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Abstract— A microgrid can be formed by the integration of 
different components such as loads, renewable/conventional units, 
and energy storage systems in a local area. Microgrids with the 
advantages of being flexible, environmentally friendly, and self-
sufficient can improve the power system performance metrics such 
as resiliency and reliability. However, design and implementation 
of microgrids are always faced with different challenges 
considering the uncertainties associated with loads and renewable 
energy resources (RERs), sudden load variations, energy 
management of several energy resources, etc. Therefore, it is 
required to employ such rapid and accurate methods, as artificial 
intelligence (AI) techniques, to address these challenges and 
improve the MG’s efficiency, stability, security, and reliability. 
Utilization of AI helps to develop systems as intelligent as humans 
to learn, decide, and solve problems. This paper presents a review 
on different applications of AI-based techniques in microgrids 
such as energy management, load and generation forecasting, 
protection, power electronics control, and cyber security. Different 
AI tasks such as regression and classification in microgrids are 
discussed using methods including machine learning, artificial 
neural networks, fuzzy logic, support vector machines, etc. The 
advantages, limitation, and future trends of AI applications in 
microgrids are discussed.  

 
Index Terms—Microgrid, artificial intelligence, energy 

management, load forecasting, cyber security, protection, control, 
machine learning. 

I. INTRODUCTION 
ONVENTIONAL power system is faced with problems 
such as depletion of fossil fuels, environmental 
pollution, and low efficiency. These issues have led to 

the new form of electricity generation locally at the distribution 
level using renewable/non-conventional distributed energy 
resources (DERs), known as microgrids (MGs). MGs, as low- 
or medium- voltage active distribution networks, can be 
advantageous in different ways, such as improving the energy 
efficiency and reliability of the system, reducing transmission 
losses and network congestion, and integration of clean 
energies. Despite the advantages of MGs, there are challenges 
in implementing MGs with DER units. These challenges 
include power quality and stability issues, MG’s voltage and 
fault level changes, energy management, low inertia, more 
complicated protection schemes, load and generation 
forecasting, cyber-attacks, and cyber security.  

Since MGs should operate in grid-connected and isolated 
modes, energy management and protection schemes in MGs are 
more complex than those in the usual distributed networks. 
Moreover, due to the rapid load variation in MGs and the 
 

 

variable RER generation, load/generation forecasting is needed 
in applications such as energy management.  

Since microgrids rely on information and communication 
technologies, their security is critical. Therefore, they are 
vulnerable to different types of cyber-attacks so that 
cybersecurity techniques can provide safe operation of MGs.  

To address with these challenges, advanced, accurate, and 
fast methods such as artificial intelligence (AI)-based 
techniques are required to guarantee efficient, optimal, safe, and 
reliable operation of MGs. AI refers to the computer-based 
systems’ ability to perform tasks as intelligent as humans. AI-
based systems can learn from the past experiences and solve 
problems. AI has been used in different applications, including 
MGs, to improve the system performance.  

In MGs, different AI-based algorithms have been used in the 
literature for various applications such as energy management, 
load forecasting, renewable energy forecasting, fault detection 
and classification, cyber-attack detection[1]. Literature review 
demonstrates that AI-based techniques offer fast, accurate, and 
efficient solutions for MG applications.  

There are several papers in the literature that review some 
applications of AI techniques in smart grids and power systems 
such as energy demand-side management[2], security and 
stability assessment[3], and power system resilience[4]. Some 
papers resented a review considering different power system or 
smart grid parameters such as energy management, load 
forecasting, demand response, and fault detection[5]–[7]. These 
studies have at least of the following drawbacks/differences: 
(1) The study was carried out for power system and smart grids 

not for microgrids[2]–[7]. MGs have some specific 
characteristics and modes of operations and using the 
methods developed for conventional power system and 
smart grids may not be appropriate/accurate.     

(2) Only one application in the system was reviewed[2]–[4].  
(3) A few AI-based techniques and their applications have 

been considered[2], [4], [5]. 
The present paper tries to fill the shortcomings of the previous 
papers by presenting a comprehensive review on the application 
of AI techniques in MGs. To the best knowledge of the authors 
this is the first review paper on the application of the AI 
techniques in MGs with the following main contributions: 
(1) A comprehensive review for the application of AI 

techniques in microgrid is presented for the first. 

C 
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(2) Different AI techniques such as regression-based, 
classification-based, and clustering-based methods are 
reviewed considering their applications in microgrids.  

(3) Different applications in MGs such as energy management, 
load/generation forecasting, fault detection, power 
electronic, and cyber-attack detection are considered. 

The rest of the paper is organized as follows: 
In Section II, microgrids and developments are discussed. 

Section III presents a summary of AI techniques with an 
emphasis on power system applications. The application of AI 
techniques in microgrids is discussed in Section IV. Some 
discussions and future trends of AI utilization in MGs are given 
in Section V. Finally, the paper is concluded in Section VI.   

II. CURRENT DEVELOPMENTS AND CHALLENGES OF 
MICROGRIDS 

Increasing energy demand has arisen the idea of energy 
generation near the loads, which play an essential role in 
maintaining the security and economy of bulk power system. 
Integration of RERs, energy storage systems (ESSs), 
conventional generators, and loads in a local area form a 
microgrid, which is a self-sufficient and flexible small-scale grid, 
yet more environmentally friendly than individual unit.  

The idea behind MGs is the ability to work even if the main 
grid cannot supply power and balance consumption and 
generation with a high level of reliability. To this end, DERs will 
produce power, while the surplus power production will be stored 
in the ESS. Subsequently, from control and production 
perspective, the grid will be decentralized. Furthermore, MGs 
can help to supply reliable electricity, higher penetration of 
RERs, and provide ancillary services to the utility[8]. Based on 
the type of sources, MGs can be categorized as AC, DC, or 
hybrid. In addition, they can be operated in either grid-connected 
or islanded mode when grid faults or islanding are occurred[9]. 

