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ABSTRACT: 
This study implements the choosing factors approach on the German stock universe and per-
forms a scientific replication of Fama and French’s (2015) study. Using a unique German CDAX 
time-series data set from January 2007 to December 2020, this study computes 4x4 value-
weight portfolios that consider a relatively smaller sample size than in the United States. The 
average adjusted R squares for the Fama-French three-, five-, and six-factor asset pricing mod-
els are 51%, 53%, and 54%, respectively. Regarding the Wald test, none of the nested 
baseform Fama-French asset pricing models can explain the cross-section of portfolio returns 
double sorted on size and value, profitability, investment, or momentum. Furthermore, span-
ning regressions expose that size, value, profitability, or investment factors do not matter in 
Germany, whereas the market factor and momentum expand the mean-variance frontier. 
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TIIVISTELMÄ: 
Tämä tutkimus soveltaa riskifaktoreiden valitsemistapaa Saksan osakeuniversumissa ja suo-
rittaa tieteellisen kopion Faman ja Frenchin (2015) tutkimuksesta. Tämä tutkimus käyttää ai-
nutlaatuista saksalaista CDAX aikasarjadataa tammikuusta 2007 joulukuuhun 2020 laskien 4x4 
markkina-arvopainotetut portfoliot, sillä näiden portfolioiden otoskoko on suhteellisesti pie-
nempi kuin Yhdysvalloissa. Keskiarvoiset selittävyysasteet Fama-French kolmen, viiden ja kuu-
den faktorin malleille ovat 51%, 53% ja 54%. Wald testin mukaan yksikään samanlaisia fakto-
reita sisältävistä Fama-French malleista ei pysty selittämään portfolioiden tuottoja, jotka on 
tuplalajiteltu koon ja arvon, kannattavuuden, investointimäärän tai momentumin mukaan. 
Lisäksi ”spanning” regressiot kertovat, että osakkeiden koko, arvo, kannattavuus tai investoin-
titekijät eivät ole merkityksellisiä Saksan kontekstissa, kun taas markkinafaktori ja momentum 
pystyvät selittämään tuottoja Saksan osakeuniversumissa. 

Avainsanat: Osakkeiden hinnoittelumallit, Saksan markkinat, Fama-French, Tehokkuusrin-
tama, Kolmen faktorin malli, Viiden faktorin malli, Kuuden faktorin malli. 
 
  



4 

Contents 

1 Introduction 6 

1.1 Motivation of the study 7 

1.2 Hypotheses and the research question of the study 8 

1.3 Structure of the study 9 

2 Literature review 10 

2.1 Modern portfolio theory 10 

2.2 The efficient market hypothesis 12 

2.2.1 Anomalies are the absences of efficiency 14 

2.3 Capital asset pricing model 15 

2.3.1 Theoretical criticism and CAPM extensions 17 

2.4 The three-factor model 21 

2.5 The five-factor model 23 

2.6 The six-factor model 27 

3 Empirical performance of the five-factor model 29 

3.1 Managing anomalies 29 

3.2 Worldwide evidence 33 

4 Empirical dilemmas of the five-factor model 40 

4.1 HML as an explaining factor 40 

4.2 Criticism, limitations, and findings 41 

5 Data and methodology 45 

5.1 Sample description 45 

5.2 Variable and factor construction 45 

5.3 Factor-spanning tests 50 

6 Empirical regression results 52 

7 Conclusions and discussion 70 

References 72 

  



5 

Figures 
 
Figure 1. Efficient frontier and investment opportunities 12 

Figure 2. Optimal tangency portfolio 16 

 
Tables 
 
Table 1. Average number of stocks in value-weighted (4x4) double-sorted portfolios 48 

Table 2. Average excess returns, t-statistics, and standard deviations of regression portfolios 48 

Table 3. Descriptive statistics and factor correlations 50 

Table 4. Regressions for 16 value-weight Size-B/M portfolios 52 

Table 5. Regressions for 16 value-weight Size-OP portfolios 55 

Table 6. Regressions for 16 value-weight Size-Inv portfolios 59 

Table 7. Regressions for 16 value-weight Size-Mom portfolios 63 

Table 8. Test statistics of the Fama-French factor models 67 

Table 9. Factor-spanning tests, estimated coefficients, intercepts, t-statistics, and the Adj. 𝑅2 68 

 



6 

1 Introduction 

The popularity of asset pricing models has increased steadily through 60 years since 

the introduction of the Capital Asset Pricing Model (CAPM) by Sharpe (1964), Lintner 

(1965), and Mossin (1966). Even though the CAPM is still the most extensively used 

method for stock pricing, financial literature has documented other variables which 

cannot be explained by the CAPM. For the first instance, these variables include past 

stock returns (DeBondt & Thaler, 1985; DeBondt, 1987; Jegadeesh & Titman, 1993; 

2001), size (Banz, 1981; Reinganum, 1981), earnings-price (Basu, 1977; 1983), leverage 

(Bhandari, 1988) and book-to-market (Capaul, Rowley & Sharpe, 1993; Chan, Hamao & 

Lakonishok, 1991; Fama & French, 1992; Rosenberg, Reid & Lanstein, 1985). These es-

sential results have driven experts to expand the CAPM formula with different anoma-

lies proposed as potential risk-factors in asset-pricing, which should capture the most 

variation in average equity returns. 

 

Fama and French (1992) found out that two easily measured variables, size, and book-

to-market equity, can seizure most of the variation in average stock returns and that 

most of the other variables’ explanatory power vanished. Thereby, Fama and French 

(1993) present a three-factor model and argue that it is more capable in pricing future 

stock returns than the CAPM since size reflects to a risk effect and small-cap stocks 

outperform big-cap stocks. Moreover, high book-to-market stocks tend to earn signifi-

cant positive excess returns whilst low book-to-market stocks tend to earn significant 

negative excess returns, and that book-to-market ratio is highly correlated with the 

future performance. 

 

About fifteen years later, Novy-Marx (2013) discovered a proxy for predicted profitabil-

ity that is substantially associated with the average return. Aharoni, Grundy, and Zeng 

(2013) document a weaker but statistically dependable relationship between invest-

ment factor and average return. Titman, Wei, and Xie (2004) also claim that the three-

factor model is not capturing all expected returns by missing the variation in average 

returns related to profitability and investment factors. In 2015, Fama and French up-
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grade the three-factor model by adding profitability and investment factors, creating 

the five-factor model. The authors derived these new risk-factors from the dividend 

discount model (Miller & Modigliani, 1961), which makes three strong statements of 

expected stock returns: 1) whenever book-to-market ratio is higher, also the expected 

return is higher; 2) whenever expected profitability is higher, also the expected return 

is higher; 3) whenever the investment level or equivalent higher growth in book equity 

implies a lower expected return. However, after strong criticism and acknowledged fact 

that the five-factor model misses to price the momentum premium, Fama and French 

(2018) follow Carhart (1997) and include momentum factor into their model to satisfy 

insistent popular demand but worry to add factors that seem to have empirical robust-

ness but do not reflect any theoretical support. 

 

1.1 Motivation of the study 

Motivated in finding the risk-factors that expand the mean-variance frontier, the pur-

pose of this study is to do a scientific replication of Fama and French’s (2015) asset 

pricing study by using different sorts, time-period, and stocks. Therefore, the Fama-

French asset pricing models are tested in a German context to build on the previous 

empirical studies. This study computes its own value-weighted portfolios, slightly dif-

ferent from Fama and French (2015; 2017; 2018) as well as Grobys and Kolari’s (2021) 

studies to distinguish between new findings and similarities of the previous studies in 

contrast to the German stock universe. Additionally, this study critically analyzes litera-

ture about the five-factor model’s performance and biases as well as unites the latest 

findings of choosing factors empirical evidence since the financial literature lacks stud-

ies covering the six-factor model. Recently, Dirkx and Peter (2018) implemented the 

five-factor model for the German stock market and found that the international validity 

of the profitability and investment factors does not hold in the German stock universe. 

Ziegler, Schroeder, Schulz, and Stehle (2007) applied the three-factor model to the 

German stock universe and concluded that the three-factor model is more capable in 

capturing the cross-section of average stock returns in the US than in Germany. Finally, 

Hanauer, Kaserer, and Rapp (2011) used the Carhart four-factor model to the German 
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stock universe and demonstrated that the four-factor model improves the explanatory 

power compared to the three-factor model. 

 

Consequently, the German stock market has not been a target of such choosing factors 

study before. As such, this study brings an interesting point of view into the debate 

about the Fama-French risk-factors, as Germany represents alone most of the whole 

European equity markets and is the largest economy in Europe and the 4th largest in 

the world (measured by nominal GDP). Moreover, international studies such as Fama 

and French (2017) as well as Grobys and Kolari (2021) consider Europe as a whole and 

do not distinguish at a country-specific level. 

 

1.2  Hypotheses and the research question of the study  

This study is motivated to investigate a total of four hypotheses. These hypotheses 

measure whether different model variations increase the mean-variance frontier in the 

German stock universe. Consequently, the research question of this study is as follows: 

Which Fama-French risk-factors expand the mean-variance frontier in the German 

stock universe? 

 

H1: The Fama-French three-factor model captures the average return in the German 

stock universe with statistically significant results. 

 

H2: The Fama-French five-factor model captures the average return in the German 

stock universe with statistically significant results. 

 

H3: The Fama-French six-factor model captures the average return in the German stock 

universe with statistically significant results. 

 

In 2015, Fama and French show that value does not matter in the United States, thus 

this study is interested in determining the value factor’s role in Germany. In contrast, 
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Grobys and Kolari (2021) report that the value factor increases the mean-variance fron-

tier in Europe. Thus, the fourth hypothesis in this study is as follows: 

 

H4: 𝐻𝑀𝐿 is a redundant factor in the German stock universe. 

 

1.3 Structure of the study 

This study is structured as follows: Chapter 2 gives a general introduction to the for-

mation of financial theories including e.g., the modern portfolio theory, capital asset 

pricing model, efficiency market hypothesis, anomalies, and the Fama-French factor 

models. Chapter 3 describes the performance of the Fama-French five-factor model in 

the US and all over the world. Chapter 4 continues to investigate the Fama-French five-

factor model’s biases and failures. Chapter 5 concentrates on Fama-French asset pric-

ing models’ data and methodology. Chapter 6 highlights regression and comparison 

results and discusses the empirical findings. Finally, Chapter 7 shortly finishes the study 

by summarizing the most important results and observations. 
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2 Literature review 

Practically, there were no quantitative methods to optimate investment portfolios be-

fore the mid-1900s. Investment decisions were made based on suppositions and 

speculations on how stock market returns will behave. Indeed, there were no measur-

able or mathematical models which could constitute strategic frameworks for stock 

and portfolio investments. Financial professionals acknowledged that to do rational 

investments, the investment portfolios must be diversified by buying different financial 

assets and thus include some insurance against possible risks. In fact, Henry Markowitz 

arises as a well-known professor for his pioneering work in Modern Portfolio Theory 

management. 

 

2.1 Modern portfolio theory 

The modern portfolio theory by Markowitz (1952 states that investors should focus on 

selecting portfolios using mean-variance analysis instead of individual securities. In 

addition, investors are wary about taking risks, so they choose a less risky portfolio to a 

riskier one given the same level of return. Next to this, they are maximizing returns in 

the risk-return-ratio. The expected returns on the portfolio are calculated as the 

weighted average of expected returns on all the financial instruments held in the port-

folio. The formula for portfolio expected returns is written as follows, 

 

𝐸(𝑅𝑝) = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑟𝑖 , 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑤𝑖

𝑛

𝑖=1

= 1  (1) 

 

and 𝑤 is the portfolio weight of each security. In turn, the portfolio risk is illustrated as 

the portfolio variance, and in the case of two different stocks it can be calculated as, 

 

𝜎𝑝
2 = 𝑤𝑎

2𝜎𝑎
2 + 𝑤𝑏

2𝜎𝑏
2 + 2𝑤𝑎𝑤𝑏𝜎𝑎𝜎𝑏𝑝𝑎𝑏  (2) 
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where 𝑤𝑎 is the portfolio weight of the first security, 𝑤𝑏 is the weight of the second 

security, 𝜎𝑎is the standard deviation of the first security, 𝜎𝑏 is the standard deviation of 

the second security and 𝑝𝑎𝑏 is the correlation coefficient between the two stocks, that 

is interpreted as |𝑝| ≤ 1. It symbolizes the values range between -1 and 1. A correla-

tion coefficient of 1 indicates that the returns of 𝑎 and 𝑏 evolve in the same direction, 

which is called a perfect positive correlation. On the other hand, a perfect negative 

correlation means that 𝑎 and 𝑏 move in opposite directions, while a zero correlation 

implies no relationship at all. Consequently, by manipulating the structure of the port-

folio, investors can influence the correlation coefficient by reducing or increasing it, 

which affects the combination variance. This is a very central affair that Markowitz 

(1952) discloses in his fundamental work. Indeed, the modern portfolio theory laid the 

groundwork for financial modeling. 

 

According to Markowitz (1952), there exist optimal portfolios that offer the best rela-

tionship of risk-return by utilizing the right correlation coefficient relationship. A ra-

tional investor should select a portfolio from this specific set with the right combina-

tion of risk and return. This is graphically illustrated in the Figure 1 on the following 

page, where 𝐸(𝑟) is the expected return and 𝜎 is the standard deviation. The positively 

sloped curve that plots the expected return and risk is known as the efficient frontier. It 

determines the risk-and-return trade-off and localizes the efficient portfolios, the glob-

al minimum variance portfolio, and inefficient portfolios. 
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Figure 1. Efficient frontier and investment opportunities (Bodie, Kane & Marcus, 2011: 209). 

 

In the same decade, Tobin (1958) notes that it is irrational to hold non-interest-bearing 

assets and complements Markowitz’s thesis by including the risk-free interest rate into 

the analysis. The standard deviation of the risk-free interest rate is assumed to be zero. 

In addition, there is no correlation of returns with a risky portfolio. Combining the risk-

free interest rate and risky stocks in the portfolio will lead to a situation, where a 

standard deviation depends on the weights of different kinds of financial instruments. 

Adapting the weight of the risk-free interest rate leads to portfolios with lower or high-

er standard deviations, and so on to lower or higher expected returns. These alterna-

tive strategies allow investors to form portfolios, which can be moved along the tan-

gent line, underperforming, or outperforming those on the efficient frontier. 

 

2.2 The efficient market hypothesis 

Besides the modern portfolio theory, the efficient market hypothesis, henceforth called 

the EMH has been one of the main interests of researchers for a long time. Kendall 
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(1953) found that stock prices were evolving randomly, it seemed like the stock market 

is controlled by irregular market psychology without any logical rules. Further research 

and economists came to reserve Kendall’s (1953) findings and point out that random 

price movements illustrated rather a properly functioning or efficient market instead of 

an irrational one. For example, Samuelson (1965) claimed that stock prices are already 

reflecting all available information and that returns evolve randomly. Consequently, 

randomness of price variation, and unpredictability can be simply explained by the 

competition between investors in the market. 

 

A common assumption to deal with is that efficient markets are rational and free of 

friction. According to Fama (1970a) the definition of an efficient market is that stock 

prices perfectly reflect all available information. Appropriately investors are not able to 

achieve superior returns based on historical movements, because current stock prices 

already reflect all historical information, and all possibly arbitrage profits are eliminat-

ed. Consequently, the EMH has strong implications for security analysis, for example, 

there are investors who use a lot of resources to analyze company value chains, finan-

cial statements, and human capital, etc. Therefore, the question may be presented that 

what is the purpose of this kind of analysis made by investors. Grossman and Stiglitz 

(1980) argue that when arbitrage is expensive, it is illogical for markets to be in equilib-

rium and completely arbitraged on a regular basis. However, Gromb and Vayanos (2002) 

state that arbitrageur’s presence should benefit all the investors through liquidity. 

 

Fama (1970a) classifies the EMH into three divergent versions. These versions differ by 

the level of all available information. The weak-form hypothesis claims that stock prices 

must reflect all information from the trading volume, short interests, and past perfor-

mance, etc. Thus, using historical prices, trend or technical analysis is pointless to pre-

dict future returns. The semi-strong-form hypothesis states that all publicly available 

information is totally reflected to present-day stock price. Such information consists of 

patents held, annual report data, earnings forecasts, quality of the management, share 

repurchases, etc. in addition to historical prices. Furthermore, fundamental analysis is 
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useless. The strong-form hypothesis imposes that stock prices must reflect all infor-

mation relevant to the company. This also includes the information that is considered 

as insider information. As a result, future price changes are completely unpredictable 

based on any available data. 

