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a b s t r a c t

This study intends to investigate the impact of geopolitical uncertainty, proxied by the geopolitical risk
(GPR) index, on the volatility of renewable energy exchange traded funds (ETFs). Employing a two-state
Markov regime switching model reveals that an upturn in the GPR index increases (reduces) the like-
lihood of being in the low (high) volatility regime. This finding could be attributed to the fact that when
the geopolitical risk increases, users of crude oil, which is highly sensitive to such risk, tend to consider
clean energy as a substitute for traditional energy sources. This causes a growth in the equity prices of
new energy firms, further leading to a drop in the levels of volatility. Additionally, the results of
generalized autoregressive conditional heteroscedasticity (GARCH) models also confirm that higher GPR
implies lower risk for these green assets. The outcomes have implications to policymakers and investors
participating in clean energy markets.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past few years, demand for renewable energies has
increased substantially due to growing concerns about climate
change. Accordingly, investments in international clean energy
markets have also experienced an ascending trend. For example, a
recent study by Bloomberg New Energy Finance documents that
global investment in transitional energy has reached $755 billion in
2021. The study also indicates that in order to achieve climate
neutrality, investment in this sector would reach over $2 trillion
between 2022 and 2025, and about $4.1 trillion during the period
2026e2030.1 Hence, investments in renewable energies will need
to triple in the coming years with a view to reducing net carbon
emissions to zero.

Given that clean energy markets appear to be a relatively new
class of assets to invest in, they could be highly volatile in nature
[1]. Therefore, precise estimates of time-varying volatility are of
paramount importance to market participants for understanding
the risk of investor portfolio consisting of clean energy assets.
Hence, it is crucial to identify the factors that drive the volatility of
this emerging asset class.
tta@uwasa.fi (P. Dutta).
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To this end, the present study aims to investigate whether
geopolitical risk (henceforth, GPR) can predict the uncertainty
linked to clean energy asset returns. In doing so, we contribute to
the literature in several aspects. First, based on our knowledge, it is
among the preliminary studies to examine whether clean energy
assets react to geopolitical uncertainty. Given that oil price varia-
tions are affected by geopolitical risk through the supply and de-
mand channels [2,3], GPR may exert a significant impact on clean
energy assets from the intuition that oil and renewable energy
prices are highly covariant [4]. In particular, geopolitical risk may
affect clean energy assets via at least four channels. First, when
increasing geopolitical risk has a positive effect on crude oil prices,
traditional energy sources could be replaced by renewable energies
[5]. This in turn improves the operating situations of new energy
firms and their stock performance [6]. Second, investors’ expecta-
tions for future oil supply and demand changes could influence
their perspective about alternative energy industry, which is
further reflected in their investment decisions [7]. Thus, variations
in geopolitical risk may impact the clean energy asset returns
through investor sentiment. Third, the transition to renewable
energy leads to greater energy self-sufficiency and reduces
geopolitical conflicts. Thus, increasing geopolitical risk will
certainly encourage policy makers and investors to shift towards
clean energies, which would have a positive effect on the renew-
able energy asset class. Fourth, rising geopolitical risk often causes
higher uncertainty leading to an immediate disruption of economic
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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activities, which is further reflected in financial markets including
stocks, exchange rates and commodities [8e10]. Due to a close
connection with these financial markets, clean energy assets also
become susceptible to geopolitical risk.

Second, we employ the Markov regime switching (MRS)
approach to study the impact of GPR on the probability of being in
the low and high volatility regimes for different clean energy assets.
Note that a number of studies find that GPR has a positive effect on
global crude oil price, leading to a drop in its volatility levels [11,12].
Given that oil prices and clean energy asset returns are positively
correlated [13e16], it could be postulated that GPRwould also exert
a negative impact on the volatility of clean energy asset class.
Assuming this indicates that when geopolitical uncertainty in-
creases, the likelihood of remaining in the low (high) volatility state
tends to increase (decrease). Hence, by focusing on the low (high)
volatility state, we are able to examine how changes in the
geopolitical risk levels impact the volatility of the clean energy
asset class when stock markets are relatively calm (volatile). Doing
so thus allows us to examine whether GPR drives the regime
transition for clean energy asset returns.