Figure 1 shows a multi-layer block diagram of a microgrid. 
All the physical components are connected through the circuit 
layer. The components consist of 1. DERs, which can be RERs, 
ESSs, or conventional generators; 2. power conversion systems 
(PCS), which integrate DER into the grid; 3. grid components, 
such as transmission lines, transformers, etc., and 4. loads. 
Moreover, functions to regulate local generation or 
consumption and ESS management are related to the control 

layer, and these functions usually follow the commands of 
upper-level controllers or supervisory layer[8]. 

The top-level control layer includes supervisory control and 
data acquisition (SCADA) functions and performs supervisory 
roles. This layer is the energy management system (EMS), 
whose goal is to provide functions like participation in the 
energy market, power quality control, and ancillary services, 
and optimize the system’s operation[8].  

The inherent uncertainties in MGs, which arise from both 
supply and demand sides, make EMS's functions a 
challenging task. The sources of these uncertainties are that 
the output of RERs naturally behaves intermittently, and the 
small size of MGs leads to higher volatility in load profile due 
to the weaker smoothing effect of load aggregation[10]. 
Because of this, old energy scheduling schemes cannot 
guarantee a reliable supply-demand balance in a MG. Thus, 
the EMS of a MG should be able to predict the possible 
uncertainties on the generation and demand sides and make the 
best decision as fast as possible before losing the system's 
stability. Meanwhile, the EMS must be run repeatedly to 
maintain the MG’s energy production and consumption balance 
since the renewable generation varies continuously[10]. In 
addition, EMS should detect islanding and handle the smooth 
transition between grid-connected and islanded modes. 
Hence, an efficient scheme that considers the uncertainties of 
both supply and demand sides is an urgent requirement. 

Communication network is used in MGs to transfer data 
including control and feedback signals between different 
components such as loads, utility, and sources to efficiently 
manage the system. However, gathering data from different 
sources may arise privacy concerns. On the other hand, heavy 
dependence upon communications technologies, makes power 
systems vulnerable to cyberattacks. Thus, cybersecurity is an 
issue that should be considered in microgrids studies. 

Due to the integration of DERs in MGs, extra current and 
power can flow in a reverse direction toward the fault side and, 
as a result, the fault level is increased. Therefore, fault 
detection, classification, and protection of MGs are more 
complicated than radial networks. Furthermore, DER units in a 
MG should be protected in both grid-connected and islanded 
modes, where a fault current changes significantly for altering 
the modes. Therefore, islanding detection and adaptive 

 
Fig. 1. Microgrid system and Control structure  
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protection are significant issues in MGs safe operation that must 
be taken into consideration for design and implementation. 

The rapid development of AI with the aim of facilitating 
systems with intelligence brings significant advantages and has 
been successfully applied in numerous areas[11]. By applying 
AI methods, microgrids will be capable of human-like learning 
and reasoning so that the system autonomy can be improved. 
Considering the flexibility and advantages of AI methods, they 
can be employed to cope with major challenges of microgrids.  

III.  ARTIFICIAL INTELLIGENCE TECHNIQUES AND THEIR 
APPLICATIONS IN POWER SYSTEM 

Most of the methods used in power system studies are based 
on physical modeling and analysis, which has become 
challenging to handle the increased system uncertainty and 
complexity. Therefore, AI techniques with self-learning 
capability and low dependence on mathematical models of 
physical systems can provide effective solutions[4].  

A. Overview of Artificial Intelligence Techniques 
AI mainly refers to developing systems like a computer, a 

computer-controlled robot, or a software with characteristics to 
act intelligently similar to humans and have the abilities to 
think, reason, and learn from past experience and solve 
problems. 

Power systems mainly deal with big data generated due to 
the evolution of the system and the integration of different 
components such as DERs, electric vehicles, smart meters, 
ESSs, communication structures, etc. Since the conventional 
computational methods are not sufficient to handle and process 
the big data efficiently, AI methods are used in power systems 
to address the problem. The AI methods in power systems can 
be mainly categorized into the following classes[20]: 

1) Machine learning algorithms including: 
• Supervised learning: a class of machine learning (ML) 

which learns a function to map inputs to outputs according 
to labeled datasets/example input-output pairs.  

• Unsupervised learning: a class of ML that learns patterns 
from unlabeled datasets. 

• Reinforcement learning (RL):  a class of ML associated 
with the action of intelligent agents to maximize the notion 
of cumulative reward. 

2) Ensemble methods: methods which combine the results 
of different AI algorithms to cope with the limitations of 
one algorithm with improved results.  

3) Expert Systems (ES): a computer-based system 
emulating the decision-making ability of a human expert 
to resolve problems. 

The schematic diagrams of some of the typical AI methods 
is shown in Fig. 2. These techniques can be used for different 
applications in power system to improve its performance, 
efficiency, and the other parameters/features. 

B. Using AI for Power System Problems 
Energy conversion systems have two possible classes that 

help define the requirement of advanced control systems: (i) 
unconstrained energy systems and (ii) constrained energy 
systems i.e. when there is finite energy and, most often, a finite 
maximum power, approaching . Fossil fuel (gas, coal, oil, 
hydrogen and thermodynamic cycles systems based on 
renewable energy (wind, solar, tidal, geothermal). The 
sustainability of renewables would be only if the amount of 
energy conversion is less than the recovery of such energy by 
the environment; but they are still constrained because the 
derivative of energy should be optimized, and typically a 
convex function would  define such a real-time based 
optimization.  

