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Abstract

This article proposes a novel comprehensive multi-layer power management system (PMS)
along with its smart distribution network (SDN) constraints as bi-level optimization to
address the participation of multi-microgrids (MMGs) in day-ahead energy and ancillary
services markets. In the first layer of the proposed model, optimal programming of MMG-
connected SDN is considered, in which Microgrids (MGs) participation in the markets
is performed to bidirectionally coordinate sources and active loads along with the opera-
tor of MGs. In the second layer, the bidirectional coordination of operators of MGs and
SDN, that is PMS, is executed in which energy loss, voltage security, and expected energy
not-supplied (EENS) are minimized as weighted sum functions. The problem of the differ-
ence between costs and revenues of MGs in markets is minimized subject to constraints of
linearized AC-power flow, reliability, security, and flexibility of the MGs. To obtain a single-
level model, the Karush–Kuhn–Tucker method is applied, and a hybrid stochastic-robust
programming is implemented to model uncertainties associated with the load, renewable
power, energy price, mobile storage energy demand, and network equipment accessibility.
The contributions of this paper include the simultaneous modelling of several economic
indicators, multi-layer energy management modelling, and stochastic mixed modelling of
uncertainties. The efficiency of this method is validated by simultaneously evaluating the
optimum condition of technical and economic indices of several SDNs and MGs. Flex-
ibility of 0.022 MW is obtained for the proposed scheme, which is close to zero (100%
flexibility). The voltage security index is increased to 22 by the mentioned scheme, which
is close to its normal value, that is, 24. The voltage deviation is below 0.07 p.u. Energy
losses are reduced by about 30% compared with that in power flow studies, and the EENS
reaches roughly 3 MWh, that is, close to zero (100% reliability).

1 INTRODUCTION

Nowadays, emerging eco-friendly technologies like electric vehi-
cles (EVs) along with renewable resources in power systems
lead to clean energy supply conditions and avoid immediate fos-
sil fuel depletion. Non-renewable resources like fuel cells are
also utilized due to their low level of emission for supplying
power in consumer points. Besides, researchers and operators
take the usage of energy storage systems and demand response
programs (DRPs) in power systems into account [1]. To attain
pleasant environmental status and amend technological and
financial aspects of energy, a proper energy management system
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is required to handle the aforementioned components. To do
such, micro-grids (MGs) including resources, loads, local con-
trollers, and storage devices are introduced to coordinate these
various components [2], and then, different MGs are gathered
in a distribution network. In addition, a central controller, that
is, MG operator (MGO), is considered to bidirectionally coor-
dinate resources, storage devices as well as loads via a smart
and communication structure [3]. As a result, a capable MG is
provided that can tackle financial and technological issues like
security, reliability, and operation via employing an energy or
power management system (EMS or PMS) [4]. Moreover, mul-
tiple MGs, that is, multi-MGs (MMGs), are presumed here for
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bidirectional distribution system operator (DSO) coordination;
consequently, an appropriate condition for DSO will be attained
[5].

Considerable literature has dealt with managing the distri-
bution grid or MG operation. The voltage security of the
distribution grid along with considering EVs was evaluated as
an optimization problem in [6], in which maximizing the volt-
age security margin and minimizing the operational costs were
the major objective functions. Besides, bidirectional chargers
were considered for EVs that can regulate the real and reac-
tive power of smart grids at the same time. Hybrid electric
springs (ESs) and EVs parking lot operation were introduced
in [7] to address the intermittent nature of RESs in addition
to alternative uncertainties to securely construct a novel MG.
This was addressed by a hybrid stochastic/robust programming
problem. Also, uncertainties of load, price of energy, RESs, and
MG component accessibility were modelled using stochastic
programming, and uncertain EVs parking lot parameters were
propounded by robust optimization to improve MG indica-
tors. For investigating the RES uncertainties in managing the
stored or real/reactive power of an energy storage system with
an MG, a robust max-min particle swarm optimization (PSO)-
based model was offered in [8], in which maximizing social
welfare (SW) was suggested for robust programming of the
stored or real/reactive power in MGs. A medium priority was
achieved by this robust platform compared to deterministic
and stochastic models. Day-ahead and real-time energy market-
based bilevel operation of grid-connected MG in addition to
various RESs and EVs was proposed in [9] with multi-layer
EMS. As MGs were divided into individual or community cate-
gories (MGC), both EMS layers were utilized in both categories
by their hourly operation in the day-ahead market. In this regard,
minimizing the operating costs of MG was conducted in the
first step by considering constraints of storage, grid model, EVs
parking lot, and distributed generations. Also, the minimization
of expected operation and risk aggregated costs of the MGC
was conducted in the second layer subject to the same afore-
mentioned constraints. Besides, the minimization of unbalanced
cost among day-ahead and real-time operation was done in this
layer by assuming 5-min real-time dispatch-based MGs and their
components model constraints.

Ref. [10] introduces an energy management system that can
achieve the optimal multi-objective operation of MGs and dis-
tributed generations with a thermal block with combined heat
and power (CHP) plant, thermal storage, and boiler to supply
the demand. The three main objectives of this paper were min-
imization of the cost and energy loss of MG as well as voltage
deviation by considering constraints of distributed generations,
thermal block, AC power flow, and operation limits of the
system. To ameliorate reliability, operation, economic, and emis-
sion indicators at the same time, an EMS was recommended as
a four-objective optimization problem in [11] for unbalanced
MGs with active loads (ALs) along with active and reactive
resources. In this work, expected operating cost, expected emis-
sion level, expected energy not-supplied (EENS), and voltage
deviation function of the MGs and sources were consecutively
addressed in the first to fourth levels. UMGs imbalance case,
sources and ALs formulation, reliability as well as optimal power

flow equations were assumed as the constraints. Ref. [12] pro-
posed a stochastic multi-layer EMS for linked MGs in smart
distribution grids. To define a proper program for MGs, man-
aging energy was realized for individual MGs. The received
data was implemented by the smart grid operator to provide
a priority list in which power should be injected by each unit;
consequently, global energy management was attained. A united
heat/real/reactive power programming-based model was pre-
sented in [13] for an MG constrained optimal operation in either
grid-connected or islanded mode. To supply reactive power
according to a reactive power payment function, diesel gener-
ators, fuel cells (FCs), and microturbines (MTs) were added to
the MG and the produced heat and real power dependency of
CHP along with the produced real and reactive powers depen-
dency of alternative units were considered in the MGs optimal
economic dispatch as well. The robust strategy of coordinated
operation was suggested in [14] by taking operation modes and
practical constraints into account for operating cost minimiza-
tion by coordinating multiple components in various timescales.
Also, a robust optimization strategy was expanded to ensure
optimal and credible delivery in presence of uncertainties. The
EMS for a luxury ship electrical system was studied by authors
of [15] to reduce the permanent magnet synchronous genera-
tors (PMSG)-based diesel engine fuel consumption of driven to
reduce the emitted pollution of a ship. An MG optimal pro-
gramming model was proposed in [16] and the distribution
market operator was considered a participant. The surveyed
studies in this field are summarized and classified in Table 1.