Third, we extend the discussion on the role of geopolitical risk in
financial markets. More specifically, our study adds to the limited
literature on the GPR-stock association at sector levels. Investi-
gating such linkage is important given that there may be industry
specific responses to shocks emanating from geopolitical conflicts.
Since the magnitude of these responses may vary among the sec-
tors, proper knowledge on how geopolitical risk impacts the vola-
tility of clean energy asset class could be useful for developing
appropriate hedging strategies to mitigate such risk. Hence, the
information contained in our empirical results could provide
insight into means of building accurate stock-valuation models and
accurate forecasts of the volatility of these assets.

It is worth noting that contrasting to the existing literature
[6,17e19] focusing on clean energy asset class, we utilize the in-
formation on renewable energy exchange traded funds (ETFs)
instead of using renewable energy stock indexes. Considering these
ETFs is beneficial given that unlike equities, they are not sensitive to
non-synchronous trading issues. As documented by Lo and MacK-
inlay [20], such issues may lead to spurious estimates when con-
ducting market efficiency tests. Besides, these assets are
particularly liquid and behave like a stock [21].

The empirical results might be useful for current and future
investors in new energy companies. As growing concerns about
environmental sustainability shift investors towards eco-friendly
businesses, this research could attract those shareholders willing
to decarbonize their portfolios by holding renewable energy assets.
Moreover, socially responsible investments have ecological in-
fluences that assure a certain degree of sustainability. Therefore,
our investigation is particularly important for eco-friendly in-
vestors who require sound knowledge on how to diversify the risk
associated with their portfolios [22]. The findings of this study thus
help such investors in detecting potential risk linked to green
portfolios and gaining superior risk-adjusted returns. In sum, this
strand of research offers stylized facts about socially responsible
investments which market participants could consider when
including clean energy assets in their portfolios to moderate
climate related risk.

2. Literature review

We now provide a brief review of prior studies that deal with
new energy equity markets. This literature can be divided into two
segments. The first strand of literature investigates the price spill-
over linkage between dirty and clean energy assets. Important
contributions in this segment include Henriques and Sadorsky [13]
519
Broadstock et al. [14], Reboredo et al. [15], Dawar et al. [16], Managi
and Okimoto [23], Bondia et al. [24], among others. Henriques and
Sadorsky [13], for instance, adopt a vector autoregression (VAR)
process to explore whether clean energy stock prices react to oil
price and technology stock price shocks. The authors show a sig-
nificant connection amongst these markets. Using an asset pricing
model, Broadstock et al. [14] find that the linkage between oil and
Chinese clean energy stocks appears to be strong during the
turmoil periods. The study also demonstrates a positive association
between these variables implying that an upturn in oil prices would
encourage investments in alternative energy firms. Moreover,
Bondia et al. [24] also provide evidence of price spillover effects
between clean and dirty energy assets. Employing the Granger
causality method, the study shows that oil prices seem to rule the
stock prices of renewable energy firms. Applying a continuous
wavelet approach, Reboredo et al. [15] document a robust long-
term relationship between oil and clean energy stocks, albeit
such linkage is found to be fragile in the short run. A recent study by
Saeed et al. [25] provides empirical evidence on the return spill-
overs between clean and dirty energy assets in lower and upper
quantiles. More recently, Dawar et al. [16] reveal that clean energy
asset prices respond differently to new information on West Texas
Intermediate (WTI) oil prices under diverse market conditions.