Several issues will have to be taken into consideration, and 
efficient energy conversion for electrical power systems will be 
advanced by AI on these premises: 
• (1) Parameter variation that can be compensated with 

designer judgment, (2) Processes that can be modeled 
linguistically but not mathematically, (3) Setting with the 
aim to improve efficiency as a matter of operator judgment, 

 
Fig. 2. Schematic diagram of some typical AI methods. 
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(4) When the system depends on operator skills and 
attention, (5) Whenever one process parameter affects 
another parameter, (6) Effects that cannot be attained by 
separate PID control, (7) Data intensive modeling (use of 
parametric rules) Parameter variation: temperature, density, 
impedance, (8) Non-linearities, dead-band, time delay, (9) 
Cross-dependence of input and output variables. 

There are typically three paradigms, that can be used for energy 
conversion systems, with AI/ML: (i) a function approximation 
or input/output mapping, (ii) a negative feedback control, and 
(iii) a system optimization. The first one is the construction of 
a model, the second one is the comparison of a set-point with 
an output that can drive the system, the third one is a search for 
parameters and system conditions, that will maximize or 
minimize a given function. AI techniques such as fuzzy logic 
and neural network techniques make the implementation in a 
robust and reliable approach. Integration of modern power 
electronics, power systems, communications, information, and 
cyber technologies with high penetration of RERs has been at 
the edge and at the frontier for the design and implementation 
of microgrid and smart grid technology 
Due to the importance and wide applications of ML techniques, 
these techniques and their applications in power systems are 
briefly reviewed in the next section. 

B. Machine Learning 
Three main ML types are: (1) supervised learning, (2) 
unsupervised learning, and (3) reinforcement learning. These 
techniques are used for different tasks such as regression, 
classification, clustering, and dimensionality reduction. Fig. 3 
shows machine learning algorithms types[7]. Regression-based 
algorithms in which the output variable is a real or a continuous 
value were used in power system for network admittance, 
parameter and topology estimation, load forecasting, fault 
diagnosis, renewable power forecasting, load modeling, energy 
price forecasting, power flow modeling,    power system online 
sensitivity identification [7].   Classification algorithms where 
the output variable is a discrete value were used for fault 
detection and classification, power quality disturbance 
classification, power system security assessment and 
classification, power system stability classification, and 
islanding classification. Among these algorithms, artificial 
neural networks (ANNs) and support vector machines (SVM), 

and decision tree have demonstrated robust and appropriate 
performance in classification problems. 
Deep learning is based on ANNs representation learning which 
uses various layers for extracting different features from the raw 
input. Deep learning algorithms have been used for problems 
such as power system transient stability prediction, voltage 
instability prediction, load forecasting, and renewable power 
forecasting[12]. Generative adversarial network (GAN) that 
was introduced in 2014 is a deep leaning model and one of  most 
promising methods for unsupervised learning in complex 
distributions. The GAN consists of two modules: the generative 
model (G) and the discriminative model (D). GAN techniques 
are used for power system dynamic security assessment with 
missing data [13], short-term scheduling of power systems[14], 
risk assessment [15], dynamic state estimation in power 
system[16], and phasor measurement unit data creation for 
improved event classification.  

Traditional deep learning techniques are appropriate to 
extract the features of Euclidean data, whereas in different 
practical applications data are generated from non-Euclidean 
domains. To cope with this issue, researchers developed graph 
neural networks (GNNs). Graph is a kind of data structure, and 
the common graph structure consists of node and edge. The 
node contains entity information, while the edge contains 
relation information between entities. GNNs can be divided into 
five categories that are shown in Fig. 4. 

 Graph neural networks are deep learning algorithms that 
can use the attributes of nodes and edges to improve the abilities 
of extracting features. GNNs were used in power system studies 
for different applications. Some applications of GAN and 
GNNs as advanced AI techniques in power system studies are 
shown in Fig. 5.    

Reinforcement learning as a machine learning methodology 
was used for energy management, attack detection, load 
frequency control, power system resilience, power flow studies, 
and power system stability control[17]. 

Clustering and dimensionality reduction techniques as 
unsupervised algorithms have been used for different problems 
such as predictive control of power plants, electricity customer 
classification, pattern recognition of load curves, reliability 
modeling of power plants, power quality assessment, power 
system capacity expansion modeling, electricity price 
forecasting, and load profiling [18]. 

 
Fig. 3. Different types of machine learning algorithms. 

https://en.wikipedia.org/wiki/Representation_learning
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IV. APPLICATION OF AI TECHNIQUES IN MICROGRIDS  
Artificial intelligence can be applied in renewable energy 

systems and microgrid/smart grid. Some of these applications 
are as follows: 
(1) Energy management systems, (2) Consumer load 
forecasting on the grid, (3) Forecasting of wind and PV 
generation curves, (4) Online fault diagnostics, protection 
schemes, and fault-tolerant control, (5) Cyber-attack detection 
(6) Sensorless robust estimation of feedback signals, (7) Noise 
and delayless filtering of signals, (8) Neural network modeling 
of static and dynamical system elements and real-time 
simulation by DSPs /FPGAs chips, (9) Intelligent scheduling of 
generation and storage, (10) High performance intelligent 
control of system elements, and (11) Real time pricing 
predictions of electricity with demand-side management 

Some of the most important applications of AI in MGs are 
discussed in the following sections.  
A. Microgrid Energy Management 

Energy management in MGs is an important issue 
considering technical and economical operational aspects. 
EMSs can be divided into two categories such as model-based 
and model-free EMS. Model-based EMS relies on domain 
expertise for development of accurate models and parameters 
for a microgrid. Hence, this method is neither transferable nor 
scalable, which results in high development costs. On the other 
hand, the MG uncertainties may lead to redesign of parameters, 
which significantly increases the maintenance costs[19].  

Model-free or data-driven methods include learning 
representations of close to optimal control schemes in the 
microgrid from its operational data. Using the learning-based 
methods can reduce the dependence on an explicit system 
model, improve the EMS scalability, and reduce the costs.  