Table 1 provides a brief overview of various models of EMS
for MGs and distribution grids. Nevertheless, the following gaps
should be fulfilled in EMS of MGs and distribution grid:

∙ Firstly, united or single-layer EMS approaches have been usu-
ally used in the literature in which resources, active loads, as
well as the DSO direct coordination have merely been pre-
sumed. Besides, considering such coordination in MMGs and
distribution grid produces a great deal of information for
the DSO, leading to complicated decision-making and sys-
tem process. Thus, two-layer EMS strategies are the optimal
and appropriate choice for handling the power of distribution
grids with MMGs, in which MGO, resources and active loads
coordination can be performed by an EMS layer, and the
DSO and MGOs coordination will be conducted by another
layer. This can accelerate the speed of process of operators
and decision-making. This has been surveyed in only few
studies [9, 12].

∙ Concerning the aforementioned overview, technical con-
ditions of the distribution network can be enhanced by
employing EMS in MGs, leading to the participation of
MGs in various energy markets and enhancement of their
profit. Nevertheless, the energy market model has mostly
been utilized for MGs in previous works. As MGs employ
generator-based resources like MTs or inverter-based com-
ponents like RESs, EVs as well as storage, real and reactive
power can be controlled at the same time [17], leading to
energy market participation as well as active ancillary ser-
vices markets participation, that is, participating in reactive
ancillary services or reserve regulation.
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TABLE 1 Latest literature classification

Ref. Market model PMS strategy Indices Uncertainty model

[6] — One-layer Operation and security Deterministic

[7] — One-layer Operation, security, reliability and flexibility HSRP

[8] — One-layer Operation Robust

[9] Energy Two-layer Operation and economic Stochastic

[10] — One-layer Operation and economic Stochastic

[11] — Two-layer Operation, reliability, emissions, and economic Stochastic

[12] — One-layer Operation Stochastic

[13] — One-layer Operation Stochastic

[14] — One-layer Operation Robust

[15] — One-layer Operation Stochastic

[16] Energy One-layer Operation and economic Stochastic

Proposed

strategy

Energy, reactive, and reserve Two-layer Operation, economic, security, reliability, and flexibility HSRP

∙ The majority of research has considered the optimal state of
one or two indicators like financial or operation indicators
[6, 8–10, 12–16], while one grid has diverse constraints such
as security, operation, reliability, flexibility, and other indexes.
Reaching an appropriate condition for a special index does
not necessarily ensure enhancement in other indices. There-
fore, it would be desirable to simultaneously evaluate various
index models of an EMS.

∙ Most of the research has employed stochastic programming
to model uncertainties [9–13, 15, 16]; however, a significant
number of scenarios are required in this method for achiev-
ing a reliable solution, which demands high computational
time. It is worth mentioning that low computational time
is of particular importance in operating problems where the
operating step is small (even 15 min) [7]. So, robust program-
ming methods have been introduced in some works [8, 14]
to model uncertainties. However, several scenarios attained
about the accessibility uncertainty of network components
(renewable power) are required for the accurate calculation
of some indicators, such as EENS (flexibility). Therefore,
stochastic modelling of these uncertainties is needed in some
circumstances. Therefore, it is expected to adopt a hybrid
robust-stochastic programming method for accurate mod-
elling of uncertainties and indicators along with achieving
low computational time, which has been discussed less in
previous studies.

This paper offers the SDN in the presence of MMGs par-
ticipation in the energy and ancillary services markets by a
two-layer PMS, which is illustrated in Figure 1. The upper level
of the suggested strategy considers the bidirectional coordina-
tion among the MGO, loads, storage, and resources, and the
second layer deals with bidirectional coordination among the
DSO and MGOs. As the first layer investigates the optimum
programming model of the SDN-connected MMGs accord-
ing to PMS of the lower level, that is, the coordination among
the DSO and MGOs, it is therefore a two-level problem.
The MMGs participation formulation in the reserve, reactive
power, and day-ahead energy markets in the second layer is

formed with regard to the PMS of the upper level, which
is based on the MGO, resources, and active loads coordi-
nation. Minimizing the overall energy loss and maximizing
network security and reliability are the major goals of the
objective function in the first layer, which are modelled using
the Pareto optimization based on the weighted sum func-
tions approach. In addition, voltage security, the AC power
flow equations, and reliability are its constraints. Minimizing
the difference between the MGs expected cost and revenue
in the aforementioned markets is the aim of the second layer,
which is subject to flexibility, security, and reliability of MGs,
reserve model of the MG, DRP, renewable and non-renewable
resources equations, AC power flow equations, and active
loads like storages and EVs parking lot. The Karush–Kuhn–
Tucker (KKT) method is implemented to find a unique and
single-level model. To convert this multi-level problem into a
single-level one, the convergence of the problem in the sec-
ond layer is essential for utilizing the KKT and other methods.
The AC power flow equations are constraints of the afore-
mentioned problem, so the problem is non-convergent [15,
16]. A linearized method can be employed in the suggested
strategy to address the issue that AC power flow equations
are replaced by linearized AC ones. To model the uncertain-
ties of market price, load consumption, power generation of
renewables, network component accessibility, and EVs energy
demand, hybrid stochastic-robust programming is integrated.
In this programming, the uncertainties of renewable power and
network component accessibility are modelled by stochastic
programming to accurately calculate the reliability and flex-
ibility indicators. Firstly, multiple scenarios are generated by
the roulette wheel mechanism (RWM) for the aforementioned
uncertainties. Next, a specific number of the produced scenar-
ios that have a small distance from each other are selected by the
simultaneous backward strategy to be implemented in the prob-
lem. In addition, other uncertainty parameters of this paper are
modelled according to boundary uncertainty-based robust opti-
mization (BURO). In this strategy, only one scenario, that is, the
worst-case scenario, is required; hence, the computational time
is short.
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FIGURE 1 The SDN operation diagram in two-layer PMS-based MGs

The main contributions of this paper can be abstracted as:

∙ Presenting a bi-level optimization model for the operation of
SDN-connected MGs considering technical (operation, reli-
ability, and security) objectives for DSO and flexible MGs
operators, while these MGs can obtain profit from DA
reserve, reactive power, and energy markets.

∙ Uncertainty modelling in accordance with hybrid stochastic-
robust programming for accurate calculation of flexibility
and reliability indicators with achieving low computational
time.

The remained of this paper is organized as follows. Sec-
tion 2 describes the bilevel formulation of the suggested strategy
based on the hybrid stochastic-robust model. Section 3 presents
its single-level model. The obtained results are evaluated in
Section 4. Eventually, Section 5 concludes the paper.

