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ABSTRACT This paper focuses on a powerful and comprehensive overview of Deep Learning (DL)
techniques on Distribution Automation System (DAS) applications to provide a complete viewpoint of
modern power systems. DAS is a crucial approach to increasing the reliability, quality, and management
of distribution networks. Due to the importance of development and sustainable security of DAS, the use
of DL data-driven technology has grown significantly. DL techniques have blossomed rapidly, and have
been widely applied in several fields of distribution systems. DL techniques are suitable for dynamic,
decision-making, and uncertain environments such as DAS. This survey has provided a comprehensive
review of the existing research into DL techniques on DAS applications, including fault detection and
classification, load and energy forecasting, demand response, energy market forecasting, cyber security,
network reconfiguration, and voltage control. Comparative results based on evaluation criteria are also
addressed in this manuscript. According to the discussion and results of studies, the use and development of
hybrid methods of DL with other methods to enhance and optimize the configuration of the techniques are
highlighted. In all matters, hybrid structures accomplish better than single methods as hybrid approaches hold
the benefit of several methods to construct a precise performance. Due to this, a new smart technique called
Learning-to-learning (L2L) based DL is proposed that can enhance and improve the efficiency, reliability,
and security of DAS. The proposed model follows several stages that link different DL algorithms to solve
modern power system problems. To show the effectiveness and merit of the L2L based on the proposed
framework, it has been tested on a modified reconfigurable IEEE 32 test system. This method has been
implemented on several DAS applications that the results prove the decline of mean square errors by
approximately 12% compared to conventional LSTM and GRU methods in terms of prediction fields.

INDEX TERMS Cyber security, distribution automation system, deep learning, learning-2-learning.
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Deep belief Stacked auto encoder.
Deep deterministic policy gradient.
Deep learning.

Deep neural network.

Dynamic distribution network reconfiguration.

Denial of service.

Deep Q net.

Demand response.

Deep restricted Boltzmann machine.
Deep reinforcement learning.

Deep residual network.

Ensemble DBN.

Empirical mode decomposition.
Echo state network classification.
Electric vehicle.

Factored restricted Boltzmann machines.
False data injection attack.
Generative adversarial network.
Gradient boosting Model.

Gated recurrent unit.

Heating, ventilation, and air conditioning.

Intrinsic mode function.

Least square policy iteration.
Long short term memory.
Long-term forecasting.

Mean absolute error.

Mean absolute percentage error.
Mean bias error.

Markov decision process.
Machine learning.

Multi-layer perceptron.
multiple linear regression.
Mean relative error.

Mean square errors.

Mid-term forecasting.

Neural network.

Optimal power flow.

Plug-in electric vehicle.
Q-learning reinforcement.
Random Forest.
Reinforcement learning.
Restricted Boltzmann machine.
Root mean square error.
Recurrent neural network.
Stacked auto encoder.

Smart city.

Supervisory control and data acquisition.
Stacked denoising auto encoder.
Standard deviation error.

Smart grid.

Stacked sparse auto encoder.
Short-term forecasting.
Support vector regression.
Support vector machine.
Sequence to Sequence.

Time LeNet.

VCC  Volt-VAR control.
WPD  Wavelet packet decomposition.

I. INTRODUCTION

Distribution Automation System (DAS) is an intelligent sys-
tem that enables electric power utilities to remotely monitor,
coordinate and operate distribution components in a real-time
mode [1]. The main objective of DAS can be summarized as
follows: improve voltage control, accurate load, and energy
forecasting, improve the reliability and security of the sys-
tem, accurate planning and operation of data, and improve
fault detection/restoration and reconfiguration [2]. Generally,
DAS is based on a technology that gathers and analyzes data
for making control decisions according to the distribution
power system model and then executes the suitable control
decisions to achieve the desired result [3]. The traditional
models for analysis, control, and decision-making of DAS are
mostly dependent on the physical model of the distribution
system and mathematical calculations. These methods did
not achieve satisfactory outputs, with regards to reliable and
accurate information of distribution network or customers is
not available.

Artificial intelligence (AI) algorithms such as statistical
methods, optimization theory, neural networks (NNs), and
machine learning (ML) are examples of state-of-the-art tech-
nologies, which have been vastly applied to the complex
problems of the power system. ML has emerged in the power
area in the recent two decades that has the ability to learn from
a huge amount of historical data and to make rapid decisions
without human intervention. ML includes several algorithms
that have been successfully employed for different disciplines
such as classification, recognition, regression, prediction, and
so on. DL is a subset of ML that applies cascaded layers to
extract several features automatically of raw data. DL tech-
niques have blossomed rapidly, and have been widely used
in several fields. DL algorithms can be categorized, i.e.,
supervised, semi-supervised and unsupervised. In addition,
Reinforcement Learning (RL) or Deep RL (DRL) is another
classification of the DL algorithm [4]. Fig. 1 represents the
different techniques of DL that are available in the literature.

The mathematical analysis and details of DL algo-
rithms can be adapted from several papers like Deep Neu-
ral Networks (DNN) [5], Convolutional Neural Networks
(CNN) [6], Recurrent Neural Networks (RNN) [7], Long
Short Term Memory (LSTM) [8] and Gated Recurrent
Units (GRU), Auto-Encoders (AE), Restricted Boltzmann
Machines (RBM), Generative Adversarial Networks (GAN)
and RL [9]. The use of DL has received a great deal of
attention in recent years due to the unique features such as
a robust, universal, scalable, and scalable learning approach
that contributes to the sustainable development and security
of modern power systems. DL algorithms have been proven
as a worthy performance to solve the complex problems in
the power system in several studies such as [10]. Hence, DL,
RL, and DRL seem to be advanced tools to overcome the
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FIGURE 1. Classification of DL methods available in the literature.

problems of uncertainty and computational complexity based
on a huge amount of data from the DAS. The manuscript
presents a comprehensive overview of the DL techniques on
the DAS, which considers several application areas. These
applications include fault detection and classification, load
and energy forecasting, electricity market, cyber security,
network reconfiguration and restoration, voltage control and
demand response.

The mentioned applications are categorized into two cat-
egories. The first category includes applications based on
classification and prediction that have been studied by deep
supervised, semi-supervised and unsupervised learning meth-
ods. The second is used when the problem is based on
decision-making (RL method) that leads to the optimiza-
tion of the desired objective. Classification of DL methods
employed in this study illustrates in Fig. 1.

In addition to the reviewed DAS application in this
manuscript, the L2L platform-based DL is suggested for solv-
ing the problems of DAS. Section II presents DL techniques
for applications of DAS that are divided into subchapters
on cyber security, voltage control, network reconfiguration
and restoration, etc. Section III presents the proposed method
structure for future research. The general evaluation of DL
methods is conferred in section VI as discussions. Finally, the
conclusions are expressed in section IV. Also, a summary of
DL methodologies in the literature is presented at the end of
this section.

