations in components, product systems, 

technologies, and business models. 

 

2.3.8 Errors and risk management 

The stochastic electricity market is influenced not only by the uncertainty of nature's 

wind resources but also wind power forecast errors, as forecasting plays a crucial role in 

the renewable wind energy market. Holttinen outlined the forecast errors of wind power 

producers in the electricity market, pointing out shorter times between bids and delivery 

of production is to handle the forecast error (Holttinen, 2006). Two research (Díaz-
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González, Hau, Sumper, & Gomis-Bellmunt, 2015; Taraft, Rekioua, & Aouzellag, 2013) 

found out that the measurements of the power output and reduction of the ensemble 

wind power forecast error depends on the size of the region. Pinson and Kariniotakis 

introduced a new methodology for assessing the prediction risk of short-term wind 

power forecasts. Their purpose was to find a linear relation between the Meteo-risk In-

dex (MRI) and the resulting prediction errors (Pinson & Kariniotakis, 2004).  

 

Considering the wind power fluctuations under extreme weather conditions, Lin et al. 

proposed a model in the frequency domain to assess the wind power reduction under 

extremely high wind speed conditions. This model was validated and demonstrated to 

be valuable for both power system planning and operation with high wind penetration 

under extreme wind conditions (Lin, Sun, Cheng, & Gao, 2012). Hosseini-Firouz used the 

conditional value-at-risk methodology based on stochastic programming to optimally 

solve the wind power problem faced by the uncertainty issues, derived from wind avail-

ability, market prices, and balancing energy needs (Hosseini-Firouz, 2013). Soukissian 

and Papadopoulos used the Error-In-Variables approach to find the effects of alternative 

wind data sources on the wind climate analysis by examining the offshore WPD (Souk-

issian & Papadopoulos, 2015).  

 

González-Aparicio and A. Zucker used the stochastic scenario extensions of dispatch 

models to take the value of flexibility into account to combine with the nature of forecast 

uncertainties. It applied clustering techniques to reduce the range of uncertainty, and 

regressive techniques to forecast the probability density functions of the intra-day price. 

(González-Aparicio & Zucker, 2015). 

 

2.4 Research Gap 

Even though many published articles refer to topics which are classified as above, the 

trend is more and more publications are mainly about using AI in the science of WPF in 

WPEs. Many recent studies show that AI technology can improve the accuracy of wind 

speed prediction. Table 1 shows the searching methodologies used for this research. 
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Table 1. Summary of searching methodologies used for this study. 

Literature search strings  Search field  Numbers of 
documents 
results 

Limit to 

(“wind” and “speed” and “prediction”)  Article title, 
Abstract, 
Keywords 

8911 Search field 
Documents, 

(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) 

Article title, 
Abstract, 
Keywords 

144 Documents, 
English 

(“wind” and “speed” and “prediction”) AND 
(“machine” and “learning”) 

English 215 Documents, 
English 

(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) AND (“ma-
chine” and “learning”) 

Article title, 
Abstract, 
Keywords 

39 Documents, 
English 

(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) AND (“ma-
chine” and “learning”) AND (“deep” and 
“learning”) 

English 4 Documents, 
English 

(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) AND (“ma-
chine” and “learning”) AND (“deep” and 
“learning”) AND (“xgboost”) 

Article title, 
Abstract, 
Keywords 

39 Documents, 

(“wind” and “speed” and “prediction”) AND 
(“machine” and “learning”) AND (“xgboost”) 

English 0 Documents, 
English 

(“wind” and “speed” and “prediction”) AND 
(“machine” and “learning”) AND (“deep” and 
“learning”) AND (“xgboost”) 

Article title, 
Abstract, 
Keywords 

3 Documents, 
English 

(“wind” and “speed” and “prediction”)  English 2 Documents, 
English 

(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) 

Article title, 
Abstract, 
Keywords 

0 Documents, 
English 

 

From the angle of artificial intelligence (AI) algorithm, there are 144 journal papers 

searched within article title, abstract, keywords with “artificial intelligence” among 8911 

papers with “wind speed prediction” in SCOPUS (Elsevier) database. After exploring with 

narrow down, only 2 document results display. In other words, there only existed two 

published articles which show in figure 6 are specifically related to wind speed prediction, 

machine learning (ML), deep learning (DL) and eXtreme Gradient Boosting (XGBoost) 

technique. 
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Figure 6. Literature search results. adopted from screenshot of SCOPUS (Elsevier) database 

 

The research uses Uncertainties in Ensembles of Regional Reanalysis (UERRA) database 

which contains a big amount of data but not big data. Using these reanalysis data can 

solve the problem of lacking real measured data. From the aspect of AI technology, noise 

refers to unreal data or wrong data and not all of them can be seen from human beings. 

The noise may come from sensor failures or inaccurate measurement. Noise is a problem 

for analyzing data by AI method since AI algorithms cannot recognize which are real use-

ful data, and which are noise. In this circumstance, there is a need to do data cleaning to 

get a good result. However, manually cleaning data is a heavy workload and it cannot be 

done by manpower as this massive data brings burden to working stations, even some 

computers. On the other hand, machine learning (ML) cannot recognize right or wrong 

data and treat all wrong data as right data, so if training real measured data from mete-

orological observatory directly then the result can have errors. Deep learning is more 

suitable for predicting wind speed in a very long term by training massive amounts of 

data without noise.  
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The main innovation of the research is to develop an effective machine learning (ML) 

algorithm which is based on LSTM algorithm and XGBoost and the final goal is to improve 

the accuracy and save the model running time of wind speed prediction base as the de-

cision-making time is limited. These two newly published journal papers which is de-

scribed in figure 7 has been listed above sets a benchmarking for researchers who ex-

plore the topic of optimizing algorithms in WPF area using AI technology through rean-

alyzing meteorological reanalysis data. This research develops a neural network algo-

rithm, which is based on LSTM and XGBoost, and this algorithm is validated to show bet-

ter performance when compared with traditional ones. XGBoost is the optimal choice as 

it needs no big data and operates quickly. Searching for these predictions, high accuracy 

requirement with limited data and the computational time of XGBoost must be reason-

ably low. 

 

More attention has been paid to utilize renewable energy to produce electricity, but the 

random input does not always match the demand. Therefore, a set of management pol-

icies with different levels of participation of the decision maker can optimize processes 

in energy management (Azcárate, Blanco, Mallor, Garde, & Aguado, 2012). Besides this, 

effective information could be provided to support decision-making toward appropriate 

energy models and systems for isolated areas with different scales and demands (Y. Liu, 

Yu, Zhu, Wang, & Liu, 2018). Effective wind energy potential analysis and accurate fore-

casting can reduce the operating cost of wind parks. A wind energy decision system 

which combines these two can not only provide an effective wind energy assessment 

but can also satisfactorily approximate the actual wind speed forecasting rather than 

poor decisions (X. Zhao, Wang, Su, & Wang, 2019). 
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3 Methodology 

This chapter covers the research philosophy, approach, strategy, and method where 

methodological choice is described as following based on the theory of Research Onion 

developed by Sauders et al. firstly in 2007. This is interdisciplinary research that com-

bines the knowledge of Industrial Management, Artificial Intelligence and Meteorology. 

The main method is quantitative analysis and Python is the programming tool. This chap-

ter also depicts research strategy, research design, data collection and results, data ana-

lyzes and application and managerial implications. 

 

3.1  Research Strategy 

3.1.1 Research philosophy 

This research is a positivism one based on it is quantitative research which aims to pre-

dict wind speed and explain the whole process.  The results are verified and depicted in 

chapter 4. The science used in this research can be judged by logic rather than common 

sense.  

 

Positivism adopts a clear quantitative approach to investigating phenomena, as opposed 

to post-positivist approaches, which aim to describe and explore in-depth phenomena 

from a qualitative perspective (Crossan, 2003).  

 

The five main principles of positivism research philosophy can be summarized as the 

following (Dudovskiy, 2018): 

1. There are no differences in the logic of inquiry across sciences. 

2. The research should aim to explain and predict. 

3. Research should be empirically observable via human senses. Inductive reasoning 

should be used to develop statements (hypotheses) to be tested during the research 

process. 
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4. Science is not the same as common sense. Common sense should not be allowed to 

bias the research findings. 

5. Science must be value - free and it should be judged only by logic. 

 

3.1.2 Research approach 

The logical sequence of deduction is from rule to case to result, and induction is from 

case to result to rule, whereas abduction follows another process – from rule to result 

to case (Taylor, Fisher & Dufresne 2002; Danermark 2001). This research uses both in-

ductive and deductive approaches to develop theory.  This research uses mainly deduc-

tion to test and evaluate the data-driven model in empirical research by carrying out 

three different algorithms. In paper 4, it also uses some induction to build theory from 

case study research, for example the integration of individual models of meteorological 

information, wind power prediction module and operations management module to 

construct a holistic model, named Meteorological Information Service Decision Support 

System. 

 

 

Figure 7. Approach to theory development. 

 

Figure 7 depicts the logic relationship of research approach among four papers. Paper 1 

made a literature review about state-of-art from related articles. This research uses an 

inductive approach to indicate and display the core content in paper 3 by finding and 

observing the universality or commonality both from paper 1 and paper 2, to summarize 

the theory and framework. Paper 4 used a deductive method to test the proposed 

framework and system from paper 3. 
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Figure 8 describes the process to build a dataset for machine learning. It mainly includes 

training dataset and test dataset by using different algorithms. 

Data driven approaches include machine learning, deep learning, parameter tuning, 

training, validation, and test.  

Training: to train the models. 

Validation: to make sure the models are not overfitting. 

Test: to determine the accuracy of the models.   

 

 

Figure 8. To build a dataset for machine learning. 

 

3.1.3 Research strategy 

This is empirical research which draws conclusions strictly from concretely empirical and 

verifiable evidence.  The empirical evidence can be gathered using both quantitative 

market research and qualitative market research methods. This research chooses a 
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quantitative method to carry out research. It uses case study and archival research as 

research strategies.  

 

This research chooses Vaasa wind farm as research site (63.05641°N，21.55187  

°E) since the fourth related paper has done data analysis there. Besides this, this research 

obtained the collected reanalysis data of 2015-2018 from open sources to predict wind 

speed of 2019 then compared them with reanalysis data itself to get the comparison 

difference.  

 

Overall plan is to predict wind speed and wind power density in 2019 by analyzing me-

teorological reanalysis data 2015-2018 in the way of traditional commonly used wind 

power forecasting methods, ML and DL mathematical modelling, combined with 

XGBoost technique in a real case study. After comparing the performance and accuracy 

from them, it can be shown which algorithm makes the strategy reliable.  

 

The whole procedures and action include start, establishing research topic, reviewing 

literature, and exploring, defining research questions, mathematical modeling, collect-

ing data, analyzing data, results, validating and end. There are several steps taken to 

complete the study. 

 

3.2 Research Methodology 

3.2.1 Main research methodology 

There are two basic approaches to research, qualitative and quantitative approaches. 

The quantitative approach can be sub-classified into inferential, experimental and simu-

lation approaches to research (Kothari, 2004). This is applied, quantitative, and empirical 

research. The preferred main research methods are quantitative ones.  

 

To be specific, this research firstly gives deeper literature review by using systematic re-

view, association analysis and cluster analysis method to find out the research gap. After 
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summarizing and classifying innovative topics, it explores the research content and de-

scribes the research questions.   

 

The case study in Vaasa region in Finland has been studied by analyzing reanalysis data. 

Meanwhile, the core part of this research depicts machine learning (ML), deep learning 

(DP) algorithms through mathematical modelling which needs quantitative analysis 

methods including time series analysis, regression analysis, decision tree, ML. 

In general, this is interdisciplinary research and uses an interdisciplinary approach.  

 

Attached are four papers and this study uses a variety of research approaches which are 

shown as below.  

Paper 1 uses qualitative analysis methods including literature review and descriptive re-

search. 

Paper 2 uses qualitative analysis methods including literature review, descriptive re-

search, and contingency approach. 

Paper 3 uses qualitative analysis methods including literature review, descriptive re-

search, exploratory research, and interdisciplinary approach. 

Paper 4 is the starting of quantitative research and it is exactly a case study to get into 

the core part of this research. This paper uses mathematical modeling and quantitative 

analysis, such as, time series analysis, regression analysis, to improve algorithms. 

 

3.2.2 Programming platform 

MATLAB is a high-level language and interactive environment that enables it to perform 

computationally intensive tasks faster than with traditional programming languages such 

as C, C++, and Fortran. It is designed for the way of analyzing data, developing algorithms, 

or creating models. Python is an interpreted, high-level, general-purpose programming 

language and aims to help programmers write clear, logical code for small and large-scale 

projects. Python is more productive when compared with other programming languages, 

such as, C++ and JAVA. This research adapts Python to execute quantitative analysis since 
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Python can be used to make decisions involving big data while Matlab can be used to 

teach introductory mathematics such as calculus and statistics.    

 

3.3 Method Design 

3.3.1 Artificial intelligence, machine learning and deep learning 

Artificial intelligence (AI) refers to any technique that enables computers or other de-

vices to mimic human behavior. Machine learning (ML), a subset of AI, aims to make 

predictions or decisions by building mathematical models to train datasets. As a branch 

of ML, Deep learning (DL) underlying features a great amount of data using deep neural 

networks. Figure 9 shows the relationship among AI, ML and DL. In general, DL is a subset 

of ML while ML is a subset of AI. 

 

 

 

 

 

 

 

 

Figure 9. Structure chart of artificial intelligence. 

 

ML are commonly used in image and video recognition, face recognition, picture descrip-

tion, image style conversion, automatic speech recognition and synthesis, text classifica-

tion, machine translation, image, and poetic creation and so on in daily life over the past 

several years and now. ML is an interdisciplinary technique which tries training 

 
 

 

 

 

 

Machine Learning 

 Data Science Deep Learning 

Artificial Intelligence 
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computers or other devices to forecast the unknown features by describing the behavior 

of the dataset, inputting models with features regards to the expected output, forecast-

ing output with features regards to historical data by feature extraction (Alpaydin, 2019; 

Griffith, 1974). Figure 10 depicts the differences of the mode between ML and human 

thought. ML algorithms are one of the alternatives to forecast wind power based on 

wind speed data as it can increase productivity, quality, and profit levels by predicting 

effectively in academia as well as industry (Lee, Yoo, Kim, Lee, & Hong, 2019). Deep learn-

ing (DL) is a subset of ML and pushes ML technology to be one of the essential enablers 

for the renewed AI success with a great process (Duan, Edwards, & Dwivedi, 2019). 

 

 

Figure 10. Machine learning and human thinking mode. 

 

The traditional ML approaches have unavoidable limitations while producing satisfactory 

accuracy. Firstly, the traditional ML methods lack capability to analyze and derive full 

value from large volumes of data. Another limitation is that the performance of the tra-

ditional ML methods highly depends on how the undergoing trend of the data could be 

represented by the extracted characteristic features (S. Shen, Sadoughi, Chen, Hong, & 

Hu, 2019; Sheng Shen, Mohammadkazem Sadoughi, Xiangyi Chen, Mingyi Hong, 2019). 