2 SUGGESTED PROBLEM MODEL

2.1 The bilevel power management of the
SDN-connected MGs operation

Participation of MGs presented in SDN in the reserve, reactive
power, and DA energy markets by the bilevel PMS is described

in this subsection. The upper layer coordinates the MGO with
loads, storage, and resources of MG, while the lower-level
coordinates MGOs with the DSO. Two-level optimization is
employed based on this scheme; the first layer minimizes the
voltage security index (VSI), EENS, and loss of energy of MGs
in SDN by forming a three-objective function with weighted
sum functions based on the Pareto optimization that is subject
to linearized AC power flow as well as voltage security and relia-
bility constraints. In fact, the first layer handles the lower layer of
power management. Moreover, the second layer problem con-
siders the MGs participation formulation in the aforementioned
markets proportional to the upper-level PMS. Minimization of
the difference among costs and revenue in the aforementioned
markets is the aim of objective function that is subject to con-
straints of flexibility, reserve, voltage security, reliability, and
linearized AC power flow equations. Therefore, the proposed
strategy mathematical model can be described as:

min F1 = 𝜗EEL

EEL
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞ ⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

∑
𝜔∈OS

𝜋𝜔

⎧⎪⎨⎪⎩
GenerationEnergy

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞∑
b∈OB

∑
t∈OOH

PDSb,t ,𝜔 +
∑

t∈OOH

∑
i∈OMG

PMGi,t ,𝜔 −

ConsumptionEnergy
⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞∑
b∈OB

∑
t∈OOH

LPb,t ,𝜔

⎫⎪⎬⎪⎭
+𝜗EENS

EENS
⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞∑
𝜔∈OS

𝜋𝜔
∑

b∈OB

∑
t∈OOH

LNSb,t ,𝜔 −𝜗VSI

VSI
⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞∑
𝜔∈OS

𝜋𝜔
∑

t∈OOH

WSIt ,𝜔

(1)

Subject to:

LNSb,t ,𝜔 + PDSb,t ,𝜔 +
∑

i∈OMG

AMGb,iPMGi,t ,𝜔

+
∑

j∈OB

ALb, j PLb, j ,t ,𝜔 = LPb,t ,𝜔 ∀b, t , 𝜔 (2)

 17518695, 0, Downloaded from https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/gtd2.12632 by University Of Vaasa, Wiley Online Library on [16/10/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License



VEISI ET AL. 5

QDSb,t ,𝜔 +
∑

i∈OMG

AMGb,iQMGi,t ,𝜔 +
∑

j∈OB

ALb, j QLb, j ,t ,𝜔

= LQb,t ,𝜔 ∀b, t , 𝜔 (3)

PLb, j ,t ,𝜔 =

{
GLb, j

∑
p∈OP

((
sp −Vmin

)
ΔVb,t ,𝜔,p −Vmin.ΔVj ,t ,𝜔,p

)
−(Vmin)2

BLb, j

(
𝜑b,t ,𝜔 − 𝜑 j ,t ,𝜔

)}
𝛽Lb, j ,𝜔

∀b, j , t , 𝜔 (4)

QLb, j ,t ,𝜔 =

{
−BLb, j

∑
p∈OP

((
sp −Vmin

)
ΔVb,t ,𝜔,p −Vmin.ΔVj ,t ,𝜔,p

)
−(Vmin)2

GLb, j

(
𝜑b,t ,𝜔 − 𝜑 j ,t ,𝜔

)}
𝛽Lb, j ,𝜔

∀b, j , t , 𝜔 (5)

𝜑b,t ,𝜔 = 0 ∀b = Slack bus of SDN, t , 𝜔 (6)

PDSb,t ,𝜔 cos (m.Δ𝜃) + QDSb,t ,𝜔 sin (m.Δ𝜃)

≤ S̄DSb𝛽DSb,𝜔 ∀b = Slack bus of SDN, t , 𝜔,m (7)

PLb, j ,t ,𝜔 cos (m.Δ𝜃) + QLb, j ,t ,𝜔 sin (m.Δ𝜃) ≤ S̄Lb, j ∀b, j , t , 𝜔,m

(8)

0 ≤ ΔVb,t ,𝜔,p ≤
Vmax −Vmin

np

∀b, t , 𝜔, p (9)

0 ≤ LNSb,t ,𝜔 ≤ LPb,t ,𝜔 ∀b, t , 𝜔 (10)

WSIt ,𝜔 = (Vmin)4
+

∑
p∈OP

s′ pΔVpb−1,t ,𝜔,p − 4(Vmin)2

×
{

Rpb−1,pbPLpb−1,pb,t ,𝜔 + Xpb−1,pbQLpb−1,pb,t ,𝜔

}
∀t , 𝜔

(11)

WSIt ,𝜔 ≥ WSI min ∀t , 𝜔 (12)

PMGi,t ,𝜔,QMGi,t ,𝜔 ∈ arg

{
min F2 =

∑
𝜔∈OS

𝜋𝜔
∑

t∈OOH

×

⎧⎪⎪⎨⎪⎪⎩

∑
i∈OMG

∑
b∈OMG

B

𝛽i,bPNRi,b,t ,𝜔

−
∑

i∈OMG

𝛾t ,𝜔

(
PMGi,t ,𝜔 + KQQMGi,t ,𝜔 + KRRMGi,t ,𝜔

)
⎫⎪⎪⎬⎪⎪⎭

(13)

Subject to:

Constraints (4)− (12) with adding indexito all parameters

and variables, and substituting DS to MG ∀i (14)

LNSi,b,t ,𝜔 + PMGi,b,t ,𝜔 + PNRi,b,t ,𝜔 + PRi,b,t ,𝜔 + PDRi,b,t ,𝜔

+
(
PDISi,b,t ,𝜔 − PCHi,b,t ,𝜔

)
+

∑
j∈OMG

B

ALb, j PLi,b, j ,t ,𝜔

= LPi,b,t ,𝜔 ∀i, b, t , 𝜔, PMGi,t ,𝜔 = PMGi,b=slackbuso fMG ,t ,𝜔

(15)

QMGi,b,t ,𝜔 + QNRi,b,t ,𝜔 + QRi,b,t ,𝜔 + QEi,b,t ,𝜔

+
∑

j∈OMG
B

ALb, j QLi,b, j ,t ,𝜔 = LQi,b,t ,𝜔 ∀i, b, t , 𝜔,QMGi,t ,𝜔

= QMGi,b=slackbuso fMG ,t ,𝜔 (16)

−𝜉i,bLPi,b,t ,𝜔 ≤ PDRi,b,t ,𝜔 ≤ 𝜉i,bLPi,b,t ,𝜔 ∀i, b, t , 𝜔 (17)

∑
t∈OOH

PDRi,b,t ,𝜔 = 0 ∀i, b, 𝜔 (18)

E
i,b

≤ IEi,b +

t∑
t ′=1

(
𝜂CH PCHi,b,t ′,𝜔 −

1
𝜂DIS

PDISi,b,t ′,𝜔

)
≤ Ēi,b ∀i, b, t , 𝜔 (19)

0 ≤ PCHi,b,t ,𝜔 ≤ 𝛼CRi,b ∀i, b, t , 𝜔 (20)

0 ≤ PDISi,b,t ,𝜔 ≤ 𝛼DRi,b ∀i, b, t , 𝜔 (21)

(
PDISi,b,t ,𝜔 − PCHi,b,t ,𝜔

)
cos (m.Δ𝜃) + QEi,b,t ,𝜔 sin (m.Δ𝜃)

≤ S̄Ei,b ∀i, b, t , 𝜔,m (22)

PRi,b,t ,𝜔 cos (m.Δ𝜃) + QRi,b,t ,𝜔 sin (m.Δ𝜃) ≤ S̄Ri,b ∀i, b, t , 𝜔,m

(23)

PNRi,b,t ,𝜔 cos (m.Δ𝜃) + QNRi,b,t ,𝜔 sin (m.Δ𝜃) ≤ S̄NRi,b

∀i, b, t , 𝜔,m (24)

(
PMGi,b,t ,𝜔 + RMGi,b,t ,𝜔

)
cos (m.Δ𝜃) + QMGi,b,t ,𝜔 sin (m.Δ𝜃)

≤ S̄MGi,b𝛽MGi,b,𝜔

∀RMGi,b,t ,𝜔 ≥ 0, i, b = Slack bus of MG, t , 𝜔,m (25)
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EENSi⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞∑
𝜔∈OS