 

2.2.1 Anomalies are the absences of efficiency 

In efficient markets stock prices fully reflect all available information. An essential fact, 

however, is that the EMH does not require that investors to be fully rational, so mis-

pricing opportunities exist. An individual investor can act randomly but the whole mar-

ket is always right. After all, the right stock price is a consensus of investors' sentiment 

of a company’s value. In other words, after anomalies are recognized and analyzed, 

they often seem to vanish or attenuate because an enormous group of investors ex-

ploits the arbitrage opportunities. Indeed, Chordia, Subrahmanyam, and Tong (2014) 

investigate stock data samples before and after 1993. They argue that abnormal re-

turns caused by anomalies largely disappear, or at least weakened in the post-1993 

period, but with one exception of the book-to-market effect. Furthermore, Hou, Xue, 

and Zhang (2018) reinvestigate 452 different anomaly variables that have been report-

ed in the financial literature. The authors argue that 65% of the reinvestigated anoma-

lies cannot be replicated and are not significant. They also demonstrate that the capital 

markets are more efficient than previously detected and assumed. 

 

Fama and French (2008a) state that abnormal risk-adjusted returns which cannot be 

captured by the chosen pricing model are considered anomalies. Multifactor models, 

for instance, aim to capture anomaly variables through their factors in order to explain 

average stock returns. Before moving to factor models, however, it is purposeful to 

orientate to the CAPM which is the backbone of asset pricing models. 
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2.3 Capital asset pricing model 

As announced in the first chapter, the CAPM was built separately by Sharpe (1964), 

Lintner (1965), and Mossin (1966). The CAPM is one of the centerpieces of modern 

financial economics, and relays on Markowitz’s (1952) theory, and Tobin’s (1958) find-

ings of tangency portfolio. Therefore, the CAPM includes several underlying assump-

tions. First, investors can borrow and lend at a risk-free rate of interest indefinitely. 

Second, investors have similar expectations, which is consistent with the assumption 

that all meaningful information is publicly available. Third, markets are in equilibrium. 

Fourth, all investors have the same investing alternatives available to them. Finally, 

investors set aside the same amount of time to hold their investments. 

 

Based on these assumptions, the efficient frontier of risky assets loses its position as 

the best investment opportunity for investors. As presented in the Figure 2 on the fol-

lowing page, investors with the same projected return and risk estimations will all de-

tect their portfolios on the tangency line connecting the risk-free interest rate and the 

frontier. Rational and homogenous investors will always invest in the optimal portfolio 

of risky assets since it has the highest Sharpe Ratio, which is the point 𝑇, the mean-

variance efficiency. 
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Figure 2. Optimal tangency portfolio (Fama and French, 2004). 

 

Figure 2 describes the optimal portfolio opportunity and geometrically identifies the 

CAPM’s formula, where 𝐸(𝑅) is the expected return, 𝑅𝑓 is the risk-free interest rate 

(usually assumed to be a short-term T-bill rate), 𝜎(𝑅) is the standard deviation, and 

portfolios that combine risk-free lending or borrowing with some risky portfolio 𝑔 plot 

along a straight line from 𝑅𝑓 through 𝑔. In the light of the assumptions mentioned 

above, all investors hold the same risky tangency portfolio 𝑇, which is the mean-

variance optimal portfolio. According to the CAPM, there is a linear relationship be-

tween the expected return and market risk when there is an equilibrium. Therefore, 

the CAPM formula can be written as follows, 

 

𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽 [𝐸(𝑅𝑀) − 𝑅𝑓]  (3) 
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where 𝐸(𝑅𝑖) is the expected return of security or portfolio 𝑖, 𝑅𝑓 is the risk-free interest 

rate, 𝐸(𝑅𝑀) is the expected market return, and 𝛽 can be composed as, 

 

𝛽 =
𝐶𝑂𝑉 (𝑅𝑖𝑅𝑀)

𝜎2(𝑅𝑀)
  (4) 

 

where 𝑅𝑖 is the stock return, 𝑅𝑀 is the market portfolio return, 𝜎2(𝑅𝑀) is the variance 

of the return of the market portfolio, and 𝐶𝑂𝑉 (𝑅𝑖𝑅𝑀) is the covariance between the 

return of the market portfolio and the return of the security. 𝛽 itself is the exposure 

against the systematic factor, or systematic risk, of an individual security in comparison 

to the unsystematic risk of the whole market.  

 

The CAPM is basically a single-factor model that uses the market factor and a specific 

exposure 𝛽, as its only explanatory factor for the expected stock or portfolio returns. 

The expected return is proportional to 𝛽, if there is a strong positive relationship be-

tween stock return and the return on the market, 𝛽 will be high, consequently, the 

CAPM formula predicts higher expected return as it tends to be riskier and vice versa. 

The CAPM’s hypothesizes that unsystematic risk is eliminated through effective diversi-

fication, as a repercussion it is not recompensed with greater expected returns. In the 

case of CAPM the efficient portfolios lie on a straight line, which is called Security Mar-

ket Line (SML), which has 𝑅𝑓 as its intercept and tangent thought 𝑇, as presented in the 

Figure 2 above. In conclusion, only systematic risk will be rewarded with a risk premium. 

Nonetheless, the CAPM has been widely criticized by researchers as a too straight and 

simplified version for risky asset pricing. 

 

2.3.1 Theoretical criticism and CAPM extensions 

Like many scientific models, the CAPM has its drawbacks. The unrealistic assumptions 

and lack of performance of the CAPM have been bothering academics for quite a long 

time. According to Fama and French (1993) the CAPM’s major weaknesses and con-

cerns are incapability to explain the observed market returns of small stocks and the 
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timeline. Furthermore, the CAPM’s problems include difficulty for estimating 𝛽, finding 

the best index to represent market portfolio, and choosing the right risk-free interest 

rate. Even Sharpe (1964) himself grants that the CAPM assumptions are deeply restric-

tive and unrealistic assumptions. Therefore, different new theoretical models were 

developed extending the original CAPM or proposing alternative assumptions that re-

lax some of these questionable assumptions. Fama (1970b) takes an intertemporal ap-

proach to the original CAPM, arguing that if preferences and future investment oppor-

tunity sets are not state-dependent, or constant, then intertemporal utility maximiza-

tion can be considered as if investors have a single period utility function. On the other 

hand, the assumptions behind this case are restrictive. 

 

In 1973, Merton developed the Intertemporal Capital Asset Pricing Model, henceforth 

referred as the ICAPM. According to Merton (1973) the ICAPM is deduced from portfo-

lio selection behavior by investors who are trying to maximize the expected utility of 

lifetime consumption. Furthermore, the uncertainty of future investment opportunities 

has an impact on today’s demands. Consequently, investors hedge risky positions for 

example avoiding highly correlated assets. The other additional source of risk is infla-

tion that affects the price of consumption goods. Investors may want to sacrifice some 

expected return in order to purchase financial assets that have higher return if cost of 

living changes negatively. The ICAPM includes multiple variables and can be considered 

as a linear multi-factor model. Another relevant model was introduced by Lucas (1978) 

and Breeden (1979), known as the Consumption Based Capital Asset Pricing Model, 

henceforth called the CCAPM. This model is based on the theorem that when rational 

investors optimize, the return of assets is linearly linked to the growth rate in aggregate 

consumption if the parameters of the linear relationship are constant over the years. 

 

According to empirical studies, the security market line (SML) is flatter than projected 

by the original CAPM (Black, Jensen & Scholes 1972; Black 1972; Fama & MacBeth 

1973). This discovery drove researchers to investigate other variables that could be 

more efficient in explaining the fraction of excess returns not explained by the CAPM 
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approach. Despite this, Roll (1977) argues that the CAPM can only be evaluated if the 

whole market portfolio is recognized. 

 

Banz (1981) and Reinganum (1981) present that size of the stock is a remarkable factor 

in explaining the cross-section of expected stock returns. They found that security’s 𝛽 

affects to its average returns. Consequently, small stocks tend to exhibit higher earn-

ings and large stocks tend to exhibit lower earnings. In addition, a more recent study by 

Baker, Bradley, and Wurgler (2011) demonstrates that stocks with high 𝛽 have under-

performed compared to stocks with lower 𝛽 in the US stock markets since January 

1968.  

 

However, Hong and Sraer (2016) argue that stocks with high 𝛽 are more often over-

priced, therefore exhibiting lower earnings. Basu (1983) shows that earnings price, size, 

and 𝛽 are together capable of explaining the cross-section of average stock returns. On 

the other hand, other researchers have argued that different macroeconomic variables 

control abnormal stock returns (Chen, Roll & Ross, 1986; Roll & Ross, 1980). According 

to Bhandari (1988) securities debt/equity ratio and returns are in a positive relation-

ship. However, his findings are disagreed by the CAPM, which assumes that the risk 

created by the debt/equity ratio is already captured by 𝛽.  

 

Rosenberg, Reid, and Lanstein (1985) show that in the US, there is a positive link be-

tween book-to-market equity and stocks. Chan, Hamao, and Lakonishok (1991) find 

that stocks’ book-to-market equity plays a key role in explaining cross-section stock 

returns on Japanese stocks. A decade later in 1992, Fama and French converge with 

these observations. Empirical studies have also found evidence of past stock returns 

impact to abnormal yields, which cannot be explained by the CAPM. DeBondt and Tha-

ler (1985) argue that stock returns over three to five years can explain future returns. 

They propose that stocks that have underperformed the market in the previous three 

to five years will outperform the market in the future and vice versa. Two years later 

DeBondt (1987) finds similar results in his own study. Jegadeesh and Titman (1993; 



20 

2001) report that stocks with strong past performance over 3 to 12 months continue 

outperforming stocks with weak past performance. This market anomaly is also known 

as a momentum effect. 

 

These findings together represent that there are multiple possible variables besides the 

CAPM market factor and a specific exposure 𝛽 that can explain the cross-section varia-

tion of average stock returns. One of the fundamental multifactor models is the Arbi-

trage Pricing Theory, which aims to explain these variables by various factors. 

 

2.3.1.1 Arbitrage pricing theory 

Stephen Ross developed the Arbitrate Pricing Theory, now on referred as the APT, in 

1976. Like the CAPM, the APT aims to predict stock market’s returns by merging ex-

pected returns and risk, although it takes an alternative procedure to the security mar-

ket line. According to Ross (1976) the APT builds on three key propositions: First, secu-

rity returns can be explained by a multifactor model. Second, unsystematic risk can be 

diversified away by increasing uncorrelated stocks in a portfolio. Third, a properly func-

tioning financial markets abolishes arbitrage opportunities. However, the APT theory 

indicates that arbitrage opportunities can exist momentarily but will be wiped out by 

the adjustment of the prices. Considering these propositions, the expected return can 

be calculated as a linear function of the number of macroeconomic variables it is sensi-

tive to. However, the theory does not definite how large the sample of variables is, or 

what these variables are. Thus, the APT formula may be expressed as, 

 

𝐸(𝑅𝑖) =  𝑅𝑓 + 𝛽𝑖1𝜆1 +  𝛽𝑖2𝜆2 +  … 𝛽𝑖𝑛𝜆𝑛 

 

 (5) 

where according to Ross (1976), 𝐸(𝑅𝑖) is the security or portfolio’s expected return 𝑖, 

𝑅𝑓 is the risk-free interest rate, each 𝛽𝑖𝑗 demonstrates the sensitiveness of security or 

portfolio’s return to risk factor 𝑗, 𝜆𝑗 is the premium for factor 𝑗, and 𝑛 corresponds to 

the number of explaining possible factors. 
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Differencing between the CAPM and the APT, the latter is an extremely appealing 

model. The APT hypothesis allows mispricing for individual securities and therefore 

solely suits to properly diversified portfolios, contrary to the CAPM. Based on its func-

tion as a multifactor model, the APT can be extended into disparate models. Moreover, 

the APT does not require a market portfolio to estimate the relationship between re-

turn and 𝛽. While the APT is more flexible and relaxes some of the unrealistic CAPM 

assumptions, it is more complex. Paradoxically, the CAPM gains its reputation and pop-

ularity from its simplicity as a mathematical model to determine expected stock re-

turns. Indeed, for the same reasons as it has been criticized. Further research made by 

Fama and French (1992) found that two easily measured variables, which can be added 

to asset pricing formula without making it too complex.  

 

2.4 The three-factor model 

In the light of empirical evidence that the CAPM does not fully resolve the cross-

section of average stock returns and observations of anomaly variables, Fama and 

French (1992) determine how 𝛽, size, earnings yield, leverage, and book-to-market are 

able to resolve the cross-section of average stock returns. In 1993, Fama and French 

suggest that a three-factor model could offer a more effective explanation for stock 

returns according to their previous study (1992) size and book-to-market variables can 

capture most of the variation of average stock returns, while other variables lose their 

explanatory power, or get dominated by these two more effective variables. Indeed, in 

their paper, Fama and French (1993) demonstrate that size, assessed by market capital-

ization, and value, assessed by book-to-market ratio are the definite proxies that can be 

used to capture risk exposure beyond the CAPM 𝛽. The authors proposed that size and 

value factors can be determined as 𝑆𝑀𝐵 (small minus big) and 𝐻𝑀𝐿 (high minus low). 

Consequently, the three-factor model of explaining average stock returns is as follows, 

 

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝜖𝑖𝑡  (6) 
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where according to Fama and French (1993), 𝑅𝑖𝑡 is the return of security or portfolio 𝑖 

for period 𝑡, 𝑅𝑓 is the risk-free interest rate, 𝑅𝑀𝑡  is the return on the value-weight mar-

ket portfolio, 𝑆𝑀𝐵𝑡 is the return on a properly diversified portfolio of small stocks mi-

nus the return on a properly diversified portfolio of big stocks, 𝐻𝑀𝐿𝑡 is the difference 

between the returns on properly diversified portfolios of high and low book-to-market 

stocks, and 𝜖𝑖𝑡 is a zero-mean residual. The error term is created when the regression 

model does not fully exhibit the relationship between the independent variables and 

the dependent variables. Thereby, if the relationship is incomplete, the error term rep-

resents the amount at which the regression equation may deviate during empirical 

analysis. Additionally, treating the parameters in three-factor model as true values ra-

ther than estimates, if the factor exposures 𝛽𝑖, 𝑠𝑖, and ℎ𝑖  capture all the variation in 

expected returns, the intercept 𝛼𝑖 is zero for all securities and portfolios 𝑖. 

 

Fama and French (1993) conduct regression tests with excess returns of 25 portfolios 

sorted by size and book-to-market on the three-factor model and discover that the 

model outperforms the CAPM by absorbing anomalies. Indeed, the largest portion of 

the regression intercepts are close to zero. Further regression tests on five portfolios 

constructed on earning yield and the other five constructed on dividend yield were also 

performed in order to check the robustness of the three-factor model’s ability to cap-

ture the cross-section of average stock returns. The outcome of the regressions is pro-

portional to results with size and book-to-market factors, but a little bit weaker. How-

ever, still bringing the intercepts near zero.  

 

The empirical failure of the CAPM and the performance of the three-factor model mo-

tivated researchers to investigate why it works through various studies. They have 

found three potential explanations. First, like Merton’s (1971) the ICAPM and Rosses 

(1976) the APT, the three-factor model adds alternative risk factors, 𝑆𝑀𝐵 and 𝐻𝑀𝐿 in 

order to explain the expected stock returns. Various studies demonstrate that the per-

formance of the three-factor model in explaining anomalies in the stock market is a 

crucial evidence that these variables are proxies for underlying risk (Fama & French, 
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1995; 1996; Davies, Fama & French, 2000). According to Liew and Vassalou (2000), the 

𝑆𝑀𝐵 and 𝐻𝑀𝐿 factors are able to predict future gross domestic product in some coun-

tries. In turn, Lettau and Ludvigson (2001) argue that the factors 𝑆𝑀𝐵 and 𝐻𝑀𝐿 are 

related to the consumption wealth ratio. Second, data-snooping is making the three-

factor model so explanatory (Lo & MacKinlay, 1990; Black, 1993a; 1993b; Kothari, 

Shanken and Sloan, 1995). Third, biases of behavioral finance and the absence of mar-

ket efficiency might cause these anomalies, that can be explained more specifically by 

the factors 𝑆𝑀𝐵 and 𝐻𝑀𝐿 (Lakonishok, Shleifer & Vishny, 1994; Daniel & Titman, 1997; 

LaPorta, Lakonishok, Shleifer & Vishny, 1997; Daniel, Titman & Wei, 2001; Skinner & 

Sloan, 2002; Teo & Woo, 2004). However, Fama and French (1996) announced that the 

three-factor model is not able to explain medium-term momentum. 

 

While the three-factor model has been efficiently capable to capture the cross-section 

average stock returns. Researchers have found other variables that also have explana-

tory power in stock returns. In 2006, Fama and French investigated expected stock re-

turns from valuation theory’s perspective. 