In other words, DL is large neural networks due to DP dealing with big data compared 

with extracting features of ML. However, it is very hard to identify appropriate charac-

teristic features when establishing ML models. 
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DL, as a kind of supervised learning technique, has acquired growing attention and it has 

become more popular in recent years. It is well known for its capacity for learning hidden 

patterns in data (LeCun, Bengio, & Hinton, 2015). Moreover, the performance of DL mod-

els tends to be better when the dataset size grows, and DL techniques have become 

useful tools in data analytics (Le Cun et al., 2015). However, when the data size is small, 

the performance of DL tends to be jeopardized (C. Chen, Liu, Kumar, Qin, & Ren, 2019). 

Figure 11 shows the performance level of DP, traditional ML and human thinking. Tradi-

tional ML methods perform stable and better with a minimum intake of data. However, 

after crossing the threshold point, DL methods performance increases with increasing 

the amount of data. (Sharma, Sharma, & Jindal, 2021). 

 

Figure 11. Deep learning performance. adopted from (Bhardwaj & Di, 2018). 

 

3.3.2 Fully-connected neural network, long short time memory, XGBoost 

Fully-connected neural networks (FCNNs) are a classic type of artificial neural network 

architecture, in which all the nodes or neurons in one layer are connected to the neurons 

in the next layer. A fully connected layer offers learning features from all the combina-

tions of the features of the previous layer, but they are incredibly computationally ex-

pensive. Usually, FCNNs are only used to combine the upper layer features (Fiesler, Caul-

field, Choudry, & Ryan, 1990). Figure 12 shows the network structure of FCNNs. 
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Figure 12. Fully-connected neural network. 

 

Long Short-Term Memory networks (LSTMs) were introduced by Hochreiter & Schmid-

huber (1997), and were refined and popularized by many people in the following work. 

LSTMs inspired mostly by circuitry, not so much biology, try to combat the vanishing / 

exploding gradient problem by introducing gates and an explicitly defined memory cell. 

LSTMs are explicitly designed to avoid the long-term dependency problem. The biggest 

advantage of LSTMs is that remembering information for long periods of time is practi-

cally their default behavior rather than struggling to learn. Figure 13 shows the network 

structure of LSTMs (Hochreiter & Schmidhuber, 1997). 
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Figure 13. Long short-term memory network. 

 

Extreme gradient boosting (XGBoost) is an efficient and scalable implementation of gra-

dient boosting framework by Friedman in 2001. (Friedmanet, 2001). XGBoost package 

includes an efficient linear model solver and tree learning algorithm. It supports various 

objective functions, including regression, classification, and ranking. XGBoost has 

emerged as a robust ML technique that has been applied in several areas (Lim & Chi, 

2019; D. Zhang et al., 2018) 

 

 XGBoost is a decision-tree-based ensemble ML algorithm that was developed for regres-

sion and classification problems, which produces a prediction model in the form of an 

ensemble of weak prediction models. When a decision tree is the weak learner, the re-

sulting algorithm is called gradient boosted trees, which usually outperforms random 

forest (Friedman, 2001). 

 

3.3.3 Research design 

WPF uses wind farm historical power, historical wind speed, topography and terrain, and 

wind turbine operating status to establish a wind farm output power prediction model. 

Wind speed, power, or numerical weather forecast data are used as input for the model. 

Equipment status and operating conditions to get the future output power of the wind 
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farm. The real-time operation of a WPF system needs NWF data, real anemometer tower 

data, real wind power output data, wind turbine generators, and wind farm running sta-

tus. 

 

This is a prediction method which uses NWP rather than historical data. NWP cannot be 

used for predicting wind power directly, so the power of wind farms is calculated by NWP 

models. As it is depicted in Chapter 2 Literature Review part, WPF usually proceeds by 

physical forecasting approach or statistical forecasting approach. This research chooses 

the former approach to predict wind speed, wind direction and air density in the selected 

wind farm. It is important to do horizontal extrapolation from measurement height to 

hub height, from meteorological observatory site to wind farm.  

 

This research uses reanalysis data of 2015-2018 from Public Datasets in European Centre 

for Medium-Range Weather Forecasts to predict wind speed of 2019 then compare them 

with historical data. The reanalysis data in this research uses short term forecasting and 

picks up wind speed data every six hours. Some related information of the selected wind 

farm is listed as follows. 

 

Kunta (Municipality):Vaasa site 

Sijainti (Location):（63.05641°N，21.55187°E） 

Vuosi (Year):2012 

Kokonaisteho (Total power):4 MW 

Turbiineja (Turbines):1 

Omistaja (Owner):Wasa Wind Oy 

Laitevalmistaja (Equipment manufacturer): Mervento 

Located area: Kronvik  

Wind power station code: 6741 
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Figure 14. System structure and process. adopted from Liu & Yang, 2015 (Paper 3) 
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Table 2. Typical failures related to weather conditions. 

Source: Meteorological information service support system in wind park application, 2015 (pa-
per 3) 

Failure parts Possible reasons Weather condi-
tions 

Actions 

Blade Blade drive not ready EWEs Emergency 
stop 

Rotor Result of imbalance, blades 
and hub corrosion etc., 
brake sensor failure 

Rain, snow and 
other hash mete-
orological condi-
tion 

Normal 
stop 

Gearbox Over temperature, gearbox 
oil pressure too low 

High tempera-
ture 

Normal 
stop 

Generator Over speed, over tempera-
ture, bearing faults, current 
too high/low, frequency 
sensor failure 

High tempera-
ture and/or hu-
midity 

Emergency 
stop 
Normal 
stop 

Yaw system Yaw brake set 
unintentionally 

Extreme changes 
in wind speed / 
direction 

Normal 
stop 

Tower Weather or other failure 
may cause excessive vibra-
tion 

EWEs Emergency 
stop 

 

Maintenances include regular, active, and passive maintenance. Passive maintenance, 

which is sudden maintenance, accounts for a portion of operating maintenance ex-

penses and revenue. Sudden maintenance includes all unplanned failures that require 

man-made repair, from manually resetting the wind turbine to replacing damaged gear-

box. Accidental failure of critical components (including gearbox, generator, shaft, blade, 

hydraulic system, transformer, and converter) can significantly increase maintenance 

costs. Failure to replace these components in a timely manner can lead to significant 

wind turbine downtime and loss of revenue. Maintenance should be scheduled to carry 

out in time of low wind power. 

 

Mean absolute error of the forecasting results 

𝑀𝐴𝐸 =
1

𝑛
 ∑| 𝑌𝑖 − 𝑌̂ |

𝑛

𝑖=1

   

Root Mean Square Error 
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𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑(𝑌𝑖 − 𝑌̂ )2

𝑛

𝑖=1

 
   

 

Standard deviation of error 

𝑆𝐷 =  √
1

𝑛 − 1
∑(𝑌𝑖 − 𝑌̂ )2

𝑛

𝑖=1

 

Coefficient of determination 

𝑅2 = 1 −
∑(𝑌𝑖 − 𝑌̂ )

2

∑(𝑌𝑖 − 𝑌̅)
2

 

 

Wind speed (m/s)  

𝑉 = √𝑢2+𝑣2  

Where, 𝑌̂ - predicted value of Y, 𝑌̅ - mean value of Y. 

 

3.3.4 Data collection 

The important quantitative process is to predict wind speed in 2019 through ML and DL 

algorithms by training reanalysis data during 2015-2018, which retrieved from Climate 

Data Store.  

 

This research analyzes reanalysis data, which named Uncertainties in Ensembles of Re-

gional Reanalysis (UERRA), obtained from Public Datasets in European Centre for Me-

dium-Range Weather Forecasts (ECMWF). ECMWF aims at advancing global numerical 

weather forecasting (NWP) through international collaboration. UERRA is a research pro-

ject among 5 pre-operational Copernicus Projects in ECMWF during 2014-2018. The ob-

jective of UERRA is to produce ensembles of European regional meteorological reanaly-

sis of Essential Climate Variables (ECVs) for several decades and to estimate the associ-

ated uncertainties in the data sets. It also includes recovery of historical (last century) 

data and creation of user-friendly data services. Data format is .netcdf and .grib and this 

research retrieved the former format. Python is used for creating mathematical models 
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and analyzing data in this research. The reanalysis data of wind speed obtained four 

times in each day for 00-, 06-, 12-, and 24-h. 
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4 Result and Findings 

This chapter depicts results and findings of this research about three algorithms. The 

training performance and testing performance are also showed here. 

 

4.1 Results of Algorithm 

This research uses AI technologies, such as, fully-connected neural network (FCNN), long 

short time memory (LSTM) and extreme gradient boosting (XGBoost). Figure 15 shows 

the hierarchy diagram about them. 

 

 

Figure 15. Tree structure of technologies related to Artificial Intelligence. 

 

• Fully-connected neural network 

The line chart of predicted wind speed by using a FCNN is shown in figure 16 and figure 

17 depicts its prediction performance. 
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Figure 16. Wind speed prediction in 2019 by using fully-connected neural network. 

 

 

Figure 17. Prediction performance of fully-connected network. 

 

• Long Short-Term Memory network 

The line chart of predicted wind speed by using a fully-connected neural network is 

shown in figure 18 and figure 19 depicts its prediction performance. 

 

 

m
/s
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Figure 18. Wind speed prediction in 2019 by using LSTMs. 

 

 

Figure 19. Prediction performance of LSTMs. 

 

• XGBoost Regression 

The line chart of predicted wind speed by using a fully-connected neural network is 

shown in figure 20 and figure 21 depicts its prediction performance. 

 

 

m
/s

 



63 

 

Figure 20. Wind speed prediction in 2019 by using XGBoost Regression. 

 

 

Figure 21. Prediction performance of XGBoost Regression. 

 

Training performance and testing performance, which include the value of RMSE, MAE, 

R2, for each algorithm are displayed in table 3. 

 

Table 3. Performance for each algorithm. 

Algorithm Value Training Performance Testing Performance 

Fully-connected  

neural network 

RMSE 1.892591 2.006670 

MAE 1.428197 1.526733 

R2 0.667309 0.685465 

LSTMs RMSE 1.81 1.90 

MAE 1.37 1.46 

 

m
/s
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R2 0.694925 0.717418 

XGBoost Regression RMSE 1.394653 1.938518 

MAE 1.084520 1.472376 

R2 0.819341 0.706468 

 

Training time and testing time for each algorithm are displayed in table 4. 

 

Table 4. Training time and inference time for each model. 

                                                                                                                                              (second : s) 

 Training Time Inference Time 

Fully-connected  

neural network 

151.4038s for 1 time 

epochs=60 

batch size=2 

verbose=2 

1.8487s for 10 times 

LSTMs 182.8195s for 1 time 

epochs=20 

batch size=1 

verbose=2 

0.5338s for 10 times 

XGBoost 0s 42.037s for 10 times 

 

XGBoost is applied to quickly achieve comparable accuracy with LSTM but a lot less time 

to improve the prediction. As it can be seen from table 3, XGBoost performs better than 

FCNNs and can also reach nearly the same effect as LSTMs. From the aspect of statistics, 

the results of XGBoost and LSTMs are equivalent. XGBoost only has a little bit overfitting 

when using the model to train the data set and predict as it can be neglected that the 

differences in a few digits after the decimal point. With the help of this situation, the 

uncertainty in this decision-making process can be handled more effectively. 

Besides this, it is also employed to reduce computational time. XGBoost is not DL but a 

ML technique used for regression and classification problems, so its significant ad-

vantage is running many times faster than DL algorithm.  It is a ML algorithm rather than 
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a neural network or DL, so it has no training time but learning time, which is the same 

as running time of model, so-called inference time which is shown in table 4.  

 

As it can be seen in table 3 and table 4, the results clearly demonstrate that the XGBoost 

algorithm shows an overall better performance as compared to the traditional FCNN and 

LSTMs method as it saves much model running time and has equivalent MAE, RMSE and 

R2 with DL algorithm. It is a regression based on a decision tree. Wind speed forecasts 

can be deep ML or not deep. It is commonly believed that DL has better performance. 

The algorithm used in this research compares both, XGBoost is one of the best algo-

rithms for which is not DL since it is validated that it can reach the same level of accuracy 

but save much computational time. 

 

Figure 22 shows reanalysis data, training data and testing data of wind speed from 2015 

to 2019. As it can be seen from the graph, the blue curve displays the trend of reanalysis 

data during 2015-2019, the orange curve represents the variation of training data on 

wind speed and green curve shows the predicted wind speed.  

 

Besides these, it presents the variation of wind speed for each year during 2015-2019. 

The highest wind speed occurred in March, February, April, March, and April separately 

in the years of 2015, 2016, 2017, 2018 and 2019. Vice versa, the lowest wind speed oc-

curred in August, February, July, August, and December separately in the years of 2015, 

2016, 2017, 2018 and 2019. 

 

Figure 22. Average daily wind speed during 2015-2019. (Horizontal axis: year periods, vertical 
axis: wind speed m/s) 
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As it can be seen in figure 23, the average wind speed for every 6 hours in each month 

in the year of 2019 are drawn individually. The variation features of wind speed are: 

Judging the variation of wind speed in 2019, the highest wind speed occurred in April 

and the lowest wind speed occurred in December in the year 2019. 

 

 

Figure 23. Monthly wind speed in each month in 2019. (Horizontal axis: number of samle points, 
vertical axis: wind speed m/s) 

 

According to Finnish Meteorological Institute, Finland located in the zone of westerly air 

disturbances, there are great variations in air pressure and winds, especially in winter. In 

the whole country, the wind blows most commonly from the southwest and least com-

monly from the northeast. The average wind speed is between 2.5 and 4 m/s inland, 

slightly higher on the coast and 5 to 7 m/s in maritime regions. Wind speeds are typically 

highest in winter and lowest in summer. Moderate winds are typical of Finland; high 

winds are rare, particularly inland. Vaasa located in the southwest coast of Finland. The 

research results are consistent with features above. 
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4.2 Findings 

4.2.1 Findings of algorithm 

ML and DL algorithms include an exciting prospect for many industries and businesses 

to drive self-service, increase agent productivity and make workflows more reliable. 

Based on the overview of ML and DL with illustrations and differences, each of them is 

focusing on respective characteristics and future trends. DL algorithms need to clean up 

big data and they do not suit every case. In some practical cases, it makes nonsense 

when making decisions in the management layer as the dataset training time for DL al-

gorithms is too long. In the Research Design part of Chapter 3, it has been found that an 

ML approach has been applied to predict wind speed. Wind power prediction models 

are achieved in an adaptive and effective way by effectively reducing training time of 

FCNN and LSTM respectively. The hybrid algorithm introduced in this research, which is 

based on FCNN, LSTM and XGBoost is completely novel in this disciplinary area, which 

uses hybrid DL algorithm to execute energy management, basically only two related exist 

in the existing literature. Moreover, from the data analysis and results, the optimized 

algorithm which is based on LSTMs algorithm and XGBoost technique has better perfor-

mance in the Vaasa meteorological observation site.   