Il. APPLICATIONS OF DL IN DISTRIBUTION
AUTOMATION SYSTEM

This section reviews the DL algorithms in applications of
DAS. The existing literature is divided into sections such
as load forecasting, energy forecasting, fault detection and
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classification, energy market forecasting, network reconfig-
uration and restoration, demand response, cyber security and
voltage control. As mentioned above, these applications are
grouped into two categories according to their field of work.
Fig. 2 depicts the DAS applications reviewed in this section.
Also, the common evaluation indexes for comparing the effi-
ciency of the DL techniques are investigated.

A. LOAD FORECASTING

Load forecasting is one of the most important influencing fac-
tors in the planning, operation and control of modern power
systems. The high penetration of distributed energy resources
into the existing grid increases the uncertainty of operations
and planning of SG [11]. Therefore, the correct forecasting of
load at different levels is beneficial for the DAS economically
and saving electricity. Load forecasting depends on several
factors that can change the load consumption pattern. The
time horizon factor is one of them that includes Short-term
forecasting (STLF), Mid-term forecasting (MTLF) and Long-
term forecasting (LTLF). STLF has been used in different
fields, such as economic load dispatch, real-time control,
energy transfer scheduling, and demand response [12]. MTLF
and LTLF can be applied for planning the power plants and
represent the dynamics of the power system [13]. Several
intelligent algorithms are used for load forecasting based
on small datasets [14]. Hence, DL algorithms considering
the larger volumes of datasets extracted by smart meters are
efficient for load forecasting in the DAS [9].

A summary of the DL methods used in SG for load fore-
casting is presented in this paper. In order to plan and operate
of power system, a DNN for STLF is presented in [15].
Then, the probability density of load consumption has been
forecasted based on the DNN method combined with quantile
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regression. Lastly, the results of the suggested method are
compared with ML tools such as random forest and gradient
boosting machine. Hence, there exist different types of load
forecasting papers that apply DL application in the DAS to
STLF. In [16], the application of Feed-forward DNN and
Recurrent-DNN models by use of STLF data to compare
are studied. Synthesis of CNN and K-Means algorithms for
STLF with improved scalability is suggested in [17] by using
K-means algorithm, the large volume data set is clustered
in to proper subsets. Then subsets are trained as input to
CNN. The experimental results of the proposed method are
shown its effectiveness. The DNN combined with CNN for
STLF in a north China city is used [18]. CNN approach
is used to learn deep features from the historical dataset.
The variation of historical load dataset is modeled using
LSTM based RNN. Likewise, the learned dataset is used
to predict load via dense layers. The proposed method is
quite flexible and efficient that can be applied to other pre-
dictions. A DBN compound with parametric Copula models
for forecasting hourly load is suggested in [19]. Load data
in an urban area in Texas is utilized for the experimental
validation. Proposed methods are compared with ANN, SVR,
and ELM. By mean MAPE and RSME, the experimental
results have confirmed that the proposed model is an effective
method. In [20] is proposed an approach using DBN that
is made from multiple layers of RBMs for STLF in the
Macedonian for validation of the proposed method. Here,
the layer-by-layer unsupervised training method is controlled
by fine-tuning the parameters by using a supervised back-
propagation training method. DRNN-GRU model for STLF
and MTLF by using consumption data of load building is
presented [21]. This method is evaluated by using several
factors such as the root mean square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error
(MAPE). This model is compared to that of DRNN-LSTM,
RNN, MLP, ARIMA, SVM, and MLR. The DRNN-GRU
model can be achieved better performance for estimating the
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load demand data. Authors in [22] are represented empirical
mode decomposition (EMD) based DL which incorporates
the EMD approach with the LSTM model to forecast the
electric load demand for a time interval time. The EMD tech-
nique is analyzed the load data time series signal into various
intrinsic mode functions (IMFs) and residue. Afterward, the
LSTM model is trained by using IMF as input data. Finally,
to determine the combined output for electricity demand, the
prediction outcomes of all IMFs are incorporated together.
In [23] is proposed Load demand Forecasting using EMD
method composed with DBN containing two RBMs of energy
in Australia. Furthermore, the performance of the proposed
approach is evaluated by comparing the prediction results
with SVR, ANN, DBN, RF, EDBN, EMD-SVR, EMD-
SLFN, and EMD-RF models. A residential load forecasting
by using CNN is suggested in [24]. In order to decrease
the MAE, the suggested model is combined with CNN. The
CNN method also is compared with other techniques like
SVM and ANN. Stacked denoising auto-encoders (SDAs)
model is proposed for electricity load forecasting [25]. The
output of SDAs data is used for the training process of SVR
model as input. In [26] is proposed two LSTM methods
based on hourly and minute ahead for load demand predic-
tion. Here, the output results have confirmed that a standard
LSTM method cannot accurately predict while the LSTM-
based Sequence to Sequence (S2S) method achieved accurate
prediction. Also, authors in [27] by using historical data are
suggested CNN method for load demand predictions. Output
results from CNN are compared with LSTM- S2S, FCRBM,
shallow ANN and SVM. Experiment results are shown that
CNN has a better performance compared to other method-
ologies. Due to inconsistent consumption patterns in utility
customers, LSTM—RNN approach for load demand forecast-
ing is studied in [28]. An innovative pooling-based deep-
RNN for load forecasting in Ireland residential is proposed
in [29]. In [30] to amend the accuracy of load forecasting in
short term, a hybrid technique that includes DBN, LSTM and
SAE is proposed. Table 1 presents a detailed overview of DL
methods in load forecasting. The RMSE, MAE and MAPE
are useful evaluation indexes that are applied for comparing
the results.

B. ENERGY FORECASTING

Renewable energy sources, often called clean energy play
a significant role in power distribution systems. However,
renewable energy systems often have uncertain characteris-
tics, which lead to uncertainties in energy power systems [11].
Power systems are complicated artificial systems. With the
evolution of the smart grid, high penetration of wind, solar
power and customer participation have led systems to operate
in more complex and uncertain environments. Traditional
power system analysis and management decision-making
are related to physical modeling and numerical computa-
tions. The conventional methods find difficulty in handling
uncertain subjects so that they cannot satisfy the essentials
of the future evolution of smart grids. On the other hand,
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TABLE 1. Summary of some selected DL methods and evaluation indexes in load forecasting.

15 DNN(RF, MLP)
16 R-DNN, FE-DNN(DNN)

17 CNN, K-Means(SVR, CNN)
CNN, LSTM-RNN,
(CNN-RNN,DNN, LR, SVR)
Copula- DBN (NN, SVR, ELM,
DBN)

20 DBN-RBM (traditional model)

5 DRNN-GRU (LSTM, RNN,
MLP)

22 LSTM (RNN-EMD)

23 DBN-RBS (SVR, ANN, RF)

24 CNN(SVM, ANN)

25  SAD (SVR, ANN)

26 LSTM

27 CNN (LSTM, ANN)

28  LSTM-RNN (BPNN, KNN, ELM)

29  DRNN ( ARIMA, SVR)

30 DBN-LSTM, SAE
31  CNN (AE, DNN, Shallow)

18

19

Load Forecasting

RMSE MAE MAPE MRE MBE
v v
v v v
v v

v v
v v
v
v v v
v
v v
v
v
v
v
v
v v
v v v
v v

the extensive presence of advanced measurement infrastruc-
ture (AMI) and monitoring/management systems generate
massive data and equip the foundation of data for model
training in deep learning applications. Hence, DL, RL, and
DRL appear to be some of the most robust technologies for
the future development and success of the modern power grid.
In fact, uncertainties of solar and wind energy bring many
challenges to power systems. DL is a powerful tool to enhance
solar, and wind generation forecast accuracy based on large
datasets. Also, RL can help sequential decision-making under
uncertainty. The RL algorithm functions with only restricted
knowledge of the environment and with restricted feedback
on the quality of the decisions. Scenario generation can assist
to model the uncertainties and variations in renewables gen-
eration, and it is a basic means for decision-making in power
grids with high penetration of renewables.