 

2.5 The five-factor model 

In the wake of valuation theory, expected stock returns are linked to the following vari-

ables: the book-to-market ratio, expected profitability and expected investment (Fama 

& French, 2006). This important discovery can be demonstrated with the dividend dis-

count model which represents that the market value of a company can be considered 

as the current value of all future dividends. The formula itself is as follows, 

 

𝑀𝑡 = ∑
𝐸(𝐷𝑡+𝜏)

(1 + 𝑟)𝜏

∞

𝜏=1

  (7) 

  

where 𝑀𝑡 is the stock price at time 𝑡, 𝐸(𝐷𝑡+𝜏) is the future dividend per share for peri-

od 𝑡 + 𝜏, and 𝑟 is the average expected stock return in the long-term. Adapting the 
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findings of Miller and Modigliani (1961) the dividend discount model is rebuilt as fol-

lows, 

 

𝑀𝑡 = ∑
𝐸(𝑌𝑡+𝜏 − Δ𝐵𝑡+𝜏)

(1 + 𝑟)𝜏

∞

𝜏=1

  (8) 

 

where, 𝑌𝑡+𝜏 is the total equity earnings for period 𝑡 + 𝜏, and Δ𝐵𝑡+𝜏 is the change in 

total book equity, and lastly dividing by time 𝑡 book equity results in, 

 

𝑀𝑡

𝐵𝑡
= ∑

𝐸(𝑌𝑡+𝜏 − Δ𝐵𝑡+𝜏)
(1 + 𝑟)𝜏

𝐵𝑡

∞

𝜏=1

  (9) 

 

which makes three strong statements of expected stock returns. First, if all the terms in 

formula (9) are constants except 𝑀𝑡 and 𝑟, a lower of value 𝑀𝑡 generates a higher ex-

pected return. This is also considered as a higher book-to-market equity ratio. Second, 

assuming for a turn that 𝑀𝑡/𝐵𝑡 and Δ𝐵𝑡+𝜏 are constants, higher expected profitability 

generates higher expected returns and vice versa. Third, given 𝑀𝑡/𝐵𝑡 and Y𝑡+𝜏 , higher 

expected investment or equivalently higher growth in book equity generates lower 

expected returns. Basically, the formula (9) tells us that the 𝑀𝑡/𝐵𝑡 is a noisy proxy for 

expected return because capitalization also correlates to expected earnings and in-

vestment. Empirical evidence found by Fama, and French (2006) tend to support these 

predictions above.  

 

Piotroski (2000) and Griffin and Lemmon (2002) confirm that company strength, which 

is a proxy of expected net cash flows, is positively related to average returns as the 

findings of the formula (9). There is also much more evidence, besides already an-

nounced, that high book-to-market generates higher average stock returns. Haugen 

and Baker (1996) and Cohen, Gompers, and Vuolteenaho (2002) confirm that control-

ling for book-to-market equity, average stock returns are positively linked to profitabil-

ity. Correspondingly, Fairfield, Whisenant, and Yohn (2003) and Titman, Wei, and Xie 
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(2004) and Cooper, Huseyin, and Schill (2008) find a negative relationship between av-

erage stock returns and investment. In addition, Sloan (1996) demonstrates that accru-

als are negatively linked to profitability as result higher accruals indicate lower stock 

returns. Researchers were also interested in analytical forecasts. Abarbanell and 

Bushee (1998), Frankel and Lee (1998), Dechow, Hutton, and Sloan (1999), investigate 

earnings forecasts in order to determine investment’s impact to the relationship be-

tween net cash flows and share price. The results establish that higher expected net 

cash flows lead to higher stock returns. However, Fama and French (2006) state that 

the empirical test results from profitability and investment factors add bit or none to 

the explanation of stock returns beyond the book-to-market factor’s explanatory power. 

Despite this, Novy-Marx (2013) and Aharoni, Grundy, and Zeng (2013) conduct their 

own studies and came to disagree with this outcome. 

 

Novy-Marx (2013) accomplished in identifying profitability as a proxy that has approx-

imately the same capacity as book-to-market as an explanation of the cross-sectional 

average stock returns. The author states that profitability should be measured by the 

ratio of a company’s gross profits to its assets. Novy-Marx (2013) then uses different 

methods than Fama and French (2006) whose method used current earnings as the 

proxy for profitability. Novy-Marx (2013) justifies his perspective by arguing that gross 

profit is the optimal accounting measure of economic performance since it is unaffect-

ed by expenses like research and development or human capital development. Fur-

thermore, Novy-Marx (2013) found a negative link between profitability and book-to-

market that is a remarkable tool to use in portfolio management. 

 

According to the valuation model, the relationship between returns and expected in-

vestment should be negative. However, Fama and French (2006) found a positive rela-

tionship that is insignificant. Fama and French (2008b) argue that the narrow success of 

the valuation formula is because book-to-market captures data about both expected 

cash flows and discount rates. Nevertheless, Aharoni, Grundy, and Zeng (2013) argue 

that Fama and French (2006) failed in their test because they used per-share level 
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measures of expected investment and expected profitability, and changes in the num-

ber of shares are devastating for the valuation formula. Indeed, the valuation formula 

may not work properly in pre-share analysis, so the investment factor occurs small and 

insignificant. On the other hand, applying the company level analysis Aharoni, Grundy 

and Zeng (2013) find a positive relationship between expected profitability and returns 

and, absolutely, a negative relationship between expected investment level and returns 

as the valuation model predicts. Besides Novy-Marx (2013), the authors report findings 

that profitability has a greater effect on companies that have low book-to-market ratio 

than companies that have higher book-to-market ratio. 

 

Perhaps inspired by the discount valuation model and a new perspective of their 2006 

paper’s empirical documentations and the criticism of Titman, Wei, and Xie (2004) and 

more recent findings of Novy-Marx (2013) and Aharoni, Grundy, and Zeng (2013), Fama 

and French decided to scrutinize the three-factor model and other possible variables 

more carefully. 

 

In 2015, Fama and French (2015) introduced the five-factor model that is aimed at cap-

turing the size, value, profitability, and investment variables in average stock returns. 

The authors argue that the five-factor model is more capable in explaining stock re-

turns than the three-factor model because of the empirical evidence that profitability 

and investment factors are strongly related to stock returns and the three-factor model 

misses much of the variation in average returns related to these two variables (Fama 

and French, 2015). Mimicking Aharoni, Grundy, and Zeng (2013), Fama and French 

(2015) use operating profitability as a variable of the company’s profitability and the 

change in total assets as a variable of investment. The authors proposed that profitabil-

ity and investment factors can be determined as 𝑅𝑀𝑊 (robust minus weak) and 𝐶𝑀𝐴 

(conservative minus aggressive). Consequently, the regression model of explaining av-

erage stock returns is as follows, 

 

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝜖𝑖𝑡  (10) 
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where according to Fama and French (2015), 𝑅𝑀𝑊𝑡 is the difference between the re-

turns on properly diversified portfolios of stocks with robust and weak profitability, and 

𝐶𝑀𝐴𝑡 is the difference between the returns on properly diversified portfolios of the 

stocks of low and high investment companies, which are called conservative and ag-

gressive. Other variables are defined in the same way as in the three-factor model. If 

the exposures to factors 𝛽𝑖, 𝑠𝑖 , ℎ𝑖 , 𝑟𝑖, and 𝑐𝑖, capture all variation in expected returns, 

and the intercept 𝛼𝑖 is zero for all securities and portfolios 𝑖. 

 

2.6 The six-factor model 

Due to existing empirical evidence, criticism, and their own (2016; 2018) findings 

(which are discussed further in chapters 3 and 4), Fama and French (2018) incorpo-

rated a long-missed momentum factor to the five-factor model as follows, 

 

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡

+ 𝑚𝑖𝑀𝑂𝑀𝑡 + 𝜖𝑖𝑡 
(11) 

 

where according to Fama and French (2018), 𝑀𝑂𝑀𝑡 is the difference between returns 

on properly diversified portfolios of stocks that are considered as winners and losers 

with respect to past performance. Moreover, it is updated monthly rather than annual-

ly. All the other factors follow the same construction principles as in the three- and 

five-factor models. 

 

This study has introduced different factor models and culminated to the six-factor 

model. When one considers asset pricing models, the six-factor model seems to be the 

best option in order to understand expected stock returns. However, an important 

question arises, how well the variants of the six-factor model actually can explain the 

average stock returns, and does it really increase the mean-variance frontier. The fol-

lowing chapters investigate previous financial literature considering the Fama-French 

models’ factors by using the five-factor model as a base model. This approach attempts 
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to reveal whether additional factors (𝑅𝑀𝑊 & 𝐶𝑀𝐴) add statistically significant explan-

atory power and on which magnitude the predecessor models miss the momentum 

premia. 
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3 Empirical performance of the five-factor model 

This chapter investigates the performance of the Fama-French five-factor model. Be-

fore moving forward, it is important to know that accumulated evidence on the ability 

of factor models to capture the cross-section of returns is commonly based on CRSP 

and Compustat samples that start in July 1963. In addition, the backbone studies made 

by Fama, and French are investigated a little bit more specifically in order to under-

stand the factor constructing better. Furthermore, the five-factor model’s performance 

will be compared, for instance, to the three-factor model, the CAPM, and other factor 

models.  

 

3.1 Managing anomalies 

Fama and French (2015) conduct the first tests on the five-factor model. Their study 

focuses on the US sample including all NYSE, AMEX, and NASDAQ stocks with the ex-

ception of foreign listings and non-equity stocks. The time-period is July 1963 to De-

cember 2013. Fama and French (2015) decide to use a value-weight portfolio as the 

proxy for the market return and one-month U.S. treasury bill rate as the risk-free inter-

est rate in their tests. The authors use NYSE breakpoints to allocate stocks into specific 

groups and form left-hand-side (that indicates the bid price, henceforth called the LHS), 

portfolios. 

 

Constructing the 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑅𝑀𝑊, and 𝐶𝑀𝐴 factors Fama and French (2015) start by 

sorting stocks into two market capitalization groups and three book-to-market, operat-

ing profitability, and investment groups. Profitability and investment factors are de-

fined as the value factor. The size breakpoint is the NYSE median market capitalization, 

and the book-to-market, operational profitability, and investment breakpoints are the 

30th and 70th NYSE percentiles. Consequently, forming six value-weight portfolios from 

2x3 sorted region. Hence, creating the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 factors the 2x3 sort method 

produces extra factors called as 𝑆𝑀𝐵𝑂𝑃 and 𝑆𝑀𝐵𝐼𝑛𝑣. The 𝑆𝑀𝐵 factor from the three 

2x3 sorts is determined as the average of 𝑆𝑀𝐵𝐵/𝑀, 𝑆𝑀𝐵𝑂𝑃, and 𝑆𝑀𝐵𝐼𝑛𝑣. Consequently, 
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Fama and French (2015) state that the 𝑆𝑀𝐵 is the average of the returns on the nine 

small security portfolios of the three 2x3 sorts minus the average of the return on the 

nine big security portfolios. The authors also construct tests on 2x2 sorts and 2x2x2x2 

sorts on size, value, operating profitability, and investment. 

 

Fama and French (2015) build the LHS regression portfolios in order to gain more cru-

cial evidence about the model’s performance as an explanation of returns. In the light 

of Novy-Marx’s (2013) and Aharoni, Grundy, and Zeng’s (2013) documentations, Fama 

and French (2015) perform tests with three sets of 25 (5x5) value-weight portfolios and 

three sets of 32 (2x4x4) value-weight portfolios. The first mentioned is sorted by pairs 

into size and book-to-market, size and operating profitability, size and investment, us-

ing NYSE quintile breakpoints as a distributor. On the other hand, the latter one is sort-

ed on by size and two other variables as follows, size/book-to-market/operating profit-

ability and size/book-to-market/investment and size/operating profitabil-

ity/investment, using the NYSE median as size breakpoint and NYSE quartiles for oper-

ating profitability and investment. 

 

A question arises, does the five-factor model shrink anomalies and how well it per-

formed against its rivals and predecessors? – At last, the first regression results of the 

model are shown. Fama and French (2015) utilize the GRS statistics of Gibbons, Ross, 

and Shanken (1989) to combine asset pricing models and determine the five-factor 

model’s capability in capturing expected stock returns. The GRS, however, rejects the 

five-factor model’s capability at capturing size, book-to-market, profitability, and in-

vestment patterns. Nevertheless, Fama and French (2015) estimate that the five-factor 

model explains 71% – 94% of the cross-section variance of expected stock returns for 

the examined portfolios. Indeed, the authors find that the five-factor model outper-

forms the three-factor model and the CAPM but performs as well as the four-factor 

model that excludes the 𝐻𝑀𝐿 factor. They also point out that the five-factor model’s 

explaining power is not respective to the factor construction. In further research, Fama 

and French (2016) argue that the effect of anomalies decreases in the five-factor model 
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since anomalous returns do not vanish but become less anomalous, and the returns 

associated with various anomaly variables distribute factor exposures, implying that 

they are in large part the same aspect. The authors continue their statement by noting 

that there exist two exceptions, accruals, and momentum, however, still explaining 

average equity returns more efficiently than the original three-factor model.  

 

Indeed, in a more recent study, Fama and French (2016) continue investigate the five-

factor model’s effectiveness at shrinking anomalies. The authors mimic the path of 

Lewellen, Nagel, and Shanken (2010) and look at anomalies not directly captured by 

the five-factor model e.g. momentum (Jegadeesh & Titman, 1993), volatility (Ang, Ho-

drick, Xing & Zhang, 2006), accruals (Sloan, 1996), net share issues (Ikenberry, 

Lakonishok & Vermaelen, 1995; Loughran & Ritter, 1995), and of course the security 

market line flatness against the CAPM predictions (Black, Jensen & Scholes, 1972; 

Black, 1972; Fama & MacBeth, 1973). The LHS portfolios are constructed from the 

same stock exchanges as in their previous study, but the data is gathered from July 

1963 to December 2014 (Fama & French, 2015).  

 

Fama and French (2016) compare the five-factor model’s performance against the 

three-factor model and three four-factor models that combine the 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑅𝑀𝑊, 

𝐶𝑀𝐴, and 𝑀𝑂𝑀 factors, the latter is known as a momentum factor. Once again, the 

authors use reliable GRS statistics to summarize the results from various tests. The GRS 

test rejects all the examined factor models. However, Fama and French (2016) state 

that they are most interested in identifying the model with the best explanatory power 

for average returns, even if it is not perfect. Furthermore, it seems like that the 𝑀𝑂𝑀 

factor has quite a little effect on five-factor model’s performance because the sorts do 

not generate portfolios with meaningful momentum effects. Moreover, the five-factor 

approach, according to Kozak, Nagel, and Santosh (2018), fails to seizure much of the 

cross-section of average stock returns. 
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Additionally, Fama and French (2016) demonstrate that the five-factor model performs 

badly on portfolios constructed on momentum because regression intercepts are scat-

tered. Looking at the results of comparing the models, Fama and French (2016) detect 

again that the four-factor model that drops the 𝐻𝑀𝐿 factor performs mostly equitably 

as the five-factor model. However, they want to keep the 𝐻𝑀𝐿 factor in the model and 

define the 𝐻𝑀𝐿𝑂 (orthogonal 𝐻𝑀𝐿) factor from the analysis data in order to estimate 

the best asset pricing model, but it provides almost nothing help. 

 

As a conclusion, Fama and French (2016) demonstrate that the five-factor model’s posi-

tive exposures to the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 factors help explain the high average stock re-

turns considering low market 𝛽, low stock return volatility, and share repurchases. Op-

positely, negative 𝑅𝑀𝑊 and 𝐶𝑀𝐴 slopes support to capture the low average stock re-

turns considering high market 𝛽, high stock return volatility, and large share issues. 

Indeed, the authors state that the five-factor model typically outperforms the three-

factor model. 

 

The five-factor model has also been tested in a more recent study by Weber (2018). 

The author measures cash flow duration at the company level using financial report 

data and stocks listed on NYSE, AMEX, and NASDAQ from July 1963 to June 2013. The 

equities are divided into deciles based on cash flow duration, with a return differential 

of more than 1% per month between low and high duration stocks. Weber (2018) 

demonstrates that low duration stocks produce 1.45% of mean excess return per 

month and high duration stocks have a return of 0.32% per month. He finds that classi-

cal risk factors fail at explaining these returns and that the five-factor model earns a 

highly statistically significant alpha of 0.48%. Furthermore, Hou, Mo, Xue, and Zhang 

(2019) argue, that 𝑞-factor and 𝑞5 model (which are derived from Tobin’s 𝑞 theory) 

outperform the five-factor model by explaining factor premiums. 