 

The WPF method is an effective way to reduce the impact of wind power intermittently 

to the power grid. Forecast results can be published and sent to the power grid dispatch 

terminal and wind farm monitoring center in real time. Meanwhile, the grid scheduling 

center and wind farm monitoring center can make prediction requests to the forecast 

server at any time. 

 

4.2.2 Findings of managerial aspect 

This research uses meteorological methods to provide a decision support tool for deci-

sion-makers. This meteorological information service decision support system in wind 

park application is beneficial both to wind farms and power systems. One hand, it pro-

vides support for reasonable maintenance plans, participates in market competition, 
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and reduces the operating cost of wind farms. On the other hand, it provides support for 

power grid scheduling and proper scheduling, effectively reducing the adverse effects of 

intermittent wind power on power systems. Its successful implementation will produce 

enormous economic and social benefits. 

 

This research aims to achieve decision optimization on a decision support system by us-

ing AI technology. It was concluded that the proposed system is very promising for po-

tential applications in wind (power) energy management. The findings of this research 

will provide strategic management for more enterprises in the field of wind power, which 

plan to implement systems with awareness of risk factors to avoid equipment failure, 

supply with regular, active, and passive maintenance, optimize energy management, 

give businesses an advantage over competitors and always be aware of the changing 

market.    

 

For further work, it is necessary to use many methods to reach the optimum results in 

wind speed prediction, EWEs risk management and optional service decisions, the com-

parison between many methods ensure best performance of the system and realize the 

objective aims of the research. 
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5 Summary of Publications 

5.1 Overview of Papers 

Titles of published articles with keywords are listed in Table 5. An overview of the aims, 

methods and the main results/contribution are shown in Table 6.  

The original articles (paper 1-4) are attached in Appendix. 

 

Table 5. List of articles´ titles with key words. 

Paper  Title Key words 

Paper 1 A review of Innovation in Wind 

Power Forecast 

Wind energy resource, WPF, wea-

ther forecast, literature research, 

descriptive research. 

Paper 2 The Impact of Climate Change 

on Wind Power Enterprises 

WPF, WPEs, climate change, glo-

bal wind energy resource distribu-

tion, climate data record. 

Paper 3 Meteorological information 

service support system in wind 

park application 

Operations management, Deci-

sion support systems, Information 

management, 

Paper 4 A Study on Renewable Energy 

Potential based on the Global 

Atmospheric Data 

Renewable energy, climate 

change, reanalysis, ERA-20C data, 

resources potential. 

 

Table 6. Overview of the articles’ aims, methods and the main results/contribution. 

 Aims Methods Main 
results/contribution 

Paper 1 To review the most re-

cent articles in the to-

pic of WER and WPF 

Systematic review, 

cluster analysis, asso-

ciation analysis, 

Explore the research gaps 

in this area and highlight 
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methods. To review 

the innovations. 

literature review, de-

scriptive research. 

 

the possible future 

research points.  

Paper 2 To survey the impact 

of climate change on 

WPF and the in-

fluences on WPEs. 

Literature review, des-

criptive research, con-

tingency approach. 

WPD, which represents 

wind resources, plays a 

critical role. Air tempera-

ture, humidity, wind di-

rection, wind speed, air 

pressure and rainfall di-

rectly influence the wind 

power output. 

Paper 3 To propose a concep-

tual framework and 

make it can be used for 

decision-making. 

Literature review, des-

criptive research, ex-

ploratory research, 

mathematical mode-

ling, interdisciplinary 

approach. 

This structured frame-

work, which involves 

three major modules and 

certain processes, pro-

vides new insight for deci-

sion making in WPEs. 

Paper 4 To find a correlation 

between the meteoro-

logical factors and the 

renewable energy po-

tential and make the 

conceptual framework 

empirical.  

Literature review, case 

study, quantitative 

analysis, mathemati-

cal modeling, time se-

ries analysis, regres-

sion analysis, interdis-

ciplinary approach. 

Use the global atmosphe-

ric reanalysis data to ana-

lyze the potential of rene-

wable energy sources In 

Vaasa region in Finland. 

 

5.2 Logical Connection of Papers 

This study is founded on a thorough literature review. Hence paper 1 is the foundation 

for the following research since it reviews the innovations in the domain of WPF. Paper 

2 makes a survey on the specific branch. In fact, paper 4 tests the framework which was 

proposed from paper 3.  
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Figure 24 shows the logical connections among four papers. 

 

Figure 24. Logical connections among the papers. 

 

5.3 Summary of Individual Papers 

5.3.1 A review of innovation in wind power forecast 

Sub-question 1. What is the innovation in the development process of WPF among so 

much relevant research? 

 

This paper is the theoretical foundation of the whole research.  It roughly researches 

main topics in the field of WERs and WFP. 

 

In answering sub-question 1, Paper 1 uses different methods to review relevant articles 

to find the possible research prospect.  

 

In this paper, several methodologies, including systematic review, cluster analysis and 

association analysis, are used to depict and generalize different popular WPF methods. 

Paper 1 reviewed several different WPF methods, which were used in wind energy sys-

tems, to summarize their own theory and characteristics. The corresponding innovations 

are also reviewed in detail. This paper aims to find out the research gap and open a new 

view to provide a research path for researchers in this same field. 
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Paper 1 describes some single algorithms, such as Kalman Filters (KF), Artificial Neural 

Network (ANN), Support Vector Machine (SVM), fuzzy logic and time series model. Time 

series model includes auto regression (AR), moving average (MA), autoregressive mov-

ing-average (ARMA) and autoregressive integrated moving average (ARIMA). Some hy-

brid algorithms, such as KF+SVM, ARIM+ANN, ARIMA+KF, ARIMA+SVM, also are com-

pared in determined case studies. 

 

As it can be seen, there is no single best forecasting algorithm that can be applied to any 

wind farm. As a result of this study, it can be said that each algorithm or combined algo-

rithm both has its advantages and disadvantages. Meanwhile, the characteristics of ter-

rain in a variety of districts in different countries are different. Therefore, paper 1 shows 

there is still space to increase the prediction accuracies respectively in scales of long-

term, medium-term, short-term, and very short-term WPF.  

 

Paper 1 suggests that the future study can be topics about increasing the prediction ac-

curacy and system reliability. 

 

5.3.2 The impact of climate change on wind power enterprises 

Sub-question 2. How climate change influences WPEs and what factors affect wind 

power output?  

 

This paper is a preliminary basis of connecting wind power with meteorology. It aims to 

study the impact of climate changes on WPEs and draw a framework to determine the 

relationship between wind power density and wind power. 

In answering sub-question 2, Paper 2 was developed based on paper 1. It reviewed some 

most recent relevant research which combines climate change with wind power predict-

ing and summarized the art-of-state. Paper 2 draws a framework which assesses wind 

resources and finds correlations between wind power and some meteorological ele-

ments. 
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Six major meteorological elements, including air temperature, humidity, wind direction, 

wind speed, air pressure and rainfall, may have a relationship with wind power. Besides 

these, other meteorological elements may also be connected to wind power, such as 

relative humidity, rainfall, and snowfall. In some practical cases, wind farms can be lo-

cated in places with complex terrain. However, different terrain, surface roughness, ob-

stacles, and ground conditions such as undulating terrain, land-to-sea junctions, or une-

ven distribution of precipitation or cloud volumes also influence wind speed. 

 

The outcome of Paper 2 is proposing a rough framework which aims to help decision-

makers of WPEs to make strategic decisions including site selection, management and 

maintenance of wind power station, and long-term wind power generation forecast etc.  

Paper 2 suggested that future research should explore deeply in climate data record 

(CDR) to help develop more effective wind speed and WPF methods by finding specific 

algorithms. 

 

5.3.3 Meteorological information service decision support system in wind park ap-

plication 

Sub-question 3. Can there be a general framework to help forecasting wind speed and 

wind power more effectively in decision-making?  

 

This paper is the hub of this interdisciplinary research as it is involved in domains of op-

eration management, weather forecast and wind power generation. It mixes these sub-

jects together and practices them in a conceptual framework.  

 

In answering sub-question 3, this paper designs and provides a meteorological infor-

mation service system. The proposed system, which involves meteorological information 

module, wind power prediction module and operations management decision-making 

module, can be seen in the picture of system structure and process in Figure 10. It pro-

vides benchmarking to support decision making directly and indirectly based on 
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processing meteorological information and evaluating its impact on service operations. 

Additionally, it provides meteorological forecasting and decision support in case of EWEs. 

 

The Meteorological Information module includes meteorological data collection and 

NWP. This module also sends early warning messages in case of EWEs, so managers can 

take countermeasures in advance to avoid economic losses. Wind Power Prediction 

module utilizes meteorological data to predict wind power output based on real-time 

measuring, NWP, and WPF. Operations Management module uses predicted results from 

the previous module to evaluate failure probabilities in different parts of the wind tur-

bines.  It can help a lot in decision making to optimize maintenance schedules and max-

imize wind power output. Table 1 shows the corresponding actions to specific machine 

failures. 

 

Paper 3 suggests the future research will be implemented with the proposed conceptual 

model. To some extent, paper 3 is the theoretical foundation of paper 4 which demon-

strates empirical research by analyzing CDR data. 

 

5.3.4 A Study on renewable energy potential based on the global atmospheric data 

Sub-question 4. How to use the global atmospheric reanalysis data to analyze the po-

tential of WERs in Finland? 

 

This paper analyzes ERA-20C global datasets from ECMWF and tries to identify the me-

teorological factors (wind speed, solar radiation, rainfall, evaporation etc.) with their ef-

fects on the overall utilization potential of these RERs. What is the correlation between 

the meteorological factors and the renewable energy potential? 

 

Paper 4 is developed based on paper 3 and uses the proposed pilot conceptual meteor-

ological information service decision support system from paper 3. 
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In answering sub-question 4, this paper starts by retrieving the dataset of ERA-20C to 

analyze how climate change reflects on WPF. This paper continues such analysis in me-

teorological information service decision support systems, with deeper insights into 

WPD during the past 50 years, and to verify how this system helps decision-making in 

WPEs especially when EWEs come. This paper covers an important topic with the clearly 

presented purpose in terms of RQ 4, WPD of past fifty years 1961-2010 were studied 

from a point of view by analyzing global atmospheric reanalysis data, to find out the 

correlation between the meteorological factors and wind energy potential.  

 

This research analyzes the existing ERA-20C global datasets describing the state of the 

atmosphere as well as land-surface and ocean-wave conditions from 1900 to 2010 ob-

tained from Public Datasets in European Centre for Medium-Range Weather Forecasts 

(ECMWF). ECMWF aims at advancing global NWP through international collaboration. 

The data format is .netcdf and .grib. MATLAB and Python are used for creating models 

and analyzing data in this research. 

 

Paper 4 demonstrates how to analyze the potential of WERs by using reanalysis data in 

a real case study. The specified location is Vaasa region in Finland and retrieved format 

is NetCDF. The highest resolution grid 0.125 degree * 0.125 degrees was chosen and a 

total data of 18262 days in 50 years were analyzed. Paper 4 uses MATLAB R2014a as the 

programming language to calculate, analyze and plot figures. It also plotted the varia-

tions of maximum WPD from every five years and every ten years. Analyzed results pre-

sent a trend of WPD and give alarm to decision-maker to take action to avoid machine 

failures and financial losses. This Meteorological Information Service Decision Support 

system which was proposed in paper 3 can effectively help decision-maker at macro level 

and paper 4 is exactly a case study to validate this framework. The contribution of this 

paper is analyzing the potentials of WERs in terms of mastering the trend of WPD in 

Vaasa region in Finland.  
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Paper 4 proposes that the future research could be focused on forecasting the global 

potentials of RERs in the next decades. 

 

5.3.5 Research in this study 

Sub-question 5. What is the sufficient ML algorithm to improve the accuracy of wind 

speed prediction? 

 

The follow-up research after these four papers in this study answers sub-question 5. It is 

developed based on paper 4 and reanalysis data of Uncertainties in Ensembles of Re-

gional Reanalysis (UERRA) while paper 4 uses ERA-20C global datasets also retrieved 

from European Centre for Medium-Range Weather Forecasts (ECMWF). The research 

design in this study is the core part of this entire research. It uses reanalysis data of 2015-

2018 from Public Datasets in ECMWF to predict wind speed of 2019. The reanalysis data 

in this research uses short term forecasting and picks up wind speed at the selected site 

for every six hours. 

 

In answering sub-question 5, the research design in this study compares traditional al-

gorithm FCNN, ML algorithm LSTM and DL algorithm XGBoost, by calculating RMSE, MAE, 

R2 in terms of training performance and test performance, to find an optimal wind speed 

predicting method.  Besides this, it observes training time and inference time for each 

algorithm. The results come out that the XGBoost algorithm shows better performance 

as compared to the traditional FCNN and LSTMs method as it saves quite much model 

running time but also reaches the equivalent effect of MAE, RMSE and R2 as DL algorithm 

LSTM.  

 

Besides this, the research design included in this study aims at optimizing energy man-

agement decision-making by optimal operational planning via predicting wind speed. It 

provides a plan about when to turn off wind turbine group in order to repair and carry 

out maintenance during the low power generation period for wind power forecast to the 

next year, provide better wind energy assessment results and to optimize energy storage 
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for the whole electrical grid, and aims at reducing carbon emissions by utilizing renewa-

ble energy maximally instead of fossil fuel. Wind power needs to be predicted accurately 

to make up for problems derived from burning fossil fuels.  

Central research question: How to improve the accuracy of wind power forecasting by 

using artificial intelligence methods? 

 

In answering the central research question, the research design in this study compares 

traditional algorithm and DL algorithms and determines a ML algorithm namely XGBoost 

to predict wind speed. And it is the core part of the whole research. It is possible that 

Meteorological Information Service Decision Support System, which was proposed in pa-

per 3, can support decision-making effectively and create timely actions within the WPEs. 

Findings from this research contribute to WPF in WPEs. The main contribution of this 

research is to achieve decision optimization on a decision support system by using AI. It 

was concluded that the proposed system is promising for potential applications in wind 

(power) energy management. 
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6 Discussion and Conclusions 

6.1 Contribution 

The motivation of this research comes from the “environmentally friendly society”, “sus-

tainable development” and “clean energy”. As everyone knows, the natural resources 

which human beings depend on are not unexhausted. Therefore, how to develop and 

utilize RERs in an efficient way is a popular and forever topic. Among all the RERs, wind 

energy has advantages, such as, low cost of wind power generation, clean to environ-

ment resource renewable despite the characteristic of uncertainty. 

 

A lot of WPF techniques and methods used in wind energy systems have been reviewed 

in Chapter 2 of this study to summarize their own theory and characteristics in a variety 

of methods. And their corresponding innovations are also reviewed in detail. However, 

the main contribution of Chapter 2 is to provide a path for researchers in this same field. 