The second line of literature examines the volatility linkage
between commodity prices and new energy asset returns. Sadorsky
[26], for example, finds volatility cross effects between fossil fuel
and green stocks. Methodologically, the study considers a number
of multivariate GARCH models and concludes that clean energy
assets are a good hedge for portfolios comprising oil or dirty assets.
Using the time-varying copula approach, Reboredo [27] shows that
oil price volatility significantly contributes around 30% to downside
and upside risk of new energy firms. Ahmad [28] uses the direc-
tional spillover method, proposed by Diebold and Yilmaz [29], to
document that technology and renewable energy stocks are the
dominant emitters of volatility spillovers to the US crude oil mar-
ket. Besides, Dutta [17] shows that crude oil implied volatility
(hereafter, OVX) exerts a significant impact on the realized volatility
of alternative energy stocks. A similar study by Ahmad et al. [1]
finds gold and OVX as a good hedge for clean energy equities. Dutta
et al. [30] document similar findings as well. Furthermore, Bouri
et al. [31] show that crude oil along with gold appear to be safe-
haven assets for new energy firms amid the turmoil periods. In
addition, Xia et al. [32] demonstrate that fossil energyerelated
products such as oil, gas, coal, electricity and carbon emit volatility
to clean energy assets. More recently, Yahya et al. [33] combine a
two-regime threshold vector error correction model with the DCC-
GARCH process to document a long-term volatility linkage between
oil and clean energy assets.

3. Materials and methods

3.1. Data

The daily GPR data, recently created by Caldara and Iacoviello
[34], are retrieved from http://www.policyuncertainty.com. Next,
we collect the information on clean energy ETFs from Thomson
Reuters DataStream database. Three different ETFs are studied in
our research: Invesco WilderHill Clean Energy ETF (henceforth,
PBW), Invesco Global Clean Energy ETF (henceforth, PBD) and
Invesco Solar Energy ETF (henceforth, TAN). All these indexes allow
investors to have an exposure to clean energy investments. Our
sample covers the period from April 15, 2008 to March 10, 2020,
yielding 2997 daily data points. The starting point of our sample is
dictated by the availability of the clean energy data. It is also
noteworthy that the daily GPR data are not available afterMarch 10,

http://www.policyuncertainty.com


Table 1
Descriptive statistics of clean energy ETFs and GPR.

Index PBW PBD TAN GPR

Mean �0.0372 �0.0212 �0.0687 109.56
Standard deviation 2.095 1.828 2.8546 85.51
Skewness �0.4747 �0.6818 �0.3886 2.6107
Kurtosis 9.356 13.52 10.07 18.05
Jarque-Bera test 5155.12*** 14056.45*** 6312.43*** 31700.67
ADF test �51.93*** �55.43*** �50.97*** �11.33***
PP test �51.88*** �55.42*** �50.87*** �42.40***

Notes: This table presents the descriptive statistics for different ETFs and GPR index.
We consider the log-returns for these ETFS, while the GPR data are at levels.
***p < 0.01, **p < 0.05, *p < 0.10.
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2020.
Fig. 1 depicts the time-series plots of different indexes consid-

ered in this research. As exhibited in this graph, we identify a
substantial fall in the clean energy asset prices during the current
COVID-19 pandemic period. At the same time, the geopolitical risk
has also increased significantly.

We report the summary statistics in Table 1. Negative mean
returns are observed for all the ETFs with TAN being more volatile
than the rest. Besides, none of the time series including GPR sat-
isfies the normality assumption. Finally, the augmented Dickey-
Fuller (ADF) and Phillips-Perron unit root tests confirm that the
return indexes along with GPR are stationary.
3.2. Empirical method

This paper employs a two-step methodology. Step I involves
estimating a two-state Markov regime switching regression
approach to generate the state probabilities. While doing so, we
consider the information on crude oil volatility index (OVX) as a
covariate. Many recent papers conclude that renewable energy
equities respond significantly to the changes in the level of oil
market volatility [17e19]. Uddin et al. [19], for instance, show that
when analyzing the dependence structure between renewable
energy and other asset classes, it is crucial to control for the effect of
OVX. Next, step II consists of regressing the probabilities of
remaining in the low (high) volatility regime on the GPR data. Our
purpose is to observe how changes in GPR index affect the risk
linked to new energy assets when the volatility levels are low. We
frame the MRS regression model as follows:

Ri;t ¼ai;rt þ bi;rt Ri;t�1 þ gi;rtDOVXt�1 þ ui;t (1)

where, Ri;t denotes the logarithmic difference for the i-th ETF index
at time t, rt refers to a discrete regime variable, ai;rt is the regime-
dependent intercept and bi;rt and gi;rt are regime-dependent
slope coefficients. At time period t, the transmission probability
from regime 1 to regimem at time period t þ 1 is dependent on the
regime at time period t entirely. In addition, the transition proba-
bilities are given as:
Fig. 1. Time series of clean
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pjk ¼Prðrtþ1 ¼ kjrtþ1 ¼ jÞ; pjk � 0;
XM
k¼1

pjk ¼1 (2)

In our empirical analysis, we consider two regimes in order to
obtain the estimates for low and high volatility states. Following
Uddin et al. [19], we also use the regime classification measure
(RCM) for evaluating the accuracy of our regime switching process:

RCMðrÞ¼100r2ð1 = TÞ
XT
t¼1

Yr
i¼1

bpi;t (3)

The above statistic lies between 0 and 100. Note that our MRS
process appears to be a good-fitting model if the RCM statistic is
close to 0.

Next, we propose the following regression model to investigate
the impact of GPR on the volatility of clean energy ETFs:

asin
ffiffiffiffiffi
pt

p ¼ l0 þ
Xn
i¼0

li logðGPRÞt�i þ εt (4)

where, pt indicates the filtered probability of lying in the low (high)
volatility regime at time t. The asin (arcsine function) is used to
transform the probabilities so that they can be used in a linear
regression model [35].
energy ETFs and GPR.
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4. Empirical findings

The results of our MRSmodel, presented in Table 2, demonstrate
that all the new energy ETFs react negatively to OVX shocks. Hence,
when oil market is highly volatile, a fall is witnessed in clean energy
asset returns. This result is not startling, since an upward swing in
energy market uncertainty tends to induce a drop in the level of
energy prices, which further causes the prices of clean energy as-
sets, close substitutes of oil assets, to decline [19]. We also report
statistically significant results for all the sigma coefficients, which
would suggest a swapping between the low and high volatility
regimes.

In addition, for all the ETF indexes, the RCM statistic indicates
that the regime switching approach can be considered to be a good-
fitting model. Figs. 2 and 3 demonstrating the filtered probabilities
of remaining in low and high volatility regimes also reveal a strong
switching pattern for each of the clean energy assets. Note that for
PBW index, regime 2 remains the high volatility state, while regime
1 being the high volatility state for other 2 indexes as evidenced by
the sigma values.

Table 3 displays the findings of Equation (4) for the low volatility
state. We report that li, measuring the effect of geopolitical un-
certainty, appears to be statically significant for each clean energy
ETF. Hence, we empirically show that new energy ETFs are sensitive
to geopolitical risk. More importantly, the impact is positive indi-
cating that with an increase in the GPR index, the likelihood of
remaining in the low volatility state seems to be increasing.

Next, the findings of Table 4 are consistent with those shown in
Table 3. We now observe that the impact of GPR is negative
revealing an inverse association between the regime probabilities
and geopolitical risk. Therefore, when there is an upsurge in the
GPR index, the likelihood of remaining in the high volatility state
decreases. This finding could be attributed to the fact that when the
geopolitical risk increases, users of crude oil, which is highly sen-
sitive to such risk, tend to consider clean energies as a substitute for
traditional energy sources. This causes a growth in the equity prices
of new energy firms, further leading to a drop in the levels of
volatility.