𝜋𝜔
∑

b∈OMG
B

∑
t∈OOH

LNSi,b,t ,𝜔 ≤ EENS max ∀i (26)

−ΔF ≤ PMGi,b,t ,𝜔 − PMGi,b,t ,𝜔′ ≤ ΔF ∀i, b

= Slack bus of MG, t , 𝜔, 𝜔′} (27)

The first layer formulations are presented in (1)–(12). The
Pareto optimization-based three-objective function is the main
objective function that utilizes the weighted sum functions,
which is given in (1) [11]. Minimizing the SDN-related loss of
energy is presented in the first part of Equation (1) and equals
the difference between energy generation and consumption in
the operation time. Minimization of EENS resulting from the
occurrence of N−1 events because of an internal fault in net-
work components is considered as the second term. This energy
also equals the aggregation of loads not-supplied in the SDN
because of internal faults in various components. Finally, mini-
mization of the VSI symmetry is exhibited in the third part [6].
In this paper, the worst security index (WSI), which is in the
range of [0, 1] is utilized for voltage security analysis. If this
index equals 1, the SDN is in the no-load condition, and if it
equals 0, a voltage drop may have occurred. Additionally, this
indicator is considered for a weak bus regarding the magnitude
of voltage and results of power flow is implemented to dis-
cover this bus. However, maximization of the third term of this
equation makes the SDN accessible with high voltage security.
Therefore, this term will have a negative coefficient [6].

The weighted sum coefficients, that is, ωVSI, ωEENS, and
ϑEEL should equal one because Equation (1) is a three-objective
function [11]. To achieve this, it is anticipated that VSI, EENS,
and EEL functions have various values for various coefficients;
its 3D coordinate plane diagram illustrates the suggested strat-
egy Pareto front [11]. The fuzzy decision-making method can
be employed here for discovering an optimum point, that is, the
best optimum solution of the aforementioned functions [18].
In this method, for various weighted coefficients, a linear mem-
bership function is firstly provided for VSI, EENS, and EEL
functions. When the value of the function is lower (more) than
its upper (lower) boundary, the membership value of each of the
functions will be one (zero) [18]; if not, the value equals the dif-
ference among the function regarding its upper boundary and
the difference among the function’s upper and lower bound-
aries [18]. Considering ϑVSI, ϑEENS, and ϑEEL = 1, the VSI,
EENS, and EEL functions boundaries are obtained. Then, for
every weighted coefficient, the least membership value, denoted
by ϑ, among the aforementioned functions is established. Even-
tually, the best correspondence point of the aforementioned
functions equals the highest ϑ value for all selected values of
weight coefficients [18].

The first layer limitations are represented in (2)–(12),
and the linearized AC power flow limitations in the SDN
are shown in (2)–(6) [19–21]. Such limitations define the
slack bus voltage angle, real and reactive power flow in
the line, and balance between real and reactive power

in each bus. Equations (4) and (5) are non-linear non-
convergence real models in the form of PLb, j = GLb, j (Vb)2 −
VbVj {GLb, j cos(𝜑b − 𝜑 j ) + BLb, j sin(𝜑b − 𝜑 j )} and QLb, j =

−BLb, j (Vb )2 +VbVj {BLb, j cos(𝜑b − 𝜑 j ) − GLb, j sin(𝜑b − 𝜑 j )}
[19]. Nevertheless, cos(𝜑b − 𝜑 j ) and sin(𝜑b − 𝜑 j ) terms are
estimated to be 1 and (𝜑b − 𝜑 j ), respectively, because the
difference among near- and far-end bus voltage angles of the
distribution line is usually smaller than 6◦ [20]. In addition,
the magnitude of voltage is represented by the traditional
piecewise linearization method as Vmin +

∑
p∈OP

ΔVp, where
ΔV is the deviation of voltage that can be reduced by employ-
ing a piecewise higher number. Then, V2, V4, and VbVj are

defined as(Vmin)2 +
∑

p∈OP
spΔVp,(Vmin)4 +

∑
p∈OP

s′ pΔVp,

and(Vmin)2 +Vmin
∑

p∈OP
(ΔVb,p + ΔVj ,p). If ΔV2 and

ΔV.(φb − φj) are ignored because of their small values, the
aforementioned non-linear terms are rewritten like (4) and (5)
[21]. The SDN operational limitations are presented in (7)–(9),
which consecutively illustrate the limits of voltage deviation on
the buses of the SDN as well as constraints of the apparent
transferrable power through line and substation of the SDN
[22]. The limit on real model of the line and substation capacity
can be indicated by a circular plane with a centre on origin and

a radius of S,
√

(P )2 + (Q)2
≤ S . This plane is approximated

by a regular polygon, asP . cos(m.Δ𝜃) + Q. sin(m.Δ𝜃) ≤ S [22];
as long as the number of sides is big, the calculational error
can be ignored. Here, m denotes the set of sides, OM = {1, 2,
…, nm}, while nm and Δθ represent the number of sides and
the angle deviation (360/nm), respectively. The constraints of
voltage magnitude in the AC power flow real model are defined
as Vmin ≤ Vb,t ,𝜔 ≤ Vmax. Voltage magnitude limit is replaced
by Equation (9) because voltage deviation is considered in the
linearized AC power flow. Moreover, the upstream network is
assumed to be connected to SDN via a distribution substation
located at the slack bus. So, values of PDS and QDS are available
only for the slack bus. Finally, the constraint of SDN reliability
is presented by (10), applying to the limits of the interrupted
load caused by N−1 events at consumption points. The con-
straints of SDN voltage security are represented by (11) and
(12); the WSI of the weakest bus is computed by (11) and
(12) provides the boundary of this index [6]. It means that a
secure voltage margin ought to be constantly considered for
the SDN, as (12). The WSI real model will be written as WSI =

(Vpb−1)4 − 4(Vpb−1)2{Rpb−1,pbPLpb−1,pb + Xpb−1,pbQLpb−1,pb} −

4{Xpb−1,pbPLpb−1,pb − Rpb−1,pbQLpb−1,pb}
2
, the two last terms in

the above relation are very smaller than the first one [6]; so, this
equation is replaced by (12). The first part of (12) shows the V4

linear model by the traditional piecewise linearization method
and the third one is omitted due to its negligible value. More-
over,

∑
p∈OP

spΔVp and {Rpb−1,pbPLpb−1,pb + Xpb−1,pbQLpb−1,pb}

is excluded from (12) as well since its multiplication has an
ignorable value.

MGs participation in the reserve, reactive power, and energy
markets, the problem of the first level, is given in (13)–(27)
where the difference among the MGs cost (i.e. the operating
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cost of non-renewables in the first term of (13)) and the
expected revenues in the aforementioned markets (the second
part) are minimized by this objective function. According to its
second term, revenue for MGs will be produced if reserve, real,
and reactive powers are positive; otherwise, i.e. for a negative
value, a cost should be paid by MGs. As noted, constraints
(4)–(12) also hold for MGs, and these are considered in (14).
Limitations of real and reactive power balance in various buses
of MGs with loads, storage, and resources can be given as (15)
and (16), respectively. Reactive power can be controlled by (16)
that resources and storage are assumed in. As non-renewable
resources are generator-based, their reactive power can be
regulated by generators, while reactive power of RESs and
storage devices can be supervised by implementing a suitable
structure for power electronic converters that connect them to
the grid [17].