 

The important points of view for this research were described and summarized from 

Chapter 3 to Chapter 5. The proposed structure and process of this conceptual infor-

mation service system for improving productivity can help decision makers in WPEs while 

the electricity grid balance must be maintained between electricity consumption and 

generation at any moment. In the module of Meteorological Forecast, real-time meteor-

ological data and weather forecasts are collected through meteorological sensors and 

equipment. Managers can get warning signals and take countermeasures quickly in ad-

vance when EWEs happen by predicting 50-year maximum wind speed uninterrupted. 

In the module of Power Prediction, it can provide WPF prediction by utilizing real-time 

wind measuring data and historical data as input. Models which combine different algo-

rithms usually have higher accuracy and reliability than comparing using just a single 

algorithm. In the module of Operation Management, failure probabilities are evaluated 

to help decision makers to reduce maintenance cost and time and to improve the oper-

ational efficiency and reliability. Correspondent actions can be taken regarding typical 

failures in different parts of wind turbines according to real case statistics. Condition-



79 

based maintenance needs to be taken while there is a direct connection between busi-

ness performance and operational management based on condition-based maintenance 

in WPEs.  

 

6.2 Managerial Implications 

This research develops a decision support tool for decision-maker from the domain of 

grid dispatching companies. The important quantitative process of it is predicting wind 

speed in 2019 through ML algorithm by training reanalysis data during 2015-2018, which 

retrieved from Climate Data Store. Then validate through analyzing the values of MAE, 

RMSE, R2 in the categories of training performance and testing performance.  

 

The practical impact of this research is that it examines a method which can help the 

whole wind power generation process in a systematic way. The results may contribute in 

developing a practical evaluation tool for management level, improve wind power pre-

diction accuracy and reduce economic losses by increasing wind speed prediction accu-

racy. In the long term, it can effectively alleviate air pollution, water pollution and global 

warming problems. Besides of these, this research supports the growing recognition that 

the timeliness of making decision is just as important to the effectiveness of weather 

warnings as information provided in risk management of EWEs and actions of machine 

failures, and this factor should be considered in future research in addition to the invest-

ments and attention given to improving detection and warning capabilities.  

 

The major managerial implications of this research are described as follows.  

a. Provides a plan about when to turn off the wind turbine group to repair and carry 

out maintenance during the low power generation period for wind power forecast to 

the next year. Therefore, it can serve as an effective tool for wind farm management 

and decision-making. 

The proposed structure and process of this conceptual information service system for 

improving productivity can help decision makers in WPEs while the electricity grid bal-

ance must be maintained between electricity consumption and generation at any 
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moment. It is a holistic wind energy decision support system based on condition-based 

maintenance (CBM), which includes meteorological information module, wind power 

prediction module and operations management decision-making module, for decision 

makers to cut down operation and maintenance costs and implement a successful CBM 

strategy to achieve higher level of cost effectiveness.  

 

b. Provides better wind energy assessment results and to optimize energy storage for 

the whole electrical grid. 

It can generate a lot of value, such as, making electricity price can falling faster than 

expected. The development of energy storage has a close relationship with transition to 

the smart grid. Energy storage plays a crucial role in offsetting the intermittency of re-

newable energy including wind energy predictable plan helps in dispatching effectively 

and helps users to save electricity cost. Energy storage can help balance the power gen-

eration and improve power quality. Optimal plan of energy management can reduce eco-

nomic loss when making decision. 

 

c. Reduces the carbon emissions by utilizing renewable energy maximally instead of 

fossil fuel. 

Burning fossil fuel is the main cause of climate change. Among a variety of traditional 

and new energy, to find the best plan of energy allocation among them to minimize car-

bon emissions and to make balance between them is becoming a popular topic. In the 

long term, this information system can reasonably help balancing the fossil fuels and 

renewable energy in the purpose of protecting the environment for human beings. 

 

6.3 Research Limitations 

From this research itself, reanalysis data are retrieved at the height of 30 meter as the 

same as a meteorological observatory.  

 

This research originally plans to use reanalysis data of 2015-2018 from ERA5 data to pre-

dict wind speed of 2019 then compare them with historical data from Finnish 
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Meteorological Institute in 2019. In practice, it is not easy to compare the predicted wind 

speed with historical wind speed in the year 2019 since there exists distortion since many 

observation data are missing. 

 

Wind energy is one of the most dynamic renewable sources of energy with commercial 

potential, clean and green, low-cost, widespread, inexhaustible. Wind power can effec-

tively mitigate air pollution, water pollution and global warming while providing a stable 

power supply for economic growth. However, wind power is intermittent and fluctuating 

as intermittent is a nature characteristic of wind energy itself. Wind power interval pre-

diction plays an increasingly important role in evaluations of the uncertainty of wind 

power and becomes necessary for managing and planning power systems. Besides of 

this, energy storage systems with new technology can also compensate for improving 

the reliability of the system pertaining to power availability (Abazari, Babaei, Muyeen, & 

Kamwa, 2020; Vijay M, Singh, & Bhuvaneswari, 2020; R. Wang, Li, Fu, & Tang, 2020). 

Hannele, Jari and Samuli in Ilmatieteen Laitos (Finnish Meteorological Institue) have 

done related research about WPF accuracy and uncertainty in Finland in the year of 2013. 

They pointed out that the aggregation of wind power production will not only decrease 

prediction errors, but also decrease the variation and uncertainty of prediction errors by 

analyzing density function and kernel densities in three sites (Holttinen, Miettinen, & 

Sillanpää, 2013). 

 

The ecological problem of wind power generation is interference to birds. Some types of 

wind turbine projects cause bird death, and these deaths may contribute to declines in 

the population of species also affected by other human-related impacts. The wind en-

ergy industry and the U.S. government are researching ways to reduce the effect of wind 

turbines on birds and bats. Modern wind turbines can be very large machines, and they 

may visually affect the landscape. Some people do not like the sound that wind turbine 

blades make as they turn in the wind. Producing the metals and other materials used to 

make wind turbine components has impacts on the environment, and fossil fuels may 

have been used to produce the materials. 
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The main solution is offshore wind power generation with higher cost from power gen-

eration but also high efficiency. Onshore wind power generation influences fisheries 

trade and marine mammals. In some regions over the world where the population is 

denser, to find the location for installing wind turbines are more restricted sometimes, 

offshore wind farms will be vigorously developed. Meanwhile, wind power generation 

makes a lot of noise, building wind farms in some empty places can be a possible better 

choice.  

 

For the algorithms, there is no single best forecasting algorithm that can be applied to 

all renewable energy systems. As a result of this research, it can be shown that each 

algorithm or combined algorithm has its advantages and disadvantages. There is still 

space to increase the prediction accuracies respectively in scale of very short-term, 

short-term, medium-term, and long-term wind power predictions. 

In general, there is considerable room for WPF development as wind power generation 

technology is not fully mature as there existed objective constraints. The limitations of 

this study include the research being established based on the existing literature. Mean-

while, some aspects are potentially ignored as this research is initially based on the ex-

isting literature. Furthermore, portability needs to be improved when planting into other 

wind farms. 

 

6.4 Future Research 

As wind power generation develops rapidly and the installed capacity is increasing fast 

in recent years, the innovative application of “environmentally friendly power supply” is 

getting much closer to our daily life. The dependence on electricity is increasing while 

the rapid development of society is changing day by day. The improvement of social pro-

duction and the continuous development of people's standard of living have a strong 

demand for power resources. Human society urgently needs to improve the efficiency 

of electricity consumption as the power resources are in shortage. (Rudenko, Ershov, & 

Evstafiev, 2017). 
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Currently, mostly WPEs consider the results of weather forecasts as a factor in helping 

managers to make decisions which rely on historical and prevailing meteorological data. 

However, nearly no research considers the impact of climate change while climate 

change over 10 years or even longer. Further research may mainly aim at figuring out 

how climate change over decades can influence wind power through comparing and an-

alyzing climate data records in complex terrain. More specifically, the objective is to ex-

plore the impact of climate change on weather conditions, especially EWEs which influ-

ence the wind power output in wind power enterprises. Besides this, as wind power has 

a cubic dependency on wind speed, this error from wind speed forecast can increase 

when predicting wind power. Therefore, finding solutions for getting higher accuracy of 

wind speed observation sites and developing better prediction models are continuously 

research tasks. In the future, more research is needed in the field of wind power predic-

tion for the purpose of optimizing real time data, increasing the prediction accuracy and 

system reliability.  

 

ML is widely used in many domains. The concept of DL has been introduced by Geoffrey 

Hinton, Yoshua Bengio, Yann Lecun in 2006. Recently, DL techniques have started to be 

used in the WPF area. DL usually has better performance than traditional ML in certain 

conditions when the training set is big enough. 

 

Electric energy is one kind of secondary energy, it cannot be stored since electricity must 

be generated as much as needed. It is waste if it generates more than needed while 

power cuts will happen if less than needed. Therefore, the power generation must follow 

the load of the power to adjust which is called peak regulation. Thermal power plants 

have strong peak-regulating capacity while wind farms have poor peak-regulating capac-

ity. For this reason, wind power and thermal power plants must be packaged into the 

grid, to achieve wind power peak. Aims to be integrated into the power grid, the wind 

power grid connection has always been a problem. The future research could include 
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increasing electricity generating stability in power companies based on better peak reg-

ulation in practice. 
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Abstract   

It can be noticed that most existing literature related to the topic of wind energy resource focus on specific 

areas, such as, specific forecasting model, local energy plan and policy, power engineering, etc. The purpose 

of this paper is to contribute to the topic of wind resource exploitation and wind power prediction for rele-

vant researchers and professionals. A review of existing literature in the areas of wind energy resource 

(WER) and wind power forecast (WPF) methods are presented in this paper, and the innovations in these 

relevant areas are also reviewed. We try to explore the research gaps in these areas to highlight the possible 

future research topics for the society. 

Keywords wind energy resource, wind power forecast, weather forecast, literature review 

1 Introduction 

In the last few decades, numerous researchers have put effort on exploiting, utilizing and optimizing energy. 

However, in recent years a large number of countries are moving to the exploitation of renewable and clean 

energy and this will be a long-term trend. Meanwhile, renewable energy education is becoming more and 

more popular and plays an important role in the improving of the quality of life (Kandpal & Broman, 2014). 

In contrary to fossil fuel based and nuclear energy sources, renewable energy sources (RES) can effectively 

utilize natural resources, alleviate the pressure of energy crisis, and minimize the negative environmental 

impacts (Ozcan, 2014). A new research predicts that global energy demand in 2040 will be approximately 

30% higher than it was in 2010. It is urgent that. Because the typical characteristics of wind energy are 

stochastic and intermittent, it is important to know and use appropriate renewable energy technologies in 

the whole process of producing wind power generation (Dashwood, 2012). 

Changes in temperature, precipitation, sea level, and the frequency and severity of extreme events will 

likely affect how much wind power generation is produced, delivered, and consumed. One hand, weather 

forecast data as input of WPF system influence a lot. On the other hand, there exist various weather phe-

nomena, such as, rainstorm, hail, thunderstorm and tornado, have high probability generate more or less 

damage to wind turbines.    

The structure of the rest of the paper is as follows: Section 2 describes the methodology of writing a litera-

ture review upon which this paper is based and introduces some other methods. Section 3 reviews the major 

contribution and innovation of all the existing classic models in the wind power forecast and their links 

between in order to find research gaps. Section 4 discusses the research gaps and proposes for the future 

research. Section 5 concludes the paper and some final remarks. 

2 Research methodology 
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The main methodology of this review paper is systematic review. The purpose of using this method is to 

find what kinds of advanced outcome did researchers have done before and specify the research gap, then 

determine what research content remain to study. Meanwhile, it can also provide a blueprint of state-of-art. 

The systematic review is a quite common way of collecting data, published in the literature, assessing 

methodological quality for high quality research questions. Systematic review are quite common in sciences 

where data are collected, published in the literature, and an assessment of methodological quality for a 

precisely defined subject would be helpful (Laberge, 2011). In this paper, contribution of each literature 

were associate and analyze together, it aims at finding out advanced things filling out the research gap.  

Besides of this, cluster analysis helped to classify wind power forecast (WPF) methods. Furthermore, the 

methods of association analysis has also been used to do a synthesized analysis. Through a review of evi-

dence from both qualitative and quantitative studies, disparate data are synthesized in order to better under-

stand the topic of WER and WPF. 

3 Descriptive analysis 

3.1 Wind power forecasting by time scale 

People usually use ultra-short term, short-term, medium-term and long-term time scales to predict wind 

power prediction in practice (Soman et al., 2010). There are different time scales when classifying wind 

power forecasting species according to time periods and one example is as follows (Peng et al., 2013; 

Soman et al., 2010).  

a. Long term forecasting 

Long-term wind power predictions are utilized for maintenance and repair of the wind turbine and 

include the predictions from 1 day to 1 week. 

b. Medium term forecasting 

Medium-term wind power predictions are utilized for power system management and energy trad-

ing and include the predictions for 6 h to 1 day ahead. 

c. Short term forecasting 

Short-term wind power predictions are utilized for pre-load sharing and include the predictions 

from 30 min to 6 h. 

d. Ultra-short term forecasting 

Very short-term wind power predictions are used for turbine control and load tracking and include 

the predictions for few seconds to 30 min ahead. 

3.2 Wind power forecasting by predicting model 

The methods of wind power prediction are usually divided into three groups (González-Mingueza & 

Muñoz-Gutiérrez, 2014). 

● Statistic model 

Statistical models are based on mathematical statistics analysis of the main variables associated with energy 

generation, such as wind speed and temperature at some points of measurement as well as the measures of 

wind generation at different point in the network. 

● Physical model 
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Physical models are based on the use of numerical models. At first, get the results of meteorological data, 

such as, wind direction, wind speed, atmospheric pressure and air density. Then use some physical charac-

teristics surrounding wind turbine to get the optimized predicting wind speed and direction in different hub 

height of wind turbine generator system. Finally, the wind power output can be predicted based on estab-

lished physical model.  

● Hybrid method  

Hybrid method is a useful predicting way as it can improve the WPF accuracy by offsetting random error 

with one method from each other. However, this technique is not very mature even it is commonly used 

nowadays.  

3.3 Commonly used wind power forecasting methods 

In light of different input data which means whether use Numerical weather forecast (NWF), the wind 

power forecasting can be divided into numerical weather forecast forecasting method and historical mete-

orological data forecasting method. 

● Kalman filters 

Kalman filters (KF) is an optimal recursive data processing algorithm and it has been firstly achieved by 

Stanley Schmidt in 1958. The preliminary application of KF method for numerical weather forecasting has 

been reported in a few papers (Persson, 1991). In one case, a modified KF algorithms was applied to wind 

speed numerical predictions so as to improve the WPF accuracy. This literature indicates high performance 

in eliminating of any type of systematic errors and reducing the requirements in CPU time. In the end, this 

paper also mentions that this technique can not only be used in the traditional meteorological use but also 

engineering sector, such as, wind power integration (Louka et al., 2008). 