 

In their 2018 paper, Fama and French attempt to develop insights about the maximum 

squared Sharpe ratio (MSSR) for factor models as a measure for ranking asset pricing 
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models. Harvey, Liu, and Zhu (2015) demonstrate that there exist over 316 (estimate 

low) different anomalies that are possible factor variables. Consequently, the factor 

choosing process is challenging. Thereby, Fama and French (2018) conduct tests with, 

for instance, the CAPM, three-factor model, five-factor model, and six-factor model 

that adds a momentum factor. The used sample is NYSE, AMEX, and NASDAQ listed US 

stocks from July 1963 to June 2016. When summarizing the results, Fama and French 

(2018) notice that the intercepts are strong in 𝑅𝑀𝑊 and 𝐶𝑀𝐴 factor regressions and 

that the six-factor model wins. The authors, however, are critical at expanding the fac-

tor models because it could be the beginning of “a dark age” of data snooping. 

 

3.2 Worldwide evidence 

The first international empirical tests were driven by Fama and French (2017). The au-

thors examine the five-factor model’s performance abroad, across different markets 

besides the US. Moreover, other researchers have conducted tests in various stock 

markets all over the world. As opposite, the six-factor model has not yet been investi-

gated on such a large scale and country-specific tests occur quite rarely. 

 

Fama and French (2017) examine the five-factor model’s global and local versions for 

the period July 1990 to October 2015. The stock data sample is gathered from Bloom-

berg, supplemented by Datastream and Worldscope. The authors construct the LHS 

regression portfolios from 23 developed markets, sorted into four regions: North Amer-

ica, Japan, Asia Pacific, Europe. In addition, Global portfolios are also tested by combin-

ing regions. Generally, the testing methodology is like previously with only a few 

changes (Fama and French, 2015). Indeed, Fama and French (2017) construct right-

hand-side (that indicates the ask price, henceforth called the RHS), portfolios in order 

to keep results comparable. 

 

The RHS portfolios are formed from 2x3 sorts on size, book-to-market, and operational 

profitability, or investment. The size breakpoints are the 10th and 90th percentiles of 

market capitalization for the region. The book-to-market, operating profitability, and 
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investment (the rest of the RHS factors) breakpoints are the 30th and 70th percentiles as 

in the 2015 study. Correspondingly, the LHS portfolios are constructed in the wake of 

the previous study (Fama and French, 2015). Indeed, Fama and French (2017) use three 

sets of 25 (5x5 sorts) value-weight portfolios and three sets of 32 portfolios (2x4x4 

sorts) value-weight portfolios. The authors, however, make an exception with break-

points when sorting stocks to the portfolios. 25 portfolio size breaks are constructed by 

using the 3rd, 7th, 13th, and 25th percentiles of the region’s aggregate market capitaliza-

tion. This methodology corresponds approximately to the average market capitaliza-

tions for the NYSE quintile breakpoints. The other variables are organized by using 

quintile breakpoints for big stocks that are the top 90% of market capitalization in eve-

ry region. In the same manner, 32 portfolios are sorted by using the 10th and 90th per-

centiles of the market capitalization of a region. Finally, other variables are sorted into 

four groups by using quartiles. 

 

As assumed, Fama and French (2017) use the GRS statistics to determine the five-factor 

model’s capability at capturing average returns for a region. The three-, four-, and five-

factor models are compared with GRS statistic and alpha metrics. The results from in-

ternational tests are fascinating because the Japanese sample stands out in a crowd. 

Indeed, the GRS test rejects all models that are used with North America, Europe, and 

Asia Pacific samples. Correspondingly, all models with the Japanese sample pass the 

GRS test. The authors report that in Japan, there is a considerable positive relationship 

between book-to-market and average returns. The average stock returns, however, are 

only barely dependent on profitability or investment. Consequently, the intercepts ra-

tios are dependent on whether a sort involves book-to-market. 

 

In their international paper, Fama and French (2017) conduct factor spanning regres-

sions, which are used in order to determine the contribution of a factor to a model. 

The reason behind this is that the authors want to know which factor is redundant. The 

results differ widely depending on region and are at least interesting when compared 

to their 2015 and 2016 studies. For instance, all five factors are illustrative and im-
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portant for explaining average returns in North America in the between 1990 – 2015. 

Whereas Europe and Asia Pacific are depending on the 𝑀𝑘𝑡 (i.e., market premium), 

𝐻𝑀𝐿, and 𝑅𝑀𝑊, with an assist from 𝐶𝑀𝐴 in Asia Pacific. On the other hand, the 𝐶𝑀𝐴 

improves average return descriptions only a little bit in Europe during 1990 – 2015 and 

is therefore considered as a redundant factor. Furthermore, Japan, as mentioned above, 

is counting on the 𝐻𝑀𝐿 with perhaps an assist from the 𝑅𝑀𝑊, and like in Europe, the 

𝐶𝑀𝐴 is redundant for Japan at the sample period. A fascinating result is that the three-, 

four-, (that excludes the 𝐶𝑀𝐴), and five-factor model can seemingly price the returns 

in Japan. Indeed, the 𝐻𝑀𝐿 is the most explaining factor and the 𝑅𝑀𝑊 is significant 

only when the 𝐶𝑀𝐴 is included to the regression. However, the 𝑆𝑀𝐵 is considered 

redundant at least between 1990 and 2015 everywhere except in North America. Addi-

tionally, the 𝐻𝑀𝐿 is not a redundant factor for describing 1990 – 2015 average returns 

in the US but with a longer sample period 1963 – 2013 it is a redundant variable (Fama 

and French, 2015). 

 

The global five-factor model that uses combinations of the four region samples per-

forms poorly in order to explain regional results. Fama and French (2017) comment 

that the international models may fail because markets are globally nonintegrated or 

the whole model is incorrectly structured. So, if the global five-factor model’s explana-

tory power collapses, then the global three-factor model is a failure as well. 

 

Fama and French (2017) find that the region-based five-factor model generally outper-

forms the three- and four-factor models in all metrics and that the four-factor (that 

drops the 𝐻𝑀𝐿 or 𝑅𝑀𝑊)  model shows stronger performance against the three-factor 

model. Moreover, the three-factor model seems to be extremely weak when profitabil-

ity is one of the sorting variables. Conversely, the five-factor model mostly absorbs the 

value, profitability, and investment patterns in average returns. This is in the line with 

Fama and French’s (2015; 2016) previous studies.  
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Since 2015, other studies have also been interested in the five-factor model’s explana-

tory power. Chiah, Chia, Zhong, and Li (2016) use an extensive Australian sample over 

the 1982 – 2013 period in order to determine the five-factor model’s performance in 

the Australian stock universe. Briefly, the authors demonstrate that the five-factor 

model outperforms the three-factor model and Carhart’s (1997) four-factor model by 

capturing profitability and investment patterns and shrinking anomalies with the best 

results. Moreover, unlike Fama and French (2015), the authors demonstrate that the 

𝐻𝑀𝐿 factor is not redundant for the Australian stock universe. The reason behind this 

could be that there exist low correlations among the 𝐻𝑀𝐿, 𝑅𝑀𝑊, and 𝐶𝑀𝐴 factors. 

  

Huynh (2018) also compares the performance of the three-factor and the five-factor 

models to explain anomalies in the Australian stock market. However, Huynh (2018) 

takes a different path than Chiah, Chia, Zhong, and Li (2016) by extending his work to 

16 anomalies, including several not previously examined in Australia. In short, Huynh 

(2018) notes that profitability and investment patterns are captured by the five-factor 

model and the number of unexplained anomalies decreases under the five-factor 

model. Not surprisingly, the GRS test rejects the Fama-French models. Furthermore, 

Huynh (2018) admits that the 𝐻𝑀𝐿 factor is important in explaining risk outside the US 

and that the five-factor model is not capable to fully capture expected returns in Aus-

tralia between 1990 – 2013 sample period. 

 

Kubota and Takehara (2018) explore the five-factor model’s performance in the Japa-

nese stock universe during the sample period 1978 – 2014. Summarily, the authors find 

that the historical averages of the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 factors are not large and are statisti-

cally insignificant. Moreover, it seems like both the 𝑅𝑀𝑊 betas and 𝐶𝑀𝐴 factor betas 

are only slightly correlated with the cross-sectional variations of average stock returns. 

Finally, they argue that the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 coefficients are insignificant when the es-

timating technique is a generalized method of moments (GMM) with the Hansen-

Jagannathan distance measure. Furthermore, the authors argue that the five-factor 

model is not capable to explain average stock returns in the Japanese stock universe 
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and the 𝐻𝑀𝐿 is not redundant for the Japanese data sample. These all findings are 

contrary to the US evidence conducted by Fama and French (2015). Indeed, Kubota and 

Takehara (2018) demonstrate that the GRS tests rejects all models and the four- and 

five-factor models are inferior to the three-factor model. 

 

Racicot and Rentz (2016) test the five-factor model’s capabilities in the light of robust 

instruments by the GMM test in the same manner as Kubota and Takehara (2018). 

They collect data from Kenneth French’s website from January 1986 to December 2014. 

In brief, the explaining power of the five-factor model appears to be impressive for all 

the 12 Fama and French’s different industries the authors examined. However, the 

GMM test results are devastating for the five-factor model. It seems that the model’s 

explanatory power is sensitive to the data sample. Furthermore, Richey (2017) investi-

gates the five-factor model’s performance against the CAPM, the three-, and four-

factor model. The data sample is gathered from vice stocks (companies that manufac-

ture and sell products like alcohol, tobacco, gaming goods and services, and military 

equipment, etc.) over the period 1996 – 2016 in the US and the measuring method is 

Jensen’s 𝛼. Richey (2017) finds significant 𝛼 for the CAPM, the three-, and four-factor 

model. Surprisingly, 𝛼’s significance level substantially decreases when both the 𝑅𝑀𝑊 

and 𝐶𝑀𝐴 are added to the model. However, with the five-factor model, the abnormal 

stock returns vanish. Moreover, Dhaoui and Bensalah (2017) confirm that the empirical 

findings support the five-factor model’s validity in capturing average stock returns. 

 

In a couple of decades, China has become one of the world’s largest economies. How-

ever, Shanghai Stock Exchange (SHSE) and Shenzhen Stock Exchange (SZSE) were not 

founded until 1990 and 1991. Consequently, China started the stock exchange in the 

modern world. Therefore, researchers get enthusiastic to conduct tests with the Chi-

nese data sample. Unlike Fama and French (2017), Guo, Zhang, Zhang, and Zhang 

(2017) run empirical regressions with the five-factor model in the Chinese stock uni-

verse between July 1995 and June 2014. Indeed, the results are interesting. The au-

thors observe robust size, value, and profitability patterns in average stock returns, but 
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the investment pattern is detected as weak. The five-factor model outperforms the 

three-factor model because of the 𝑅𝑀𝑊’s explanatory power of describing average 

stock returns is so strong with the Chinese sample. On the other hand, the 𝐶𝑀𝐴 factor 

is considered redundant during 07/1995 – 06/2015 and 07/1997 – 12/2013. However, 

the five-factor model manages to pass the GRS test for many of the portfolios that the 

authors test. Furthermore, looking at the GRS p-values in the same manner as Fama 

and French (2016) did for the Japanese data sample, we can see that the p-values are 

larger than 5% for the three-, four-, and five-factor models. Thus, the asset pricing 

models can price the average stock returns. 

 

In the most recent study, Grobys and Kolari (2021) extend Fama and French’s (2018) 

study on choosing factors to international stock markets. They propose a new method-

ology and use a block bootstrap approach that pays respect to factor dependencies and 

test nested and non-nested asset pricing models for North America, Europe, Asia ex-

cluding Japan, and Japan. However, testing non-nested models is beyond the scope of 

this thesis so we focus solely on their findings considering nested models. Grobys and 

Kolari (2021) found that the six-factor model proposed by Fama and French (2018) 

produces the highest maximum squared Sharpe ratio for most of the regions, an excep-

tion is Asia excluding Japan. Furthermore, the authors show that 𝑆𝑀𝐵 is a redundant 

factor across their data sample, whereas 𝐻𝑀𝐿 is not a redundant factor in Europe, Asia 

excluding Japan, and Japan. Regarding Germany, Dirkx and Peter (2018) found that 

𝑅𝑀𝑊 and 𝐶𝑀𝐴 factors do not matter in the German equity markets and that the av-

erage adjusted 𝑅2 increases only slightly compared to the three-factor model. These 

findings suggest that factor redundancy is a sample-specific issue, respective to Fama 

and French’s (2015; 2017; 2018) studies. 

 

In summary, Fama-French asset pricing models have been empirically tested in various 

stock exchanges under alternative time-period, market integration, portfolio formation, 

etc. Majority of the empirical studies tend to agree the dominance of the five-factor 

model over the CAPM and three-factor in capturing average stock returns. However, 
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the five-factor model gets rejected by the GRS test in most of the studies but there 

exist a couple of exceptions with Chinese and Japanese samples in Guo, Zhang, Zhang, 

and Zhang’s (2017) and Fama and French’s (2017) studies. Moreover, the five-factor 

model succeeds to capture profitability and investment patterns in various tests. On 

the other hand, the model’s failures are also related to the 𝑅𝑀𝑊, 𝐶𝑀𝐴, and the ab-

sence of a momentum factor as shown by Fama and French (2018) as well as Grobys 

and Kolari (2021). Furthermore, the redundancy of a factor seems to be relative to the 

data sample. The next chapter will enter into the criticism and failures of the five-factor 

model. 



40 

4 Empirical dilemmas of the five-factor model 

So far, we have discussed the performance of the five-factor model. This chapter looks 

at the biases and failures of the five-factor model. While the model has been quite suc-

cessful in capturing average stock returns through its variables: 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑅𝑀𝑊, and 

𝐶𝑀𝐴 the researchers have criticized it, or at least suggested alternative and modified 

factors to the model or even, whole new factor models, as seen in the previous chapter. 

Nevertheless, Hou, Mo, Xue, and Zhang (2019) argue that all the modern factor models 

are closely related. 

 

4.1 HML as an explaining factor 

Fama and French (2015) state that the four-factor model that drops the 𝐻𝑀𝐿 factor is 

as successful as the five-factor model in capturing average stock returns. It seems like 

the 𝐻𝑀𝐿 factor return is being captured by other factors in the model. Indeed, the 

authors argue that the 𝐻𝑀𝐿 is redundant for interpreting average stock returns, at 

least in the US stock universe for July 1963 – December 2013. In other words, the 𝐻𝑀𝐿 

factor does not expand the mean-variance frontier. However, Wahal (2019) demon-

strates that, unlike the post-1963 period, the 𝐻𝑀𝐿 is not redundant in the five-factor 

model prior to 1963. Indeed, the five-factor model survives all the tests before 1963. 

Moreover, in their international tests Fama and French (2017) state that the 𝐻𝑀𝐿 fac-

tor is significant for 1990 – 2015 average stock returns in all tested stock universes. 

 

The 𝐻𝑀𝐿 factor regressions made by Fama and French (2015) show us that the majori-

ty of the average return is essentially absorbed by the slopes for the 𝑅𝑀𝑊 and 𝐶𝑀𝐴. 

The 𝐶𝑀𝐴 factor slopes are robustly positive, supporting the fact that high-value com-

panies invest only a bit. Correspondingly, also the 𝑅𝑀𝑊 factor slopes are robustly posi-

tive, which indicates that controlling for other factors, value stocks act much like stocks 

with robust profitability, even if completely value stocks are not that profitable. Fur-

thermore, Fama and French (2016) show that the four-factor model that drops the 
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𝐻𝑀𝐿 factor explains average stock returns as efficiently as the five-factor model when 

the year 2014 is added to the US sample. 

 

Furthermore, in their newer study (2018) Fama and French repeat themselves by 

showing that the 𝐻𝑀𝐿 does not contribute to returns. Barillas and Shanken (2018) 

tend to support this statement. Further, the authors demonstrate that the 𝐻𝑀𝐿 is not 

a redundant factor if it is updated monthly instead of yearly. Wahal (2019), however, 

demonstrates that his findings could say that the 𝐶𝑀𝐴 factor is, in turn, redundant 

prior-1963 but admits that it depends on how one views the samples. On the other 

hand, Weber (2018) does not comment that the 𝐻𝑀𝐿 is redundant. Hou, Mo, Xue, and 

Zhang (2019) state that although the 𝐻𝑀𝐿 is a separate factor from the 𝐶𝑀𝐴 it is still 

redundant in explaining average stock returns. The authors explain that there exists an 

economical relationship between investment and value, thus the 𝐻𝑀𝐿 should be deep-

ly correlated with the 𝐶𝑀𝐴. 

 

However, Fama and French (2015) argue that if investors hold a portfolio twisted to-

ward size, value, profitability, and investment premiums, the five-factor model is the 

right model. Indeed, keeping the redundant factors in the model cause no harm. How-

ever, adjusted 𝑅2 can decrease when more explanatory variables with no explanatory 

power are included in the regression. 

