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Abdollah Kavousi-Fard, Member, Taher Niknam, Senior MemberMiadreza Shafie-khah, Senior Member

and Joao P.S. Catalao, Senior Member

Abstract—This paper proposes an accurate and efficient
probabilistic method for modeling the nonlinear and complex
uncertainty effects and mainly focuses on the Electric Vehicle
(EV) uncertainty in Peer-to-Peer (P2P) trading. The proposed
method captures the uncertainty of the input parameters with
a low computational burden and regardless of the probability
density function (PDF) shape. To this end, for each uncertain
parameter, multitude of random vectors with the specification of
corresponding uncertain parameters are generated and a fuzzy
membership function is then assigned to each vector. Since the
most probable samples occur repeatedly, they are recognized by
the superposition of the generated fuzzy membership functions.
The simulation results on various case studies indicate the
high accuracy of the proposed method in comparison with
Monte-Carlo simulation (MCs), Unscented Transformation (UT),
and Point Estimate Method (PEM). It also scales down the
computational burden compared to MCs. Also, a real-world
case study is employed to examine the ability of the method
in capturing the uncertainty of EVs’ arrival and departure time.
The studies on this case reveal that involving EVs in P2P trading
augments the amount of energy traded within the prosumers.

Index Terms—EV Uncertainty, P2P trading, Uncertainty Mod-
eling, Vehicle to Home.

LIST OF SYMBOLS AND NOMENCLATURE

I. INTRODUCTION

ELECTRIFICATION of the transportation systems is gain-
ing a crucial role in solutions for environmental prob-

lems. Indeed, integrating the electric transportation assets to a
grid supplied by renewable energy sources (RESs) will reduce
the emission of greenhouse gasses and deal with the scarcity
of non-renewable resources. The importance of this issue has
been exhibited in many pieces of research, such as [1]–[7].
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Indexes
h house
p peers
t time
Variables
SoC State of charge
S
(t,e)
EV State of the charge of the eth EV at time t
C

(t,e)
EV Charging of the eth EV at time t

D
(t,e)
EV Discharging of the eth EV at time t

ηcEV EV charging efficiency
ηdEV EV discharging efficiency
αEV EV charging rate
βEV EV discharging rate
G(t,h) Grid import of house i at time t
I
(t,h←p)
p P2P energy import of house h from p at time t
X

(t,h→p)
p P2P energy export of house h from p at time t

ψp2p loss factor
P

(t)
G Electricity price

d Traveled distance of the EV
Ceff Efficiency coefficient of the PEV during driving (km/kWh)
Cap Capacity of the EV’s battery
Parameters
tdeparture Departure time of the EV
tarrival Arrival time of the EV
SoCarrival Arrival state of charge
a Random number between 0 and 1
σ standard deviation
µ mean
N Number o f samples
Xi′ ithsample
X′ij jth element of ascending sorted Xi′
Fj jth element of superposition vector F
X1 uncertain parameter
X2 uncertain parameter
α Scale parameter
β Shape parameter
γ1 skewness
K Kurtosis

Reference [1] reviews six EV charging strategies which
are the optimization problem formulations in the vehicle to
grid (V2G) or vehicle to home (V2H) programs. It also
proposes an algorithm based on the logic of selling electricity
back to the grid during peak hours. Paper [2] proposes a
mixed-integer optimization that models the EVs as mobile
storage. An optimal V2G model is presented by [3] which
considers the battery aging of EVs along with requirements
of driving patterns. A distributed control algorithm is then
employed to implement the proposed strategy. Reference [4]
proposes a long short-term memory (LSTM) based EV battery
available capacity prediction that is going to help the frequency
regulation in a micro-grid. Aggregation of the EVs in a fleet



has been presented in [5]–[7] to support grid operation.
A transition from the centralized to decentralized or dis-

tributed structures of the grid operation is happening rapidly
due to the higher potential for integration of the distributed
resources [8]. In this situation, involving EVs, which make
up a considerable part of the electric transportation systems
in P2P trading programs, paves the way toward providing
electrified transportation systems. The related researches to
utilizing EVs in P2P trading of electricity are briefly reviewed
in the following.