 

● Time series model    

Commonly used time series models include auto regressive (AR), moving average (MA), autoregressive 

moving-average model (ARMA) and auto regressive integrated moving average (ARIMA). Among these, 

one ARIMA model established by Box and Jenkins have been widely used for the purpose of time series 

forecasting (Box & Jenkins, 1976). Meanwhile, this book is extremely overall because it interpretes each 

kind of time models in detail and also gives samples of modelling.    

 

● Artificial neural network (ANN)  
Various artificial neural network (ANN) models are widely used, such as back propagation (BP) and radial 

basis function (RBF). An ANN is an information processing method which works like a human brain pro-

cesses to find an algorithmic solution algorithmic solution in order to pick out the structure from the existing 

data (Carolin Mabel & Fernandez, 2008; Kariniotakis, Stavrakakis, & Nogaret, 1996). Based on normal BP 

network, one new wind power prediction model which optimized tabu search algorithm with memory func-

tion was developed (Han et al., 2011).  

Existing methods for this purpose tend to yield results with poor accuracy because they cannot properly 

account for seasonal effects over the long term. However, one updated method improve the accuracy of 

daily average wind speed forecasting. This study aims to forecast the daily average wind speed over a long 
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period of time, such as one year ahead. This method can forecast the daily average wind speed one year 

ahead with lower mean absolute errors compared to figures obtained without adjustment (Guo et al., 2011). 

 

● Support vector machine (SVM) 

This method was firstly developed by Corinna Cortes and Vapnik in 1995. It is similar to ANN but the most 

apparent difference is SVM focus on mathematic method and optimization mechanism. One typical re-

search applied this SVM method to wind speed prediction has been done in 2004. The paper introduces 

SVM, the latest neural network algorithm, to wind speed prediction and compares their performance with 

the multilayer perceptron (MLP) neural networks. The result indicates that SVM comparing to MLP is 

closer to the actual wind speed (Mohandes et al., 2004). 

The existing studies on using SVM for wind forecasting are very limited in that usually only one particular 

kernel function and a specific combination of parameters are picked and used in these studies. A systematic 

investigation focuses on kernel function encourage people to apply this method for wind energy applica-

tions. One research fill the research gap, it briefly introduce the principle of LS-SVM and analyze procedure 

for tuning LS-SVM parameters for optimal performance (J. Zhou et al., 2011). Least-squares support vector 

machines (LS-SVM) is a powerful technique which aims at getting higher accurate forecasting of wind 

speed. And it is widely used for forecasting short-term wind speed forecasting.  

 

● Fuzzy logic 

It is a useful and practical technique for modelling complex phenomena that may not yet be fully understood 

owing to its ability to deal with imprecise, uncertain data, or ambiguous relationships among data sets 

(Metternicht, 2001). This approach provides a simple method to draw definite conclusions from vague, 

ambiguous, or imprecise information, however it is not widely used because of the low accuracy as low 

ability of fuzzy logic prediction is low when studying (Klir & Folger, 1988). There are few up to date 

literature researching in this area, providing a possible research gap basing on its promising nature. 

 

● Hybrid algorithm 

There is no single best forecasting algorithm that can be applied to any wind farm due to the fact that wind 

speed patterns can be very different between wind farms and are usually influenced by many factors that 

are location-specific and difficult to control (Guo et al., 2011). 

In a very recent literature, a novel hybrid modelling method which named SVR–UKF is proposed, integrat-

ing unscented Kalman filter (UKF) with support vector regression (SVR) in order to precisely update the 

short-term estimation of wind speed sequence (K. Chen & Yu, 2014). Using this method, the prediction 

errors are closer to zero with significantly smaller variations, whereas the prediction errors of the other 

methods are scattered more widely. 

Each one of  physical models, statistical models, spatial correlation models and artificial intelligence mod-

els has its advantages and disadvantages, for example, the time series model is one kind of statistical models 

and it is popular in use because its computation is simple, ANN and KF are popular due to their good 

nonlinear performance. Thus, another research which introduces two hybrid algorithms and compare show 
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both of them have good performance. In this literature, the authors establish two hybrid methods namely 

ARIMA-ANN model and ARIMA model based on single time series model, ANN model and KF model. 

The results show that: (1) Both of them have good forecasting accuracy; and (2) they are suitable for the 

jumping wind samplings, which can be applied to real-time wind power systems (H. of two new A.-A. and 

A.-K. hybrid methods for wind speed prediction Liu, Tian, & Li, 2012).  

Other similar hybrid algorithms also exist, e.g. one research systematically and comprehensively investi-

gated the applicability of this methodology based on two case studies on wind speed and wind power gen-

eration, respectively. Two hybrid models, namely, ARIMA–ANN and ARIMA–SVM, are selected to com-

pare with the single ARIMA, ANN, and SVM forecasting models. The results show that the hybrid meth-

odology does not always outperform the individual forecasting models based on ARIMA, ANN, or SVM. 

As such, the argument in some literature that the hybrid methodology is always superior to single models 

cannot hold for wind speed or power generation forecasting (Shi et al., 2012). 

 

Table 1 Innovations in different forecasting methods 

Methods Literature  Innovation 

Kalman filters (Louka et 

al., 2008) 

This literature has introduced two limited-area atmospheric 

models for wind speed forecasts, and particularly utilise Kal-

man filter to these data to eliminate any possible systematic 

errors, even in the lower resolution cases, contributing further 

to the significant reduction of the required CPU time. In par-

ticular, the paper contributes in the case of wind power predic-

tion, which showed a remarkable improvement in the model 

forecasting skill. 

The major innovation is to counteract the drawback of Numer-

ical Weather Prediction (NWP) models exhibiting systematic 

errors in the forecasts of certain meteorological parameters. In-

stead of increasing the model resolution that may provide con-

siderable improvement of smaller scale flow characteristics, 

which remains as an open question to whether the use of higher 

resolution improves the forecast skill considerably, the meth-

odology introduced in this paper showed high performance to 

the elimination of any type of systematic errors and most im-

portantly it reduced the requirements in CPU time since its ap-

plication to lower resolution data led to similar or even more 

accurate results compared to the costly high-resolution direct 

model outputs. 
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ANN (Han et al., 

2011) 

It is urgent to improve the accuracy of short-term wind power 

forecast by NWF. BP network, as one of ANN, has been widely 

used in wind speed and wind power prediction. However, the 

BP algorithm has its apparent disadvantages, easily getting 

into local minima and the convergence rate is slow. The major 

innovation in this literature is that the authors use Tabu Search 

(TS), another algorithm which can achieve the global optimi-

zations, to train BP network. It can be shown that the new 

method namely MTS-ANN model can solve the inherent 

shortcoming of BP network by improving the convergence 

probability and precision of BP network apparently. 

(Guo et al., 

2011) 

Another BP model also used to predict wind speed in the same 

year of 2011. In this literature, the authors integrate BP net-

work with the idea of eliminating seasonal effects from actual 

wind speed datasets using seasonal exponential adjustment. 

This study aims to forecast the daily average wind speed over 

a long period of time, such as one year ahead. Existing meth-

ods for this purpose tend to yield results with poor accuracy 

because they cannot properly account for seasonal effects over 

the long term. To improve the accuracy of daily average wind 

speed forecasting, 

SVM (Mohandes 

et al., 

2004) 

This literature introduces support vector machine method for 

wind speed prediction, and compares it with multilayer per-

ceptron (MLP). For these two algorithms, some results are 

shown after validating data from one case study which named 

Saudi Arabia which located in Madina city. One of the most 

important contributions is that parameters for both algorithms 

were optimized. Another finding is the lowest MSE of SVM is 

better that MLP in this case study. 

 

LS-SVM (J. Zhou et 

al., 2011) 

This literature, for the first time, presents a systematic study 

on fine tuning of LS-SVM model parameters for one-step 

ahead wind speed forecasting. The authors impleted three 

SVM kernels which including linear, Gaussian, and polyno-

mial kernels. The results show that the performance of linear 

kernel is worse than the other two kernels when the training 

sample size or SVM order is small. For Gaussian and polyno-

mial kernels, both types of parameters should be considered 

jointly rather than independently for both kernels. 

LS-SVMs are compared against the persistence approach, and 

it is found that they can outperform the persistence model in 

the majority of cases. 
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Kalman filters+ SVM (K. Chen 

& Yu, 

2014) 

Accuracy of wind speed forecasting is very important for im-

proving and optimizing renewable wind power generation. 

However, one of the most apparent characteristics of the wind 

is strong stochastic nature and dynamic uncertainty. In this lit-

erature, a proposed approach named SVR–UKF, integrated un-

scented Kalman filter (UKF) with support vector regression 

(SVR), is developed to update the short-term estimation of 

wind speed sequence. The results indicate that the proposed 

method has much better performance in wind speed predic-

tions than the other approaches across all the locations. 

 

ARIMA+ANN, ARIMA+Kalman (H. of two 

new A.-A. 

and A.-K. 

hybrid 

methods 

for wind 

speed pre-

diction Liu 

et al., 

2012) 

This literature introduces two new hybrid models namely 

ARIMA-ANN model and an ARIMA-Kalman. After respec-

tively comparing the multi-step ahead prediction results by an 

ARIMA-ANN model, an ARIMA-Kalman model and a pure 

ARIMA model, it can be proved that the performance of the 

two hybrid models is better than that of the pure ARIMA 

model, and the performance of the ARIMA-Kalman model is 

better than that of the ARIMAANN model.  

The major innovation is they improved the performance of the 

pure ARIMA model and utilize in bigger number of forecast-

ing steps in order to lower the accuracy. 

ARIMA+ANN, ARIMA+SVM (Shi et al., 

2012) 

This literature compares two typical hybrid models, namely 

ARIMA–ANN and ARIMA–SVM, with three separately sin-

gle models through two case studies about wind speed and 

wind power generation. The results show two hybrid models 

are viable when predicting wind speed and wind power gener-

ation. However, the most important contribution is that they 

found hybrid models are not superior to single methods in per-

formance for all the forecasting time horizons investigated. 

 

4 Discussions and future research 

The present review provides a useful overview of the research on the use of identifying topic and key terms, 

identifying database and access software, conducting searches, identify sources as primary or secondary, 

summarizing and analyzing primary sources, organizing and writing reviews. The purpose of this paper is 

to contribute to the topic of WES exploitation and WPF for relevant researchers and amateurs. Furthermore, 

this paper also gives an overall roadmap of each knowledge and descriptive analysis.  

Limitations of this review article are due to the scope and methods used. Only writing methods, classifica-

tion of wind power forecast has been included. Surely, research derived from with other areas, for example, 

specific forecasting model, local energy plan and policy, power engineering. Meanwhile, the number of 

review papers is merely more than 20. Better statistic results are expected when there are more review 

samples. 
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Currently, mostly wind power enterprises consider the results of weather forecast as a factor in helping 

managers to make decisions which rely on historical and prevailing meteorological data. However, nearly 

no research considers the impact of climate change while climate change over 10 years or even longer. 

Further research may mainly aim at figuring out how climate change over decades can influence the wind 

power through comparing and analyzing climate data record in complex terrain. More specifically, the ob-

jective is to explore the impact of climate change on weather condition, especially extreme weather events 

which influence the wind power output in wind power enterprises. 

5 Conclusions 

In this paper, several methodologies, which including systematic review, cluster analysis and association 

analysis, are used to depict and generalize different popular WPF methods.  

Many different wind power forecasting methods used in wind energy system have been reviewed in this 

paper to summarize their own theory and characteristics in different methods. And their corresponding 

innovations are also reviewed in detail. The important points were descripted in Section 3. So the main 

contribution is to provide a path for researchers in this same field. 

There is no single best forecasting algorithm that can be applied to any wind farm and each algorithm. As 

a result of this study, it can be said that each algorithm or combined algorithm both has its advantages and 

disadvantages. There is still space to increase the prediction accuracies in very short-term, short-term, me-

dium-term and long-term wind power predictions, respectively. 

In the future, more research will still to be tried in wind power prediction for the purpose of increasing the 

prediction accuracy and system reliability.  
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Abstract   

The aim of this study is to survey impact of climate change on wind power enterprises (WPEs). So the main 

work is to develop a new framework to determine the impacts climate change on WPEs. A huge database 

of climate data record (CDR) in used with meteorological and geographic variables for period 1979-present 

three times per day for 10 meter U wind component, 10 meter V wind component, total column water 

vapour, 2 meter temperature, medium cloud cover, mean sea level pressure, gravity wave dissipation, etc. 

Among these meteorological data, air density and wind speed can be used to predict the wind power density 

for wind farm site selecting. And wind speed, relative humidity, rainfall, snowfall over few decades can be 

chosen to draw graphs in order to analyze the significant correlation with wind power.  

Keywords wind power forecast, WPEs, climate change, global wind energy resource distribution, CDR. 

 

1 Introduction 

Changes in temperature, precipitation, sea level, and the frequency and severity of extreme events will 

likely affect how much energy is produced, delivered, and consumed. It can be noticed that quite few re-

searches regard climate change as a long-time measurement factor for renewable energy plant. Today, wind 

energy is widely used to produce electricity in many countries all over the world, such as China, United 

States, Germany, Spain, India, and Denmark. For wind energy, mostly wind power enterprises consider 

results of weather conditions as a factor for helping managers to make decisions which rely on historical 

and prevailing meteorological data. For example, they are more interested in the predicted and actual data 

of wind speed, wind direction and the rated power of the wind turbine. Long-term wind projects do not 

include the yet unknown impacts of climate changes on wind power (Pereira, Martins, Pes, da Cruz Se-

gundo, & Lyra, 2013). 

However, climate change is another concept which is not as same as weather condition. Climate change is 

a long-term accumulated effect of weather condition caused by many factors, and it directly results extreme 

weather events (EWEs) which has significant impacts on power generation. EWEs may generate rainstorm, 

typhoon, mudslide, extreme temperatures, hailstone across most parts of the world. With rising concerns 

about climate change, a recent similar climate change research report, man-made climate change contrib-

uted to some of 2012’s most extreme weather, including the spring and summer heat waves that baked parts 

of the United States and Hurricane Sandy, which devastated coastal communities along the eastern coast of 

the country. Understanding the climate change phenomenon and its impact on wind power system is of 

increasing importance all over the world.  
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Wind power generations depend on the natural environment especially under extreme wind condition, 

which means the wind speed is near or over the cut-out speed (Lin et al., 2012). In addition to this, other 

disaster events including, lightning, strong wind, extreme temperatures, haze, fog acid rain and hail will 

result in sudden power drop under an extreme condition.  

However, lack of good quality data, of sufficient record length and spatial coverage usually restricts model 

development and performance geared towards assessing the effects of climate change in these areas (Ke-

nabatho, Parida, & Moalafhi, 2012). 