The incentive-based DRP formulation is proposed by (17)
and (18) [7]. Here, according to the signal of energy price, the
energy consumption of consumers may decrease at peak hours
(based on high prices of energy), while they may receive energy
in off-peak hours (based on low prices of energy). Thus, the
power limitations of consumers in a DRP are represented in
(17) and (18) guarantee that the overall decreased energy in
peak intervals can be provided during the off-peak hours. Then,
the storage operational models are shown as (19)–(22), which
consecutively represent stored energy limitations of the stor-
age devices, charge and discharge rates, and capacity of storage
chargers [20]. This model can be implemented for mobile stor-
age, that is, EVs, though the number of EVs may differ in every
scenario or time. Therefore, t andω subscripts are applied to IE,
αCR, αDR, andS̄E . In this regard, αCR/ αDR/S̄E will be the sum
of charge and discharge rates and EVs charger capacities that are
connected to the parking lot at time t. At time t, IE equals the
aggregation of initial energy of EVs newly linked to the parking
lot. An ω subscript is considered for Ēbecause variable num-
ber of EVs in each scenario equals the energy consumption
aggregation needed for EVs travel. In this operational model
of EVs, the inequality part on the right side of (19) is expressed
as equality. The operational model limitations of renewable and
non-renewable resources are presented by (23) and (24), show-
ing their apparent power capacity limitations. Employing (25),
the reserve power can be computed, which is almost positive.
The EENS constraints of every MG are shown in (26). Since the
MGs financial objectives in the electricity market are perceived
as the objective function, the MGs reliability limit is presented
as a similar limitation as (26). The MGs flexibility constraint is
considered as (27). As there are prediction errors in forecasting
the meteorological data, the RESs real power generation will be
uncertain, and the MGs real power (observed from the substa-
tion or slack bus) may be different in various scenarios, leading
to an imbalance in the DA and real-time operation results [9].
This condition is represented as flexibility shortage status from
a financial perspective. The cost imposed by MGs will esca-
late due to the decreased flexibility penalty. Thus, a limit as
(27) is utilized for MGs to prevent this issue; the smaller flex-
ibility tolerance value (∆F), the higher MGs flexibility, that is,
minimization of the MGs real power should be considered in

different scenarios. MGs flexibility status is improved here by
ALs and non-renewable resources that are famous as flexibility
resources.

In this paper, the power variables model of sources, stor-
age and network is used, and it is assumed that they can
obtain the calculated power by adjusting and controlling their
internal parameters. Therefore, the details of their adjustment
parameters in the problem model are not necessary.

2.2 Hybrid stochastic–robust programming
of uncertainties

In the aforementioned equations (1)–(27), renewable power
(PR), price of energy (γ), SDN and MGs components acces-
sibility (βDS, βMG, βL), EVs consumption energy (Ē ), charge
and discharge rates (αCR, αDR), EVs initial energy and charger
capacity (IE, S̄E ), and load parameters (LP, LQ) are uncertainty
parameters. To model these uncertainties, hybrid stochastic–
robust programming is implemented. The reliability indicator
(EENS) is here an important index that is not associated with
the price of energy, while it strongly depends on the acces-
sibility/inaccessibility of the network components uncertainty
[23–26]. In addition, as the EVs load and consumption energy
uncertainty alters, it does not mainly change because of their
low predicted error. So, stochastic programming can model
βDS, βMG, and βL uncertainties [23]. Further, different scenar-
ios obtained from the renewable power uncertainty are required
to investigate the flexibility state of the network, (27). Thus, PR

is also modelled based on stochastic optimization. In stochas-
tic programming, so many scenarios are produced by the RWM,
where PR of any scenario is described by its average and stan-
dard deviation. Besides, the forced outage rate (FOR) index
of network components and MGs are employed to exploit
the three last uncertainties [27, 28]. Additionally, the renew-
able power probability for wind and photovoltaic systems can
be consecutively determined by Weibull and Beta probability
density functions [4]. The Bernoulli probability density function
will give the probability of βDS, βMG, and βL [23]. The event
occurring probability in any scenario equals the multiplication
of the uncertainty probabilities in that scenario. Then, a few of
produced scenarios are selected by the SBM and utilized in the
suggested problem. It is worth mentioning that scenarios with
a minuscule distance from each other will be chosen (for more
details, see [2]).

Other parameters will be modelled by robust programming.
In this method, only one scenario is considered, that is the
worst scenario obtained by uncertainties of load, energy prices,
and EVs. Then, robust programming provides an optimum
solution in the aforementioned scenario, which is propor-
tional to the robust solution against mentioned uncertainties.
The bounded uncertainty-based robust optimization (BURO)
method is employed in this paper for its simple formulation
process and optimum accuracy to robustly model the uncer-
tainties [21]. In this method, the true value of the uncertainty
parameter, u, is located between the lower and upper bound-
aries, [(1 − 𝜎) × ū,(1 + 𝜎) × ū]. Here, ū represents the expected
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value of u, and 𝜎 denotes the level of uncertainty that is propor-
tional to the prediction error [21]. If zero is adopted for σ, the
deterministic model of u is considered, but if 𝜎 > 0, a robust
model will be assumed for u. Furthermore, the true value of u

in the worst scenario places on its upper or lower boundary by
the BURO method. This issue selection depends on the loca-
tion of u in the problem so that less solution space should be
obtained in the worst scenario in comparison with the determin-
istic model scenario [21]. Therefore, Ē , LP, and LQ are located
at their upper boundary, while γ, αCR, αDR, IE, and S̄E are at
their lower boundary.

3 SINGLE-LEVEL MODEL
OF THE PROBLEM

To discover an optimum solution for (1)–(27) by conventional
solvers, it is necessary to reach a single-level model [29]. The
KKT will be implemented in the following to fulfil.

The problem model discussed earlier keeps a general problem
structure of (28)–(32). The first- and second-layer problems can
be expressed by (28) and (29) and (30)–(32), respectively. The
variable vector of the first- and second-layer problems can be
described as x (y). Parameters ρ and μ indicate the Lagrange
multipliers.

min F1 = aT x + bT y (28)

Subject to:

c1.x + d1y(≤ ∕ = ∕ ≥)e1 (29)

y ∈ arg
{

min F2 = f T y (30)

Subject to:

g1y = h1 ∶ 𝜌 (31)

g2y ≤ h2 ∶ 𝜇} (32)

To achieve the single-objective model of the discussed prob-
lem, the constraints discovered by the second layer problem
KKT should be applied to the first layer problem [29]. To do
this, the Lagrange function (L) of the second layer problem
is found as (33) by amalgamating the limitations of objective
and penalty functions together. Note that μ.max(0, a − b) and
ρ.(b − a) give the penalty function constraints for a ≤ b and
a = b, respectively [29].