Reference [9] proposes a collaborative energy consumption
based on the renewable energy clusters by providing the best
match of the EV, demand, and renewable resources. Reference
[10] has presented a P2P trading system between local plug-in
electric vehicles (PEVs) that trade. An aggregator collects the
bids and offers and the demand data from EVs and determines
the optimal P2P prices. Paper [11] has proposed P2P trading
model to buy and sell electricity among local plug-in hybrid
electric vehicles (PHEVs). This study satisfies the prerequisites
such as security and privacy by consortium Blockchain. The
presented approach has tried to issue security and privacy
as well as mobility. It is to mention that, in [11], EVs are
the only participants in the P2P market, and the other types
of traders have not been considered. Proposing blockchain-
based methods can reduce credit costs and enhance renewable
energy integration. So, in [12], a trading allocation based
on the private chain of blockchain has been provided. Also,
Monte Carlo simulation has been used to show the uncertain
nature of charging stations’ charging demand. Another work
[13] employs a private blockchain method to prove transaction
records between EVs. This framework relies on a private
blockchain-based P2P electricity trading approach to obtain se-
cure electricity trading. Paper [14] has introduced a smart con-
tract and blockchain-based energy trading system that directly
provides conditions for direct interaction between providers
and EV owners. This framework depends on utility companies
for metering and billing to prevent significant infrastructure
changes. Although blockchain can facilitate decentralization
and security requirements, it does not solve all problems of
distributed structures, such as performance efficiency [15].
Hence, Trading strategies for inter vehicles (V2V) was an-
alyzed in [15] which, addresses the problems of conventional
blockchain. In [16], a P2P method for energy trading in the
local electricity market was utilized. This method can help the
PV owners to achieve more accuracy in the forecast. In another
study [17], P2P trading through DSO, as the central party, has
been presented. DSO keeps the overall data of all users and
links prosumers and consumers. In [18], a novel approach for
EVs’ charging and discharging has been introduced. For the
validation process, the presented method has been compared
with standard consensus methods. Moreover, a new proof-of-
Benefit (PoBen) consensus protocol was proposed that fills the
gap of previous consensus methods. The experimental results
demonstrated that PoBen method developed the security and
sustainability of power fluctuations.

Generally, the uncertainty of a problem can be modeled
by different methodologies , such as probabilistic methods
[19], possibilistic approaches [20], hybrid methods [21], in-

formation gap decision theory [22], robust optimization [23],
and interval analysis [24], depending on different factors. For
example, probabilistic methods are applicable in cases that
the PDF of the uncertain parameters are known. In contrast,
possibilistic methods are not based on the PDF and use fuzzy
functions to capture the uncertainty. Combination of these
two methods are called hybrid models. However, information
gap decision theory, robust optimization, and interval analysis,
are based on the measurement error or estimation of the
parameters, feasibility in the worst case, and uniform PDF,
respectively. Since the proposed method can be considered a
probabilistic method, more relevant papers are reviewed.

Owing to recent developments in the advanced technologies
of electric vehicles, many sources of uncertainty have appeared
in the energy systems. This shows the necessity of developing
accurate and fast uncertainty modeling methods to enhance the
decision-making of energy systems. Monte-Carlo simulation,
which is well known for its high accuracy, is very time-
consuming [6] and may not be practical in a wide range
of applications. This drawback has been partially addressed
by some techniques such as PEM [25], UT [26] and various
scenario reduction methods. Importance sampling (IS) meth-
ods such as Cross-Entropy involve finding a distribution that
estimates necessary samples of uncertain elements. In [27],
the authors implemented a method using the cross-entropy
function to minimize the distance between sampling distri-
bution and the original one. In [28], the stratified sampling
Monte Carlo method was employed to calculate the lightning
performance of transmission and distribution systems. Non-
Sequential Monte Carlo simulation was used in [29] to model
statistically dependent time-varying quantities, including re-
newable energy sources. In order to reach a practical and
logical computational burden, scenarios with high similarity
or low probability were omitted from the scenario set in [30].
Compression of scenarios by scenario mapping technology
was applied on the uncertain behavior of wind power in [31].
Authors in [32] provided a comparison on random sampling,
importance sampling inspired method, distance-based method,
and stratified scenario sampling as scenario reduction methods.
They concluded that the scenario reduction methods could
effectively reduce the size of the larger models with a complete
set of scenarios. However, for their case study, the distance-
based method is the most accurate among the others.