This research mainly aims at figuring out how climate change over decades can influence the energy power 

through comparing and analyzing climate data record. More specifically, the objective is to explore the 

impact of climate change on weather condition especially extreme weather events which influence the 

power output in wind power enterprises from the sight of meteorology. Meanwhile, make summarize typical 

climatical characteristics over three selected meteorological stations. The specific goals are described here, 

• Observe and analyze climate data record from approximately 1970 to recent days, and identify the 

main developing trend of climate change for three selected dissimilar typical meteorological sta-

tions. 

• Explicit how climate data record can be used to eliminate economic loss in wind power enterprises.  

Section 2 will give a literature review about the current research situation and also summarize the art-of-

state. Section 3 will draw a framework which assessing wind resources and finding correlation between 

wind power and some meteorological elements. Section 4 presents discussions and finally summary, this 

part also gives future research prospects. 

2 Literature review 

Kenabatho et al. (2012) present an analysis of rainfall and climate data in order to determine the time of 

change in rainfall series and identify possible correlations between rainfall and temperature. They use his-

torical rainfall, climate data from rainfall stations and large-scale CDR from 1965 to 2008. The results 

indicate that temperature is a significant rainfall predictor in Botswana. Meanwhile, they make predictions 

of future rainfall patterns in Botswana(Kenabatho et al., 2012).  

According to Birgit Mannig et al. (2013), central Asia has already implemented the high-resolution regional 

climate REMO and they use REMO simulations to get higher accuracy results which are closer to observa-

tional data(Mannig et al., 2013).  

From geographic aspect, Turkey is a country which located between Europe and Asia, bordering the Med-

iterranean, Aegean and Black Seas. One of the most apparent characteristics of this country is that its loca-

tion between the colder European and warmer Asian and African systems also cause a wide variety of 

temperature and climate difference. Turkey has a rich potential of wind energy with 1002MW due to that 

this country surrounded by many mountains, and its unique geographical character creates a regular and 

moderate air inflow through its mountainous valley structures. A research investigated the renewable energy 
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situation including hydropower, wind and geothermal potential in Turkey(Çapik, Yılmaz, & Çavuşoğlu, 

2012). 

A research review and explicit the trends of observed terrestrial near-surface wind speeds for many coun-

tries all over the world, and study the observed rates of atmospheric evaporative evaporation. In this study, 

they separately describe the trends of near-surface terrestrial wind speed and the trends in evaporative de-

mand, then analyze the importance of wind speed to the evaporative process. It is not a review paper about 

wind resource but also a relevant reference to water resource assessment. The result show that near-surface 

terrestrial wind speeds are declining in both hemispheres for both the tropical and mid-latitudes. Four pri-

mary meteorological variables, which including wind speed, atmospheric humidity, radiation and air tem-

perature, were also assessed. This paper also highlight the important role that wind speed trends play in 

governing evaporative demand trends (McVicar et al., 2012).   

Another similar literature provides global and seasonal estimate of the “practical” wind power, which de-

fined as delivered from wind turbines in high-wind locations over land and near-shore, obtained with a 3-

D numerical model. They found that the global practical wind power potential varies significantly with 

season and hemisphere. Such as the highest wind power output are generated in the season of winter and 

oppositely the lowest are in summer (Archer & Jacobson, 2013).  

One relevant research focuses on studying wind energy, solar energy, bio-energy resource separately in 

Mali by using modelling, satellite imagines and existing global datasets. The methods applied make exten-

sive use of satellite remote sensing and meteorological mesoscale modeling. In this study, the preliminary 

wind resource map produced show that the North of Mali has more potential of wind energy (Nygaard et 

al., 2010). 

3 Towards a conceptual framework 

Some changes associated with climate evolution will likely benefit the wind energy industry while other 

changes may negatively impact wind energy developments, and expansion of wind energy installed capac-

ity is poised to play a key role in climate change mitigation (Pryor & Barthelmie, 2010). Various wind 

power stations have different terrain feature which can be seen from global wind energy resource distribu-

tion. 

This research mainly aims at figuring out how climate change over decades can influence the energy power 

through comparing and analyzing climate data record. More Specifically, classify all relative meteorologi-

cal phenomenon which are closely related to power output of wind power enterprises after analyzing cli-

mate data record, and determine what factors influence them. Whether seasons effect? Whether time periods 

effect? Whether regional differences exist?  

On one hand, there are different ways to estimate the wind resources at a site and wind resource varies 

significantly from one location to another. Wind power density (WPD) (W/m2) can be predicted form wind 

speed and air density. WPD is a nonlinear function of the probability density function of wind speed [9]. 

Estimates of WPD are presented as wind class which ranging from 1 to 7 and the assessment of WPD play 
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important role when site selecting. Accurate assessment of wind resource will not only reduce economic 

loss caused by EWEs but also increase the wind power output. 

On the other hand, some few meteorological elements may have relationship with wind power. Six major 

meteorological elements including air temperature, humidity, wind speed, wind direction, air pressure and 

rainfall are analyzed. Besides of these, there are evaporation, snow depth, snowfall, total cloud cover, sun-

shine duration and so on. Among these, we propose the assumption that meteorological elements such as 

wind speed, relative humidity, rainfall, snowfall over few decades have correlations with wind power, which 

needs to be proved by analysis with longitudinal data over decades, and then try to determine the function 

expression by using variety of CDR variables and draw graphs to analyze the relationship between them.   

4 Discussion and conclusion 

Robert Vautard and his colleagues used a sophisticated regional climate model (this model describes the 

interactions between wind turbines and the atmosphere) to determine the climate impacts on all current 

(2012) and near-future (2020) wind energy production according to European Union energy and climate 

policies. The team found that wind farms form a weak but stable anticyclonic flow over Europe but only in 

winter there will be a significant impact on daily temperature and rainfall, and this effect is weaker than 

what natural interannual changes result for the climate change. They use a regional climate model describ-

ing the interactions between turbines and the atmosphere, and find limited impacts. However, the impacts 

remain much weaker than the natural climate interannual variability and changes expected from greenhouse 

gas emissions (Robert Vautard, Françoise Thais, Isabelle Tobin, François-Marie Bréon, Jean-Guy 

Devezeaux de Lavergne, Augustin Colette, 2014). This recent valuable research suggests a new and con-

trary direction to the impacts of climate change on WPEs. 

The exploitation of off-shore wind power has more potential prospects comparing to that of on-shore as the 

coastal wind speed is higher than inland. Meteorological and hydrological factors definitely influence the 

wind power output, especially typhoon and seawater corrosion. Sea waves can scour foundation of wind 

turbine tower, corrode undersea cables affecting and affect its stability. Meanwhile, the historical meteoro-

logical data of wind and tide directly influence wind power site selection. Therefore, the further research 

may be related to coastal wind power forecast, and focus on the impact of climate change on off-shore wind 

power plants due to its typical climatic characteristics. This suggests that further research into the links 

between large-scale climate variability and wind power generation is necessary and important. 

In this paper, this work presents some of the most recent relevant research which combines climate change 

with wind power predicting. The outcome of this research is to help decision-makers of wind power enter-

prise on making strategic decisions which including site selection, management and maintenance of wind 

power station, and long-term wind power generation forecast etc. Furthermore, it also develops a proposal 

framework which to determine the relationship between and wind power density and wind power. And the 
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further research should explore deeply in CDR so as to help the researchers in the field develop more 

effective wind speed and power forecasting methods by finding specific function expression.  
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Meteorological information service support sys-

tem in wind park application 
Abstract 

Purpose – This paper introduces a holistic decision support system based on condition-

based maintenance which utilizes meteorological forecasting information to support de-

cision-making process in services of wind power enterprises. 

Design/methodology/approach – A pilot conceptual system combining with meteoro-

logical information and operations management has been formulated in this study. The 

proposed system provides benchmarking to support decision-making directly and indi-

rectly basing on processing meteorological information and evaluating its impact on 

service operations. It collects meteorological data to predict failure probabilities in dif-

ferent areas which need corresponding maintenance service and schedule the optimal 

maintenance periods. In addition, it provides meteorological forecasting and decision 

support in case of extreme weather events.  

Findings – The conceptual study shows that there is a connection between the meteor-

ological conditions and failures, and it is feasible to make service decisions based on the 

predictions of weather conditions and their impacts to failures. 

Research limitations/implications – The research presented at the present phase is not 

much beyond a conceptual framework. The actual implementation and all possible re-

lated practical issues will be dealt with in future research. 

Practical implications – It helps decision-makers to predict and identify possible cate-

gories of faults in wind turbine, make optimal service decisions to enhance the output 

performance of wind power generation, and take in advance emergency counteractions 

in case of extreme weather events. 

Originality/value – It presents a novel concept and provides a roadmap to achieve opti-

mal operations in wind park application through combining meteorological information 

system with service decision-making. 

Keywords – information system, meteorological service, extreme weather events, deci-

sion-making, strategic management, condition-based maintenance.  

Paper type – Research paper 

1. Introduction  
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According to Global Wind Energy Council (2012), the number of wind turbines spin-

ning around the world by the end of 2011 is 199,064. Among that, the amount of wind 

turbines up and running in China is 45,894 which count 23% of the total amount. That 

is to say, China’s leadership in wind energy deployment is both an opportunity and a 

challenge for European and American companies to compete in this market and interna-

tionally. Europe remains a technology leader and is carving out the next frontier of wind 

energy with onshore and offshore deployments (Global Wind Energy Council, 2012). 

The wind energy potential of the Earth is huge and enough, in principle, to meet all the 

world’s electricity needs. Virtually every country has sites with average wind speeds of 

more than 5 m/s measured at a height of 10 m, which are sufficient for using wind power 

to generate electricity (Sesto and Ancona, 1995).  

Many of critical wind turbine faults are directly or indirectly related to weather condi-

tions and extreme weather events (EWEs). This research intends to propose a pilot service 

support system which utilizes meteorological information to predict such situations which 

may lead to breakdowns and make it possible to take precautions in advance, and in ad-

dition to suggest other service related decisions based on condition-based maintenance 

(CBM), such as deciding the optimal time for maintenance during the predicted idle pe-

riod. CBM is defined by a set of maintenance actions taken as a consequence of knowing 

the current operating status of equipment. Recent study considers it is a form of proactive 

equipment maintenance that forecasts incipient failures based on a real-time assessment 

of equipment condition obtained from embedded sensors and or external tests and meas-

urements that are extracted directly from the equipment (Gulledge, Hiroshige and Iyer, 

2010). Many recent studies show there is direct connection between service and business 

performance in wind power systems and demonstrate business potential analysis that op-

timal service decisions based on CBM in wind park application can significantly cut down 

operation and maintenance costs (El-Thalji and Jantunen, 2012; Tian et al., 2011; Nielsen 

and Sørensen, 2011), and by implementing a successful CBM strategy can also achieve 

higher level of cost effectiveness (El-Thalji and Jantunen, 2012), thus improve the oper-

ation and business performance.  

In many recent studies, the relationship between wind speed modelling and electricity 

generation from wind turbines is also studied. In fact, wind park investors are interested 

in long-range forecasts and simulation of wind speed for two main reasons: to evaluate 
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the profitability of building a wind farm in a given location, and to offset the risks asso-

ciated with the variability of wind speed for an already operating wind farm (Caporin and 

Preś, 2012). The percentage of the world’s electricity that could be produced from off-

shore devices is estimated to be around 7% by 2050, and this would employ a significant 

amount of people by this time, possibly around 1 million, mostly in the maintenance of 

existing installations (Esteban and Leary, 2012). 

Optimal maintenance are affected by various factors, such as availability of resources, 

dependency on meteorological surrounding conditions, as well as a complex logistical 

process chain (Tracht, Westerholt and Schuh, 2013), and failure probability can be pre-

dicted based on condition monitoring data of wind energy systems (Tracht et al., 2013). 

Based on these theories, this paper develops a holistic system which combines with me-

teorological information and operations management. The proposed system provides 

benchmarking to support decision-making basing on processing meteorological infor-

mation and evaluating its impact in service operations of wind power enterprises. The 

concept of such decision support system is built based on years of well-established pre-

vious studies utilizing sense and respond type of continuous adjustments in decision-

making to achieve sustainable competitive advantage in operations strategy implemen-

tation (Liu, 2013). 

The structure of this paper is as follows. Section 2 reviews the latest related studies. Sec-

tion 3 introduces the research methodology. Section 4 describes the system structure and 

process in a conceptual framework. Section 5 discusses the managerial implications, re-

search limitations and also recommendations for future research. Section 6 draws conclu-

sions.  

2. Review of related studies 

2.1 Wind power as an energy source 

Energy is the main intermediate strategic resource for economic development and 

growth in any country. This usually translates to better quality of life, and therefore it 

leads to higher primary energy consumption in all sectors, transportation, industry, ser-

vices, household, etc. (Abulfotuh, 2007). Nowadays, the world faces a great challenge 

of saving our future in terms of developing renewable energy. Until now, a huge amount 

of the energy requirements all over the world is supplied originally from conventional 

energy sources like coal, crude oil, natural gas, etc. However, these patterns of energy 
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are limited and often lead to pollution. Therefore, renewable energy resources will play 

an important role in our daily life in the world’s future. 

Renewable energy sources are those resources which can be used to produce energy 

again and again, e.g. solar energy, wind energy, biomass energy, geothermal energy, etc. 

and are also often called alternative sources of energy (Rathore and Panwar, 2007). 

Among the renewable energy sources wind energy is currently viewed as one of the 

most significant and attractive sources, which is a clean energy rather than coal, crude 

oil and natural gas. The outstanding characteristic of wind power is to save energy and 

protect environment although the intermittent character is a very critical problem.  

The use of renewable energy sources is closely linked to sustainable development, be-

cause a sustainable supply of energy resources which must be used effectively and effi-

ciently is required for it, as well as for progressing in environmental problems (Tolón-

Becerra, Lastra-Bravo and Bienvenido-Bárcena, 2011). It is undoubtedly that sustaina-

ble development will definitely let managers handle with problems during the period of 

decision-making. 

    On one hand, wind power generation is becoming more and more popular in many 

countries, but it differs from conventional thermal generation due to the stochastic nature 

of wind. Thus wind power forecasting plays a key role in dealing with the challenges of 

balancing supply and demand in any electrical system, given the uncertainty associated 

with the wind park power output. Accurate wind power forecasting reduces the need for 

additional balancing energy and reserve power needed to utilize wind power (Foley et 

al., 2012). 

On the other hand, the Nordic countries particularly experienced a number of extreme 

weather events (EWEs) during recent years and a significant number of wind power 

businesses were affected as a result. With the intensity and frequency of extreme weather 

predicted in the future, enhancing the resilience of businesses, especially wind power 

enterprises (WPEs) which are considered as highly vulnerable, has become necessary 

(Wedawatta et al., 2011). However, little research has been undertaken on how construc-

tion of WPEs is responding to the risk of EWEs.  