 

4.2 Criticism, limitations, and findings 

Fama and French (2006; 2015; 2016; 2017; 2018) have always stated that the five-

factor model is motivated by the valuation theory. However, strong criticism from Hou, 

Mo, Xue, and Zhang (2019) challenge the groundwork of the five-factor model. Indeed, 

they claim that the valuation theory cannot justify the five-factor model since the link-

ages between book-to-market, investment, and profitability with the internal rate of 

return (IRR) do not always translate to the one-period-ahead expected return. In fact, 

Fama and French (2017) admit that the discount model ignores important things. For 

instance, the dividend discount model does not explain why the premiums in average 
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stock returns associated with book-to-market, profitability, and investment are not cap-

tured by the CAPM. Moreover, the discount model cannot confirm whether the pre-

dicted average stock returns patterns are results of rational or irrational pricing. 

 

One of the first empirical findings by Fama and French (2015) is that the five-factor 

model is incapable of capturing small stocks’ low average return. Indeed, small stocks 

tend to have negative exposures to the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 factors. The negative 𝐶𝑀𝐴 

exposures are always linked to companies that invest a lot, and negative exposures to 

𝑅𝑀𝑊 do not mostly correspond to low profitability. These stock returns behave much 

like companies that invest aggressively despite low profitability. This fact is in line with 

Fama and French’s (2016; 2017) studies. 

 

As stated in chapter 3, Fama and French (2016) found evidence that accruals and mo-

mentum are also variables that cause concerns to the five-factor model at shrinking 

anomalies. The dilemma appears to be that sorts on accruals generate average stock 

returns that the five-factor model cannot explain. Indeed, empirical testing reveal that 

portfolios in the smallest size quintile have negative 𝑅𝑀𝑊 slopes but correspondingly 

do not obtain the forecasted low average stock returns. This empirical finding is sup-

ported by Hou, Xue, and Zhang (2015). On the other hand, according to Fama and 

French (2016), the problem caused by momentum among small stocks cannot be ex-

plained by adding a momentum factor. Nevertheless, Fama and French (2018) argue 

that the six-factor model (updated with a momentum factor) improves the perfor-

mance in capturing stock returns at least during July 1963 – June 2016 in the US but 

the authors, however, are skeptical to extend their model. Furthermore, Fama and 

French (2018) state that through time, various patterns in average stock returns are 

noticed and become possible candidates for inclusion in multifactor models. But there 

exists a danger among data-snooping. 

 

Fama and French (2016) demonstrate that time variation in the regression slopes is a 

possible problem because all slopes are estimated as constants. In addition, the five-
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factor model and empirical tests assume that market frictions, like transaction costs 

and taxes do not exist. 

 

Fama and French (2016; 2017) state that the successes and dilemmas of the five-factor 

model are related to patterns in the slopes for the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 factors which 

seems to be reasonable. However, Hou Mo, Xue, and Zhang (2019) disagree by arguing 

that using past investment as a proxy for the expected investment is the main dilemma 

of the five-factor model. The authors justify their arguments by invoking to the lack of 

economics literature of micro-level investment data and conducting their own mathe-

matical tests. Furthermore, the authors state that the link between the expected in-

vestment and the expected return is likely positive, not negative. Consequently, they 

argue that the investment CAPM (Zhang, 2017) is the only theoretical framework that 

favors accounting variables in forecasting returns. However, Chiah, Chai, Zhong, and Li 

(2016) find that the 𝐻𝑀𝐿 holds its explanatory power in the Australian sample and 

therefore supports the valuation theory framework. 

 

Nevertheless, Chiah, Chai, Zhong, and Li (2016) call for a better model and improve-

ment because the five-factor model cannot totally explain the time-series variations in 

portfolio returns. Their conclusion reflects with Fama and French’s own (2015) findings. 

Moreover, Huynh (2018) also asks for a better model because of the five-factor model’s 

empirical failures in the GRS tests. Kubota and Takehara (2018) demonstrate that the 

five-factor model fails badly in Japanese data during 1978 – 2014 because the 𝑅𝑀𝑊 

and 𝐶𝑀𝐴 cannot explain the cross-sectional average stock returns. Racicot and Rentz 

(2016) find that the five-factor model is effective in explaining stock returns when using 

a standard economic estimator (e.g., OLS) but the explanatory power vanishes when 

using a more sophisticated method (e.g., GMM).  

 

Richey (2017) points out that when investigating the vice stock returns in the US the 

𝑆𝑀𝐵 loses its significance when the 𝑅𝑀𝑊 and 𝐶𝑀𝐴 are added to the original three-

factor model. Dhaoui and Bensalah (2017) demonstrate that the updated five-factor 
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model holds its explanatory power only with the standard macroeconomic approach. 

The authors mean by this that investors are fully rational and only economical goals 

motivate them. Furthermore, Dhaoui and Bensalah (2017) argue that their revised 

model which incorporates two additional factors, momentum and investor sentiments 

and emotions accomplishes to explain small stock returns better than the standard 

five-factor model in the US. Nevertheless, Guo, Zhang, Zhang, and Zhang (2017) show 

that the Fama-French five-factor model passes the GRS test in the Chinese stock uni-

verse but still cannot fully explain the average returns of small stocks. 

 

To sum up, there seem to be some biases and theoretical problems in the five-factor 

model. Empirical studies, for instance, strongly argue for the momentum factor or at 

least state that the five-factor model is not able to capture the widely known momen-

tum effect. Furthermore, small stocks occur as a magnificent problem for the model. 

Motivated by Fama and French (2018), Grobys and Kolari (2021) as well as Hanauer, 

Kaserer, and Rapp’s (2011) previous empirical evidence considering the momentum 

effect, the next chapter introduces data and methodology that are utilized in exploring 

which Fama-French risk-factors increase the mean-variance frontier in a German con-

text. 
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5 Data and methodology 

This chapter concentrates on the data sample, variable and factor construction, de-

scriptive table, factor correlations as well as factor spanning tests methodology. 

 

5.1 Sample description 

The data comprises of monthly CDAX returns from July 2007 to December 2020, cover-

ing a 162-month period, having the first accounting data observations in the end of 

2005, respectively the last portfolio rebalance is in June 2020. The data is derived from 

Thomson Reuters’ database. The methodology follows Fama and French’s (2015; 2017; 

2018) methodologies, thus not including financials nor negative book-to-market stocks 

to the final data sample. The sample selection process requires also to exclude compa-

nies for which profitability, investment measures, market capitalization, and return 

data at the time t cannot be computed based on Fama and French’s (2015) study. The 

sorted portfolios are recomputed at the end of June every year. Following these proce-

dures, the average number of stocks corresponds to 276, while the number of analyzed 

stocks never drops below 210. Unlike Fama and French’s (2015; 2017; 2018) and the US 

studies the sample size is relatively smaller, therefore the value-weighted portfolios are 

computed by 4x4 (16) basis instead of 5x5 (25). In the European context, the risk-free is 

not based on the one-month T-bill rate but on the one-month EURIBOR rates and stock 

data currency is in Euros. 

 

5.2 Variable and factor construction 

The construction of the risk factors mainly follows Fama and French’s (2015) method-

ology and builds dependent 2x3 sorts as well as calculates the value-weight return on 

the market portfolio of all 358 sample stocks, after applying the necessary filters, mi-

nus the one-month EURIBOR rate. The median market capitalization of the sample 

stocks serves as the breakpoint for size. Correspondingly, the 30th and 70th quantiles of 

the sample stocks are used as breakpoints for sorting book-to-market, profitability, and 



46 

investment variables. The following equations construct the Fama-French variables at 

the end of June each year when portfolios are formed by using all accounting data at 

the time t-1. 

 

𝐵/𝑀𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡−1

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡−1
 (12) 

 

𝑂𝑃𝑡 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡−1 − 𝐶𝑂𝐺𝑆𝑡−1 − 𝑆𝐺&𝐴𝑡−1 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠𝑡−1

𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡−1
 (13) 

 

𝐼𝑛𝑣𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−1 − 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−2

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑠𝑡−2
 (14) 

 

where, 𝐶𝑂𝐺𝑆 is Cost of Goods Sold. The amount includes the cost of the materials and 

labor used to create the goods but excludes indirect expenses, such as distribution 

costs. 𝑆𝐺&𝐴 refers to Selling, General, and Administrative costs. The amount stands for 

the sum of all direct and indirect selling, general and administrative costs of a company, 

but is not assigned to a specific product, and thereby not included in the Cost of Goods 

Sold section. 

 

Dependent sort allocation divides stocks into two size groups and three groups based 

on book-to-market, operating performance, and investment variables. Considering the 

more comprehensive factor construction below, sorts based on size are classified as 

small (𝑆), and big (𝐵). Regarding book-to-market, stocks are specified as high (𝐻), neu-

tral (𝑁), and low (𝐿). In contrast, operating profitability-based stocks are specified as 

robust (𝑅), neutral (𝑁), and weak (𝑊). Stocks that are based on their investment char-

acter are specified as conservative (𝐶), neutral (𝑁), and aggressive (𝐴). Finally, momen-

tum follows stocks that have performed well in the past (𝑊), neutral performers (𝑁) 

and losers (𝐿). The final 𝑆𝑀𝐵 is computed by equally weighting additional sub-size fac-

tors 𝑆𝑀𝐵𝐵/𝑀, 𝑆𝑀𝐵𝑂𝑃, and 𝑆𝑀𝐵𝐼𝑛𝑣. The final risk-factors are computed in the following 

equations: 
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𝑆𝑀𝐵𝐵/𝑀 =
𝑆𝐻 + 𝑆𝑁 + 𝑆𝐿

3
−

𝐵𝐻 + 𝐵𝑁 + 𝐵𝐿

3
 (15) 

  

𝑆𝑀𝐵𝑂𝑃 =
𝑆𝑅 + 𝑆𝑁 + 𝑆𝑊

3
−

𝐵𝑅 + 𝐵𝑁 + 𝐵𝑊

3
 (16) 

  

𝑆𝑀𝐵𝐼𝑛𝑣 =
𝑆𝐶 + 𝑆𝑁 + 𝑆𝐴

3
−

𝐵𝐶 + 𝐵𝑁 + 𝐵𝐴

3
 (17) 

  

𝑆𝑀𝐵𝑀𝑂𝑀 =
𝑆𝐶 + 𝑆𝑁 + 𝑆𝐴

3
−

𝐵𝑊 + 𝐵𝑁 + 𝐵𝐿

3
 (18) 

  

𝑆𝑀𝐵 =

𝑆𝑀𝐵𝐵
𝑀

+ 𝑆𝑀𝐵𝑂𝑃 + 𝑆𝑀𝐵𝐼𝑛𝑣

3
 (19) 

  

𝐻𝑀𝐿 =
𝑆𝐻 + 𝐵𝐻

2
−

𝑆𝐿 + 𝐵𝐿

2
 (20) 

  

𝑅𝑀𝑊 =
𝑆𝑅 + 𝐵𝑅

2
−

𝑆𝑊 + 𝐵𝑊

2
 (21) 

  

𝐶𝑀𝐴 =
𝑆𝐶 + 𝐵𝐶

2
−

𝑆𝐴 + 𝐵𝐴

2
 (22) 

  

𝑀𝑂𝑀 =
𝑆𝑊 + 𝐵𝑊

2
−

𝑆𝐿 + 𝐵𝐿

2
 (23) 

 

Size-valuation (Size-B/M), size-profitability (Size-OP), size-investment (Size-Inv), and 

size-momentum (Size-Mom) double-sorted portfolios are used to estimate the Fama-

French factor models, as previously stated. The portfolios are designed in the style of 

Fama and French (2015), but with a reduced sample size (4x4). 
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Table 1. Average number of stocks in value-weighted (4x4) double-sorted portfolios 

Panel A: Size-B/M Portfolios   Panel C: Size-Inv Portfolios   
  Low 2 3 High    Low 2 3 High 

Small 16 16 16 17  Small 17 17 17 18 

2 16 16 16 18  2 17 17 17 18 

3 16 16 16 17  3 17 17 17 18 

Big 16 17 16 18  Big 17 18 17 19 

           
Panel B: Size-OP Portfolios    Panel D: Size-Mom Portfolios  
  Low 2 3 High    Low 2 3 High 

Small 17 17 17 18  Small 17 17 17 19 

2 17 17 17 19  2 17 18 17 19 

3 17 17 17 18  3 17 17 17 19 

Big 17 18 17 19  Big 17 18 18 19 

 

Value-weighted double-sorted portfolios are constructed similar but finer way as the 

risk factors. Stocks are divided into four size groups (Small to Big) and four B/M groups 

(Low to High) every June when the German stock universe is rebalanced. Instead of 

median market capitalization as a breakpoint for size each of these value-weighted 

portfolios use sample quartiles of size and B/M as breakpoints. OP, Inv, and Mom re-

place B/M, thus they are constructed similarly. This methodology generates 16 value-

weighted size-valuation, 16 value-weighted size-profitability, 16 value-weighted size-

investment, and 16 value-weighted size-momentum double-sorted portfolios. 

 

Table 2. Average excess returns, t-statistics, and standard deviations of regression portfolios 

Panel A: Size-B/M Portfolios  Panel E: Size-B/M Portfolios 

  Low 2 3 High    Low 2 3 High 

Small 0.21 0.22 0.73 -0.05  Small 7.53 5.72 5.64 4.94 

 (0.35) (0.49) (1.65) (-0.14)       

2 0.40 0.58 2.19 0.74  2 6.64 6.72 21.27 6.10 

 (0.76) (1.10) (1.31) (1.54)       

3 0.41 0.58 0.65 0.30  3 7.30 6.44 5.58 6.30 

 (0.72) (1.15) (1.47) (0.62)       

Big 0.25 0.03 -0.11 0.64  Big 5.35 5.35 6.61 6.94 

  (0.59) (0.08) (-0.21) (1.17)            

           

Panel B: Size-OP Portfolios  Panel F: Size-OP Portfolios  
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  Low 2 3 High    Low 2 3 High 

Small 0.33 -0.09 0.82 0.14  Small 9.02 6.00 5.62 6.36 

 (0.50) (-0.19) (1.86) (0.29)       

2 0.25 0.31 0.59 1.74  2 5.89 6.02 5.79 18.84 

 (0.54) (0.66) (1.29) (1.18)       

3 0.11 0.49 0.35 0.52  3 5.81 6.42 6.81 6.93 

 (0.25) (0.97) (0.66) (0.96)       

Big -0.08 -0.04 0.00 0.00  Big 5.32 6.41 5.59 5.84 

  (-0.19) (-0.08) (-0.01) (0.01)            

Panel C: Size-Inv Portfolios 

      

 Panel G: Size-Inv Portfolios  

  Low 2 3 High    Low 2 3 High 

Small 0.79 0.07 0.60 0.01  Small 6.88 5.06 6.11 6.68 

 (1.47) (0.17) (1.25) (0.01)       

2 0.14 0.27 2.19 0.56  2 5.67 5.65 22.97 6.68 

 (0.32) (0.61) (1.21) (1.07)       

3 0.46 0.27 0.63 0.31  3 6.20 6.99 5.49 7.68 

 (0.94) (0.48) (1.47) (0.52)       

Big 0.06 -0.02 0.00 0.11  Big 5.51 5.43 6.63 5.92 

  (0.13) (-0.05) (0.01) (0.24)             

           

Panel D: Size-Mom Portfolios   Panel H: Size-Mom Portfolios  
  Low 2 3 High    Low 2 3 High 

Small 0.75 3.56 0.57 1.32  Small 9.23 37.54 5.64 6.83 

 (1.04) (1.21) (1.29) (2.46)       

2 2.83 -0.15 0.28 1.13  2 30.15 5.38 4.89 5.49 

 (1.19) (-0.35) (0.73) (2.63)       

3 0.98 0.14 -0.06 0.63  3 12.77 5.83 5.11 5.11 

 (0.97) (0.30) (-0.14) (1.58)       

Big -0.08 -0.48 0.24 0.21  Big 9.09 5.32 4.85 5.64 

  (-0.11) (-1.16) (0.64) (0.47)             

 

Table 2 shows time-series averages of excess returns, t-statistics, and standard devia-

tions of 64 value-weighted portfolios formed on size, valuation, operating profitability, 

investment, and momentum double-sorted portfolios between July 2007 and Decem-

ber 2020. Size-Mom portfolios have the highest average excess return of 0.74% per 

month while Size-OP portfolios have the lowest average excess return of 0.34% per 

month. The high return of Size-Mom portfolios is mostly due to stocks that have small 

and mid-size market capitalization. 
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Table 3. Descriptive statistics and factor correlations 

Variable Mean Standard deviation t-Statistics 

Rf 0.06 0.14 4.95 

MRF 0.35 5.71 1.78 

SMB 0.52 4.82 1.38 

HML 0.09 2.97 0.38 

RMW 0.53 6.27 1.08 

CMA -0.09 2.83 -0.41 

MOM 0.75 4.09 2.35 

Factor Correlations 

  MRF SMB HML RMW CMA MOM 

MRF 1 -0.06 -0.01 0.08 -0.24 -0.50 

SMB -0.06 1 -0.02 0.68 0.05 -0.04 

HML -0.01 -0.02 1 0.09 0.31 -0.09 

RMW 0.08 0.68 0.09 1 0.16 -0.07 

CMA -0.24 0.05 0.31 0.16 1 0.17 

MOM -0.50 -0.04 -0.09 -0.07 0.17 1 

 

As said, risk-factors are calculated by 2x3 sort allocation. In other words, all factors are 

first sorted by using size into two groups then by using separately value, profitability, 

investment, and momentum variables into three groups. Table 3 introduces the con-

structed factors and the average returns, t-statistics, standard deviations, and correla-

tions among other risk-factors. Among the six factors, 𝑀𝑂𝑀 has the highest average 

return of 0.75% per month (t-stat 2.35), indicating a strong momentum effect in the 

sample. Although there are not many high correlation coefficients among the risk-

factors, 𝑅𝑀𝑊 and 𝑆𝑀𝐵 have clearly a positive correlation of 0.68. Moreover, 𝑀𝑅𝐹 and 

𝑀𝑂𝑀 have a negative correlation of -0.5. 