Moreover, it is evident from Tables 3 and 4 that the lagged
values of GPR are statistically significant. For instance, in Table 4, we
find significant values up to lag 7when looking at the results for the
PBW index. A possible explanation for this finding is that investors
might react to information at different points in time, or have dif-
ficulty in evaluating the effect of GPR on the returns and act with a
delay.
Table 2
Estimates of MRS approach.

Panel A: Estimated coefficients

Index State Constant AR(1)
PBW S1 0.0226 (0.0293) 0.0704*** (

S2 �0.3872** (0.1969) - 0.0014 (0.
PBD S1 �0.3042* (0.1716) �0.0611 (0.

S2 0.0282 (0.0222) 0.0242 (0.02
TAN S1 �0.1872 (0.1964) 0.0457 (0.03

S2 �0.0272 (0.0405) 0.0723*** (

Panel B: Transition probabilities and expected durations

Index P11 P12 P21 P22
PBW 0.9952 0.0048 0.0294 0.9706
PBD 0.9706 0.0294 0.0056 0.9944
TAN 0.9388 0.0612 0.0171 0.9829

Notes: This table displays the estimates of our MRS model provided in equations (1)e(3
***p < 0.01, **p < 0.05, *p < 0.10.
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In sum, our findings confirm that green assets react to geopo-
litical risk significantly and thus the GPR index has emerged as an
important factor affecting the investment decisions. In other words,
we document that GPR can predict the uncertainty associated with
clean energy stock returns.

5. Additional tests

This section studies the effect of GPR on the conditional vola-
tility of clean energy assets. Such inspections will further verify our
previous finding that increasing GPR has a negative effect on the
volatility levels of new energy ETFs. That is, we aim to investigate if
higher GPR implies lower risk for these green assets.

To serve this purpose, we estimate both symmetric and asym-
metric generalized autoregressive conditional heteroscedasticity
(GARCH) models. We first define the mean equation as follows:

Rt ¼pþ 4Rt�1 þ εt (5)

where, Rt denotes the logarithmic returns for a specific ETF index at
time t. The residual term εt is assumed to follow the normal or
Student's t distribution. Notably, the AR(1) process has been
selected based on the values of Akaike information criterion (AIC)
and Bayesian information criterion (BIC) criteria.

Regarding the conditional variance equation, we consider an
extended GARCH (1,1) model, defined as:

h2t ¼uþ aε2t�1 þ bh2t�1 þ qDGPRt�1 (6)

with u; a and b being the parameters of GARCH (1,1) process. In
addition, h2t refers to the conditional variance and ε

2
t�1 represents

the effect of news or shocks. Note that ða þ b) captures the volatility
persistence for ETF returns.

Next, we consider estimating an asymmetric version of GARCH
model. In particular, we employ an extended GJR-GARCH process
which is given by:

h2t ¼uþ aε2t�1 þ dε2t�1St�1 þ bh2t�1 þ qDGPRt�1 (7)

where, St�1 denotes a dichotomous variable that equals 1when εt�1
is negative and 0 otherwise. The persistence of volatility amounts to
aþ bþ 1 =2 d.

The results of our GARCH analyses are reported in Tables 5 and 6.
In both exhibits, we find that the impact of GPR on the conditional
volatility is significant and negative as indicated by the corre-
sponding parameter q. Thus, both symmetric and asymmetric
OVX shocks Sigma c2 test
0.0194) �0.2710*** (0.0162) 0.9739*** (0.0214) 204.03**
0475) �0.2872*** (0.0458) 3.6933*** (0.0469)
0450) �0.2411*** (0.0332) 3.4541*** (0.0405) 315.53***
01) �0.2464*** (0.0156) 0.2538*** (0.0196)
96) 0.3250*** (0.0591) 4.2568*** (0.0497) 195.22***
0.0215) �0.2937*** (0.0234) 1.5893*** (0.0263)

DU1 DU2 RCM
210.07 34.06 17.52
33.96 178.86 19.01
16.32 58.63 18.41

). Values in parentheses indicate standard errors.