2.2 Meteorological service and decision-making 

Traditional maintenance techniques, such as preventive maintenance is scheduled in ad-

vance of failure and usually at regular intervals which are typically determined by the 
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analysis of historical reliability data (Gulledge, Hiroshige and Iyer, 2010), and time-

based maintenance (TBM) is labour intensive, ineffective in identifying problems that 

develop between scheduled inspections, and not cost-effective (Ahmad and Kamaruddin, 

2012). Whereas CBM is scheduled by predicting the future status of the equipment based 

on operational or other characteristics. (Gulledge, Hiroshige and Iyer, 2010). Recent 

studies develop optimal CBM strategy and decision for wind power applications sys-

tems (Tian et al., 2011; Nielsen and Sørensen, 2011; El-Thalji and Jantunen, 2012). 

CBM is more efficient compared to preventive maintenance in many ways, e.g. condi-

tion monitoring and diagnostic practices have become significantly important part of 

offshore wind farms in order to cut down operation and maintenance costs (El-Thalji 

and Jantunen, 2012), and more realistic and worthwhile to apply than time-based 

maintenance (Ahmad and Kamaruddin, 2012). However, in wind park application it is 

typically hard to accurately predict with standalone meteorological data and may lead 

to a failure prediction. The other challenge is to enable CBM strategy to provide mainte-

nance decisions and services at the right time i.e. maintenance is performed when it is 

needed and not too early and not too late i.e. causing breakdown and downtime (El-

Thalji and Jantunen, 2012). Therefore a holistic system combining the complete mete-

orological service and decision-making is needed to increase the prediction accuracy 

and work together with the traditional preventive/corrective measures to provide optimal 

maintenance decisions.  

Short-term prediction is mainly oriented to the spot (daily and intraday) market, system 

management and scheduling of some maintenance tasks, being of interest to system op-

erators, electricity companies and wind park promoters (Costaa et al., 2008). Wind fore-

casting for energy generation and power system operations mainly focuses on the im-

mediate short-term of seconds to minutes, the short-term of hours up to two days, and 

the medium term of two to seven days. This is because power system operations such as 

regulation, load following, balancing, unit commitment and scheduling, are carried out 

within these time frames. The science of wind power prediction is described as the ap-

plication of the theories and practices of both meteorology and climatology specifically 

to wind power generation (Petersen et al., 1997). 

- Numerical weather prediction 
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- In case of non-saturated power, because the wind power is equal to wind speed 

third cube and wind speed are much more regular than that of wind power, con-

sequently a small wind speed error will amplify wind power errors much. It is 

wide and effective by using short-term wind power forecasting methods which 

combining numerical weather prediction (NWP) model with statistical models, 

so that we can develop operating mode for electric grid dispatching, provide sup-

port for arranging dispatch rationally, reduce the effects of intermittent power to 

wind power systems effectively. The wind data from now, yesterday, or last year 

in the same period cannot be used to predict wind in the next 24 hours, because 

wind is dependent on the weather, and the wind power output cannot be guaran-

teed at any particular time. Thus the integration of wind power into electrical 

grids can cause difficulties in the management of the power system (Marciukai-

tis, Katinas and Kavaliauskas, 2008).Meteorological service  

Climate change is predicted to have a significant effect on the frequency of EWEs and 

the occurrence of natural disasters, such as hail, flood, tornado and thunderstorm. There 

is a need for facility managers to mitigate potential disruption and prepare for future 

events caused by natural phenomenon. Meteorological sector sends out early warnings 

to WPEs, using the results of real-time monitoring and weather forecasting from satellite, 

radar, observation stations.  

The meteorological ensuring system is a derivative product which mainly involving 

EWE forecasting and warnings. This can prevent and mitigate climate change on crucial 

facilities and the impact of the project effectively. In current practice, however, that little 

risk assessment is undertaken by few organizations preparing integrated disaster man-

agement plans or business continuity plans to help them meet the challenge (Warren, 

2010). As we learn more about possible climate change impacts, certain WPE protection 

strategies may become more desirable and feasible in management, and we can adopt 

strategies to minimize its negative impacts on wind power generation. 

After studying how climate will change by predictions with wind power production and 

provide guidance in facing of EWEs, then facility managers can prepare for risk assess-

ment and disaster plans after collecting scientific data related to the potential effects of 

climate change (Warren, 2010). 

- Decision-making 
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There is relatively little research in the area of operations and service management in 

renewable energy sector such as wind power by utilizing meteorological information. 

Some notable studies connecting meteorological forecasting with renewable energy in-

clude e.g. Kaplan & Norton (2011) and Eckman & Stackhouse (2012). Changes in com-

petitive environments have increased the importance of strategic management in corpo-

rations. Successful companies must be able to anticipate changes in operating environ-

ments and be able to react faster than their competitors (Kaplan and Norton, 2011). Earth 

observations are critical in enhancing the implementation of renewable energy technolo-

gies and improving energy efficiency (Eckman and Stackhouse, 2012). Other related re-

search has been implemented by Liu, et al. (2012). According to the research from this 

group, they proposed a novel wind turbine fault diagnostic method based on the local 

mean decomposition technology, which is a new iterative approach to demodulate ampli-

tude and frequency modulated signals, which is suitable for obtaining instantaneous fre-

quencies in wind turbine condition monitoring and fault diagnosis. Finally, the experi-

mental analysis of the wind turbine vibration signal proves the validity and availability of 

the new method (Liu et al., 2012).  

Our research presented in this paper addresses this problem from a conceptual level to 

bridge the gap between meteorological information and decision-making in service op-

erations management. Even though this whole concept is a huge research which is still 

in progress, nevertheless this paper can be a pilot which leads to new ideas and opens 

more research paths. 

3. Research methodology 

3.1 Overview 

There are various types of strategies for conducting research in management and social 

sciences. Reisman (1988) defines research strategies such as ripple, embedding, bridg-

ing, transfer of technology, creative application, structuring, and empirical validation. 

This study uses mainly the following research strategies. Ripple is used to develop ana-

lytical models for assessing failure probabilities based on meteorological information 

and NWP. Embedding and bridging are used to associate the decision-making process 

in connection with the service needs which are based on the failure forecasts. Empirical 

validation is used to validate the developed theories by performing various case studies 

in different countries. Arbnor & Bjerke (1997) introduce three methodological 



158 

approaches i.e. analytical, systems, and actors. The nature of this study is to create a 

holistic system which is a set of components and the relations among them. Holweg 

(2005) applies the systems approach and contingency theory to review existing contri-

butions and synthesizes them into a conceptual model, which is very similar to the nature 

of this work. Therefore, systems and contingency based methodological approach is 

proposed to carry out this work. As the main contribution of this study is the integration 

of meteorological information with decision-making in service operations, it requires a 

new design in the research methodology to integrate the classic components. Kasanen, 

et al. (1993) describe the constructive approach as “problem-solving through the con-

struction of organizational procedures or models”, and also propose a market-based val-

idation for assessing this aspect of a construction. In this work the construct is the inte-

grative holistic system and it is feasible to apply a weak market test to validate and 

implement the research objectives. In summary, the research methods include literature 

survey, descriptive conceptual analysis, analyzing qualitative data based on Silverman 

(2001) and also quantitative data, classification by simple statistics, and finally using 

Kasanen et al.’s (1993) the constructive research approach with weak market tests and 

pilots for implementation. 

3.2 Case study 

To achieve the entire objectives of this conceptual research, the empirical studies are 

important and numerous case studies should be carried out from different countries, and 

analyzing them with the proposed existing analytical models and creating new analytical 

models for further evaluation. Therefore, the selection of the case companies must be 

mostly representative wind park applications. The case studies will be carried out in 

future research.  

3.3 Data collection and analysis 

The data of cases in different countries are collected in the same manner: by asking 

senior managers or directors to answer the questionnaires. The interviewees are nor-

mally decision makers and middle management groups, who have good knowledge 

about the operations of their own wind parks. The interviewed high competence experts 

should be representative to know well the operations of the studied wind park. The data 

collected typically from limited and described application problems is mainly qualitative 

in nature and its validity and reliability can be ensured by improving the required careful 
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documentation of the cases (Sykes, 1990; 1991). Firstly, the managers or directors are 

trained to understand every item of the questionnaires correctly by interview, email or 

telephone. Secondly, after they finish the questionnaires, the answers are analyzed with 

software. Thirdly, the discussion with the managers or directors reveals the results and 

verifies the validity and reliability of the data further. 

4. System description 

This section develops a conceptual framework for service support in wind park applica-

tion. The proposed system involves 3 major modules: meteorological information module, 

wind power prediction module and operations management decision-making module.  

The complete system structure and process are illustrated in Figure 1. 

4.1 Meteorological information module 

This module includes meteorological data collection and NWP. First, meteorological data 

are collected by the wind speed sensor, wind direction sensor, temperature sensor, atmos-

pheric pressure sensor, humidity sensor etc. installed on the wind-testing tower of the 

targeted wind park. Through wireless communicating module, original meteorological 

data from the wind-testing tower is converted into a digital signal and finally transmitted 

to the receiving terminal. Then NWP processes the meteorological data to parameters 

related to wind power output. NWP is a special version tailored to predicting wind power 

output and is different from the version used for commercial public weather forecasts. On 

the other hand, it also sends early warning messages in case of EWEs and managers in 

WPEs can get alarming signals in advance and take countermeasures quickly. With the 

new forecasting system it effectively links up the NWP model geared towards very short-

range forecast of severe weather system. Currently, the suit is probably one of the few 

operational forecasting systems that effectively combine radar information, dense 

mesoscale NWP model prognoses for real-time EWEs risk assessment.  

The following example illustrates how this is done in reality. A mountain area site located 

in central China has been chosen to test the proposed theory. The site is located nearby a 

wind park in operation, also including a meteorological station with anemometers be-

tween 30 and 70 m. This wind-testing tower has been brought into operation since No-

vember 2011. The mountain top has a height of 700 meters and has a direct distance of 

34 kilometers to the local meteorological station, which has good correlation to predict 
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the weather conditions for the wind park. The common meteorological disasters in this 

location are thunderstorm, flood, drought, low-temperature freeze and continuous rain. 

- Measuring the maximum wind speeds in the meteorological station 

The meteorological station is used to predict the 50-year wind base on annual average 10-

minute maximum wind speeds. Through T-test to inspect the consistency for sequence of 

annual maximum wind speed from 1974 to 2011, it has been discovered that the values 

in 1982 experienced a mutation. It is necessary to correct references of maximum wind 

speeds from 1982 to 2011due to the diversion of the meteorological station. According to 

National Wind Energy Resource Evaluation Technology Provision and the type I extreme 

value distribution, the 50-year average 10-min maximum wind speed is 28.38 m/s. 

 

- Predicting the 50-year maximum wind speed in the wind park 

𝑉50_𝑚𝑎𝑥 = 𝑢 −
1

𝛼
𝑙𝑛 [𝑙𝑛 (

50

50−1
  )]                      (1) 
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𝑛
∑ 𝑉𝑖

  𝑛
𝑖=1                                (2) 
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1

𝑛−1
∑ (𝑉𝑖 − 𝜇)2   𝑛

𝑖=1                              (3) 
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𝜎
                     (4) 

𝑢 = 𝜇 −
𝐶2
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                         (5) 

Using Eqs. (1)-(5), it can be calculated that the 50-year maximum wind speed is 30.5 m/s. 

- Predicting the 50-year extreme wind speed in the wind park 

Gust factors are a ratio between a peak wind speed of some duration within a given data 

segment and the mean wind speed of the same segment. An optimum gust factor of about 

1.4 is suggested for all types of fabric structures in general, which is an international 

standard value. Then it can be calculated that 50-year extreme wind speed is 42.7 m/s. 

4.2 Wind power prediction module 

This module utilizes the processed meteorological data to predict patterns of values re-

lated to wind power output. It is an intermediate process to obtain parameters to evaluate 
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failure probabilities and calculate the optimal service decisions which are crucial infor-

mation for the next process - operations management decision-making. 

 

Figure 1. System structure and process 

The wind power prediction module calculates the predicted amount of power output dur-

ing particular hours and days based on the real-time meteorological data. In order to have 

an accurate prediction, short-term weather forecast is important for the dynamic control 

of wind turbine and for minimizing the scheduling errors which impact on grid reliability 

and market service costs (Lerner, Grundmeyer & Garvert 2009). Depending on their in-

puts, the forecast models are classified as physical or statistical or hybrid approaches. The 

best way is to use meteorological forecast data from NWP systems combining several 

prediction techniques (Giorgi, Ficarella & Tarantino 2011).  

The module involves real-time wind measuring, NWP, and wind power forecasting. 

WPEs establish the forecasting model based on NWP and historical data related to wind, 

and they participate in prediction and report survey to dispatch center on time. Whether 

using ultra-short term wind power forecasting or long term wind power forecasting, they 

are all based on the foundation of real-time wind measuring data. 
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According to predicting and actual wind speed in wind parks, a mixed model of time 

series method and back-propagation neural networks arithmetic combining with meteor-

ological data can be used in wind power prediction. The more accuracy of meteorological 

data is, the better forecasting results can be obtained. In addition, meteorological ensuring 

service can be provided to wind parks in the meantime. 

This wind power predicting system mainly includes five parts: (i) data collection; (ii) 

NWP; (iii) wind power prediction; (iv) graphical user interface (GUI) software; (v) pre-

dicting database. The structure is shown in Figure 2. 

 

Figure 2. Structure of wind power prediction module  

- Data collection aims to select a site to set up wind-testing tower and collect wind 

speed, wind direction, temperature, pressure etc. which are also the input variables 

of the wind power prediction module. 

- NWP incorporates information representing the outer scale geophysical variabil-

ity through evolving boundary conditions and by assimilating observations of the 

current state of the atmosphere to predict flow characteristics. In this research, 

NWP is responsible for dealing with all collected meteorological references, 

adapting rational mathematical models to calculate the results of future weather. 

- Wind power prediction mainly focuses on predicting wind speed and wind power 

output which are crucial information for the next decision-making process. Wind 

speed and wind direction are the most important variables. Wind power is equal 

to wind speed third cube and wind speed are much more regular than that of wind 

power, and therefore it requires accurate wind measurement. 

- GUI Software deals with data transforming and interactive interfaces. 
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4.3 Operations management decision-making module 

This module mainly utilizes the prediction data from previous process to evaluate failure 

probabilities in different parts of the wind turbine and calculate the optimal service deci-

sions for the wind park operations management. 

The significance of failure analysis and fault diagnosis for wind turbine results lower 

breakdown rate, reduced maintenance cost and time, and improves the operational effi-

ciency and reliability (Ma, He and Feng, 2012). The wind turbine is a complex system 

which transforms kinetic energy from wind power to electrical power. (Kostandyan and 

Sørensen, 2012). It consists of electrical, mechanical, hydraulic, structural, and software 

subsystems.  

Many of critical wind turbine faults are directly or indirectly related to weather conditions 

and EWEs. Analysis to weather related faults can reveal the causes which can be even 

predicted, since the weather conditions resulting faults can be predicted with meteorolog-

ical information system, making it possible to take precautions in advance to prevent such 

situations from happening. Other service decisions such as the optimal time for mainte-

nance during idle period can be also predicted and scheduled in advance basing on mete-

orological information. 