 

5.3 Factor-spanning tests 

In the wake of the previous empirical findings and discussion of a factor redundancy 

like the 𝐻𝑀𝐿, factor spanning tests are performed in order to determine any potential 

redundant factors. This is done by using the OLS method and regressing a particular 

factor return on a constant 𝑐 and the other factors that are left on the right-hand side. 

The methodology is identical to Fama and French (2018) as well as Grobys and Kolari’s 
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(2021) right-hand-side (RHS) approach. If the intercept occurs as a non-zero, the factor 

increases the mean-variance frontier in that sample period. Indeed, this methodology 

evaluates the maximum squared Sharpe ratio based on the spanning regressions as 

follows: 

 

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖 + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝑚𝑖𝑀𝑂𝑀𝑡 + 𝜖𝑖𝑡 (24) 

 

𝑆𝑀𝐵𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝑚𝑖𝑀𝑂𝑀𝑡 + 𝜖𝑖𝑡 (25) 

 

𝐻𝑀𝐿𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝑚𝑖𝑀𝑂𝑀𝑡 + 𝜖𝑖𝑡 (26) 

 

𝑅𝑀𝑊𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝑚𝑖𝑀𝑂𝑀𝑡 + 𝜖𝑖𝑡 (27) 

 

𝐶𝑀𝐴𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑚𝑖𝑀𝑂𝑀𝑡 + 𝜖𝑖𝑡 (28) 

  

𝑀𝑂𝑀𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝜖𝑖𝑡 (29) 

 



52 

6 Empirical regression results 

The results of the empirical analysis are reported in this chapter. The three-, five-, and 

six-factor intercepts, factor exposures, t-statistics, and adjusted 𝑅2 are introduced for 

each value-weighted portfolio allocation. These 64 portfolios are formed on 4 sets of 

16 smaller portfolios that follow the sorting allocation, which was described in the pre-

vious chapter. Size-B/M, Size-OP, Size-Inv, and Size-Mom portfolios are separately con-

structed and regressed against the risk-factors using seemingly unrelated regression 

and unstructured data with 162 observations. 

 

Table 4. Regressions for 16 value-weight Size-B/M portfolios 

Panel A: The Fama-French three-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small -0.14 -0.13 0.47 -0.33  Small -0.29 -0.38 1.42 -1.07 

2 0.06 0.23 -0.04 0.31  2 0.17 0.64 -0.04 0.98 

3 0.07 0.25 0.37 -0.04  3 0.17 0.79 1.22 -0.11 

Big 0.07 -0.09 -0.31 0.51  Big 0.27 -0.36 -1.02 1.59 

β  t(β) 

Small 0.78 0.67 0.67 0.52  Small 9.48 11.61 11.70 9.66 

2 0.87 0.84 0.67 0.78  2 15.22 13.61 4.22 14.09 

3 0.94 0.88 0.71 0.84  3 13.89 15.82 13.23 14.82 

Big 0.71 0.73 0.91 0.77  Big 15.83 17.45 17.45 13.93 

s  t(s) 

Small 0.20 0.19 0.07 0.18  Small 2.05 2.85 0.98 2.77 

2 0.15 0.19 3.54 0.25  2 2.26 2.56 18.63 3.80 

3 0.04 0.05 0.05 0.09  3 0.54 0.82 0.83 1.31 

Big -0.08 -0.25 -0.22 -0.42  Big -1.44 -5.05 -3.61 -6.36 

h  t(h) 

Small -0.36 0.11 -0.04 0.01  Small -2.28 1.02 -0.41 0.09 

2 -0.47 -0.42 1.71 0.29  2 -4.29 -3.55 5.56 2.71 

3 -0.04 -0.05 0.00 0.03  3 -0.31 -0.51 0.01 0.29 

Big -0.33 -0.04 -0.02 0.89  Big -3.83 -0.52 -0.22 8.32 

Adj. 𝑹𝟐       

Small 0.36 0.45 0.45 0.37       

2 0.60 0.55 0.70 0.56       

3 0.54 0.60 0.51 0.57       
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Big 0.62 0.67 0.66 0.66       

           

Panel B: The Fama-French five-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small -0.13 -0.11 0.46 -0.32  Small -0.30 -0.34 1.45 -1.07 

2 0.04 0.21 -0.02 0.31  2 0.14 0.60 -0.04 1.02 

3 0.04 0.25 0.38 -0.05  3 0.11 0.78 1.25 -0.16 

Big 0.08 -0.08 -0.31 0.50  Big 0.31 -0.36 -1.10 1.65 

β  t(β) 

Small 0.85 0.71 0.70 0.55  Small 10.37 11.87 11.86 9.85 

2 0.88 0.83 0.41 0.81  2 15.07 12.83 3.90 14.35 

3 0.92 0.88 0.73 0.84  3 12.85 15.00 13.15 14.26 

Big 0.68 0.71 0.87 0.72  Big 15.46 16.67 16.79 13.01 

s  t(s) 

Small 0.60 0.32 0.26 0.33  Small 4.72 3.43 2.86 3.78 

2 0.34 0.26 1.70 0.44  2 3.64 2.55 10.41 5.01 

3 0.05 0.08 0.18 0.21  3 0.41 0.89 2.03 2.29 

Big -0.31 -0.41 -0.50 -0.69  Big -4.50 -6.21 -6.22 -7.90 

h  t(h) 

Small -0.28 0.09 0.01 0.03  Small -1.78 0.77 0.09 0.30 

2 -0.40 -0.35 1.24 0.32  2 -3.51 -2.82 6.17 2.97 

3 0.03 -0.04 0.02 0.11  3 0.21 -0.35 0.14 0.99 

Big -0.41 -0.09 -0.08 0.85  Big -4.76 -1.10 -0.78 7.98 

r  t(r) 

Small -0.45 -0.15 -0.22 -0.17  Small -4.50 -2.00 -3.02 -2.52 

2 -0.20 -0.07 2.04 -0.22  2 -2.76 -0.93 15.96 -3.15 

3 0.00 -0.03 -0.14 -0.13  3 0.05 -0.43 -2.06 -1.82 

Big 0.26 0.18 0.31 0.30  Big 4.80 3.47 4.92 4.42 

c  t(c) 

Small 0.07 0.19 -0.02 0.05  Small 0.40 1.49 -0.19 0.43 

2 -0.10 -0.18 0.07 0.04  2 -0.82 -1.31 0.30 0.35 

3 -0.24 -0.03 0.06 -0.17  3 -1.58 -0.20 0.49 -1.38 

Big 0.06 0.03 -0.05 -0.10  Big 0.61 0.32 -0.42 -0.88 

Adj. 𝑹𝟐       

Small 0.43 0.46 0.47 0.38       

2 0.62 0.55 0.88 0.58       

3 0.54 0.60 0.52 0.58       

Big 0.67 0.69 0.70 0.69       

           

Panel C: The Fama-French six-factor model 

α  t(α) 
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  Low 2 3 High    Low 2 3 High 

Small -0.01 -0.06 0.46 -0.29  Small -0.02 -0.16 1.40 -0.92 

2 0.10 0.37 0.03 0.36  2 0.30 1.02 0.05 1.14 

3 0.24 0.34 0.48 -0.11  3 0.61 1.05 1.56 -0.32 

Big 0.14 -0.11 -0.15 0.50  Big 0.58 -0.47 -0.54 1.61 

β  t(β) 

Small 0.80 0.69 0.70 0.53  Small 8.65 10.15 10.42 8.45 

2 0.86 0.77 0.39 0.79  2 12.97 10.58 3.27 12.35 

3 0.84 0.84 0.69 0.86  3 10.50 12.71 11.00 12.86 

Big 0.66 0.72 0.81 0.72  Big 13.14 14.91 13.97 11.41 

s  t(s) 

Small 0.59 0.32 0.26 0.33  Small 4.63 3.37 2.85 3.73 

2 0.33 0.24 1.69 0.44  2 3.58 2.42 10.35 4.95 

3 0.03 0.07 0.17 0.22  3 0.26 0.80 1.93 2.34 

Big -0.32 -0.41 -0.52 -0.69  Big -4.59 -6.15 -6.46 -7.88 

h  t(h) 

Small -0.30 0.08 0.01 0.03  Small -1.91 0.68 0.09 0.24 

2 -0.41 -0.38 1.23 0.31  2 -3.56 -3.05 6.06 2.86 

3 -0.01 -0.06 0.00 0.12  3 -0.05 -0.51 -0.04 1.07 

Big -0.42 -0.08 0.81 0.72  Big -4.87 -1.03 13.97 11.41 

r  t(r) 

Small -0.45 -0.15 -0.22 -0.17  Small -4.49 -1.99 -3.02 -2.51 

2 -0.20 -0.07 2.04 -0.28  2 -2.75 -0.89 15.97 -3.13 

3 0.01 -0.03 -0.14 -0.13  3 0.10 -0.40 -2.04 -1.84 

Big 0.26 0.18 0.32 0.30  Big 4.84 3.46 5.04 4.42 

c  t(c) 

Small 0.09 0.20 -0.02 0.06  Small 0.50 1.54 -0.19 0.48 

2 -0.09 -0.16 0.07 0.05  2 -0.76 -1.16 0.34 0.41 

3 -0.21 -0.01 0.07 -0.18  3 -1.40 -0.10 0.61 -1.43 

Big 0.07 0.02 -0.02 -0.10  Big 0.71 0.27 -0.22 -0.87 

m  t(m) 

Small -0.13 -0.06 0.00 -0.04  Small -1.04 -0.62 -0.01 -0.46 

2 -0.06 -0.17 -0.05 -0.05  2 -0.63 -1.69 -0.34 -0.60 

3 -0.21 -0.10 -0.11 0.06  3 -1.95 -1.13 -1.33 0.63 

Big -0.07 0.03 -0.17 -0.01  Big -1.06 0.49 -2.11 -0.06 

Adj. 𝑹𝟐       

Small 0.43 0.46 0.47 0.38       

2 0.62 0.55 0.88 0.58       

3 0.54 0.60 0.52 0.58       

Big 0.67 0.69 0.71 0.69       
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Table 4 presents results for the Fama-French three-, five-, and six-factor models on 

Size-B/M double-sorted portfolios. Panel A shows estimated intercepts, factor expo-

sures, and adjusted 𝑅2 for the three-factor model. Panel B presents corresponding val-

ues for the five-factor model. Panel C includes the results for the six-factor model. 

Stocks are sorted into four size groups (Small to Big) and four valuation groups (Low to 

High). Instead of median market capitalization as a breakpoint for size each of these 

value-weighted portfolios use sample quartiles of size and valuation as breakpoints. 

Bolded t-statistics indicate significance at the 5% level. 

 

The three-, five-, and six-factor model regressions do not find significant α𝑖, values for 

portfolios double sorted on size and value at the 5% significance level. The coefficients 

on the market factor β𝑖 range from 0.39 to 0.94, and do not indicate any decreasing or 

increasing observations concerning size and value sorted portfolios. The coefficients 

for s𝑖 mainly decrease with increasing size, showing statistical significance in most of 

the cases for each asset pricing model. The factor exposures for h𝑖  are mostly positive 

for all models, an exception is the three-factor model. Strong test statistic results focus 

mainly on the second lowest size quartile and for the highest value quartiles. The re-

sults indicate that the value factor becomes more important with rising book-to-market 

value. The coefficients for r𝑖  are mostly negative for the five- and six-factor models but 

turn positive and significant for the highest size quartiles, indicating a stronger profita-

bility effect on stocks that have larger market capitalization. Moreover, the coefficients 

for c𝑖 are equally divided into positive and negative for both models but do not show 

any statistical significance at the 5% level. Finally, the coefficients for m𝑖  are mostly 

negative, showing statistical significance only for the highest quartile, irrespective of 

size. The average adjusted 𝑅2 is largest for each asset pricing models’ highest size quar-

tile, whereas adjusted 𝑅2 values range from 0.36 to 0.70 for the three-factor model, 

0.38 to 0.88 for the five-factor model, and 0.43 to 0.88 for the six-factor model. 

 

Table 5. Regressions for 16 value-weight Size-OP portfolios 

Panel A: The Fama-French three-factor model 
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α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small -0.10 -0.41 0.50 -0.20  Small -0.19 -1.12 1.53 -0.49 

2 -0.17 -0.06 0.24 -0.30  2 -0.56 -0.19 0.80 -0.37 

3 -0.24 0.19 0.01 0.19  3 -0.87 0.52 0.04 0.50 

Big -0.26 -0.23 -0.16 -0.14  Big -0.97 -0.80 -0.58 -0.57 

β  t(β) 

Small 0.92 0.65 0.64 0.66  Small 10.24 10.18 11.10 9.43 

2 0.78 0.72 0.76 0.82  2 15.19 12.13 14.65 5.96 

3 0.81 0.78 0.92 0.88  3 16.96 12.32 15.22 13.31 

Big 0.68 0.83 0.75 0.82  Big 14.69 16.67 15.90 19.14 

s  t(s) 

Small 0.22 0.14 0.21 0.23  Small 2.03 1.90 3.12 2.75 

2 0.29 0.25 0.16 3.17  2 4.80 3.50 2.67 19.30 

3 0.13 0.06 0.03 0.05  3 2.25 0.83 0.41 0.62 

Big -0.17 -0.30 -0.20 -0.25  Big -3.05 -5.01 -3.58 -4.87 

h  t(h) 

Small -0.04 0.24 -0.18 -0.09  Small -0.23 1.95 -1.60 -0.66 

2 -0.05 -0.05 -0.04 1.12  2 -0.55 -0.41 -0.44 4.21 

3 0.02 -0.04 0.04 -0.01  3 0.25 -0.30 0.32 -0.08 

Big 0.31 0.57 -0.05 -0.14  Big 3.43 5.96 -0.55 -1.69 

Adj. 𝑹𝟐       

Small 0.39 0.39 0.44 0.36       

2 0.60 0.48 0.57 0.71       

3 0.63 0.47 0.58 0.51       

Big 0.59 0.68 0.62 0.71       

           

Panel B: The Fama-French five-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small -0.12 -0.41 0.51 -0.18  Small -0.26 -1.15 1.60 -0.47 

2 -0.16 -0.09 0.23 -0.29  2 -0.62 -0.25 0.77 -0.66 

3 -0.26 0.18 0.00 0.17  3 -0.96 0.50 0.00 0.46 

Big -0.25 -0.23 -0.16 -0.14  Big -0.96 -0.85 -0.63 -0.59 

β  t(β) 

Small 0.97 0.69 0.68 0.69  Small 11.00 10.67 11.49 9.41 

2 0.84 0.70 0.76 0.57  2 17.33 11.26 14.00 6.93 

3 0.80 0.78 0.91 0.86  3 16.22 11.75 14.48 12.35 

Big 0.68 0.79 0.71 0.80  Big 13.88 15.86 15.39 18.55 

s  t(s) 

Small 0.70 0.39 0.40 0.33  Small 5.06 3.86 4.32 2.87 

2 0.63 0.29 0.25 1.49  2 8.35 2.96 2.98 11.60 
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3 0.22 0.14 0.11 0.07  3 2.86 1.33 1.15 0.60 

Big -0.24 -0.53 -0.46 -0.45  Big -3.10 -6.80 -6.42 -6.74 

h  t(h) 

Small 0.15 0.29 -0.16 -0.10  Small 0.88 2.28 -1.43 -0.72 

2 0.01 0.03 0.01 0.72  2 0.14 0.25 0.14 4.55 

3 0.11 0.01 0.09 0.05  3 1.13 0.04 0.78 0.40 

Big 0.28 0.52 -0.11 -0.20  Big 2.94 5.44 -1.26 -2.40 

r  t(r) 