A data-driven approach based on renewable scenario gen-
eration using GANS is proposed in [32]. This method com-
pared with probabilistic methods is data-driven and can be
captured renewable energy production patterns in both tem-
poral and spatial measurements for a large number of corre-
lated resources. In [33], the authors used the DBN method for
wind and PV power prediction. This method due to capturing
uncertainties in the energy time series has led to accurate
prediction. In [34], the convolutional graph AE method is pro-
posed for solar irradiance prediction. This method is applied
in applications where the temporal and spatial correlations are
vital points. Based on the results, the proposed method had
the lowest RMSE compared to LSTM. In [23], the authors
proposed a new interval probability distribution learning
method to increase the accuracy of planning and schedul-
ing of wind energy generation. The proposed approach is
presented for learning temporal traits from the time-series
data to handle the uncertainty of renewable energy. Therefore,
the accurate prediction of renewable energy for planning and
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operation of the power distribution system is an important
way to face this problem. In recent years, DL techniques have
been proposed for wind power and PV systems forecasting.
A hybrid model that includes wavelet transform, DBN and
spine-QR for short-term wind speed forecasting in China is
proposed in [35]. The wavelet transform is applied to analyze
the wind speed time datasets. Then, the invariant features of
each dataset are obtained by DBN. Finally, the uncertainties
in wind speed are considered by the QR technique. In [36]
is suggested a wind power forecasting technique based on
wavelet transform and CNN. The nonlinear features from
each dataset are learned by the CNN method. The proposed
model is compared with Back-Propagation ANN and SVM
of ANN architectures. The prediction results demonstrate the
supremacy of the stated method to predict the probabilistic
wind power. Empirical-WT, LSTM and Elman neural net-
work techniques are combined to wind speed forecasting. The
empirical-WT is implemented to analyze the wind speed time
dataset into numerous datasets. The LSTM and ENN tech-
niques are applied to forecast low/high frequency datasets
[37]. In [38] DNN method that includes LSTM and CNN is
proposed for deterministic short term wind power forecasting
in northeast China. In order to best perform probabilistic fore-
casting, the results of the deterministic model are evaluated.
In [39] a DBN method for wind forecasting in short term
is proposed. Then, the k-means clustering algorithm is used
to face the uncertainty in wind power. In [40] a technique
that combines AEs and DBM is presented for short term
wind power forecasting. The outcome results in MAE and
RMSE terms are derived better performance compares to
other techniques. The DBN, SAE and DSAE algorithms are
proposed for wind speed forecasting in Brazil [41]. Similarly,
in [42] rough-NNs with SAE and SDAE methods are com-
bined that called rough-SAE and rough-DAE for forecasting
the accuracy of the wind power. Output results are shown
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improved performance in comparison to SAE and SDAE
approaches. In [43] LSTM and RNN methods are studied for
forecasting PV power in Egypt. In order to achieve the best
forecasting, different LSTM approaches are tested. In [44]
several approaches such as MLP, LSTM, DBN and AEs are
suggested for solar power forecasting. The performance of
the methods is evaluated on a dataset containing solar power
measurements in Germany. The DRNN-LSTM model for PV
power forecasting is proposed [45]. The experiment results
are exhibited the best performance compared to MLP and
SVM methods. In [46] are proposed a DNN model called
PVPNet to PV power forecasting that is used the solar irradi-
ance dataset as input variables. In [47] is applied DBN to short
term power PV prediction. In [48] a technique is proposed
for PV power forecasting, which combines wavelet transform
and DCNN. The method is tested on PV farm data-sets in
Belgium. That is derived better results in terms of MAPE,
RMSE, and MAE compared to other methods. Similarly, the
CNN model is presented for forecasting PV power on a short
time horizon [49]. A deep learning-based hybrid approach
for short-term solar PV power prediction is proposed in
[50]. CNN, LSTM, and ANN are combined for mapping
between surface irradiance measurement and the sky image
information. The results demonstrate the effectiveness of the
proposed approach based on DL compared with current meth-
ods (such as CNN, LSTM, and ANN). In [51], the authors
presented a hybrid deep convolutional CNN-LSTM technique
to predict horizontal irradiance. Dataset was collected from
three solar stations in the east of the United States. In [47],
[52] the CNN method to forecast PV power is proposed that
combined with SVM and LSTM methods. The results of the
evaluation criteria are shown that the proposed model could

perform better than other methods. A hybrid DL technique
combining wavelet packet decomposition (WPD) and LSTM
is suggested for the prediction of PV with high accuracy in
comparison with LSTM, GRU, RNN and MLP techniques in
the presence of power curves data of PV [53]. A GAN-based
model for renewable power forecasting in microgrids is pro-
posed in [54]. The concept of GANS is utilized to forecast
the output power of tidal and photovoltaic units. The results
showed the high performance of the proposed methodology
compared with SVR and artificial NNs. In [55], a wind power
prediction technique applying ensemble learning and transfer
learning based on DNN is proposed. Ensemble learning is
applied to facilitate robust decisions on data that are unseen.
Also, transfer learning is used to facilitate fast learning on
wind data. The performance indexes were RMSE, MAE, and
MAPE. Based on the results, the proposed method had the
highest performance in predicting the wind power variable.
These studies are provided a detailed overview of DL meth-
ods in energy forecasting that are presented in Table 2.

C. ENERGY MARKET FORECASTING

Energy markets play an essential role in the power system
as they make SG cost efficient. Energy markets benefit from
load and price forecasts. Hence, accurate electricity price
forecasting would help the market participants in order to
barrier against future price changes and maximize their prof-
its. There are several methods for price forecasting in recent
studies. DR methods are superior to other methods with
regard to managing big price data in the network. A hybrid
deep neural network model which synthesizes the CNN and
LSTM for electricity price forecasting is presented in [56].

TABLE 2. Summary of some selected DL methods and evaluation indexes in energy forecasting.