L = F2 + 𝜌. (h1 − g1y) + 𝜇.max (0, g2y − h2) (33)

Constraints discovered by the KKT are proportional to
Lagrange function derivative making that equals zero by dif-
ferentiating from its variables (y, μ, and ρ) [29]. Consequently,
the single-level problem formulation of (28)–(32) is based on

(34)–(39). Equations (34) and (35) in the recently formulated
problem (28), (29) describe the first layer problem. When
Lagrange function derivative is 0 with respect to the second
layer problem-related initial variable (y), Equation (36) can be

written. By making
𝜕L

𝜕𝜌
= 0, (37) can be found, which is similar

to (31); and (38) is a non-linear constraint that can be achieved

by
𝜕L

𝜕𝜇
= 0 (μ will be the inequality Lagrange multiplier), which

is similar to (32) reached by its initial value. 𝜇.(g2y − h2) = 0 will
be obtained by the second condition. To linearize it, −M .z ≤

𝜇 ≤ M .z along with −M .(1 − z ) ≤ (g2y − h2) ≤ M .(1 − z ) will
be involved in 𝜇.(g2y − h2) = 0; M and z are big constants
like 106 and a binary variable, respectively [29]. The Lagrange
multiplier boundary is provided by (39).

min F1 = aT x + bT y (34)

Subject to:

Constraint (29) (35)

𝜕L

𝜕y
= 0 ⇒ g1𝜌 + g2𝜇 = f (36)

𝜕L

𝜕𝜌
= 0 ⇒ Constraint(31) (37)

𝜕L

𝜕𝜇
= 0 ⇒

{
Constraint (32) ∀ First condition

𝜇. (g2y − h2) = 0 ∀ Second condition
(38)

𝜌 ∈ (−∞,+∞), 𝜇 ∈ [0, +∞) (39)

4 NUMERICAL RESULTS

4.1 Case studies

In this section, the surveyed case studies are exclusively anal-
ysed. To do so, a typical 69-bus radial SDN [30] with 3
microgrids, namely, MG1, MG2, and MG3, is considered to
investigate the suggested method [30]. The MGs are connected
to buses 15, 42, and 58, respectively. The information about
lines and substations of the SDN, and peak load can be found
in [30]; MGs data has been provided in [12]. It is assumed that
Bus 1 is the slack bus, while slack buses of MG1, MG2, and
MG3 are buses 15, 42, and 58, respectively. The acceptable mag-
nitude of voltage is within [0.9, 1.1] (per-unit) [31–34]. Wind
and PV energies are involved as RESs and diesel generators
are non-renewable resources; their respective information has
been reported in [12]. Noteworthily, battery charger capacities
were not included in [12], while it is here fixed and is equal to
half of its capacity. Moreover, EVs parking lot information was
not reported in [12]; however, EVs parking lot capacity is 300
vehicles. Charger capacity, charge and discharge rates, and other
EVs data exist in [6, 7]. Also, consumers participation rate in
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TABLE 2 Pareto front of the suggested strategy when σ = 0

ωEEL ωEENS ωVSI

EEL

(MWh)

EENS

(MWh) VSI (%)

1 0 0 1.755 3.893 20.75

0 1 0 1.894 1.472 20.14

0 0 1 1.849 4.038 22.43

0.5 0.5 0 1.825 2.507 20.44

0.5 0 0.5 1.809 3.719 21.82

0 0.5 0.5 1.855 2.794 21.19

0.33 0.33 0.33 1.845 2.926 21.26

the DRP is set at 30% [7]. Additionally, 16, 24, and 30 $/MWh
are energy prices in the DA energy market for consecutively
intervals of 1–7 AM, 8 AM to 4 PM, 11–12 PM, and 5–10
PM [7]. KQ and KR are fixed on 0.08, and 1, respectively. The
load factor (power rate) is multiplied by the peak load (resource
capacity) to provide load hourly information (generated power
of RESs). The hourly data of EVs number is considered as the
overall number of parking lot-linked EVs plus the EVs pene-
tration rate. The daily curves of EVs penetration rate in the
parking lot, power values of RESs, and load factor are presented
in [4, 7]. WSImin is set at 0.8 [6]. The weak buses found by power
flow are consecutive buses 67, 14, 12, and 14 in SDN, MG1,
MG2, and MG3. Also, 60 scenarios are produced by the RWM
for network component accessibility uncertainty. The network
and MGs components values are set at 1%. It should be noted
that the proposed scheme can be implemented on different net-
works and different sources and storage devices so that they can
be implemented on real data.

4.2 Simulation results

This section provides the results of the suggested strategy sim-
ulation in GAMS optimization software based on obtained
information from Section 4.1, which is solved by the CPLEX
[35]. The traditional piecewise linearization method involves
5 pieces. A regular 45-gon is likewise implemented for esti-
mating the circular plane [21]. It can be seen from obtained
results of [21] that the linear approximation model computa-
tional error of power and voltage in power flow optimization,
prescribed as (1)–(10), are 2% and 0.5% compared to the non-
linear power flow optimization. So it is ignored because of its
small computational time [21].

4.2.1 The best solution evaluation

Provided that the uncertainty level (σ) is assumed zero for
ωEEL = 0, ωEENS = 0.33, and ωVSI 0.5, the results of the
Pareto front for the suggested strategy are given in Table 2.
If all weighted coefficients are 1, the minimum values of EEL
and EENS and maximum values of the VSI computed in this
table are 1.755, 1.472, and 22.43 MWh, respectively. Remem-

TABLE 3 The best solution of VSI, EENS, and EEL for different
uncertainty levels

σ
EEL

(MWh)

EENS

(MWh) VSI (%)

Calculation

time (s)

0 1.803 1.936 22.10 13.5

0.1 1.922 2.067 22.06 14.4

0.2 2.088 2.253 22.02 15.2

ber that, VSI symmetry in (1) is shown by the term min; the
aim of (1) is VSI maximization. The minimum EEL and EENS
and maximum VSI are provided in these 3 cases. If the mini-
mization of EENS in (1) is considered, the maximum EEL will
be 1.894 MWh; if VSI symmetry minimization is regarded, the
maximum EENS will be computed as 4.038 MWh; and if the
minimization of EENS is assumed, the minimum VSI can be
attained as 20.14 MWh. It can be assumed that 0.139 (1.894–
1.755), 2.566 (4.038–1.472) MWh, and 2.29 (22.43–20.14) MWh
are the change boundaries of the aforementioned functions.
Besides, the change in these functions in Table 2 shows dif-
ferent trends. Indeed, as EEL increases, EENS proportionally
decreases; minimizing EENS is associated with a great deal of
supplied real power by sources, storages, and ALs; although line
power loss may increase, subsequently, the expected energy loss
increases.

By employing the weighted sum functions-based Pareto opti-
mization method, the best solutions of VSI, EENS, and EEL
for various uncertainty level values are listed in Table 3. If
σ = 0, the VSI, EENS, and EEL values at the best solution will
be 22.10, 1.936, and 1.803 MWh, respectively. The aforemen-
tioned values approximately equal their highest, least, and least
values, where the distance between EEL and its least value is
34.5% ((1.803–1.755)/0.139), that of EENS is 18.1%, and that
of VSI and its highest value is 14.4%. Finally, the weighted sum
functions related to computational time are obtained by almost
13.5 s in Table 3.

It can be also seen from this table that increasing the uncer-
tainty level (σ) increases EEL and EENS values and decreases
the VSI value compared to a case when σ = 0. According to
Section 2.2, energy consumption by loads and EVs in the worst
scenario (σ > 0) can rise compared to a scenario with σ = 0,
while the energy price and the real and reactive output power of
the EVs will decrease. This leads to increased energy loss, volt-
age drops, and power outages in the network. Also, based on
Section 2.2, it is expected that increasing the uncertainty level in
the worst scenario will provide less response space than σ = 0.
Therefore, the computational time of the suggested strategy
increases in these conditions, as shown in Table 3.