Although these methodologies are accurate and more time
efficient, they face some limitations in the complex analysis.
For example, PEM is not capable of capturing the uncertainty
in the correlated environment [25]. As for UT, it can be
employed just when uncertain parameters have a symmetric
distribution such as Normal [26].

Furthermore, in these methods, the computational burden
is dependent on the number of uncertain parameters and can
demand more computational effort than MCs in large-scale
problems. This paper proposes a new uncertainty modeling
method with high accuracy but a meager computational effort
to deal with these problems. The main contributions of the
paper are summarized as follows:
• Since the EV owners potentially could participate in

the energy communities, this paper aims to analyze the



Fig. 1. Schematic illustration of a community made up of buildings -
residential or office- as well as EV charging nodes

impact of the uncertain EV owner behaviors on the energy
trading in a community.

• The EVs’ arrival and departure times usually follow
known behaviors. However, these behaviors can be es-
timated by a combination of the different PDFs. So, the
paper’s second contribution is to propose a probabilistic
uncertainty modeling approach that is not dependent on
the features of the PDF, such as correlation, skewness,
and so on.

• Analyzing the impact of local energy sharing on the
distribution feeders under EV uncertainty is the third
contribution of this paper.

The remainder of this paper is organized as follows. The
employed P2P trading framework, as well as the uncertain
behavior of the EVs, are explained in section II. The proposed
uncertainty modeling is then described in section III. Section
IV deals with evaluating the performance of the proposed
method through four case studies covering a wide area and
various situations. Finally, section V wraps the paper up with
a conclusion.

II. EV UNCERTAINTY IN P2P TRADING

In this section, we describe the community-based P2P trad-
ing, which has been proposed in [33]. This framework provides
the opportunity for energy trading between various prosumers
that build a community together. Indeed, the required energy of
the prosumers and consumers is provided by the main grid, the
renewable sources, as well as P2P trading with other members
of the community shown by dashed arrows in Fig. 1. Since
the houses in a neighborhood or the buildings in commercial
or official centers can form a community, analysis in [3],
[34], [35] are employed to model the uncertainties in arrival,
sojourn, and departure times of the EVs which are charged
near the owners’ house or workplace.

Equations (1) to (6) describe the structure of the community-
based P2P trading. The objective function (1) minimizes the
cost of energy importing from the main grid. Equation (2)
models the P2P energy trading between houses h and p,
considering the loss factor ψP2P . Each house can trade with
its peers at each time-step. So, equations (3) and (4) show

the total Export and export of each house at each time-step,
respectively. Since all trades happen within the community,
the total amount of imports is proportional to the exports as
it is shown in (5).

OF = min

{∑
h

(∑
t

[
p
(t)
G ·G

(t,h)
])}

(1)

I(t,h←p)p = ψP2P ·X(t,p→h)
p ∀ p 6= h, (2)

X(t,h) =
∑
p 6=h

X(t,h→p)
p (3)

I(t,h) =
∑
p 6=h

I(t,h←p)p (4)

∑
h

ψP2P ·X(t,h) =
∑
h

I(t,h) ∀ t ∈ T. (5)

Finally, (6) balances the input and output energy of each
house at each time-step. In these equations, p(t)G , G(t,h),
I
(t,h←p)
p , X(t,p→h)

p are energy price, grid import of house i,
energy import of house h from p and energy export of house
p to h, all at time-step t respectively.

RES + Grid + EV disch. + P2P purchase︷ ︸︸ ︷
res(t,h) +G(t,h) +D(t,h)

ev + I(t,h) ≥

Demand + EV charge + P2P sale︷ ︸︸ ︷
dem(t,h) + C(t,h)

ev +X(t,h)

(6)
The equations related to battery or EV state of charge (SoC)
must be included for the corresponding prosumers, as can be
seen in equations (7) to (11).