35 DBN(ARMA, BPNN, MWNN)
» CNN-DCN,WT , DCNN
(BPNNWT,SVM)
CNN, LSTM
37 (ARIMA,SVM,BP,RBF,
ENN, ELM)
38 LSTM , CNN
39 DBN
40 SAE, DBM
41 DBN, SAE, DSAE
w RSDAE
(PR, FENN, TDNN,NARNN)
43 LSTM-RNN (MNL, BRT, NN)
44 MLP, LSTM, DBN , SAE
45 DRNN-LSTM (MLP,SVM)
46 Deep-CNN (DT, RF, SVM,MLP)
47 DBN (SAE-DBM)
48 WT, QR, DCNN
49 VMD-CNN
CNN-LSTM-ANN
50 (hybrid CNN-LSTM,CNN-ANN )
51 CNN (SVM, LSTM)
52 CNN (LSTM, SVM, RBF, BPNN)
S5 Hybrid LSTM- WPD ( LSTM, GRU,

RNN, MLP)

Energy Forecasting

RMSE MAE MAPE MRE MBE

v
v
v v v
v v v
v v v
v v
v v
v v
v
v v
v v v
v v
v v

v v
v v v
v v

v v
v

v v v
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TABLE 3. Summary of some selected DL methods and evaluation indexes in the energy market.

CNN- LSTM (ANN, SVM, MLP, CNN

6 LsT™)

57 GRU-LSTM (RNN)

58 LSTM-DNN,GRU-DNN
(MLP, CNN)

59  SDA (DNN)
60  LSTM (DNN)
61  DRNN (SVM)
62 LSTM

Energy
Market
Forecasting

RMSE MAE MAPE MRE MBE
v v
v
v v
v
v
v v

The result of the study has proven that the proposed model
outperforms compared to other ML methods such as ANN,
DT, MLP, SVM, MLP, CNN and LSTM. In [57] deep neural
network model which combines the GRU and LSTM to fore-
cast electricity price is proposed and compared with RNNs.
Similarly, several methodologies that include LSTM-DNN,
GRU-DNN, CNN and MLP for electricity price prediction
are proposed in [58]. The hybrid algorithms (LSTM-DNN,
GRU-DNN) are comparatively better than CNN and MLP.
Meanwhile, the use of SDA and DNN models for this appli-
cation is studied in [59]. In [58], four different DL algorithms
such as DNN, LSTM, CNN and GRU are proposed to fore-
cast electricity prices. DL models are compared with several
ML approaches, the numerical results confirmed that the
DNN model outperformed the other models. The deep LSTM
model is proposed for load and price forecasting in [60]. The
performance of the proposed model is confirmed by using
real market data. In [61], the DRNN approach for forecasting
day-ahead electricity price is studied and compared with the
single and hybrid SVR. The outcome of the proposed DRNN
method is more effective than others. In [62] is presented a
novel day-ahead prices forecasting using a combined model
which integrates LSTM with the attention mechanism for the
electricity market. The main feature of the proposed model
is that each sample considers a context vector as the cluster
center to achieve a better prediction compared with similar
LSTM models. Table 3 represents reviewed papers for DL
methods used in the electricity market papers.

D. CYBER SECURITY

The main aim of cyber security is to protect cyber infrastruc-
tures from cyber-attacks. Cyber-attack against power systems
infrastructures as challenging problem impacts on reliability,
quality and security of smart systems. Attacks can manip-
ulate the measurement data without the false change being
detected. Early Detection of an attack will secure the power
system. Several ML algorithms based on detection exist
against cyber-attack. In [63], the CNN algorithm is proposed
to detect replay attacks. The proposed model has been com-
pared with other ML and DL models such as MLP, deep MLP
(DMLP), deep residual network (DRN), time LeNet (TLN)
model and echo state network classification (ESNC) to eval-
uate the high detection accuracy. Applications of DL for
cyber-attack detection have been widely utilized in SCs areas.
In [64], a conditional deep belief network (CDBN) based
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on a distributed DL algorithm has been suggested for the
detection of thief electric in SC. The high detecting accuracy
has demonstrated the effectiveness of the proposed method.
A stacked deep polynomial network for intrusion detection
is applied in [65] that can classify datasets into normal and
attack data. DBNs are studied in [66], [67] for the same task.
The results show the efficient performance of DBN in attack
detection. In [68], hybrid models which combined DBN,
MLP and RBM are applied for Denial of service attack (DOS
attacks) detection for EV in SC. The SAE approach to detect
the manipulated data in the SG is suggested in [69]. Similarly,
for prediction and detection of the power system security
weak spots, SAE is suggested [70] that output results have
been proven the model has a simple implementation with low
training time. SAE has yielded an average prediction accu-
racy of 95.78 % in the real system in china. A hybrid model
which combined CNN and LSTM algorithms are proposed in
[71], where the model was used for electricity theft detection.
CNN is used for SG data extraction and classification. A com-
bination of CNN, LSTM and SAE structures is presented
in [72] for a similar purpose. Attacks are recognized as a
serious threat to the supervisory control and data acquisition
(SCADA) system. To address this issue, the CDBN algorithm
is suggested in order to identify the False Data Injection
Attacks (FDIAs) in SG [73]. It is shown that the proposed
algorithm detects FDI attacks with detection efficient evalu-
ation criteria (e.g. detection accuracy above 93%), compared
to the ANN and SVM methods. To secure the SG, the wide
and deep CNN model is suggested that used for electricity
theft detection [74]. The wide component is used for learning
and memorization of the global knowledge while the deep
CNN component classified the non-periodicity and the peri-
odicity of electricity consumption data. Similarly, in [75],
the authors proposed an ensemble CNN model for electricity
theft detection in SG.The output results are proven the best
performance compared with other types of methods such as
SVM, gradient boosting model (GBM), Random Forest, and
DCNN. In [76], two different types of attacks based on FDIA
have been detected by the use of the MLP method. In [77],
authors suggested a semi-supervised learning approach based
on adversarial AE (AAE) for detecting FDIAs distribution
systems. The results illustrated that the proposed model
achieved a high accuracy compared to AE and SVM algo-
rithms. In [78], a deep-learning-based CNN algorithm is
proposed for network intrusion detection for the SCADA
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TABLE 4. Summary of some selected DL methods and evaluation indexes in cyber security.

Replay MLP,DMLP,
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CNN- Cyber-
L LSTM attack ]
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system. The results are shown high accuracy for attack detec-
tion in real-world SCADA systems that detection accuracy
was 99.84%. In [80], since the electricity data structure is a
kind of time-series data, two-dimensional CNN is developed
for electricity theft detection. In [81] a high precision RNN
model named LSTM-UNet—Adaboost to detect electricity
theft is proposed. To improve the performance of the theft
detection, this method applies the DL technique and ensemble
learning. In comparison to SVM, the accuracy index has been
improved by 39.6%. In [82], a novel Cyber security method
based on the GAN structure is presented. The attacker to
the power grid follows two aims. The first objective is to be
hidden from the system defender, and the second purpose is
to earn profit through its FDI into the system. The results
show the proposed model detects FDI very well and with
high accuracy. These studies are summarized in Table 4.
The accuracy, FPR, sensitivity, specificity and precision are
evaluation criteria that are commonly used to evaluate the
algorithms in cyber security fields as shown in Table 5.