Statistics show that the determining time for the fault diagnosis takes up 70% to 90% of 

the total time, while the repair time takes up only about 10% to 30% (Wang and Fent, 

2004). A wind turbine can be unavailable because of planned maintenance activities or 

because of unforeseen failures, incidents or accidents. Analysis of predictable sources of 

wind turbine failures such as weather conditions can help a lot in decision-making to 

optimize maintenance schedule and maximizes wind power output.  

Each component has different physics of failure behavior depending on structure, shape, 

operational environment and many other parameters (Kostandyan and Sørensen, 2012). 

From the current structural characteristics of wind turbine shown in Figure 3 and its actual 

fault conditions, faults usually occur in parts such as gears, shafts, bearings, fastener and 

box.  
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Figure 3. Main structure of wind turbine 
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According to real case statistics, Table 1 shows typical fault diagnosis related to weather 

conditions and the relevant actions need to be taken. The decision model can be built 

based on failure probabilities according to these conditions shown in Table 1. 

Table 1. Typical failures related to weather conditions 

Failure parts Possible reasons Weather conditions Actions 

Blade Blade drive not ready EWEs Emergency stop 

Rotor Result of imbalance, blades 

and hub corrosion etc., brake 

sensor failure 

Rain, snow and other 

hash meteorological 

condition 

Normal stop 

Gearbox Over temperature,  gearbox 

oil pressure too low 

High temperature Normal stop 

Generator Over speed, over tempera-

ture, bearing faults, current 

too high/low, frequency sen-

sor failure 

High temperature  and 

/ or humidity 

Emergency stop 

Normal stop 

Yaw system Yaw brake set 

unintentionally 

Extreme changes in 

wind speed / direction 

Normal stop 

Tower Weather or other failure may 

cause excessive vibration 

EWEs Emergency stop 

 

5. Discussion and future study  

Based on collecting official documents, analytical results, lab experiments, and hypothe-

sis test result, this investigation discuss the possible causes of wind power system failure 

from these four perspectives and presents practical suggestions for wind tower risk man-

agement and future action plans for the areas of structural design evaluation, construction 

and quality management, and engineering document review. By addressing study recom-

mendations, project stakeholders can improve their risk management strategies. Con-

struction firms can also utilize these findings to learn lessons for future reference. In terms 

of risk management, identifying the major causes of failure, one must understand the risk 

associated with these causes, and generate action plans that allow project managers to 

mitigate risk or employ control measures (Chou and Tu, 2011). 
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    In addition to the conceptual design, this study has provided new insight for practical 

operations management in wind park application. It helps decision-makers to predict 

and identify possible categories of faults in wind turbine and make optimal service de-

cisions to enhance the output performance of wind power generation. 

Further research is needed related to sensitivity analysis of:  

(1). Wind surveys and installations have so far concerned mostly onshore sites. However, 

a very interesting wind potential seems to exist also in offshore, shallow water locations, 

where there is the advantage of better wind conditions and less environmental restrictions, 

although the disadvantage of more difficult access and higher installation and mainte-

nance costs must be taken into account (Sesto and Claudio, 1998). In that situation, the 

seawater salinity is one critical meteorological factor which will be studied in future re-

search.  

(2). Accumulated plastic strain depending on the temperature 

Mean and temperature range factors. The proposed model is useful to predict damage 

values for solder joint in power electrical components. However, the real test data are 

required for the accurate model parameter estimation. 

(3). In addition, operation and maintenance strategies might be developed based on the 

proposed approach. Especially strategies for renewable and replacement systems, where 

reliability updating might be implemented based on failure times. 

6. Conclusions 

This paper develops a conceptual system which utilizes the meteorological information 

for decision-making based on CBM in operations and service management for wind parks, 

which is a form of proactive equipment maintenance that forecasts incipient failures based 

on a real-time assessment of various external and internal conditions obtained from e.g. 

meteorological data and equipment monitoring system etc. The objective is to design an 

optimal service decision-making system based on CBM in wind park application to sig-

nificantly cut down operation and maintenance costs and also implement a successful 

CBM strategy to achieve higher level of cost effectiveness, thus improve the operation 

and business performance. This paper bridges the gaps in current research of this area and 

opens up new research paths in the development of forecasting practices for service re-

lated decision-making, operations and risk management of EWEs in wind parks. It has 

shown that through the analysis of the meteorological information, it is possible to predict 
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hash weather conditions which are harmful to cause faults in wind turbines. Modern NWP 

can provide reliable forecasts for wind parks as accurate as per quarter hour basis in the 

next couple of hours and also useful trend forecast up to days. By analyzing the approxi-

mate time-period of the 50-year maximum wind speed and extreme wind speed through 

EWEs forecasting, WPEs can effectively reduce and even avoid a huge number of losses 

in maintenance, and schedule service operations in more optimal periods. The basic idea 

has been already tested in a wind park in central China as depicted, but still lacks of 

systematic theory construction to be used as a decision support system. The implementa-

tion of this conceptual model will be dealt with in future research.  
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Abstract 

According to U.S. EIA (Energy Information Administration) International Energy Statistics, 

nowadays fossil fuel is still the primary sources of energy, and the amount of fossil fuel 

power generation accounts around three-fifth in the world’s total annual electricity net 

generation. However, fossil fuel power generation based on coal, oil and natural gas is 

now gradually being substituted due to the limited availability and environmental as-

pects such as global warming and pollution. In response to the concerns of climate 

change, many policy makers are becoming keen to re-examine the use of fossil fuels and 

promote renewable energy. Hydro, wind, tide, photovoltaic, geothermal are common re-

newable energy resources to generate electricity. In an effort to mitigate the pressure of 

burning fossil fuel on climate changes, it becomes more and more essential that renew-

able energy will eventually replace the conventional fuel. However, do we have sufficient 

renewable energy potential to replace conventional fuel and fulfil the world’s energy 

consumption demands? Since many types of renewable energy such as the wind, solar, 

hydro are directly or indirectly related to meteorological factors and largely affected by 

them, this study analyzes the existing ERA-20C global datasets describing the state of the 

atmosphere as well as land-surface and ocean-wave conditions from 1900 to 2010 ob-

tained from the European Centre for Medium-Range Weather Forecasts (ECMWF) and 

mailto:yli@uva.fi
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tries to identify the meteorological factors (wind speed, solar radiation, rainfall, evapo-

ration etc.) with their effects on the overall utilization potential of these renewable en-

ergy resources. From this study, it can be found that a correlation between the meteor-

ological factors and the renewable energy potential does exist, which implies forecasting 

models of renewable energy potential can be invented based on the global atmospheric 

data. The future study will focus on forecasting the global potential of these renewable 

energy resources in the next decades.   

 

Keywords: 

Renewable energy, climate change, reanalysis, ERA-20C data, resources potential. 

 

1.   Introduction 

With an increasing energy demand, renewable energy is an appropriate way to satisfy 

energy consumption without environmental degradation (Hua, Oliphant, & Hu, 2016; A. 

Zahedi, 2010). Meanwhile, renewable energy technologies can play a crucial role in the 

transition towards a low-carbon economy (Albrecht, Laleman, & Vulsteke, 2015). Renew-

able energy development is a major response to address the issues of climate change 

and energy security. The utilization of renewable resources, however, highly depends on 

the climate conditions, which may be impacted in the future due to global climate 

change.  

 

When discussing why climate changes occur and reduce its influence to human beings, 

it is essential to consider atmospheric dynamics rather than only focus on surface varia-

bles, in particular, temperature and precipitation (Trenberth Kevin E., 1990). Jacobsson 

and Karltorp (2012) pointed out that, in response to the threat of climate changes, the 

European Union electricity sector has to undergo a large-scale transformation process to 

reduce loss. 
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Many researchers have turned to use reanalysis data instead of historical data, for exam-

ple, NARR, ERA-40, MERRA, and CFSR (Mesinger et al., 2010; Rienecker et al., 2011; Rose 

& Apt, 2015; Saha et al., 2010; Uppala et al., 2005).  

The data resource is ERA-20C archive Version 2.0 by an independent intergovernmental 

organisation European Center for Medium range Weather Forecasting (ECMWF) which 

supported by 34 states. Long time period of measured meteorological data were revised 

by reanalysis of meteorological observations in ERA-20C project. ERA-20C is a global, 

high-resolution, coupled atmosphere–ocean–land surface–sea ice system to provide the 

best estimate of the state of these coupled domains over this period. 

 

    The aim of this research is to find out a correlation between the meteorological factors 

and the renewable energy potential, which implies that the forecasting models of renew-

able energy potential can be invented based on the global atmospheric data. In this pa-

per, wind energy potential and solar energy potential in Vaasa region in Finland were 

roughly assessed by analysing ERA-20C reanalysis data.  

 

2. Literature Review 

Breslow and Sailor (2002) tried to find out the impacts of climate changes on wind speed 

and wind power output across the continent US. Two general circulation models pro-

vided similar trend until 2050 but various in the future 20 years. 

 

After six years, Sailor et al. (2008) put further this idea by investigating in wind statistics 

from models about five-state region within the Northwest US. The results showed that 

summertime wind speeds may decrease by 5–10% while wintertime wind speeds may 

decrease or increase slightly.  

 

In order to identify the changes in the future wind- and hydro-power resource potential 

in Norway, Seljom et al. (2011) evaluated the impact of climates changes with MARKAL 

Norway model. They found out that the reduction of heating demand will be significantly 
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higher than the increase of cooling demand, and there may be lower cost of energy sys-

tem and electricity production. 

 

Wang et al. (2014) developed a general framework and applied grey cluster analysis 

method to compare analysis renewable energy vulnerability to climate change in China. 

The results depicted the distribution of areas rich in hydropower, wind power and solar 

energy potential, which helps to improve decision-making analysis. 

 

In response to promote the transition towards a low carbon economy in Scotland, Sam-

ple et al. (2015) reviewed the potential impacts climate change and presented state of 

knowledge regarding the resilience of Scotland’s hydropower resource to a changing cli-

mate. 

 

Chang et al. (2015) proposed a new statistical downscaling framework using simulated 

weather research and forecasting (WRF) model to evaluate the climate change impact 

on wind resources in Taiwan Strait. It was found out that in the future wind energy den-

sity distributions are higher in the eastern half of Taiwan Strait but will reduce slightly 

comparing to the past time period. 

 

Fant et al. (2015) presented a method that estimates the risk of climate-change on wind 

and solar resource potential. The assessment combines the risk-based climate projec-

tions from the Integrated Global Systems Model (IGSM), which considers emissions and 

global climate sensitivity uncertainty, with more regionally detailed climate information 

from 8 GCMs available from the Coupled Model Intercomparison Project phase 3 (CMIP-

3). 

 

3.   Data analysis 

3.1 Wind energy 

Instead of pick out continent area, we identify the specific coordinate of longitude and 

latitude of the interested area (in this case the Vaasa region in Finland), then retrieve the 



176 

dataset in the format of NetCDF. In order to retrieve specific geographic site in the par-

ticular observation area, we choose the highest resolution grid (0.125 degree * 0.125 

degree) while the lowest resolution is 3 degree * 3 degree. We retrieve everyday mete-

orological record midnight 00:00 from 1st January 1961 to 31st December 2010, and a 

total data of 18262 days in 50 years were analyzed.   

 

Wind speed V at the height of 100 meter can be calculated through 100 meter u wind 

component and 100 meter v wind component (Eq.1). Wind power directly depends on 

ambient natural resources and hence it is sensitive to climate variability. Wind power 

density is directly related with the electric power generation. It is proportional to the 

cube of speed and can be divided into different classes.  

 

𝑉 = √𝑢2 + 𝑣2 (1) 

𝐷𝑤𝑝 =
1

2𝑛
∑(𝜌 ∙ 𝑉𝑖

3)

𝑛

𝑖=1

 (2) 

     

In this research, we use MATLAB R2014a to calculate, analyze, and plot figures. Fig.1 

shows the historical trend of wind power density in Vaasa region at the height of 100 

meter from 1960 to 2010.  
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Fig. 1 Wind Power Density for all past 50 year (Year 1961-2010) 

 

As can be seen from Fig. 1 that there are apparently fluctuations all through the past 50 

years. We separately picked out maximum wind power density from every ten years and 

every five years, for example, time period 1971-1980 and 1971-1975. For each peak value 

in every ten years or every five years, the general variations are plotted in Fig. 2 and Fig. 

3.   

 

Fig 2. Peak of Wind Power Density for every 5 years 
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Fig 3. Peak of Wind Power Density for every 10 years 

 

Therefore, it can be judged from the wind power density in above figures. Fig. 3 shows a 

more apparent trend when comparing with Fig. 2. It reveals a trend of fast increase from 

1961 to 1973 and after that keeps stable during 1973-1990. And it presents a general 

trend of dramatic increase in the short period of 1990-1992 then a trend of sharp de-

crease in long-term 1992-2010. 

 

3.2 Solar energy 

Total radiation approximately equals to sum of direct radiation and diffuse radiation. Ex-

cept of solar radiation, there are many other meteorological elements, which including 

cloud, sunny/rainy day, temperature and humidity, could influence solar power. These 

problems remain to be done in the future. 

 

4. Conclusion 

This study demonstrates the great potential of using global atmospheric reanalysis data 

to analyze the potential of renewable energy sources which are related with climate 

change. It can effectively help decision-maker in macro level through analyzing long-term 

atmospheric data. For the 20th century, we observed and analyzed the wind power den-

sity of past fifty years 1961-2010. In this study, the correlation between the 
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meteorological factors and wind energy potential has been found out. The main out-

comes of the present study are presented as follows: 

(a) As illustrated in Fig. 1, wind power density for all the past 50 years from 1961 to 2010 was in fluc-

tuation all the time.  
(b) From Fig. 2 and Fig. 3, the characteristics of peak values about wind power density in every 5 and 

10 years were separately depicted in the section of Data Analysis. And comparing peak values for 

each 10 years is easier than each 5 years. 

(c) According to Climate Change 2014 Synthesis Report, 2005 and 1998 were the warmest two years in 

the instrumental global surface air temperature record since 1850, and twelve years (1995 to 2006) 

ranked among the 12 warmest years on record since 1850. 

(d) The variation trend of wind power density is basically consistent with the changes in surface climate, 

in particular with the temperature.  

(e) This study only focuses on peak values analysing as an exploratory study. More useful statistic in-

formation are expected in the future. For instance, investigating the trend about annual sum of wind 

power density. 
Since ERA-20C global datasets includes the atmosphere, land-surface and ocean-wave 

reanalysis data from 1900 to 2010, we could also obtained the variation trend of natu-

ral resources (wind energy, solar energy, tidal energy, etc.) and forecast resources po-

tential in the future. The future study may focus on forecasting the global potential of 

these renewable energy resources in the next decades.   
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