Small -0.53 -0.28 -0.21 -0.12  Small -4.88 -3.50 -2.93 -1.31 

2 -0.38 -0.04 -0.10 1.86  2 -6.42 -0.51 -1.44 18.56 

3 -0.10 -0.08 -0.09 -0.01  3 -1.62 -1.01 -1.16 -0.15 

Big 0.08 0.26 0.29 0.23  Big 1.27 4.30 5.19 4.31 

c  t(c) 

Small -0.24 0.05 0.11 0.13  Small -1.32 0.36 0.89 0.86 

2 0.06 -0.23 -0.12 -0.04  2 0.56 -1.75 -1.08 -0.24 

3 -0.21 -0.08 -0.13 -0.21  3 -2.03 -0.57 -0.96 -1.41 

Big 0.04 -0.04 -0.01 0.03  Big 0.43 -0.34 -0.11 0.33 

Adj. 𝑹𝟐       

Small 0.47 0.43 0.46 0.36       

2 0.67 0.48 0.57 0.91       

3 0.65 0.47 0.58 0.51       

Big 0.59 0.71 0.67 0.74       

           

Panel C: The Fama-French six-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small -0.24 -0.31 0.65 -0.18  Small -0.48 -0.84 1.96 -0.44 

2 -0.03 0.07 0.22 -0.34  2 -0.12 0.21 0.72 -0.74 

3 -0.20 0.15 0.11 0.29  3 -0.73 0.39 0.30 0.76 

Big -0.28 -0.11 -0.09 -0.03  Big -1.04 -0.38 -0.35 -0.14 

β  t(β) 

Small 1.01 0.66 0.63 0.69  Small 10.13 8.90 9.45 8.26 

2 0.79 0.64 0.76 0.58  2 14.50 9.16 12.35 6.29 

3 0.78 0.80 0.87 0.81  3 13.92 10.50 12.24 10.33 

Big 0.69 0.74 0.68 0.76  Big 12.42 13.26 13.10 15.66 

s  t(s) 

Small 0.71 0.39 0.39 0.33  Small 5.13 3.78 4.21 2.86 

2 0.62 0.27 0.26 1.49  2 2.80 2.83 2.98 11.60 

3 0.22 0.14 0.10 0.05  3 2.80 1.35 1.06 0.50 

Big -0.23 -0.54 -0.47 -0.46  Big -3.06 -6.98 -6.50 -6.91 

h  t(h) 

Small 0.17 0.27 -0.19 -0.10  Small 1.00 2.12 -1.64 -0.72 
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2 -0.01 0.00 0.02 0.72  2 -0.13 0.01 0.15 4.56 

3 0.10 0.01 0.08 0.03  3 1.01 0.09 0.62 0.23 

Big 0.28 0.50 -0.12 -0.22  Big 2.97 5.20 -1.39 -2.64 

r  t(r) 

Small -0.53 -0.27 -0.21 -0.12  Small -4.91 -3.48 -2.90 -1.31 

2 -0.38 -0.04 -0.10 1.86  2 -6.44 -0.47 -1.44 18.56 

3 -0.10 -0.08 -0.09 -0.01  3 -1.61 -1.02 -1.14 -0.12 

Big 0.08 0.27 0.29 0.23  Big 1.26 4.38 5.23 4.39 

c  t(c) 

Small -0.26 0.06 0.13 0.13  Small -1.40 0.46 1.04 0.86 

2 0.08 -0.21 -0.12 -0.05  2 0.74 -1.59 -1.08 -0.28 

3 -0.20 -0.09 -0.11 -0.19  3 -1.95 -0.60 -0.85 -1.30 

Big 0.04 -0.02 0.00 0.04  Big 0.39 -0.17 -0.01 0.49 

m  t(m) 

Small 0.12 -0.11 -0.14 0.00  Small 0.91 -1.09 -1.55 -0.04 

2 -0.14 -0.17 0.01 0.05  2 -1.91 -1.78 0.07 0.41 

3 -0.06 0.04 -0.11 -0.13  3 -0.79 0.35 -1.15 -1.22 

Big 0.03 -0.13 -0.07 -0.11  Big 0.42 -1.73 -1.00 -1.69 

Adj. 𝑹𝟐       

Small 0.47 0.43 0.47 0.35       

2 0.68 0.49 0.57 0.91       

3 0.65 0.47 0.58 0.51       

Big 0.59 0.71 0.67 0.74       

 

Table 5 presents results for the Fama-French three-, five-, and six-factor models on 

Size-OP double-sorted portfolios. Panel A shows estimated intercepts, factor exposures, 

and adjusted 𝑅2 for the three-factor model. Panel B presents corresponding values for 

the five-factor model. Panel C includes the results for the six-factor model. Stocks are 

sorted into four size groups (Small to Big) and four operating profitability groups (Low 

to High). Instead of median market capitalization as a breakpoint for size each of these 

value-weighted portfolios use sample quartiles of size and operating performance as 

breakpoints. Bolded t-statistics indicate significance at the 5% level. 

 

The three- and five-factor model regressions do not find significant α𝑖, values for port-

folios double sorted on size and operating profitability at the 5% significance level. 

However, the six-factor model finds one problematic portfolio among the smallest size 

quartile without any sign of the reason on why this α𝑖  occurs as significant. The factor 
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exposures on the market factor β𝑖 range from 0.57 to 1.01, and do not indicate any 

decreasing or increasing observations regarding size and operating profitability sorted 

portfolios, thus the results are similar to size and value sorted portfolios. The coeffi-

cients for s𝑖 mainly decrease with increasing size, showing statistical significance in 

most of the cases for each asset pricing model, an exception occurs in each model’s 

second-highest size quartile. The factor exposures for h𝑖  are mostly negative for the 

three-factor model but turn positive for the five- and six-factor models, showing statis-

tical significance among the biggest stocks. The coefficients for r𝑖  are similar to size and 

value double-sorted portfolios, exhibiting positive and significant test statistics for the 

biggest stocks. Furthermore, the coefficients for c𝑖 reveal no universal patterns and 

occur basically insignificant. Finally, the coefficients for m𝑖  are insignificant. The aver-

age adjusted 𝑅2 is largest for each asset pricing models’ highest size quartile, whereas 

adjusted 𝑅2 values range from 0.36 to 0.71 for the three-factor model, 0.36 to 0.91 for 

the five-factor model, and 0.35 to 0.91 for the six-factor model. 

 

Table 6. Regressions for 16 value-weight Size-Inv portfolios 

Panel A: The Fama-French three-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small 0.44 -0.20 0.24 -0.33  Small 1.00 -0.67 0.63 -0.80 

2 -0.21 -0.08 -0.23 0.14  2 -0.67 -0.27 -0.24 0.41 

3 0.18 -0.04 0.31 -0.10  3 0.54 -0.10 1.19 -0.25 

Big -0.13 -0.16 -0.22 0.00  Big -0.51 -0.62 -0.71 -0.01 

β  t(β) 

Small 0.71 0.56 0.62 0.74  Small 9.26 10.60 9.22 10.41 

2 0.70 0.73 0.80 0.88  2 12.86 14.22 4.68 14.96 

3 0.80 0.81 0.76 1.02  3 14.04 11.13 16.57 14.84 

Big 0.75 0.70 0.89 0.79  Big 16.67 15.77 16.88 16.86 

s  t(s) 

Small 0.21 0.15 0.25 0.16  Small 2.32 2.33 3.15 1.84 

2 0.21 0.18 3.88 0.26  2 3.28 2.86 19.01 3.68 

3 -0.01 0.05 0.11 0.10  3 -0.21 0.63 2.01 1.19 

Big -0.16 -0.25 -0.24 -0.29  Big -3.08 -4.76 -3.82 -5.19 

h  t(h) 

Small 0.02 -0.02 0.13 -0.07  Small 0.12 -0.17 1.00 -0.51 
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2 -0.02 0.05 1.40 -0.20  2 -0.19 0.52 4.24 -1.75 

3 0.07 -0.03 -0.03 0.06  3 0.61 -0.24 -0.37 0.49 

Big 0.17 0.28 0.36 -0.13  Big 1.96 3.28 3.59 -1.40 

Adj. 𝑹𝟐       

Small 0.34 0.40 0.35 0.39       

2 0.51 0.55 0.70 0.58       

3 0.54 0.42 0.62 0.57       

Big 0.64 0.64 0.66 0.66       

           

Panel B: The Fama-French five-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small 0.46 -0.19 0.24 -0.35  Small 1.08 -0.64 0.64 -0.89 

2 -0.16 -0.08 -0.24 0.10  2 -0.56 -0.28 -0.40 0.31 

3 0.19 -0.06 0.30 -0.13  3 0.57 -0.14 1.14 -0.34 

Big -0.09 -0.15 -0.23 -0.04  Big -0.41 -0.63 -0.79 -0.17 

β  t(β) 

Small 0.77 0.61 0.65 0.76  Small 9.88 11.22 9.63 10.52 

2 0.79 0.74 0.48 0.85  2 14.89 13.71 4.38 14.51 

3 0.83 0.80 0.75 0.99  3 13.72 10.59 15.51 13.85 

Big 0.77 0.68 0.84 0.72  Big 18.31 15.31 16.00 15.53 

s  t(s) 

Small 0.45 0.32 0.53 0.42  Small 3.67 3.74 4.95 3.75 

2 0.38 0.25 1.86 0.41  2 4.56 2.97 10.85 4.43 

3 0.05 0.17 0.14 0.15  3 0.58 1.44 1.79 1.38 

Big -0.36 -0.46 -0.51 -0.42  Big -5.49 -6.55 -6.27 -5.84 

h  t(h) 

Small 0.00 -0.03 0.21 0.05  Small 0.01 -0.26 1.62 0.38 

2 -0.13 0.08 0.95 -0.03  2 -1.30 0.72 4.53 -0.30 

3 0.06 0.05 0.02 0.18  3 0.48 0.34 0.20 1.27 

Big 0.00 0.21 0.33 -0.03  Big 0.04 2.43 3.31 -0.35 

r  t(r) 

Small -0.28 -0.20 -0.31 -0.29  Small -2.87 -2.95 -3.68 -3.30 

2 -0.20 -0.09 2.24 -0.15  2 -3.11 -1.29 16.69 -2.13 

3 -0.08 -0.12 -0.02 -0.05  3 -1.07 -1.34 -0.40 -0.62 

Big 0.21 0.23 0.31 0.16  Big 4.01 4.14 4.81 2.87 

c  t(c) 

Small 0.26 0.18 -0.05 -0.19  Small 1.58 1.57 -0.37 -1.28 

2 0.53 -0.02 -0.17 -0.44  2 4.76 -0.13 -0.75 -3.56 

3 0.10 -0.19 -0.16 -0.33  3 0.78 -1.17 -1.53 -2.21 

Big 0.41 0.08 -0.13 -0.44  Big 4.59 0.80 -1.14 -4.53 

Adj. 𝑹𝟐       
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Small 0.37 0.43 0.40 0.44       

2 0.57 0.55 0.89 0.63       

3 0.54 0.43 0.62 0.58       

Big 0.72 0.67 0.70 0.70       

           

Panel C: The Fama-French six-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small 0.39 -0.16 0.14 -0.28  Small 0.90 -0.51 0.37 -0.69 

2 -0.09 -0.04 -0.12 0.12  2 -0.29 -0.15 -0.20 0.37 

3 0.04 0.09 0.24 0.13  3 0.13 0.20 0.89 0.34 

Big -0.09 -0.08 -0.06 -0.06  Big -0.36 -0.33 -0.22 -0.22 

β  t(β) 

Small 0.80 0.60 0.69 0.73  Small 8.96 9.68 8.97 8.95 

2 0.76 0.73 0.44 0.84  2 12.66 11.84 3.51 12.63 

3 0.88 0.75 0.77 0.89  3 12.96 8.74 14.07 11.19 

Big 0.77 0.66 0.78 0.72  Big 16.04 13.00 13.24 13.77 

s  t(s) 

Small 0.46 0.32 0.54 0.42  Small 3.71 3.70 5.03 3.69 

2 0.37 0.25 1.85 0.40  2 4.48 2.92 10.78 4.39 

3 0.07 0.16 0.14 0.13  3 0.72 1.33 1.85 1.19 

Big -0.36 -0.46 -0.53 -0.42  Big -5.48 -6.64 -6.51 -5.81 

h  t(h) 

Small 0.01 -0.03 0.23 0.04  Small 0.09 -0.31 1.75 0.29 

2 -0.15 0.07 0.93 -0.04  2 -1.43 0.65 4.39 -0.33 

3 0.08 0.02 0.03 0.13  3 0.71 0.16 0.32 0.93 

Big 0.00 0.20 0.30 -0.03  Big 0.02 2.27 3.03 -0.31 

r  t(r) 

Small -0.28 -0.20 -0.31 -0.29  Small -2.88 -2.94 -3.72 -3.29 

2 -0.20 -0.08 2.24 -0.15  2 -3.10 -1.28 16.73 -2.13 

3 -0.08 -0.12 -0.03 -0.05  3 -1.13 -1.31 -0.43 -0.56 

Big 0.21 0.23 0.31 0.16  Big 4.01 4.18 4.94 2.86 

c  t(c) 

Small 0.25 0.19 -0.07 -0.19  Small 1.52 1.60 -0.46 -1.22 

2 0.54 -0.01 -0.16 -0.44  2 4.85 -0.09 -0.68 -3.52 

3 0.08 -0.17 -0.16 -0.30  3 0.63 -1.04 -1.61 -1.99 

Big 0.41 0.09 -0.10 -0.45  Big 4.58 0.91 -0.94 -4.53 

m  t(m) 

Small 0.07 -0.03 0.10 -0.07  Small 0.56 -0.40 0.99 -0.66 

2 -0.08 -0.04 -0.12 -0.03  2 -0.99 -0.48 -0.72 -0.28 

3 0.15 -0.15 0.06 -0.28  3 1.67 -1.32 0.85 -2.61 

Big -0.01 -0.08 -0.17 0.02  Big -0.15 -1.10 -2.17 0.22 
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Adj. 𝑹𝟐       

Small 0.37 0.43 0.40 0.43       

2 0.57 0.55 0.89 0.62       

3 0.55 0.43 0.62 0.59       

Big 0.71 0.67 0.70 0.70       

 

Table 6 presents results for the Fama-French three-, five-, and six-factor models on 

Size-Inv double-sorted portfolios. Panel A shows estimated intercepts, factor exposures, 

and adjusted 𝑅2 for the three-factor model. Panel B presents corresponding values for 

the five-factor model. Panel C includes the results for the six-factor model. Stocks are 

sorted into four size groups (Small to Big) and four investment groups (Low to High). 

Instead of median market capitalization as a breakpoint for size each of these value-

weighted portfolios use sample quartiles of size and investment character as break-

points. Bolded t-statistics indicate significance at the 5% level. 

 

The three-, five-, and six-factor model regressions do not find significant α𝑖, values for 

portfolios double sorted on size and investment at the 5% significance level. Market 

factor β𝑖 exposures range from 0.44 to 1.02 without any observable decreasing or in-

creasing patterns, therefore size and investment sorted portfolios join the group of 

value and size, as well as value and operating profitability, sorted portfolios. The coef-

ficients for s𝑖 decrease with increasing size with significant t-statistics among each 

model. Exceptions are similar to the size and operating profitability sorted portfolios. 