E. FAULTS DETECTION AND ISOLATION

Faults in the distribution system lead to power outages,
so cause huge losses that can result from short circuits,
overloading, human mistake, and so on. Fault detection and
isolation are other functions of DAS that lead to enhancing
reliability as well as efficiency and quality of electric distri-
bution systems. Fault detection is the procedure of analyzing
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TABLE 5. Cyber security evaluation indexes.

Evaluation index Description
TP+ TN
Accuracy=————————
TP +FN +FP + TN
PR= FP
FP+ TN FPR is false positive rate
TP is true positives
o TP i i
Sensitivity = TN is true negatives

FP is false positives
FN is false negatives

TP + FN
Specicity = _IN
TN + FP
TP
P +FP

Precision =

historical data to find a fault in reliable power systems [83].
In [84], the authors suggested a hybrid algorithm that com-
bines LSTM networks and SVM for line trip fault prediction
in power transmission and distribution. LSTM networks are
applied for training and mining the temporal features of data.
Then, SVM is used for feature classification in order to
achieve prediction results.

An approach based on SSAE is proposed for fault
detection [85]. To improve accuracy the SSAE network
is combined with SVM and principal component analysis.
The DL approaches have been studied for fault detection
in the secondary distribution network [86]. The approaches
include GRU, RNN and LSTM. The simulation results are
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TABLE 6. Summary of some selected DL methods and evaluation indexes in fault detection.

84 LSTM-SVM BPNNs, SAEs, RNNs , 97.7
SVM
85 SSAE Decision Tree 91.8
,SVM,BPNN , DBN

86 RNN -LSTM- MLP ,DMLP 94

GRU DRN ,TLN, ESNC
87 CNN - Over 85 - £
88 DBSAE KNN, SVM, BPNN 95 3%
89 SAE - DBN Shallow model accurate =~ 3
90 SAE BP 71.3 a
91 DNN SVM, GBM, DCNN accurate
92 ACNN SVM above99
83 CNNs - 90
93 CNN SVM above 98.5
94 CNN SVM above 99.5

evaluated real-time measurements by the dataset from 2014 to
2020 that show the RNN accuracy of 94% and GRU and
LSTM methods of 50%. In [87], [88], the authors suggested
the adversarial CNNs which combined the GANs and CNNs
for Fault detection and isolation and repair. A CNN algorithm
is proposed for fault classification of the power systems. This
algorithm has achieved an accuracy of over 85% for per phase
and three phase testing. To detect the transformer fault, a deep
belief SAE approach is suggested [89]. The results revealed
better performance in comparison with KNN, SVM, BPNN.
Similarly, the transformer fault is predicted using SAE and
DBN algorithms to increase reliability and the stability of
power systems [90], [91]. The SAE algorithm is proposed in
[83] for the same task. The hidden layers in this algorithm
have increased the accuracy of detection. A combined method
with wavelet transform and DNNs which provided fault type,
fault phase and fault location in microgrid systems is pre-
sented in [92]. The proposed method is indicated more accu-
rate prediction results compared with conventional methods.
Another fault identification method based on the DBN algo-
rithm is applied to underground cables which are extensively
used in distribution systems [93]. An adaptive CNN base on
fault diagnosis for distribution network fault location is pro-
posed in [94]. The advantages of the proposed method are low
computation time and the high accuracy/speed of fault line
selection. Also, in [95] authors addressed CNNs algorithm in
order to get the fault type/location for a distribution system.
The simulation results have proven an accurate performance
of CNN in comparison with other techniques, such as SVM.
In [96], a continuous wavelet transform and CNN is proposed
for faulty feeder detection in power distribution systems.
Similarly, for the same work, the CNN method has been
suggested in [97]. In [98], a fault recognition method of the
voltage sampling module of distribution terminals based on
GAN and CNN is presented. The GAN model is used to
generate the pattern and learn the developed samples then
these samples are used to train the CNN method. This com-
bination method can significantly improve the accuracy of
fault detection. In [99], the authors proposed a novel transfer
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learning technique to assess multiple faults which are not
trained. Validation of the proposed method was performed by
comparing the dynamic security assessment model. Transfer
learning could assess fault with 97.27% of accuracy. In [100],
a fault detection approach using GANs for small-sample WT
based on the data collected from the wind farm SCADA
system in Northern China is presented.

These studies are provided a detailed overview of DL
methods in the detection and classification of fault that are
presented in Table 6.

F. NETWORK RECONFIGURATION AND RESTORATION

Dynamic distribution network reconfiguration (DNR) is
an optimization decision-making process that changes the
hourly status of remotely controllable switches to improve
the performance of distribution systems. The DNR has repre-
sented great potential in enhancing several important aspects
of the electricity network operation. It can be used for mini-
mizing power losses [101] or the system costs [102], [103],
improving the voltage profile [104], [105], increasing load
balance [106] or the system’s reliability [107], [108]. The
DNR problem is a mixed-integer nonlinear problem that
depends not only on uncertainties, regarding the active and
reactive powers but also on the physical parameters of the
system. The dynamic DNR problem can be classified into
three groups: mixed-integer programming, heuristic algo-
rithms, and dynamic programming methods. The first and
second are based on model-based algorithms that may not
be reliable due to the inaccuracy of the distribution network
parameters. In addition, the computation time for model-
based control algorithms increases due to network topology.
Therefore, dynamic programming methods have been applied
to solve the DNR problem. To bypass these issues, the RL
method is used in [109], [110], where a batch-constrained
algorithm is proposed to learn from the historical reconfig-
uration data collected by the distribution system operator
without distribution network parameter information, which
enables to avoiding of inaccuracies from the representation
of the physical grid. The objective of the proposed algorithm
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is to minimize the system operational cost and loss. A real-
time autonomous dynamic reconfiguration method to reduce
the cost of power loss and switch action of the distribution
network based on the DL algorithm is proposed in [111]
that can achieve a reconfiguration solution in the order of
milliseconds and has high robustness. A hybrid multi agent
Q-learning algorithm to determine the changing switches for
system restoration in a timely manner is proposed in [112].
A shipboard power system reconfiguration algorithm based
on Q-learning is proposed in [113]. The paper obtained the
best sequence of open/close switches to do a final config-
uration which takes the shortest amount of running time.
A restoration algorithm using multi-agent Q-learning in order
to find switching configurations is proposed in [114]. Sim-
ilarly, for optimization of switching status and reducing
power losses a Q-learning framework for distribution net-
work restoration is proposed in [115]. A tabular Q-learning
algorithm for network reconfiguration to opening/closing the
switch status with the objective of minimizing power losses is
presented [116].