Fig. 2. Filtered probabilities for low volatility regime. Note: The filtered probabilities
are derived from the Markov regime switching regression. The probabilities refer to
the likelihoods of remaining in the low volatility states for the PBW, PBD and TAN
indexes. The X-axis indicates the timeline, while the Y-axis shows the filtered
probabilities.

Fig. 3. Filtered probabilities for high volatility regime. Note: The filtered probabilities
are derived from the Markov regime switching regression. The probabilities refer to
the likelihoods of remaining in the high volatility states for the PBW, PBD and TAN
indexes. The X-axis indicates the timeline, while the Y-axis shows the filtered
probabilities.
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GARCH specifications conclude the same. Such inverse relations
demonstrate that when an increment is observed in geopolitical
risk index, the volatility of these ETFs seems declining.

6. Discussion

A number of studies [28,30,36] have examined the effects of
crude oil price uncertainty, metal price uncertainty and climate
policy uncertainty on the volatility levels of clean energy assets.
However, whether these assets react to geopolitical uncertainty
remains under-studied. This is surprising given that geopolitical
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conflicts trigger environmental pollution, which could be reduced
with the transition to alternative energies [6]. Thus, with the in-
crease in geopolitical uncertainty in recent years, many countries
have invested more in renewables. Such initiatives are also re-
flected in the asset prices of clean energy companies.

It is also worth noting that oil and clean energy markets are
close substitutes. As oil price variations are highly sensitive to
geopolitical turmoil [11,12], clean energy prices, which exhibit
similar dynamics like traditional energy prices, might react signif-
icantly to the rise and fall in geopolitical risk. This would cause the
asset prices of alternative energy firms to be varying in response to



Table 3
Impact of geopolitical risk (Low volatility state).

Estimate Standard error Decision

Panel A: PBW

Constant 0.3465 0.0547 ***

logðGPRÞt�1 0.5257 0.0119 ***

logðGPRÞt�2 0.4635 0.0123 ***

logðGPRÞt�3 0.0367 0.0124 ***

logðGPRÞt�4 0.0385 0.0122 ***

logðGPRÞt�5 0.0410 0.0118 ***

F-statistic 62.16 ***
Adj. R2 (%) 9.62

Panel B: PBD

Constant 0.1818 0.0609 ***

logðGPRÞt�1 0.0488 0.0130 ***

logðGPRÞt�2 0.0398 0.0134 ***

logðGPRÞt�3 0.0327 0.0136 **

logðGPRÞt�4 0.0388 0.0135 ***

logðGPRÞt�5 0.0423 0.0133 ***

logðGPRÞt�6 0.0452 0.0129 ***

F-statistic 55.43 ***
Adj. R2 (%) 10.27

Panel C: TAN

Constant 0.0642 0.0593 Insignificant
logðGPRÞt�1 0.0363 0.0123 ***

logðGPRÞt�2 0.0259 0.0127 **

logðGPRÞt�3 0.0255 0.0129 **

logðGPRÞt�4 0.0363 0.0129 **

logðGPRÞt�5 0.0402 0.0129 ***

logðGPRÞt�6 0.0303 0.0128 **

logðGPRÞt�7 0.0444 0.0127 ***

logðGPRÞt�8 0.0508 0.0124 ***

F-statistic 54.45 ***
Adj. R2 (%) 13.15

Notes: In this Table, estimates of Equation (4) are presented. We select the number
of lags based on the values of Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC).
***p < 0.01, **p < 0.05, *p < 0.10.

Table 4
Impact of geopolitical risk (High volatility state).