S
(t,e)
EV = S

(t−1,e)
EV + ηcEV · C

(t,e)
EV − (1/ηdEV ) ·D

(t,e)
EV (7)

S
(t,e)
EV , C(t,e)

EV , D(t,e)
EV , ηcEV , and ηdEV are state of charge,

charging, discharging, charging efficiency, and discharging
efficiency, respectively. Equations (8) and (9) specify the EVs’
state of charge at their arrival and departure times, respectively.

S
(t,e)
EV = SEV

(e)
Arrival+η

c
EV ·C

(t,e)
EV −(1/η

d
EV )·D

(t,e)
EV t = Arrival

(8)
S
(t,e)
EV = SEV

(e)
Departure t = Departure (9)

Finally, Eq. (10) and (11) define the charging and discharging
rate of the EVs.

0 ≤C(t,e)
EV ≤ αEV (10)

0 ≤D(t,e)
EV ≤ βEV (11)

As can be seen, the arrival and departure times are required
to model the EVs’ participation in the community. According
to Eq. (12), the departure time can be calculated based on
arrival and sojourn times.

tdeparture = tarrival + tsojourn (12)

The authors in [34], [35] have analyzed real-world data sets
and classified the EVs into three clusters named ”Charge near
work (CNW)”, ”Charge near home (CNH)”, and ”Park to
charge” clusters, considering the influence of weekends and
seasonal changes. Then, they have fitted distributions to the
sojourn time of EVs belong to each cluster. Table I shows the
probability density functions of sojourn time for the first and



second behavioral clusters1. It must be noted that the presented
PDFs are based on normalized sojourn time concerning the last
column ([min max]) of Table I.

There are different approaches for estimation of a PDF for
the EVs’ arrival times. In [3], a normal distribution has been
assumed for the arrival time of the EVs to work or home. In
another approach, according to [35] the arrival times can be
uni/multi-modal or skewed in various situations. In ref [36],
the arrival times are generated based on a normal distribution.
However, the average arrival time of the different EVs is
generated by a Pearson distribution.

In this study, we assume a combination of two normal
distributions for multi-modal situations and one normal PDF
for the uni-modal cases as can be seen in Eq. (13) and (14),
respectively.

fCNH(x) =

 1
0.5
√
2π

exp
−(x−33)2

2×0.52 a < 0.5

1
1
√
2π

exp
−(x−40)2

2×12 otherwise
(13)

fCNW (x) =
1

4
3

√
2π

exp
−(x−14)2

2×( 4
3
)2 (14)

Which a is a random number between 0 and 1 with uni-
form distribution. So, in 50 percent of situations, a normal
distribution with µ = 33 and σ = 0.5 represents the EV
arrival for CNH cluster. In the rest, another normal PDF with
µ = 40 and σ = 1 shows the behavior of the arrival time
for the mentioned cluster. Also, a normal distribution with
µ = 14 and σ = 4

3 is considered for the arrival times of CNW
cluster. It is worth noting that the mentioned formulation of
the community-based P2P trading is a day ahead schedule with
30 min time-steps (48 time-steps for 24 hours). Therefore,
mean and standard deviations in equations (13) and (14) refer
to the time step and standard deviation of the EV arrivals
in each cluster. It is worth noting that the departure time
is a summation of two uncertain parameters with logistic
and a combination of normal distributions. As we don’t have
the exact data for the skewness of the PDFs when they are
skewed, we just follow the assumption in [3]. This assumption
will not affect the proposed method proficiency, as we will
show it’s ability in modeling the correlated-uncorrelated and
symmetric/non-symmetric uncertain parameters. Moreover, ar-
rival SoC would be the last uncertain parameter related to the
EV behavior. Indeed, the arrival state of charge depends on
the storage capacity, efficiency coefficient of the EV during
driving ([km/kwh]) as well as the traveled distance, and can
be calculated according to (15) [37].