A data driven stochastic energy management for isolated 
microgrid based on GANs was proposed in[20] considering 
reactive power capability of DERs and reactive power cost. In 
this study, the GAN was used as a data driven scenario 
generation technique for modeling of the uncertainties in the 
output power of the RESs to be used in the stochastic 
programming formulation. Securing optimal energy 
management in microgrid using GANs was discussed in[21]. In 
this study, the effect of data integrity attacks on the central 
control of the MGs, which can result in severe blackouts and 
load shedding was investigated. In[22], a probabilistic power 
flow method based on GCN was proposed where the study has 
two main contributions; first, GCN framework utilizing no prior 
electrical knowledge but the topology of power grid. Second, it 
reduces computing time greatly with the high accuracy, 
compared classical Monte-Carlo methods.   

Fuzzy logic controllers (FLCs) are independent of 
nonlinearities of the microgrid components; hence, they do not 
require complicated mathematical modeling, and this leads to a 
comprehensive EMS based on the simplified linguistic rules 
and reduces the control complexity specially for a microgrid 
with a large number of components and different operational 
modes. In[23], an energy management method based on FL 
supervisory for electric vehicles, including a fuel cell (FC) and 
two ESSs such as batteries and supercapacitors (SCs) was 
presented and implemented on an experimental microgrid. 
In[24], FL-based EMS method was proposed for optimal 
control of battery system in a residential microgrid. For FLC 
design in EMS studies, low complexity, including the input and 
rule numbers, must be taken into consideration [25].  

Uncertainty handling is an issue for EMS of MGs where 
in[25] the battery was oversized to cope with this problem that 
is not an optimal solution. To handle uncertainties in EMS, load 
and renewable power such as wind and solar can be predicted 
using methods such as radial basis function NN, or combination 
of several ANNs or ANN with other techniques[26]. The 
objective of EMS-based studies employing different types of 
ANNs is mainly minimizing the production cost, better 
utilization of the RERs, and minimizing emission[26]. 
Considering the intermittency of RESs and the high 
stochasticity in market prices and loads, online EMS is more 
advantageous due to the capability to handle uncertainties by 
exploring real time data. The traditional online methods such as 
model predictive control utilize a separate forecaster, whereas 
reinforcement learning methods[27] can learn a function from 
historical data. However, RL techniques are usually faced with 
dimensionality problems generated by the continuous state and 
action space, complex constraints, and sluggish training.  

A summary of AI-based techniques for EMS in MGs is 
given in TABLE I.  
B. Load and Generation Forecasting in MGs 

Considering the variable nature of load and increasing the 
penetration of RERs such as wind and solar energies in MGs, 
the uncertainty has been increased in MGs, and MGs are faced 
with challenges. Load and generation forecasting are 
considered as a solution to improve the MG stability and 
reliability for system operation and planning. However, 

 
Fig. 4. Different categories of graph neural networks. 

 
Fig. 5. Different applications of generative adversarial networks and graph neural networks in power system. 
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load/generation forecasting is challenging considering highly 
non-smooth and nonlinear behavior of the load/generation time 
series. Based on the time horizon of the studies, load forecasting 
(LF) can be categorized in short-term LF (STLF) (i.e., 
prediction of load from minutes to hours), mid-term LF 
(MTLF) (i.e., prediction of load from hours to weeks) and long-
term LF (LTLF) (i.e., prediction of load for years). The electric 
load depends on some factors such as metrological data, time, 
season, event, type of customer[7].  

Different tasks, including gathering data, data pre-
processing, design and select models, implementation, and 
validation of models have been discussed in the literature for 
load and generation forecasting. Fig. 6 shows the diagram of 
designing a load forecasting model.  

The first step in load and generation forecasting is 
preprocessing of the data to reduce noises and separate trend 
data to have more reliable data set. In this regard, different 
methods such as fuzzy information granulation function, 
wavelet decomposition method, principal component analysis 
method, empirical mode decomposition, and singular spectrum 
analysis have been used[28]. 

The next step after data preprocessing is using an algorithm 
for forecasting. In so doing, researchers have tried to develop 
new algorithms or improve the existing ones. AI-based methods 
are one of the most popular techniques for load and generation 
forecasting in MGs. These methods can be divided into single 
and hybrid models. In single models, techniques such as ANN, 
SVM, and FL, adaptive neuro-fuzzy inference system, self-
organizing map, and extreme learning machines[29], [30] have 
been used, whereas in hybrid techniques a combination of 
algorithms were used such as ANN with wavelet, ANN with 
FL, ANN with SVM, ANN with metaheuristic algorithms, and 
SVM with other algorithms.    

Among the LF techniques, the application of ANN in MGs 
has received much attention. The performance of ANN-based 
forecasting algorithms depends on the appropriate parameter 
tuning like layers and nodes. In addition, many ANN learning 
algorithms such as gradient based methods may get trapped in 
the local extremum or suffer from the overfitting in extracting 
the mapping functions[31]. To address this issue, combining 
ANN algorithms or combining ANN with other techniques 
have been proposed[38],[39]. However, although hybrid 
methods can improve the performance, they have more 
parameters. Hence, methods such as metaheuristic or trial and 
error were used for fine-tuning of the parameters of the ANN.  

RERs such as wind and solar with intermittent nature are an 
inseparable part of the microgrids; hence, increasing the 
forecast accuracy of these sources is a critical issue for different 
tasks such as management and control. Studies have used 
different AI-based techniques for wind speed/wind energy and 
irradiance/solar energy prediction such as ANN [34], SVM, and 
hybrid methods such as a combination of ANN and SVM. 
In[35], GANs and CNNs based weather classification model 
was proposed for day ahead short-term photovoltaic power 
forecasting. In[36], a data-driven method for scenario 
generation using GANs was presented, which is based on two 
interconnected deep neural networks. A distribution-free 
technique for wind power scenario generation, using sequence 
GANs was presented in[37].  