4.2.2 Evaluation of MGs financial condition

The expected revenue for MG1, MG2, and MG3 is depicted in
Table 4 by considering flexibility tolerance changes (∆F) and
maximum EENS (EENSmax). The tolerance curve of profit-
flexibility of MGs for EENSmax = 1 is considered in this table.
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TABLE 4 MGs expected revenue for different values of EENSmax and ∆F (σ equals zero)

∆F (MW) (EENSmax = 1 MWh) 0 0.02 0.04 0.06 0.08 0.10

Expected profit ($) MG1 206 231 241 244 244 244

MG2 629 663 676 681 681 681

MG3 193 213 221 224 224 224

EENSmax (MWh) for (ΔF = 0) 1 3 5 7 9 11

Expected profit ($) MG1 206 239 258 266 268 268

MG2 629 705 756 777 780 780

MG3 193 222 241 249 250 250

TABLE 5 MGs expected revenue for diverse cases and variant uncertainty levels

Parameter ΔF (MW) EENSmax (MWh) Profit ($)

Uncertainty level 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

Case I MG1 0 0 0 1 1 1 206 189 171

MG2 0 0 0 1 1 1 629 575 520

MG3 0 0 0 1 1 1 193 176 159

Case II MG1 0.0218 0.0222 0.0225 3.09 3.46 3.93 262 241 219

MG2 0.0216 0.0219 0.0222 3.07 3.42 3.90 741 682 631

MG3 0.0219 0.0223 0.0227 3.09 3.47 3.94 244 225 208

As ∆F increases based on the table, MGs expected revenue in
the studied markets intensifies as the flexibility index signifi-
cance is reduced here; consequently, the minimized operating
cost of non-renewable resources, storage, and ALs is attained,
leading to higher revenue for MGs (based on (13)). When
∆F equals 0.06 MW, these trends are continued. The MGs
expected revenue will be constant if ∆F > 0.06 MW. The curve
of EENSmax–MGs revenue for ∆F = 0 is illustrated in this
table as well. With the growth in EENSmax, since its incre-
ment broaden the problem solution space according to (26), the
MGs expected revenue will increase as is shown in Table 4. The
revenue becomes constant if EENSmax > 9 MWh. Neverthe-
less, the suggested strategy cannot obtain the optimum solution
when EENSmax < 1 MWh; therefore, its respective results are
excluded from Table 4.

The MGs financial condition is studied for two cases in
Table 5:

∙ Employing the suggested strategy by MGs high flexibility
and reliability condition (EENSmax = 1 MWh, ∆F = 0) is
considered as Case 1;

∙ Employing the suggested strategy as the best solution
for MGs flexibility, reliability, and financial condition is
considered as Case 2.

Firstly, MGs flexibility (max(|PMGi,b,t ,𝜔 − PMGi,b,t ,𝜔′ |, ∀i, b, t ,
𝜔, 𝜔′ )), MGs EENS (left side of (26)), and MGs expected rev-
enue, (13), are calculated for various values of EENSmax and
∆F. Next, the fuzzy decision-making strategy is applied to

provide the best solutions. The MGs expected revenue in Case
2 is more than in Case 1 based on Table 5; however, MGs
high reliability and flexibility are guaranteed in this case (lower
EENSmax and ∆F). The EENSmax and ∆F values respectively
increase to 3.12 and 0.022 MWh in Case 2, while σ = 0. Since
flexibility tolerance and EENSmax are small and MGs expected
revenue is high, a situation for MGs flexibility, reliability, and
financial indicators is determined. In addition, increasing the
uncertainty level, compared to the case with σ = 0, reduces
the MGs expected revenue in both case studies. In Case 2,
EENSmax and ∆F values are increased in a trade-off between
the MGs financial, flexibility, and reliability status. This situa-
tion, according to Section 2.2, is due to the increment in energy
consumption of the loads and EVs as well as energy price
reduction, and a decrease in the real and reactive produced
power of EVs in the worst scenario compared to σ = 0.

4.2.3 Evaluation of MGs operation

The MGs daily expected curve of the studied markets in Case
2 is depicted in Figure 2 for various σ values. Appropriately
management of resources, storage, and ALs leads to real power
injection of MGs to the SDN in every operational hour as well
as financial profit from the energy market. Yet, less real power
injection to the SDN can be observed based on this figure in
the first operation hours (1–4 AM) and later energy program-
ming hours (6–12 PM) in comparison with other times, because,
according to the information in Section 4.1, the least amount
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FIGURE 2 a) Real, b) reactive, and c) reserve power-related daily expected curves of MGs for diverse uncertainty levels

of price of energy and the higher non-renewable resources fuel
price (20$/MWh) at 1–4 AM. As a result, batteries, EVs, and
ALs will be users, and less power will be injected into MGs by
non-renewable resources to minimize the costs of MGs. Dur-
ing 6–12 PM, there is a high network passive load, leading to

a heavily loaded network. Thus, less real power can be injected
by MGs into the SDN. Note that a great portion of real power
cannot be generated by the renewable resources between 1–4
AM and 6–12 PM, as is illustrated in [4], and PVs will be off in
these durations. More real power can be injected into the SDN
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FIGURE 3 a) VSI, b) EENS, c) MVD, d) EEL
values in cases 3 and 4 for different uncertainty
levels
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by MGs from 5 AM to 5 PM because resources generate more
power and the consumption of energy by loads, batteries, and
EVs decreases.

Figure 2b shows the daily expected curve of reactive power
of MGs in case 2 in which MGs generate reactive power,
since, based on (16), they get powers of storage as well as
non-renewable and renewable resources. MGs are considered
generators of reactive power in the SDN because the number
of reactive resources and their capacity in MGs is large based
on Section 4.1. As shown in Figure 2a, more reactive power
can be generated by MGs between 1–6 AM, when storage
beside the ALs loads are charged. Consequently, more reac-
tive power should be injected into MGs to avoid a significant
decrease in voltage. Based on Figure 2a, a greater portion of
resource capacity should be dedicated to real power genera-
tion during 7 AM to 12 PM. As the MGs reactive power is
less in this interval, this leads to reduced reactive power gen-
eration by resources. Figure 2c exhibits the daily expected curve
of MGs reserve power. Between 5–6 PM, if a greater portion
of energy can be produced by resources in a way that a small
portion of their capacity is allocated for reactive power genera-
tion, the reserve can be met by MGs. As mentioned, the MGs
capacity is large enough to supply the reserve. The load con-
sumption is high in the remaining intervals and a great portion
of resources, storage, and ALs (only between peak hours) is
considered for supplying the demand. For preventing an exces-
sive decrease in voltage, a portion of the resource and storage
capacities should be dedicated to generating reactive power. As
a result, MGs capacity becomes smaller and cannot supply the
reserve between 1–4 AM and 7–12 PM. Eventually, increasing
the uncertainty level (UL or σ) compared to σ = 0, leads to a
downward shift of MGs daily curve of real, reactive, and reserve
power as shown in Figure 3. The reason is that under these con-
ditions, the load and EVs energy consumption increase, while
the EVs capacity decreases to produce real and reactive power
based on Section 2.2. Therefore, MGs can deliver less real,
reactive, and reserve power to the SDN compared to a case
with σ = 0.