SoCarrival = 100− d

Ceff × Cap
(15)

In this equation, the traveled distance is uncertain and leads
to uncertain EVs’ state of charge at their arrival. Paper [38]
uses a generalized extreme value distribution with µ = 17.27,
σ = 0.84, and k = −0.06 to model this uncertain parameter.

1We assume the communities contain residential, office or commercial
prosumers.

TABLE I
PROBABILITY DENSITY FUNCTION OF SOJOURN TIME FOR ”CHARGE
NEAR WORK”, ”CHARGE NEAR HOME” CLUSTERS FOR THE FIRST 24

HOURS [34]

PDF Location Scale [min max] hours
Charge near work Logistic 0.27 0.06 [5.00 18.52]
Charge near home Logistic 0.56 0.08 [0.02 23.99]

III. UNCERTAINTY MODELING

Monte-Carlo simulation is a powerful tool to map the
uncertain behavior of the input parameters to output in a
process. However, it needs a high number of iterations and can
be time-consuming. So, scenario reduction methods that can
reduce the required iterations gain importance. This section
introduces a heuristic approach to capture the main behavior
of the uncertain parameter by a few points. Assume X is
an uncertain parameter with an arbitrary PDF, e.g. see the
blue curve in Fig. 2-(a-c). A considerable run-time reduction
can happen if the most probable samples are selected and
other samples that are not as important as previous ones are
omitted. To highlight the most probable scenarios of uncertain
parameter X , N vectors Xi

′
[1×n] are generated according to

the specifications of the PDF of X by Eq. (16). Then, the
mean value (µi) and standard deviation (σi) of each vector
are calculated using (17) and (18).

X ′i = random(′PDFofX ′, shape, scale, [1, n]) (16)

µi =
1

n

∑
X ′i ∀i = 1 : N (17)

σi =

√
1

n

∑
|X ′i − ui| ∀i = 1 : N (18)

Because of probabilistic nature, and may be different in
each generated vector in case of low number of samples.
Each time, the period of Ci = [µi − kσi, µi + kσi] is
selected and an arbitrary fuzzy function is set on it. The
main reason for producing a reasonably unbiased PDF is
that the aggregated fuzzy function would peak around the
critical samples. However, the amplitude of the peak may
differ depending on the importance of the samples. So, the
amplitude of each peak is considered as the selection criteria.
For instance, a Gaussian membership function can be indicted
by (19).

fij(X
′
ij , σi, ui) = e

−
(X′ij)

2

2σi
2 ∀i = 1 : length(Ci) (19)

X ′ij is jth element of ascending sorted X ′i . This period and
its corresponded fuzzy membership function for all N vectors
have been shown in Fig. 2-(a) and 2-(b) respectively. As can
be seen in Fig. 2-(c), the most probable values for uncertain
parameter X can be detected by superposition of fuzzy func-
tions. Equation (20) shows the element-wise superposition of
produced fuzzy functions with (19).

Fj =

N∑
i=1

fij(X
′
ij , σi, ui) (20)
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Where Fj is jth element of superposition vector F . In fact,
important samples are further repeated during sampling and
more number of fuzzy membership functions will be added
together. This leads to the fact that peak of vector F corre-
sponds to most probable sample.

In some situations, the superposition of the fuzzy MFs leads
to a multi-modal curve like Fig. 3. In such situations, although
the value of one local peak may be lower than the others,
the peak states that there are some important scenarios for
the uncertain parameter around that area. So, for selecting the
most probable samples all points around the local peaks of the
F function must be taken into account. Finally, the number of
the samples around each peak is proportional to the peak value
of F in peak points i.e. a and b in Fig. 3.

Table II provides pseudo code of the presented method.

IV. ASSUMPTIONS

This section briefly summarizes the assumptions made in
this study.
• It is assumed that the arrival time of the CNW EVs,

follows a normal distribution.
• It is assumed that the arrival time of the CNH EVs,

follows a combination of two normal distribution as can
be seen in (13). The histogram of the generated numbers
by this equation has two modes and is not symmetric.

• It is assumed that the sojourn times of the CNH and CNW
categories follow the distributions shown in table I. The
sojourn time is not.