Support vector machine helps load and generation 
forecasting that is defined by a convex optimization problem. 
SVM has the advantage over ANNs to not trap in local minima. 
Support vector regression (SVR) machines were proposed for 
generation forecasting and load forecasting in different 
studies[38] to tackle the two main problems of ANNs for load 
forecasting in real world i.e. overfitting and curse of 
dimensionality. Other metaheuristic algorithms have been used 
to optimize the performance of SVM, such as particle swarm 
optimization (PSO), and genetic algorithm (GA). Another 
important issue in load or generation forecasting using SVR is 
the selection of kernel functions that may affect the 
computational time and accuracy. In this regard, multiple kernel 
learning based was studied in[39] for load forecasting; another 
study investigates the performance of SVR for load forecasting 
with four kernel functions, including linear, radial basis 
function, polynomial, and sigmoid. In SVM-based models with 
a large number of dataset, a significant portion of the machine 
memory and computation time is devoted to the storage and 
calculation of the matrix. Therefore, SVM-based algorithms are 

difficult for the training of large-scale datasets. To address with 
this problem, recurrent neural network was employed[40]. A 

 
Fig. 6. Diagram of developing a load forecasting model[79]. 
 

TABLE I 
SUMMARY OF AI-BASED TECHNIQUES FOR EMS IN MGS 

Ref. Proposed method Contribution Limitation Demonstration 
[23] Fuzzy logic A distributed EMS to control the energy flow in the hybrid 

energy systems using multi-agent FL, flexible to a 
chaining configuration 

Battery degradation is not considered, system 
losses are not considered 

Simulation models 

[24] Fuzzy logic Low complexity FL controller of only 25-rules for EMS 
of microgrid, minimizing the grid power profile 
fluctuations 

Battery degradation is not considered, battery is 
oversized to handle uncertainties 

Simulation, 
experimental with real 
microgrid 

[25] Bee colony and ANN and 
Markov chain 

Minimizing production cost, increasing convergence 
speed, improving efficiency and accuracy under uncertain 
conditions, demand response is considered 

Voltage and frequency regulation, and battery 
degradation is not considered.  

Experimental MG test 
bed 

[26] Reinforcement learning and 
dynamic programming 

Maximizing reliability, self-sustainability, environmental 
friendliness, battery life, and customer satisfaction 

Dynamic state prediction, real time 
implementation, and coordination of active and 
reactive power dispatches were not considered 

Simulation models 

[27] Imitation learning Resolve dimensionality issues arising from the continuous 
state and action space, complex constraints, and sluggish 
training in RL EMS, reduce training time 

Battery degradation is not considered, complex 
formulation, system losses are not considered, 
only economic aspect of microgrids is 
considered. 

Numerical studies, 
simulation models 
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summary of AI-based techniques for load and generation 
forecasting in MGs is given in TABLE II.  

 
C. Fault Detection and Protection Schemes in Microgrids 

Protection of MGs is different from the protection of 
distribution systems and traditional techniques due to their 
characteristics. The traditional protection schemes may not 
operate appropriately in MGs due to the following issues[41]: 
(1) Variation of fault currents in different operation modes; (2) 
Bidirectional power flow; (3) Dynamic characteristic of DGs 
operating in MGs; (4) Topological changes in the power grid 
due to the intermittent nature of DGs; (5) Type of DGs; (6) 
Location, number, size, and control type of DGs.  

The main challenges with MG protection are higher level of 
fault current, variation of the short-circuit level, blinding 
protection, false tripping, automatic reclosing prohibition, 
unsynchronized reclosing, reduction in the reach of distance 
relays, and relay interoperability[41].  
1) Fault and Islanding Detection and Classification in 

MGs Using AI Techniques 
For MGs protection, fault detection is a key function. 

Traditional fault detection and classification used in distribution 
systems may not be straightly applied to MGs due to the 
existence of DERS and different topologies. Therefore, these 
methods should be changes/updated based on factors such as 
MGs’ dynamic, topology, operation modes, and generating unit 
characteristics. Methods used in the literature for fault detection 
and classification in MGs that can be categorized in three main 
groups such as signal processing-based methods, AI-based 
methods, and model-based methods [42].  
Different AI-based techniques were applied in the literature, 
such as type-2 FL [43], decision tree-induced fuzzy rule base 
intelligent protection scheme[44], FL for islanding detection 
[45], ANNs and SVMs for fault detection and classification. 
In[46], a real-time fault detection and localization method based 
on GANs was proposed for all electric ship MVDC power 
system. The results showed that the accuracy of the 
classification method is 99% with anti-noise capability. In [47], 
a domain adaptation combined with deep convolutional 
generative adversarial network (DA-DCGAN)-based 
methodology was proposed for DC series arc fault diagnosis in 
photovoltaic systems.  

Graph convolutional networks have been widely used for 
fault diagnosis in microgrid and power system such as 
transmission line transient faults[48], transformer faults[49], 
and power line outage[50]. GCN was used in[51] for fault 
location in distribution network. The proposed method 
integrates multiple measurements at various buses while taking 
system topology into account.    

 In[52], the performance of several ML techniques such as 
decision tree, K-nearest neighbor (KNN), support vector 
machine, and Naïve Bayes were compared for fault 
classification in MGs considering optimal wavelet function 
where the KNN showed a better performance with the accuracy 
of 95.63% compared to the other methods.  
2) AI-Based Protection Schemes 

Conventional protection strategies such as differential and 
directional protection, distance protection, overcurrent relays, 
under/over voltage, and under/over frequency may require 
some modifications to be used for MG protection[42]. One of 
the methods used for MG protection is adaptive protection in 
which the settings are updated according to the variations and 
dynamics of MGs. In[41], a review of adaptive protection of 
MGs was presented where some AI techniques are used. In[53], 
an adaptive overcurrent protection strategy was discussed for 
distributed systems with distributed generators and fault current 
limiters. In[54], a rule-based adaptive protection strategy was 
presented for MGs employing ML techniques. 