G. VOLTAGE CONTROL

Volt-VAR control (VVC) is a critical application in distribu-
tion system automation to reduce network losses and improve
voltage profiles. To remove dependency on inaccurate and
incomplete network models and enhance resiliency against
communication or controller failure, DRL methods are used
in several papers and applied Q-learning for reactive power
control [117]. A multi-agent Q-learning VVC framework is
proposed in [118] in order to reduce the communication and
computation burden of a central controller. In [119], the
least square policy iteration (LSPI) algorithm is developed to
control tap changer positions that are effective to diminish the
voltage deviation. This algorithm was introduced as batch RL
and adopted to handle scalability. By using the LSPI iteration,
an approximation of the Q-function is constructed. The con-
strained soft actor-critic algorithm to solve the VVC problem
is studied [120]. In this paper violation of the voltage is
considered as a constraint, also power loss and switching cost
are rewards in the suggested algorithm. In [121], the quadratic
programming and deep Q net (DQN) agent are suggested
to solve control problems in fast time-scale and slow time-
scale. In [122], the multi-agent MDP is formulated for the
VVC problem and proposed as a multi-agent deep Q learning
method. In order to improve the learning efficiency, the action
space is decomposed in each device method. The consensus
multi-agent DRL algorithm to solve the VVC problem by
using the maximum entropy RL framework is proposed [123].
This problem is modeled as MDP. The results demonstrate
the effective performance of the proposed framework. The
CMDP is formulated for the VVC problem that the volt-
age violations are considered as constraints [124]. A con-
strained policy optimization algorithm is extracted to solve
the MDP problem. In [125], the deep deterministic policy
gradient (DDPG) is proposed to modify the voltage profile
and diminish the constraint of PV generation. An emotional
DL programming controller for voltage control of the distri-
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bution system is proposed [126] that includes an emotional
deep neural network and an artificial emotional Q-learning
algorithm. Outcome results are proven the effectiveness of the
proposed algorithm compared with the DNN and Q-learning
algorithms.

H. DEMAND RESPONSE

Demand response (DR) is a power consumption variation
that keeps a balance between power demand and genera-
tion. DR can improve the flexibility of the system through
shift peak or valley of energy consumption in real time.
DR programs are classified into two main categories, dis-
patchable or incentive based programs and nondispatchable
or price-based programs which are divided into subgroups
as shown in Fig. 3 [127]. DRL algorithm is an effective
model to solve control problems due to merging consumer
and consumption in the control loop. An incentive based real
time DR algorithm for SG using RL and DNN is proposed
[128]. The purpose of this algorithm is to aid suppliers to
purchase energy from various customers in order to balance
power variations and improve the validity of the grid. DNN
is applied to predict unrevealed prices and energy demands.
RL is used to acquire the optimal incentive cost for different
customers by considering the profits of customers and sup-
pliers. Similarly, in [129] a DRL technology is proposed to
help decision-making in air conditioning and heating systems
during DR to achieve an optimal control objective. In order
to optimize the HVAC electricity consumption and mini-
mize the total cost, a multi-agent RL is suggested in [130].
An optimal pricing schedule for a demand response scheme
by RL is developed in [131]. The simulation results have
shown the best efficacy of the proposed system. To solve the
decision-making problem under uncertainty, RL is suggested
that has modeled the energy consumption scheduling of sev-
eral residential customers [132]. A novel DR manner in order
to decrease the cost of charging/discharging plug-in electric
vehicles (PEV) through a batch RL algorithm is proposed in
[133]. A dynamic pricing DR approach is suggested in [134]
that considers the service supplier’s profit and customers’
costs. RL is applied to solve the dynamic pricing problem due
to demand and prices of power. For determining an optimal
bidding strategy to purchase power from the grid, a multi-
agent RL (Q-learning) algorithm is applied in [135].In [136]
a price-based DR scheme for industrial energy is studied
that used the RL algorithm to optimize industrial energy.
Simulation results have shown that the DR scheme could
reduce energy costs and consider the balance between energy
consumption and the consumer. In [137] several papers are
analyzed that used RL for DR applications such as (HVAC,
EV and energy storage) in SG.

1Il. ADVANTAGES AND DISADVANTAGES OF DEEP
LEARNING TECHNIQUES

Table. 8 summarizes the advantages and disadvantages
of various deep learning techniques in power knowledge
investigation.
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FIGURE 3. Type of demand response programs.
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TABLE 7. Summary of literature reviews on distribution automation system applications.

CNN,DNN,

[15-31] Load Forecasting LSTM.DBN.RBM.SAD.SAE RMSE, MAE, MAPE Improve prediction accuracy
[32-55] gy Feeming CNN, LSTSI\AA’ED BN,AEN, RMSE, MAE, Improve prediction accuracy
MAPE, MRE, MBE
(56-62] Blectricity Market DNN,LSTM, CNN, GRUSDA ~ RMSE,MAE, MAPE . [ncrease consumer benefl,
inimize energy and operation cost
Accuracy, FPR, . .
[63-82] Cyber Security CDBN,CNN,DBN,SAE-LSTM,AAE S S S G = O
Specificity, precision atac
[83-100] Fault Detection LSTM-CNN-DNN-SAE-GRU-DBN Accuracy Improve detection accuracy
Network Reconfiguration . . .. Beduce ne_twork Loz,
[109-116] ; Q-learning, DRL, DQN, RL Reward function Minimize operation, Power loss and
and Restoration L
switching costs
Stability of energy and voltage
[117-126] Volt-VAR Control DDPG, Q-learning, DQN Reward function control,
Improve voltage profile
RL, DRL, Q-learning, DQL Load control,
[128-137] Demand Response ? ? g Reward function Improve energy consumption,

Reduce energy costs

IV. DISCUSSION

This section presents conclusions and recommendations
yanked from outcomes of investigations executed according
to DL approaches in the DAS applications. As mentioned,
Fig.2 demonstrates the categorization of DAS applications
applied in the line with the purpose of the current study.
According to overviewing results, it is noticed that LSTM
and its hybrid techniques such as CNN-LSTM, LSTM-RNN
methods have been mostly employed in the literature so
far in the forecasting field. Since most studies utilize the
RMSE evaluation index, therefore, it is the most used in DL
techniques compared to the other evaluation indexes. In gen-
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eral, the contribution of hybrid methods to the various DL
techniques used by the authors is greater than that of single
methods and also hybrid methods have higher performance.
Therefore, this domain is inclined to the usage of hybrid
methods. From Table. 9, it can be asserted with certitude that
DL techniques along with the RMSE lowest value hold the
best performance compared with other techniques. Table.9
indicates output values for some studies developed with dif-
ferent DAS techniques and DL methods (studies no. 1 to
6 for load forecasting, studies no. 7 to 17 and 18 to 20 for
energy and market forecasting, respectively and studies no.
21 to 27 for security), according to the table, most of the
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FIGURE 4. Proposed multi-stage learning-to-learning.
TABLE 8. Advantages and disadvantages of deep learning techniques on distribution automation system.
Technique Advantages Disadvantages
e Easy performance e Restricted to supervised applications
ANN ® Quick feed-forward manner o Absence of the property coherence

o Complexity of low training time

e Lack of spatial and temporal feature extraction

e Having acceptable accuracy

e High computing cost

o Correlating with the direction of the object of study o It needs a large number of datasets to be
e Distributed execution effective
CNN o Easy training manner applying gradient descent o Restricted to supervised applications
e Sparse data description o needing high training memory complexity
® Detailed spatial point extraction o High training time complexity
o Failure to execute temporal data
e Deriving precise temporal attributes o Difficult in training process
e Extensible input data dimensions e Lack of spatial data modeling
LSTM o Making shorter the pre-processing of information e High probability of overfitting
o Application for time series data o High sensibility to the initial case
e Restricted to supervised usage
o It can't accumulate to very deep models.