Estimate Standard error Decision

Panel A: PBW

Constant 1.2774 0.0570 ***

logðGPRÞt�1 �0.0459 0.0120 ***

logðGPRÞt�2 �0.0388 0.0124 ***

logðGPRÞt�3 �0.0314 0.0125 **

logðGPRÞt�4 �0.0304 0.0126 **

logðGPRÞt�5 �0.0271 0.0125 **

logðGPRÞt�6 �0.0272 0.0123 **

logðGPRÞt�7 �0.0261 0.0119 **

F-statistic 45.93 ***
Adj. R2 (%) 10.01

Panel B: PBD

Constant 1.2890 0.0582 ***

logðGPRÞt�1 �0.0606 0.0129 ***

logðGPRÞt�2 �0.0519 0.0133 ***

logðGPRÞt�3 �0.0509 0.0133 ***

logðGPRÞt�4 �0.0617 0.0138 ***

F-statistic 75.09 ***
Adj. R2 (%) 9.28

Panel C: TAN

Constant 1.5878 0.0586 ***

logðGPRÞt�1 �0.0397 0.0123 ***

logðGPRÞt�2 �0.0260 0.0128 **

logðGPRÞt�3 �0.0311 0.0129 **

logðGPRÞt�4 �0.0359 0.0129 ***

logðGPRÞt�5 �0.0477 0.0128 ***

logðGPRÞt�6 �0.04382 0.0127 ***

logðGPRÞt�7 �0.0473 0.0122 ***

F-statistic 59.41 ***
Adj. R2 (%) 12.58

Notes: In this Table, estimates of Equation (4) are presented. We select the number
of lags based on the values of Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC).
***p < 0.01, **p < 0.05, *p < 0.10.

Table 5
GARCH estimates.

Parameters Y Error distribution is normal Error distribution is
Student's t

Estimates Standard error Estimates Standard error

u 0.049*** 0.010 0.049*** 0.014
a 0.080*** 0.007 0.082*** 0.010
b 0.907*** 0.008 0.906*** 0.011
q �0.001** 0.0005 �0.001** 0.0005
Persistence 0.987 0.988
Log-likelihood �5875.63 �5850.30
AIC 3.927 3.911
BIC 3.931 3.925

Notes: q measures the effect of GPR. The persistence of volatility amounts to.aþ b:

***p < 0.01, **p < 0.05, *p < 0.10.
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the fluctuation in GPR index. Moreover, several recent studies [8,10]
also argue that increasing geopolitical risk leads to higher uncer-
tainty which could be harsh to the systematic development of na-
tional economy, further being reflected in traditional financial
markets such as stocks and oil. The clean energy asset market could
receive similar shocks from geopolitical uncertainty as it maintains
a high correlation with other asset classes including equities and
commodities. Furthermore, it is also expected that both investor
sentiment and trading decisions are significantly influenced by the
changes in the level of geopolitical risk which might drive the
volatility of clean energy asset class. Hence, geopolitical risk might
play a crucial role in understanding the volatility dynamics of clean
energy asset class.

To this end, our study joins the literature on clean energy asset
markets by documenting a negative association between geopo-
litical risk and the volatility of clean energy assets. As discussed
earlier, the significant linkage between these variables could be
attributed to the high correlations between oil and new energy
markets, rapid transition to renewable energy, investors’ enthua-
sim for renewables and financial market integration. Given that
geopolitical risk has emerged as a key determinant of clean energy
asset returns, market participants could use its information content
to predict the volatility of renewable energy firms. Hence, along
with other uncertainty measures (e.g., climate policy uncertainty,
523
equity and commodity market volatility indexes), geopolitical risk
also deserves more attention from investors, researchers and
policymakers.

In sum, our study suggests that policymakers and investors
participating in alternative energymarkets should pay considerable
attention to the impact of geopolitical risk on this new asset class
when forecasting future volatility, assessing portfolio risk and
making appropriate hedging decisions. Understanding the perfor-
mance of green assets is of utmost importance to ethical investors



Table 6
GJR-GARCH estimates.