From data mining point of viewpoint, the analysis of 
uncertain elements in MG can be carried out by Pearson 
correlation coefficient; then, a hybrid ANN-SVM model is used 
for state recognition where adaptive reconfigurations can be 
implemented with improved decision-making to change the 
relay settings and the grid topology to achieve the intelligent 
reliable operation. In[55], a central protection system with 
overcurrent protection capability was implemented for 
reconfigurable MGs based on fuzzy logic and graph algorithms. 
In[56], a numerical relay was developed with a hybrid fuzzy-
optimization approach for adaptive relay settings and optimal 
coordination. A summary of AI-based techniques for MG 
protection is given in TABLE III. 
D. AI Methods for Power Electronic Control in MGs 

Power electronic devices are an important part of a 
microgrid that connect RESs, ESSs, and some loads to the AC 
or DC buses. AI was used in the literature for applications in 

TABLE II 
SUMMARY OF AI-BASED TECHNIQUES FOR LOAD AND GENERATION FORECASTING IN MGS 

Ref. Proposed method Contribution Limitation Demonstration 
[31] ANFIS model, MLP-ANN, 

and RBF-ANN 
forecasting ambient temperature and wind speed, load, and 
solar irradiance with high accuracy, and reduce MG 
operation cost 

Complicated structure of the model, high 
number of parameters and difficulty in tuning 
them  

Simulation 

[33] ANN Wind speed forecasting with the novelty of forecasting the 
general trend of the incoming year by designing a data 
fusion algorithm employing several ANNS 

Low accuracy for situations with the lack of 
updated data, dependence on the periodic 
updates for developing the model 

Simulation using real 
metrological data of 
regions in Malaysia 

[34] ANN Forecasting global horizontal irradiance using four ANNs 
including non-linear autoregressive, feedforward, long 
short-term memory and echo state network, echo state 
network has the best accuracy 

The method filters the data every time a new 
forecast is requested, which might limit the 
applicability of the method, the convergence 
speed of algorithms has not discussed 

Simulation using real 
data 

[36] PSO and SVM Using least square SVM and PSO algorithm for load 
forecasting with spikes, higher accuracy compared to 
SVR, SVM, and ANN, avoid problems of data 
insufficiency, bad 
data, or data volatility 

Difficulty in training of large-scale dataset by 
SVM due to consumption of a significant 
amount of machine memory and computation 
time by storing and calculating the matrix 

Simulation using Peng-
Hu Island data 

[38] Recurrent Neural Network Using LSTM recurrent neural network to predict the load 
of non-residential consumers employing multiple 
correlated sequence information, better performance 
compared to other methods 

Ignoring some external factors in load 
forecasting, such as the current economic 
orientation and policy support in the region has 
not considered 

Simulation using real 
data in China 
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power electronics such as design, control, and maintenance[11]. 
Application of AI for control of power electronic devices 
include tuning of PID controller parameters, MPPT in wind and 
PV systems, modulation, and energy management.  

Conventional control has provided several methods for 
designing controllers for dynamic systems. All of them require 
a mathematical formulation for the system to be controlled, and 
a certain approach that will be used to design a closed-loop 
control. These control approaches will have a variety of ways 
to utilize information from mathematical models. Sometimes 
they do not consider certain heuristic information early in the 
design process but use heuristics when the controller is 
implemented to tune it (tuning is invariably needed since the 
model used for the controller development is not perfectly 
accurate).. Fuzzy logic and neural networks approach exactly 
these lack of real-life understanding by heavily math-oriented 
control designers, by allowing heuristics and learning from past 
case studies or numerical data, usually retrofitting an excellent 
performance controller which most of the time excel when 
compared to heavily mathematical control design approaches. 
To implement an ANN-based controller, at first in the system 
identification stage, a neural network model of the plant to be 
controlled is developed. In the control design stage, such a 
neural network plant model will be used to train a controller; 
three possible architectures can be used after the system 
identification, (i) model predictive control, (ii) the adaptive 
inverse model-based control, and (iii) model reference control. 
Heuristic algorithms can be used for fine-tuning of parameters.  

FL controller was used in the literature to control the output 
voltage of a phase shifted PWM (PS-PWM) soft-switching DC-
DC converter [57], and  to control the duty ratio of DC/DC 
boost converters integrated with PV systems [58]. One of the 
drawbacks of fuzzy controllers can be computational demand 
that may affect the converter response in sudden variation of 
load. This issue can be solved using look-up tables considering 
appropriate interpolation methods.  

Other methods such as a neuro-fuzzy controller [59], 
optimized back propagation ANN [60], and adaptive fuzzy-
neural-network control [61] were used to control the output 
voltage of converter by controlling parameters such as the duty 
cycle of switches. Some studies employed optimization 
algorithms such as GA [62], whale optimization [63], to further 

improve the performance of converters controlled by AI 
techniques by optimizing and tuning the controller parameters. 

One of the important issues in RESs is maximum power 
point tracking that is done by controlling the power electronic 
converters. Therefore, different AI-based maximum power 
point tracking techniques such as FLC and ANNs were 
proposed. FLC has an efficient performance compared to other 
MPPT techniques, and it provides a higher degree of freedom 
to tune parameters in MPPT of PV systems. Using FLCs the 
modifications in the control system will be easier, and as a 
result, the system will be more compatible considering the 
system uncertainties and nonlinearities[64].  