e Simple execution
e Unsupervised feature extraction
SAE o Rapid feed-forward manner
o Using the filters to apply dataset superior

Large evaluation preference

Lack of spatial and temporal feature extraction
Absence of the property coherence

High probability of overfitting

needing extra training time

o Ability to model uncertainty
o Unsupervised feature extraction

Large training time complexity
Strong prior knowledge (conditional

DBN e Small sample complexity independence)
e Lack of parameter convergence guarantee
e Ability to model uncertainty Large sample sophistication
o Unsupervised feature extraction Lack of parameter convergence verification
GAN o Data Synthesis Limited variety

Decreased gradient
Untrustworthy estimations

e Modeling uncertainties
e Unsupervised feature extraction
AE e Data Synthesis
¢ Giving probabilistic classification and regression

Large sample sophistication
Low sensitivity of evaluated distribution
Enormous testing time intricacy

o Reliable estimation of the real probability distribution

® Resilience of the learning algorithm
DQN e Robustness for an uncertain environment

o Lack of convergence warranty
e Slow convergence
® Guessing deterministic policies

studies consulted in DL techniques have been compared by
RMSE index in the forecasting field and by accuracy index in
the security field. These criteria indexes directly refer to the
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performance of techniques. The accuracy index is one of the
evaluation criteria that is mostly used in comparing studied
methods in the security area. From Table. 9, it can be claimed
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TABLE 9. Outcome/accuracy values in some studied applications to the comparison of different methods.

Ref Technique DL methods Accuracy/Outcome No
21 DBN-RBM MAPE 0.21% 1
19 i CNN, LSTM-RNN MAPE 1.349% 2
24 2z DBN —-RBS MAPE 3% 3
28 S & CNN RMSE 0.732% 4
29 < LSTM-RNN MAPE 8.18% 5
20 D-RNN RMSE 111.9 kWh 6
46 LSTM RMSE 0.0642% 7
45 LSTM-RNN RMSE 82.15% 8
39 CNN, LSTM RMSE 0.37%,MAE 0.28% 9
37 o0 DBN MAPE 0.3% 10
44 g RSDAE RMSE 0.521%, MAE 0.213% 11
40 § CNN-LSTM RMSE 0.079%, MAE 0.056% 12
42 S SAE-DBM RMSE 0.094%, MAE 0.065% 13
49 ) DBN MAPE 5.11% 14
50 E DCNN MAE 0.53% 15
55 = CNN MAPE 1.43% 16
58 DNN-TL MAE 0.1%, RMSE 0.115% 17
59 LSTM-CNN RMSE 17.90% 18
61 LSTM-DNN,GRU-DNN MAPE 12.34% 19
66 LSTM MAPE 12.74% 20
74 SAE Accuracy 95.78% 21
75 CNN-LSTM Accuracy 89% 22
76 %‘ Deep CNN Accuracy 99.3% 23
78 &,:’ CNN Accuracy 72% 24
83 1%} CNN Accuracy 97.8% 25
82 CNN Accuracy 99.38% 26
84 2-D CNN Accuracy 89% 27

with confidence that DL techniques along with the highest
value of accuracy hold the most promising performance com-
pared with other techniques. According to studies reviewed
in recent years, it is obvious that CNNs have been utilized by
most papers for detection. Based on the table. 6 the accuracy
index is the most used and prevalent performance element by
authors in the detection field. The network reconfiguration
and restoration, voltage control, and demand response are
the decision-making problems that are solved with DL-based
Q-learning techniques. Therefore, Q-learning is the most
famous and widely used technique in the decision-making
area, as extracted from our investigations.

V. PROPOSED L2L TECHNIQUE FOR DAS

It is worth noting that hybrid methods had a remarkably
high performance compared with single methods as they
benefit from the advantages of several methods for providing
the evaluation index. Also, studies have proven that RNN
approaches such as LSTM have the best performance in the
applications studied, such as the prediction domain. From
studies, we devise a new intelligent architecture for real-time
energy management of distribution networks using the multi-
stage L2L approach. The optimal power flow (OPF) problem
is applied to find the optimal scheduling of adjustable loads.
However, altering the predicted values of load and renewable
energies output power at any period can potentially impact the
optimal scheduling of adjustable loads. Also, in emergency
conditions, a fast response (real-time response) is essential to
preserve the system from any possible load shedding. In the
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TABLE 10. MSE for fully LSTM, GRU, and Hybrid LSTM-GRU
for 3000 Epoch.

Learning Technique Forecasted Value MSE (kW)
LSTM Mark 0.0025
GRU P*r‘ircgt 0.0023
Hybrid LSTM-GRU 0.0022
LSTM 0.0016
GRU Load Factor 0.0022
Hybrid LSTM-GRU 0.0016
LSTM 0.0036
GRU Wind Turbine 0.0027
Hybrid LSTM-GRU 0.0025
LSTM 0.0032
GRU PV 0.0030
Hybrid LSTM-GRU 0.0030
LSTM SRl 0.0023
SET based Network LAY
Hybrid LSTM-GRU 0.0020

proposed architecture, instead of the conventional techniques
that need to run the OPF problem, we used the real-time
multi-stage L2L approach for scheduling the adjustable loads
(such as PEV) as the load management. To this end, in the
first stage, we used the DL technique, more specifically,
the deep LSTM technique to forecast the real-time load
and renewable energies output power values. In the second
stage, we used the output power of the first stage as an
input for the second stage, which is the optimal scheduling
of adjustable loads at any time interval. In this stage, the
GRU technique has been applied. To prevent the overloading
and power outage by varying the topology of the network
through some prelocated switches the third stage as the
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TABLE 11. Sensitivity Analysis of three different techniques (GRU, LSTM, and hybrid LSTM-GRU) considering 3000 epochs and Four layers of L2L.

No. Hidden Layer Output Market Price Load Factor Smart Learning- PV WT
Case Numbers Layer Based Network
No.1 No.2 MSE  Training MSE  Training MSE  Training MSE  Training MSE  Training
Time Time Time Time Time
(Min) (Min) (Min) (Min) (Min)
1 LSTM LSTM  3-densely  0.0055 1.55 0.0053 1.53 0.0053 1.51 0.0054 1.54 0.0055 1.55
100 100 connected
2 GRU GRU 3-densely  0.006 1.51 0.0062 1.49 0.0059 1.48 0.0062 1.52 0.0059 1.52
100 100 connected
3 GRU LSTM  3-densely  0.0059 1.52 0.0061 1.51 0.0059 1.50 0.0061 1.53 0.0057 1.51
100 100  connected
4 LSTM LSTM  3-densely  0.0027 5.00 0.0025 4.55 0.0026 5.00 0.0025 4.47 0.0024 5.02
200 200 connected
5 GRU GRU  3-densely  0.0032 4.05 0.0031 4.14 0.0030 4.07 0.0028 3.58 0.0027 4.01
T 200 200  connected
6 GRU LSTM  3-densely  0.0028 4.25 0.0025 4.32 0.0027 4.16 0.0025 4.11 0.0026 4.19
200 200 connected