The coefficients for h𝑖  are mostly significant among the biggest stocks for the three-, 

five-, and six-factor models. The coefficients for r𝑖  tend to be negative and statistically 

significant for the smaller stocks but turn positive and stay significant for the highest 

size quartile. Additionally, the coefficients for c𝑖 exhibit positive and mostly significant 

for the lowest investment quartile but turn negative and significant for the highest in-

vestment quartile. Finally, the factor exposures for m𝑖  are like for size and value-double 

sorted portfolios without any universal patterns. The average adjusted 𝑅2 is largest for 

each asset pricing models’ highest size quartile, whereas adjusted 𝑅2 values range 

from 0.34 to 0.70 for the three-factor model and 0.37 to 0.89 for both the five-factor 

model and the six-factor model. 
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Table 7. Regressions for 16 value-weight Size-Mom portfolios 

Panel A: The Fama-French three-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small 0.29 -0.13 0.22 1.01  Small 0.51 -0.07 0.71 2.33 

2 2.27 -0.48 0.01 0.84  2 0.97 -1.76 0.05 2.67 

3 0.53 -0.18 -0.31 0.33  3 0.58 -0.62 -1.26 1.27 

Big -0.43 -0.67 0.01 0.09  Big -0.71 -2.18 0.02 0.23 

β  t(β) 

Small 1.01 0.57 0.69 0.70  Small 10.22 1.93 12.63 9.31 

2 0.99 0.72 0.61 0.66  2 2.44 15.17 13.13 11.94 

3 0.90 0.80 0.70 0.68  3 5.58 16.21 16.19 15.10 

Big 0.85 0.63 0.58 0.43  Big 8.07 11.65 11.83 6.28 

s  t(s) 

Small 0.25 6.22 0.18 0.17  Small 2.18 17.76 2.83 1.89 

2 0.51 0.17 0.12 0.11  2 1.07 3.01 2.12 1.65 

3 0.26 0.08 0.02 0.12  3 1.37 1.34 0.43 2.26 

Big 0.09 -0.04 0.07 -0.10  Big 0.70 -0.57 1.25 -1.21 

h  t(h) 

Small -0.20 2.69 0.16 -0.20  Small -1.05 4.75 1.56 -1.39 

2 -0.55 -0.09 -0.06 0.05  2 -0.71 -1.02 -0.68 0.46 

3 -0.02 -0.06 0.01 0.05  3 -0.05 -0.66 0.09 0.53 

Big 0.16 -0.10 -0.03 0.19  Big 0.79 -1.00 -0.27 1.42 

Adj. 𝑹𝟐       

Small 0.39 0.67 0.50 0.35       

2 0.03 0.59 0.51 0.46       

3 0.15 0.61 0.61 0.58       

Big 0.27 0.45 0.45 0.20       

           

Panel B: The Fama-French five-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small 0.25 -0.09 0.21 0.99  Small 0.46 -0.08 0.70 2.33 

2 2.28 -0.47 0.00 0.84  2 0.98 -1.75 0.02 2.67 

3 0.52 -0.20 -0.32 0.33  3 0.56 -0.70 -1.26 1.29 

Big -0.44 -0.67 0.01 0.09  Big -0.74 -2.21 0.04 0.24 

β  t(β) 

Small 0.98 0.09 0.70 0.71  Small 9.57 8.47 12.51 9.09 

2 1.09 0.74 0.61 0.66  2 2.55 14.86 12.53 11.40 

3 0.89 0.78 0.70 0.68  3 5.24 15.05 15.31 14.33 
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Big 0.89 0.65 0.59 0.45  Big 8.18 11.49 11.39 6.19 

s  t(s) 

Small 0.39 2.94 0.35 0.34  Small 2.44 9.32 3.92 2.76 

2 1.00 0.25 0.19 0.15  2 1.49 3.21 2.45 1.65 

3 0.31 0.09 0.03 0.08  3 1.17 1.09 0.37 1.12 

Big 0.40 0.08 0.08 -0.02  Big 2.32 0.96 0.96 -0.15 

h  t(h) 

Small -0.05 1.83 0.23 -0.13  Small -0.26 4.74 2.09 -0.83 

2 -0.49 -0.09 -0.02 0.06  2 -0.60 -0.95 -0.20 0.55 

3 0.03 0.00 0.01 0.02  3 0.10 0.02 0.13 0.26 

Big 0.25 -0.08 -0.04 0.20  Big 1.19 -0.70 -0.44 1.43 

r  t(r) 

Small -0.14 3.65 -0.18 -0.19  Small -1.13 14.81 -2.58 -1.93 

2 -0.54 -0.09 -0.08 -0.05  2 -1.04 -1.50 -1.26 -0.65 

3 -0.05 0.00 0.00 0.04  3 -0.25 -0.07 -0.09 0.69 

Big -0.34 -0.13 -0.01 -0.09  Big -2.57 -1.94 -0.12 -1.04 

c  t(c) 

Small -0.39 0.18 -0.08 -0.12  Small -1.82 0.42 -0.68 -0.70 

2 0.20 0.06 -0.09 -0.01  2 0.22 0.59 -0.83 -0.07 

3 -0.12 -0.22 -0.01 0.05  3 -0.35 -1.98 -0.11 0.46 

Big -0.05 0.01 0.07 0.03  Big -0.20 0.05 0.62 0.19 

Adj. 𝑹𝟐       

Small 0.40 0.86 0.51 0.36       

2 0.02 0.59 0.51 0.45       

3 0.14 0.62 0.61 0.58       

Big 0.30 0.46 0.45 0.19       

           

Panel C: The Fama-French six-factor model 

α  t(α) 

  Low 2 3 High    Low 2 3 High 

Small 0.83 -0.01 0.26 0.89  Small 1.51 -0.01 0.83 2.02 

2 3.21 -0.43 -0.08 0.70  2 1.34 -1.53 -0.29 2.16 

3 0.89 0.00 -0.33 0.06  3 0.94 0.02 -1.29 0.25 

Big -0.14 -0.33 -0.02 -0.37  Big -0.23 -1.11 -0.08 -0.96 

β  t(β) 

Small 0.76 0.06 0.69 0.75  Small 6.90 8.28 10.74 8.46 

2 0.74 0.72 0.64 0.72  2 1.54 12.78 11.62 10.95 

3 0.75 0.70 0.71 0.78  3 3.92 12.24 13.60 15.19 

Big 0.78 0.52 0.60 0.62  Big 6.37 8.58 10.25 8.04 

s  t(s) 

Small 0.34 2.93 0.34 0.35  Small 2.22 9.26 3.86 2.83 

2 0.92 0.25 0.19 0.16  2 1.37 3.15 2.54 1.80 
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3 0.28 0.07 0.03 0.11  3 1.05 0.88 0.40 1.51 

Big 0.37 0.05 0.08 0.02  Big 2.19 0.64 1.00 0.23 

h  t(h) 

Small -0.16 1.82 0.22 -0.11  Small -0.83 4.66 1.99 -0.70 

2 -0.66 -0.10 0.00 0.09  2 -0.80 -1.03 -0.04 0.79 

3 -0.04 -0.04 0.01 0.07  3 -0.11 -0.36 0.17 0.83 

Big 0.20 -0.14 -0.04 0.29  Big 0.93 -1.36 -0.37 2.16 

r  t(r) 

Small -0.13 3.65 -0.18 -0.19  Small -1.07 14.81 -2.57 -1.96 

2 -0.52 -0.09 -0.08 -0.05  2 -1.00 -1.49 -1.29 -0.70 

3 -0.04 0.00 -0.01 0.07  3 -0.21 0.01 -0.10 0.83 

Big 0.20 -0.14 -0.04 0.29  Big 0.93 -1.36 -0.37 2.16 

c  t(c) 

Small -0.31 0.19 -0.07 -0.13  Small -1.52 0.45 -0.62 -0.78 

2 0.33 0.07 -0.10 -0.03  2 0.37 0.64 -0.94 -0.24 

3 -0.07 -0.19 -0.01 0.01  3 -0.20 -1.75 -0.13 0.09 

Big 0.00 0.05 0.06 -0.04  Big -0.02 0.48 0.57 -0.24 

m  t(m) 

Small -0.61 -0.09 -0.05 0.11  Small -4.07 -0.28 -0.57 0.95 

2 -0.99 -0.05 0.09 0.16  2 -1.51 -0.64 1.17 1.74 

3 -0.39 -0.21 0.02 0.29  3 -1.51 -2.74 0.27 4.09 

Big -0.32 -0.37 0.04 0.50  Big -1.90 -4.49 0.47 4.70 

Adj. 𝑹𝟐       

Small 0.45 0.86 0.51 0.36       

2 0.03 0.58 0.51 0.46       

3 0.15 0.63 0.60 0.61       

Big 0.31 0.51 0.45 0.29       

 

Table 7 presents results for the Fama-French three-, five-, and six-factor models on 

Size-Mom double-sorted portfolios. Panel A shows estimated intercepts, factor expo-

sures, and adjusted 𝑅2 for the three-factor model. Panel B presents corresponding val-

ues for the five-factor model. Panel C includes the results for the six-factor model. 

Stocks are sorted into four size groups (Small to Big) and four momentum groups (Low 

to High). Instead of median market capitalization as a breakpoint for size, these value-

weighted portfolios use sample quartiles of size and prior performance as breakpoints. 

Bolded t-statistics indicate significance at the 5% level. 
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Regarding size and momentum double-sorted portfolios, the three, five-, and six-factor 

model regressions find the largest number of significant pricing errors with 3, 3, and 2 

significant estimates at a 5% significance level for the corresponding models. Therefore, 

the six-factor regressions show only slight improvement. The coefficients for the mar-

ket factor β𝑖, which range from 0.43 to 1.09, do not indicate any universal patterns 

concerning size and momentum sorted portfolios. Thus, the phenomenon is identical 

to size and value, operating profitability, and investment double-sorted portfolios. The 

coefficients for s𝑖 decrease with increasing size and turn basically insignificant. The 

factor exposures for h𝑖  show statistical significance mainly only in the lowest size quar-

tile for each asset pricing model. The coefficients for r𝑖  are mostly negative for the five- 

and six-factor models but give no clear decreasing or increasing patterns. Additionally, 

the coefficients for c𝑖 are mostly negative and insignificant for both models. Finally, the 

coefficients for m𝑖  are positive and significant solely for the highest momentum quar-

tile. The average adjusted 𝑅2 is largest for each asset pricing models’ smallest size 

quartile, an opposite to other portfolio sorts. Adjusted 𝑅2 values range from 0.03 to 

0.67 for the three-factor model, 0.02 to 0.86 for the five-factor model, and 0.03 to 0.86 

for the six-factor model. 
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Table 8. Test statistics of the Fama-French factor models 

    χ² A|α| A Adj. 𝑹𝟐 

Size-B/M 3-factor 20.892 0.08 0.55 

 5-factor 21.314 0.08 0.58 

 6-factor 19.906 0.14 0.59 

Size-OP 3-factor 20.001 0.21 0.55 

 5-factor 19.995 0.07 0.58 

 6-factor 17.615 0.02 0.59 

Size-Inv 3-factor 9.733 0.02 0.54 

 5-factor 10.166 0.09 0.58 

 6-factor 5.813 0.03 0.58 

Size-Mom 3-factor 39.071 0.21 0.43 

 5-factor 38.863 0.21 0.44 

  6-factor 34.871 0.21 0.46 

Degrees of freedom 16   

Significance level 5 %   

Critical value 26.296     

 

Table 8 shows the Wald test (the GRS test) statistics, the average intercepts (A|α|), and 

the average adjusted 𝑅2. Every test contains 16 portfolios which is the corresponding 

number for degrees of freedom, and at the 5% significance level critical value stands 

for 26.296. Bolded values indicate a smaller p-value than 5%. Chi-square values are 

above critical value and statistically significant only for Size-Mom double-sorted portfo-

lios, indicating that the three-, five-, and six-factor models must be rejected in testing 

portfolios sorted by Size-Mom. Portfolios double sorted on size and value, investment 

and profitability have Chi-square values under the critical value but considering the p-

values, these results are insignificant. In contrast, Fama and French (2018) as well as 

Grobys and Kolari (2021) present that the Fama-French six-factor model is outstanding 

at capturing the average stock returns compared to the other nested Fama-French 

models. Anyway, Fama and French (2015; 2017) as well as Huynh (2018) state that 

purely relying on the GRS statistics (the Wald test) is not a proper way to demonstrate 

the ultimate performance of a certain model. 
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Table 9. Factor-spanning tests, estimated coefficients, intercepts, t-statistics, and the Adj. 𝑹𝟐 

  α MRF SMB HML RMW CMA MOM Adj. 𝑹𝟐 

MRF 0.83  -0.27 -0.03 0.21 -0.37 -0.65 0.29 

 (2.14)  (-2.51) (-0.25) (2.53) (-2.53) (-6.76)  
SMB 0.34 -0.14  -0.12 0.54 -0.11 -0.08 0.48 

 (1.21) (-2.51)  (-1.21) (12.14) (-1.02) (-1.02)  
HML 0.22 -0.01 -0.08  0.05 0.34 -0.11 0.10 

 (0.95) (-0.25) (-1.21)  (1.08) (4.06) (-1.74)  
RMW -0.01 0.18 0.89 0.14  0.30 0.03 0.49 

 (-0.03) (2.53) (12.14) (1.08)  (2.23) (0.34)  
CMA -0.15 -0.11 -0.06 0.28 0.10  0.07 0.17 

 (-0.73) (-2.53) (-1.02) (4.06) (2.23)  (1.20)  
MOM 0.93 -0.35 -0.08 -0.17 0.02 0.13  0.25 

  (3.33) (-6.76) (-1.02) (-1.74) (0.349) (1.20)   
 

Table 9 results indicate significant intercepts for the 𝑀𝑅𝐹 and 𝑀𝑂𝑀 at the critical 5% 

significance level. The average market excess return is captured by 𝑆𝑀𝐵, 𝑅𝑀𝑊, 𝐶𝑀𝐴, 

and 𝑀𝑂𝑀 factors as the corresponding slopes are significant at the 5% significance 

level. Similarly, the average 𝑆𝑀𝐵 return is explained by the 𝑀𝑅𝐹 and 𝑅𝑀𝑊. The aver-

age 𝐻𝑀𝐿 return is captured by 𝐶𝑀𝐴 and the regression adjusted 𝑅2 is the lowest, ap-

proximately 10%. As anticipated from a positive correlation, both 𝑆𝑀𝐵 and 𝑅𝑀𝑊 

slopes in 𝑆𝑀𝐵 and 𝑅𝑀𝑊 regressions are positive and statistically significant (t-stat 

12.14). Moreover, 𝑆𝑀𝐵 and 𝑅𝑀𝑊 regressions have also the highest adjusted 𝑅2. Addi-

tionally, the average 𝑅𝑀𝑊 return is captured by 𝑆𝑀𝐵. Correspondingly, the average 

𝐶𝑀𝐴 return is captured by the 𝑀𝑅𝐹, 𝐻𝑀𝐿, and 𝐶𝑀𝐴. Finally, the average 𝑀𝑂𝑀 return 

explained by the 𝑀𝑅𝐹 and the adjusted 𝑅2 settles on the mid-range at 25%. To sum up, 

spanning regressions show that only the 𝑀𝑅𝐹 and 𝑀𝑂𝑀 increase the mean-variance 

frontier and other factors are redundant. However, Fama and French (2017) find signif-

icant intercepts for 𝑀𝑅𝐹, 𝐻𝑀𝐿, and 𝑅𝑀𝑊 whereas, 𝑆𝑀𝐵 and 𝐶𝑀𝐴 are redundant in 

Europe. Moreover, Grobys and Kolari (2021) confirm that 𝑆𝑀𝐵 and 𝐶𝑀𝐴 do not matter 

in Europe, whereas 𝑀𝑅𝐹 and 𝐻𝑀𝐿 matter. The authors also demonstrate that 𝑅𝑀𝑊 

plays a significant role in explaining the cross-section of average stock returns. Anyway, 

the spanning regressions for the German setting do not expose any other factors than 

𝑀𝑅𝐹 and 𝑀𝑂𝑀 that would play a large role in expanding the mean-variance frontier. 
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Thereby, factor spanning inferences must be sensitive to sample-specific data, as con-

cluded by Grobys and Kolari (2021). 
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7 Conclusions and discussion 

Factor models are a very popular method to evaluate portfolio performance even 

though they are less-than-perfect models. Thereby, this study implemented and meas-

ured the performance of the Fama-French three-, five-, and six-factor models for the 

German stock universe. Each of the nested asset pricing models was examined in ex-

plaining the cross-section of average stock returns by using portfolios double sorted on 

size and value, investment, profitability, or momentum. 

 

Regarding the results of the Fama-French asset pricing models for the time-period of 

July 2007 – December 2020 in the German equity market, the variation between mod-

els seems to be just marginal. The average adjusted 𝑅2 for the asset pricing models are 

51%, 53%, and 54%, respectively. Considering the Wald test, none of these nested 

models can explain the cross-sectional return variation at the 5% significance level. 

Additionally, spanning regressions reveal that only the market factor and momentum 

increase the mean-variance frontier. This confirms Grobys and Kolari’s (2021) finding 

that size does not matter in Europe’s largest single economy. However, the European 

evidence by Grobys and Kolari (2021) is only loosely supported by implementing the 

choosing factors approach on the German setting alone. As such, value, operating prof-

itability, and investment factors do not matter in Germany, whereas Grobys and Kolari 

(2021) found that value matters in Europe and operating profitability plays an im-

portant role in pricing the cross-section of equity returns. Additionally, this study con-

firms that the investment factor is redundant in Germany, respective to Fama and 

French (2017) as well as Grobys and Kolari (2021). 

 

This study could motivate future research. One could want to investigate other poten-

tial risk-factors beyond Fama and French that are found and proposed by recent finan-

cial literature. For instance, Asness, Frazzini, Gormsen, and Pedersen (2020) construct-

ed 𝐵𝐴𝐶 and 𝑆𝑀𝐴𝑋 factors in 2020 which are not included to Fama and French’s (2018) 

pool of anomalies, thus we do not yet have empirical evidence about a potential ex-

pansion of the mean-variance frontier caused by these risk-factors which may be sub-
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stitutes for the Fama-French risk-factors. Future research could implement Grobys and 

Kolari’s (2021) block-based boost-strapping methodology that considers factor de-

pendencies and evaluate whether non-nested models outperform nested models in 

the German stock universe. However, this study does not address this problem because 

it would consider non-nested models and therefore left for future research. 
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