Parameters Y Error distribution is normal Error distribution is
Student's t

Estimates Standard error Estimates Standard error

u 0.061*** 0.010 0.061*** 0.014
a 0.036*** 0.009 0.035*** 0.012
b 0.908*** 0.008 0.905*** 0.011
g 0.072*** 0.011 0.079*** 0.017
q �0.0009** 0.0004 �0.001** 0.0005
Persistence 0.9800 0.9795
Log-likelihood �5862.89 �5839.39
AIC 3.919 3.904
BIC 3.933 3.920

Notes: qmeasures the effect of GPR. The persistence of volatility amounts to.aþ bþ
1 =2g:

***p < 0.01, **p < 0.05, *p < 0.10.
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given that these companies produce ecological goods and provide
climate-friendly services [37e39]. Besides, proper knowledge on
the risk linked to clean energy asset class is essential for socially
responsible investors as they focus not only on the environmental
performance of a firm but also consider its financial performance.
Therefore, our results offer key implications to both investors and
policymakers.
7. Conclusions

Earlier studies find that oil price volatilities are sensitive to
geopolitical uncertainty. However, the effect of such risk on the
volatility of renewable energy assets, which exhibit similar dy-
namics like the oil assets, is yet to be explored. This paper intends to
fill this gap by examining the effect of geopolitical uncertainty,
measured by the geopolitical risk (GPR) index, on the volatility
levels of renewable energy exchange traded funds.

Methodologically, we employ the Markov regime switching
process and different forms of GARCHmodels to serve our purpose.
Looking at the filtered probabilities obtained from the MRS re-
gressions, we find that an upturn in the GPR index increases (re-
duces) the likelihood of being in the low (high) volatility regime.
This result suggests that when GPR mounts, consumers of crude oil
would shift towards clean energies in order to replace traditional
Table A1
Acronyms

Acronym Meaning

AIC Akaike information criteria
ADF Augmented Dickey-Fuller
BIC Bayesian information criteria
DCC-GARCH Dynamic conditional correla
ETF Exchange traded fund
GARCH Generalized autoregressive c
GPR Geopolitical risk
GJR Glosten, Jagannathan, Runkl
MRS Markov regime switching
OVX Oil Implied Volatility index
PBD Invesco Global Clean Energy
PBW Invesco WilderHill Clean Ene
PP Phillips-Perron
RCM Regime classification measu
TAN Invesco Solar Energy ETF
VAR Vector autoregressive
WTI West Texas Intermediate
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energy sources which are highly susceptible to geopolitical con-
flicts. Such transition may cause a significant increment in the asset
prices of new energy firms, further leading to a drop in the levels of
volatility. Additionally, the results of GARCH models also reveal an
inverse relationship between GPR and the volatility of clean energy
asset class. Therefore, when an upsurge is observed in the geopo-
litical risk index, the volatility of these clean energy ETFs seems
declining. In other words, higher GPR implies lower risk for these
green assets.

The findings of this paper offer several important policy impli-
cations. First, as increasing geopolitical risk is found to exert a
positive effect on clean energy asset prices, policymakers are likely
to promote the usage of renewable energy sources with the
increment of geopolitical conflicts. One could thus expect that ris-
ing geopolitical uncertainty encourages the future developments of
new energy technologies, which would in turn decrease the
dependence on traditional energy sources such as fossil fuels. In
addition, the transition to renewable energy also leads to greater
energy self-sufficiency and reduces the adverse impacts of climate
change. It is, therefore, important to pay more attention to under-
stand how the association between geopolitical risk and clean en-
ergy markets evolves over time. Second, investors could utilize the
information content of geopolitical risk to predict the volatility of
clean energy asset class more precisely. Our results are thus
important for market participants while finding more efficient ra-
tios for portfolio optimization, hedging and risk management. In
sum, along with the economic policy uncertainty and crude oil
volatility, geopolitical risk can also be used as a supplement for
making proper asset-allocation decisions and gaining better port-
folio diversification benefits.
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