4.2.4 Networks technical condition evaluation

The operation indices, that is, MGs and SDN reliability index
(EENS), expected energy losses (EEL), maximum voltage drop
(MVD), and voltage security index (VSI) are analysed in Figure 3
using 2 case studies (Case 3 and the power flow studies in
Case 4) with diverse uncertainty levels (UL or σ). The sug-
gested strategy (Case 3) outperforms Case 4 in all network
technical indices by using a better managing strategy for respon-
sive loads, storage, and resources. In addition, VSI value equals
19.3–19.8 in Case 4, increases in other case, and is 21.8–22.0
for the worst scenario (σ = 0.2). EENS in Case 4 is higher
in the case of an N−1 event (more than 24 MWh); however,
EENS in Case 3 reduces to 3–4 MWh in the worst-case sce-
nario. The suggested strategy is also able to reduce the MVD to
0.070 per unit at σ = 0.2. Finally, at σ = 0.2, the MG1, MG2,
MG3 and SDN-associated energy loss mitigate to almost 32%

((6.6−4.5)/6.6), 35%, 30%, and 25% in Case 3 compared to
Case 4, respectively. Moreover, the suggested strategy achieves
more flexibility for MGs with the highest tolerance of 0.022
MW. Also, ∆F would be 0 for 100% flexibility. In Case 3, the
suggested strategy reaches high flexibility for MGs. Eventually,
according to Figure 3, when uncertainty levels are smaller than
0.2, the improvement conditions of the mentioned indicators in
Case 3 are more favourable than in σ = 0.2 according to Sec-
tion 2.2. At a higher uncertainty level, the energy consumed
in the grid is higher, and their resources produce less energy,
leading to higher amount of energy received from the upstream
network. This results in higher energy loss, voltage drop, EENS,
and lower VSI than the case with σ = 0.

5 CONCLUSION

A two-level power management strategy was proposed for
SDN and MGs that considers MGs participation in the day-
ahead energy, reactive power, and reserve market. The first
layer considered SDN optimum programming according to
the power management strategy of lower level (that coordi-
nates DSO with MG operators) by multi-objective functions
including minimization of security index symmetry, EENS,
and energy loss. Weighted sum functions-based Pareto opti-
mization was implemented to formulate a problem subject to
linearized AC-power flow relationships and voltage security and
reliability constraints. Besides, the model of MGs participa-
tion in the aforementioned markets according to the power
management strategy of the lower level (that coordinates MG
operators with loads, storage, and resources) was illustrated;
its objective function goal was the minimization of the differ-
ence between expected cost of non-renewable resources and
the expected profit of MGs constrained by the model, flexibil-
ity, operation, reliability, and security of the MG. To establish a
single-level problem, the KKT strategy was utilized, and hybrid
stochastic-robust programming was employed for modelling
the uncertainties of mobile storage energy demand, renew-
able power, load, network component accessibility, and price
of energy. Finally, evaluation of numerical results showed that
the weighted sum functions strategy is able to search the solu-
tion, that is, the almost minimum values of VSI symmetry,
EENS, and loss of energy. In addition, the highest flexibility
tolerance of 0.022 MW was obtained in comparison with the
worst scenario, that is, the maximum uncertainty level (0.2). By
comparing the power flow studies, high values of EENS, VSI,
MVD, and energy loss can be mitigated by the suggested strat-
egy to 3–4 MWh, to 22, to below 0.070 per-unit, and to 30%,
respectively.

NOMENCLATURE

Abbreviation

DA Day-ahead
DRP Demand response program
DSO Distribution system operator
EEL Expected energy loss
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EENS Expected energy not-supplied
EMS Energy management system

EV Electric vehicle
KKT Karush–Kuhn–Tucker

MG Microgrid
MGO Microgrid operator
MMG Multi-microgrid
MOV Maximum overvoltage
MVD Maximum voltage drop
PMS Power management system
RES Renewable energy source

RWM Roulette wheel mechanism
SBM Simultaneous backward method
SDN Smart distribution network

VSI Voltage security index
WSI Worst security index

Indicators and sets

b, i, t, ω Bus, MG, operation hour, and scenario
indicators

j Bus auxiliary index
p, m The piecewise linear index of the tradi-

tional piecewise linearization strategy; a
side index of a regular polygon

pb, pb-1 The weak bus and its upstream bus
OB, OMG, OOH, OS Buses, MGs, operation hours, and sce-

nario sets
OB

MG MG buses set
OP, OM The piecewise linear set of the traditional

piecewise linearization strategy; a regular
polygon side set

Variables

EEL, EENS, VSI Expected energy loss (MWh),
expected energy not-supplied
(MWh), and voltage security
index (dimensionless)

F1 The energy loss sum, expected
energy not-supplied, and volt-
age security according to the
weighted sum functions strat-
egy (dimensionless)

F2 The difference between the
expected non-renewable
resources operational cost
and MGs expected profit from
understudied markets ($)

LNS Real power not-supplied (p.u.)
PCH, PDIS Real power of storage system

charging and discharging (p.u.)
PDS, PMG, PL Real power of the SDN’s and

MG’s substation, and distribu-
tion line

PNR, PDR Real power of non-renewable
resources and active power of
responsive loads in the demand
response program (p.u.)

QDS, QMG, QL, QNR, QR, QE Reactive power of the SDN’s
and MG’s substation, distribu-
tion line, non-renewable and
renewable resources, and stor-
age charger (p.u.)

RMG Reserve power of the MG
observed by the MG’s substa-
tion (p.u.)

V, ΔV voltage magnitude and devia-
tion (p.u.)

WSI The worst security index
(dimensionless)

φ Voltage angle (rad)

Constants

AL The incidence matrix of buses and
distribution lines (if there is a line
between buses b and j, AL b,j = 1,
otherwise, it is equal to zero)

AMG The incidence matrix of MGs and
buses in the SDN (if MG i con-
nects to bus b, AMG b, i = 1,
otherwise it is equal to zero)

BL, GL Susceptance and conductance of
the distribution line (p.u.)

E , Ē , IE Minimum storable energy, capac-
ity (maximum storable energy), and
initial energy of the storage (MWh)

EENSmax Maximum energy not-supplied
(MWh)

KQ, KR The ratio between the reactive
power price and the energy price,
the ratio between the reserve price
and the energy price (dimension-
less)

LP, LQ Real and reactive power of load
(p.u.)

np The number of linear pieces in the
traditional piecewise linearization
strategy

PR Real power of the renewable
resource (p.u.)

R, X Resistance and reactance of the
distribution line (p.u.)

s, s′ The slope of the line used for lin-
earizing a second and fourth power
variable based on the conventional
piecewise linearization technique

S̄DS , S̄MG , S̄L , S̄NR, S̄R, S̄E Size (maximum apparent power)
of the SDN’s substation, MG’s
substation, distribution line,
non-renewable and renewable
resources, and storage charger
(p.u.)

Vmin, Vmax Lower and upper limits of voltage
magnitude (p.u.)

WSImin The minimum value of WSI
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αCR, αDR Charging and discharging rates of
the storage (p.u.)

β Fuel price of the non-renewable
resource ($/MWh)

βDS, βMG, βL Accessibility of the SDN’s and
MG’s substation, and distribution
line

γ Energy price ($/MWh)
ηCH, ηDIS Charging and discharging

efficiency of the storage device
π The probability of occurrence of a

scenario
ϑEEL„ ϑEENS, ϑVSI Weighted coefficients

ξ The participation rate of con-
sumers in the DRP

ΔF Flexibility tolerance
Δθ, nm Angle deviation (rad), and the num-

ber of sides of the regular polygon,
Δθ = 360/nm
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