ANNs have been used for MPPT control systems. Modules’ 
inputs such as irradiation/temperature, short circuit current, or 
open circuit voltage can be considered as the inputs of the ANN 
to control the converter or an input to another controller[65]. 
Since ANNs can provide a sufficiently accurate MPPT without 
requiring extensive knowledge about the system 
model/parameters they have used in wind [66] and PV systems. 
A summary of AI-based techniques for MG power electronics 
control is given in TABLE IV. 
E. Microgrid Cyber-Attack Detection Using AI Techniques 

Due to the growing number of cyber-physical systems 
(CPSs), their importance has become more highlighted, and 
attention has been paid to study these systems. Microgrids, as 
an example of CPSs, are vulnerable to different cyber-attacks. 
Therefore, cyber-attacks detection in MGs has become a 
significant issue due to the increasing use of MGs in different 
applications from renewable power generation, to electric 
power distribution and electric transportation[67]. These cyber-
attacks include false data injection (FDI), sensor attacks, 
communication latency, denial of service (DoS) attacks, control 
system attack, etc.[68]. Microgrid stability, reliability, and 
economy can be affected by these attacks, and they are threats 
to the safe and efficient operation of the system.  

Methods for cyber-attack detection have been proposed in 
the literature among them the AI-based techniques have 
attracted more attention due to their efficiency and accuracy. 
These techniques include deep learning[69], recurrent neural 
network[70], Hilbert-Huang transform and deep learning[71], 
deep learning, wavelet transform, and singular values 
approach[67], ANN[72], SVM, AI-ES fuzzy system  [73].  

TABLE III 
SUMMARY OF AI-BASED TECHNIQUES FOR MICROGRID PROTECTION STUDIES 

Ref. Proposed method Contribution Limitation Demonstration 
[41] Naive Bayes and decision 

trees 
Suitable features extraction from local electrical 
measurements and using Naive Bayes and decision trees 
classifiers for better fault discrimination and localization, 
performance of j 48 decision tree is better than Naive 
Bayes 

Grid-connected mode and transition from grid-
connected to islanded modes are not considered, 
(HIF), fault direction, and topology change are 
not considered 

Numerical simulation 

[42] FL Using an interval type-2 fuzzy logic system for detection, 
classification, and localization of the faults in MGs, less 
computation burden than the training-based approaches 

Only single-phase faults are considered, high 
impedance fault (HIF), fault direction, and 
topology change are not considered 

Simulation 

[44] ANFIS Using ANFIS-based islanding detection for microgrids, 
accurate and fast, decrease the NDZ due to combination of 
passive techniques, does not affect power quality 

Dependency of the performance of the method 
on the quality of training samples, sampled time, 
and number of samples 

Simulation end 
experimental 

[46] DT and ANN Overcurrent adaptive protection for distributed systems 
with DGs and FCL, capability of OC relays for 
communication based on data generated by FFT to 
evaluate their own operating conditions  

The transient response of FCL is not discussed Simulation 

[47] ANN and SVM Using a rule-based adaptive protection scheme employing 
ANN-SVM methodology, analysis of uncertain elements 
in an MG by Pearson correlation coefficients from data 
mining, topology change, and fault location are considered 

Many data sets, complexity, high computational 
burden and training 

Simulation on a 
microgrid model at 
Aalborg University and 
IEEE 9-bus system 
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GANs were used for cyber-attack detection in MGs and 
power systems. In[74], a data-driven learning-based algorithm 
was proposed for detecting unobservable FDIAs in distribution 
systems. In this study, the autoencoders were integrated into 
GAN framework, which successfully detects anomalies under 
FDIAs. A new generative adversarial framework was proposed 
in[75] for classifying cyber-attacks and faults, learning from 
skewed class distributions.  

Other ML-based techniques such as KNN, K-means, Q-
learning, extended nearest neighbor, dynamic Bayesian 
networks have been used in the literature to detect and mitigate 
cyber-attacks in smart grids that a summary of them could be 
found in[76]. The accuracy of these methods was reported to be 
more than 93.76% for Hilbert-Huang transform and deep 
learning technique, 95% for deep learning, wavelet transform, 
and singular values approach, and 96% for singular value 
decomposition and fast Fourier transform.  

Cybersecurity measures of energy systems and microgrids 
is still considered as accessories, not as a build-in function[77], 
especially with the lack of updated standards and common 
market trends. Hence, multidisciplinary approaches are 
required to be taken to consider economic and social 
development that have been forgotten or neglected in the 
literature. A summary of AI-based techniques for MG power 
electronics control is given in TABLE V. 
F. AI Techniques for Other Applications in Microgrids 

Using AI for control Applications in MGs is not limited to 
power electronics. Induction motors/generators are widely used 
in MGs. An induction motor/generator has a very complicated 
instantaneous model based on decoupled d-q equations, 
trigonometrical Park and Clarke transformations, where an 
inverse model is resolved mathematically in order to control 
torque and flux with virtual d-q currents, then such controller 
response is reverse-calculated in real-time in order to generate 
the pulse-width modulation of transistors in a three-phase 
inverter that commands the induction machine. It seems that 
fuzzy logic and neural networks are natural solutions for 
induction motor speed control, optimization of flux, and signal 
processing of non-linear functions. 

Another application of AI in MGs could be intelligent 
monitoring and protection. As an example, a small-scale wind 
farm integrated into a microgrid could be designed for 

intelligent monitoring and protection. In such an application, 
the signals to be acquired should be: 

• Wind Signals:  velocity, wind direction, turbulence of blade, 
yaw angle, shaft torque, mechanical brake signal, tip-speed-
ratio 

• Gear box: oil temperature, oil viscosity, noise intensity, 
vibration, nacelle temperature 

• Turbine Signals:  Blade speed, shaft speed, pitch angle, 
pitch angle control signal, bearing temperatures, vibration 

• Generator:  Bearing temperatures, shaft vibration, stator 
winding temperature distribution, rotor magnet 
temperatures, shaft torque, stator voltages, phase sequence, 
percentage of terminal voltages and currents imbalance, 
stator currents RMS, average, peak, stator frequency, active 
power, reactive power  

• Converter: Converter temperatures, cooling fluid velocity, 
dc-link voltage, dc-link current, dc-link power, ac line 
voltages, output frequency, phase unbalance of voltages, ac 
line currents, phase unbalance of currents, active power, 
reactive power, motoring/regeneration mode 