reconfiguration switching stage is developed. Generally, the
proposed model consists of several steps that connect differ-
ent DL algorithms to solve modern power system problems,
which has not been applied in any research until now. This
model can simultaneously support different applications of
DAS. The proposed multi-stage L2L framework follows three
stages. (i) Forecasting stage: in the first stage, long short-
term memory (LSTM) is used to forecast the hourly load
demand, market price, and renewable energy power outputs.
(i1) Demand response stage: in this stage, the gated recurrent
unit (GRU) technique is utilized, where the input of this
stage is the output of the previous stage. Also, the outputs
of this stage are the optimal scheduling of adjustable loads,
including both shiftable and curtailable loads, and (iii) smart
learning-based reconfigurable switching stage: in this stage,
the hybrid LSTM-GRU technique is employed, where the
input of this stage is the load demand and generation units
status which are the output of the first and second stage,
while the output is the optimal reconfiguration switching
status of the distribution grids. The structure of the proposed
model is shown in Fig. 4. By utilizing the proposed technique,
we cannot only manage the applications of the DAS such as
the load and market operation of the network, but also we
can increase the efficiency and reliability of the distribution
grids. For the first time, we have developed a multi-stage deep
learning based framework for forecasting, optimal adjustable
loads scheduling, and optimal reconfiguration switching of
distribution grids. To demonstrate the effectiveness and wor-
thiness of the proposed framework, it has been tested on
IEEE 33 bus test systems with modified reset capability.
The network comprises three diesel generators (DGs), two
wind turbines (WTs), and one photovoltaic (PV) system.
The features of generators are summarized in Tables 12.
Table 13 presents hourly normalized predicted values of WTs
and PV generation, load, and market price.

After predicting the values of the hourly load factor, renew-
able energy output power (such as PV and WT), market
price and smart learning-based network by LSTM, GRU, and
Hybrid LSTM-GRU techniques and also optimal scheduling
using a fully multi-stage learning technique, the mean square
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TABLE 12. Features of generators.

Type Min\Max Cost($/kWh) Min\Max of Power
Capacity (kW) generation rate

DG1 500-1000 1.94 1500

DG2 400-1200 225 1000

DG3 100-2500 2.43 1500

errors (MSE) of three techniques per 3000 epochs have listed
in Table 10. As can be seen in the table, the presented
technique has the lowest MSE (highest accuracy) in three
applications due to the highest number of epochs (3000).

As mentioned, the main goals of this survey are not only
to provide deep learning applications in distribution automa-
tion systems but also to open a new approach/technique,
called the collaborative learning-to-learning algorithm for
multi-objective and complex distribution automation prob-
lems. These are a step above proposing hybrid techniques.
Since the comparison of many techniques is impossible for
a survey, we made some comparisons for different existing
layers based on several combinations of LSTM and GRU,
as shown in Table 11.

The number of hidden layers, the type of hidden layers,
and more information about critical parameters of the deep
learning technique is added to the paper in Table 11 for
all three deep learning techniques. Moreover, for different
layers, different parameter has been used as the error. More
specifically, for market and load forecasting layers, prices
are the main parameters to calculate the errors, while for
renewable energies, PV and WT output power are the main
parameters. Also, for the smart learning-based network, the
voltages of buses are used for determining the error. It should
be noted that all these cases have been run on the python
program and also two 64-bit parallel software systems are
considered to implement the proposed hybrid algorithm.

So in general, in the novel proposed model, at each step,
LSTM and GRU algorithms, and their combination are used,
respectively. These algorithms are a special structure of deep
recursive neural networks that due to memory cells and con-
trol gates, have the ability to control the flow of information
and determine the optimal time to remember and forget.
GRU and LSTM algorithms, which are used in this model.
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TABLE 13. Hourly normalized predicted values.

Hour 1-8

Load (pu) 0.80 0.804 0.811 0.815 0.830 0.92 0.94 0.97
WTpower 0.115  0.115 0.115 0.115 0.115 0.022 0.114  0.092
(pu)

PV power 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(pu)

Market($) 0.12 0.14 0.23 0.12 0.14 0.16 0.12 0.19
Hour 9-16

Load (pu) 1 0.95 1 0.97 0.94 0.96 0.97 0.98

WTpower 0.119 0.203 0.209 0.302 0390 0.385 0.214 0.152
(pu)

PV power 0.0 0.005 0.019 0.125 0.152 0.201 0.201 0.210
(pu)

Market($) 0.12 0.16 0.23 0.17 0.13 0.19 0.22 0.19
Hour 17-24

Load (pu)  0.98 0.90 0.95 0.97 0.90 0.98 0.94 0.97

WTpower 0.119 0.115 0.100 0.095 0.184 0.119 0.021 0.021
(pu)
PVpower 0.180 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(pu)

Market($)  0.22 0.21 0.19 0.17 0.19 0.12 0.13 0.16

They are more effective and more popular among researchers,
especially for time series analysis and also has high accuracy
and efficiency. In the first stage (forecasting stage), LSTM
is used to predict hourly load demand, market price and
renewable energy outputs, given that LSTM is very effec-
tive in forecasting time series. In the second stage (demand
response stage), the GRU technique is used to achieve the
optimal scheduling of adjustable loads, including removable
and limited loads. Given that GRU has fewer parameters so it
is trained faster, and it is also very efficient and effective for
time series analysis. Also, according to studies obtained from
the research, hybrid methods have a remarkably high perfor-
mance compared with single methods. Therefore, in the third
stage, the hybrid LSTM-GRU technique is employed. The
main reason for selecting these two techniques is their perfor-
mance, which is better than other deep learning approaches
in time series prediction and high accuracy. As shown in
Table 11, to compare the effectiveness of the proposed
approach, we chose the GRU models and LSTM models
as well as hybrid LSTM-GRU as we wanted to see if our
proposed model enhances the overall performance and can
outperform any of these algorithms. As shown, the GRU-
LSTM model performs better because it has the optimal MSE
index and training time compared to other hybrid algorithms.

VI. CONCLUSION

As the DAS transitions to a modern and advanced system, the
conventional methods face limitations in analyzing, process-
ing data and making decisions. Thus, DL methods are being
developed and widely utilized in many applications fields
of DAS with desirable results. From the methods viewpoint,
they can be used in the forecast, detection, decision-making,
etc. This paper presents a review of methods of DL in DAS
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applications (that is, load forecasting, energy forecasting,
demand response, voltage control, energy market, reconfig-
uration and restoration, faults detection and cyber security).
Also, the evaluation indexes have been investigated. A sum-
mary of literature reviews on DOS applications is offered in
Table 7. Our future research will focus on a new perspec-
tive of DL called L2L algorithm that has great potential for
DAS applications. The structure of the L2L platform that
encompasses multi-stage is briefly described in this paper.
A proposed L2L algorithm is a promising approach due to
the fact that simultaneously supports different applications
of DAS.
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