• Fourier and Wavelet expansion of selected signals 
The signals can be monitored with the help of sensors, or 
adaptive sensorless estimation, to determine the general health 
condition of a wind farm, such as indicated in Fig 7.  The health 
conditions could be “excellent” if the variation of the signals 
remains confined in a highly satisfactory range. If some signals 
go beyond this range but are yet very safe, the system can be 
defined as “very good”. Similarly, for other ranges, the health 
index can be classified as “good”, “fair”, “poor”, “unsafe”, etc. 
If some signals degrade, the diagnostic messages for the signals 
can be generated independently. If any signal goes beyond the 
safe range, for a fault condition, the system can be shut down 
for protection. Similar health monitoring principles can be 
extended to PV or other systems, eventually implemented in a 
real-time smart-grid platform (such as Opal-RT or other 
possible solutions). Real-world function approximation 
problems are basically system modeling solutions, which can 
be algebraic solutions, i.e., a mapping of input to output, or 

TABLE IV 
SUMMARY OF AI-BASED TECHNIQUES FOR POWER ELECTRONICS CONTROL IN MICROGRIDS 

Ref. Proposed method Contribution Limitation Demonstration 
[56] FLC Using FLC to control output voltage of a phase shifted 

PWM soft-switching DC-DC converter, using derived look 
up tables from original FLC to suppress high computational 
demand, reduce costs 

High computational demand when using original 
FLC, unavailability of fuzzy information and the 
optimizing parameters of the when lookup table 
is used 

Simulation and 
experimental laboratory 
setup 

[57] FLC Duty ratio control of boost converter is investigated with 
MPPT techniques such as constant voltage controller and 
FLC, fuzzy logic-based controller is implemented to 
reconciled the duty ratio of DC-DC boost converter 

Stability of the system is not investigated, 
dynamic performance of the system under 
varying conditions is not considered, 
convergence of controller is not discussed 

Simulation 

[59] Back propagation ANN 
controller  

 

Using back propagation ANN to control boost converters 
in PV systems, Optimization of ANN structure for simple 
hardware implementation and enhanced performance, 
sharp changes in temperature and irradiance are considered 

Stability analysis is not given, systematic 
procedure for ANN design is not considered, 
optimal structure is based on trial and error of a 
few choices that may not be global solution 

Simulation of 
commercial PV array 
models 

[65] ANN-based reinforcement 
learning for MPPT in wind 
turbines  

Using ANN for MPPT in PMSG wind turbines, the MPPT 
algorithm has online learning capability through a 
combination of the ANNs and the Q-learning method, 
improve efficiency, adaptive to system aging 

Wind speed range is limited and all scenarios are 
not considered, transition from MPPT to constant 
power region is not discussed 

Simulation and 
experimental emulator 

[66] ANN for MPPT in PV 
systems 

ANN-based Levenberg-Marquardt (LM), Bayesian 
Regularization, and Scaled Conjugate Gradient (SCG) 
algorithms are used for MPPT in PV systems, LM has 
better performance 

Optimal design of networks has not discussed, 
more real data in clean and cloudy conditions is 
required to compare performance of algorithms in 
real conditions 

Simulation, using real 
filed data for training 
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state-space solutions, i.e., memory-based equations, where the 
output will depend on the internal states plus past inputs. 

A neural network is a very simple way for learning functions 
that can be used to support energy forecasting, load-flow 
modeling of large power systems, learning of non-linear 
functions in power electronics and power systems, estimation 
of ill-modeled systems, for example, temperature variation 
effect of induction motor rotor resistance, non-linear response 
of capacitors, loss modeling of transformer core, lifetime 
expectation of protection circuits and so many other 
applications that are usually very difficult to find a function 
approximation using pure mathematical theory. Function 
approximation can be useful in several problems related to 
signal processing in power electronics, microgrid/power 
systems, and power quality. One example is the estimation of 
distorted waves. 

V. DISCUSSIONS AND FUTURE RESEARCH TRENDS 
Artificial intelligence techniques have been used in the 

literature for different applications in microgrids, such as 
energy management, load and generation forecasting, fault 
detection and protection, power electronics control, and cyber 
security. It has been a constant challenge for researchers to find 
optimal AI-based solutions to design, manufacture, develop, 
and operate new generations of industrial systems efficiently, 
reliably, and durably as possible. Getting enough information 
about the system that is to be modeled is the first step in the 
system identification and modeling process. Besides, a clear 

statement of the modeling objectives is necessary for making 
an efficient model. Industrial systems may be modeled for 
condition monitoring, fault detection and diagnosis, sensor 
validation, system identification or design, and optimization of 
control systems. AI techniques such as fuzzy logic and artificial 
neural networks have the computational power to solve many 
complex problems; it can be used for function fitting, 
approximation, pattern recognition, clustering, image 
matching, classification, feature extraction, noise reduction, 
extrapolation (based on historical data), and dynamic modeling 
and prediction. The performance and efficiency of MGs can be 
improved by using AI-based methods. However, there are 
several challenges to employ and implement AI-based 
techniques in MGs that should be addressed. The future trends 
of AI in MGs are shown in Fig. 8. 

VI. CONCLUSION  
This paper presents a review of the application of AI 

techniques in microgrids. Microgrid recent developments and 
their characteristics was discussed at first. Then, a brief 
overview of AI techniques was presented. Finally, the 
applications of AI techniques in microgrid were discussed. 
Literature review shows that using AI models for different 
applications of MG is increasing due to their advantages. These 
models can be developed based on the data gathered from the 
system without requiring the exact model and characteristics of 
the system. The accuracy of the results of different models 
depends on enough data availability, accurate feature 
extractions, parameter tuning, and other factors and conditions. 
Despite all advantages, there are still challenges to implement 
AI models in real-world MGs that should be addressed to 
achieve results with high-accuracy, better efficiency, and 
reliability.  
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