• There is no feed-in tariff in the community model.
• It is assumed that the community manager operates the

community independent of the grid operator.
• It is assumed that the residential loads have a constant

power factor.

V. SIMULATION RESULT

In this paper, two case studies are employed to illustrate
the impact of the EV uncertainty on collaborative energy
consumption in a community. Since the community is operated
by a community manager independent of the grid operator,
the first case focuses on the community model and ignores
the physical grid. The second case study deals with the
propagation of the EV uncertainty on the grid parameters,
mainly voltage magnitude. The cases, and results are explained
in the following subsections.

A. Case I: EV Uncertainties in collaborative energy consump-
tion

A neighborhood consisted of 25 houses located in the
UK has been employed to evaluate the performance of the
proposed method. More information can be found in [9]. As
can be seen in Table III, some buildings own assets like 4
kWh storage, 2 kW and 4 kW PVs as well as 2.3 kW wind

TABLE II
PROPOSED ALGORITHM

Step 1 // Recognition of important samples
for 1 : N times // N is the number of superposition
Generate 1× n vector X′i with specification of X
Fit the fuzzy MF to ascending sorted X′i vector
end
add generated fuzzy functions
Select the highest period as the most probable samples
// Step 1 must be repeated for each uncertain parameter.

Step 2 //Mapping of input uncertainty to output
Calculate the output function for selected inputs

Step 3 //Calculation of output uncertain behavior
Compute the output parameters



TABLE III
DESCRIPTION OF THE COMMUNITY ASSETS IN CASE IV

Method Houses
2 [kW] PV 2, 7, 8, 9, 16, 20, 24, 25
4 [kW] PV 5, 15, 23

2.3 [kW] Wind 3, 15, 20, 25
4 [kWh] Storage 5, 15, 23

turbines. The real-world data used in [33] is employed for the
mentioned assets. According to this data and configuration
of the community, 37 % of the annual demand of the whole
community is covered by renewable sources, approximately.
Besides, EVs that belong to people who are living or working
in the community, can participate in P2P trading program. It’s
worth noting that the simulations of this case study have been
done for one month in spring, considering the seasonal impact
on the EV availability patterns based on equations (13) and
(14). It is assumed that three EVs owned by residents of the
neighborhood (CNH cluster) join the community every day.
Also, two EV owners who work near that area (CNW cluster)
prefer to participate in P2P program of the community. Also,
according the model, EVs should be charged to a certain
level before they leave. The demand profiles of the first case
have been formed based on smart meter energy consumption
data in London households, as part of Low Carbon London
project https://data.london.gov.uk/dataset/smartmeter-energy-
use-data-in-london-households. The information related to
the wind and solar profiles, as well as the half-hourly
energy prices are accessible through the following GitHub
page: https://github.com/LocalEnergyMarkets/PCDGModel-
LocalCommunities

In the following, we analyze the EV uncertainties as well
as operation in two situations. At first, we assume the EVs
have one-way charger and can import energy from the main
grid or the other prosumers in the community. In the other
situation, the EVs can actively participate in the P2P trading
due to their bidirectional chargers.

The calculated confidence levels which are illustrated in
Fig. 4 cover the deterministic value of the objective function
in Eq. (1) for the simulation period. It shows the ability of
the proposed method in mapping the input uncertainty with
various distributions or a combination of PDFs like Eq. (13) to
the output function. To calculate these confidence intervals, we
have only selected 20 samples of each uncertain parameter us-
ing the proposed method. Table IV compares the performance
of the method in terms of confidence levels for two cases, i.e.,
20 scenarios and 5 scenarios. Indeed, the number of scenarios
refers to the number of the most probable samples that are
recognized by the proposed superposition method. In case of
20 scenarios, relatively higher confidence levels are achieved
due to covering more scenarios than the other case shown in
Table IV. To better analyze the performance of the proposed
method, day 25 -with the biggest standard deviation as can
be seen in Fig. 4- has been selected for more investigations.
Figure 5 illustrates the calculated histogram of the community
cost based on 20 scenarios. Due to the low number of
the selected samples, only the most probable scenarios are
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Fig. 4. Comparison of the deterministic and probabilistic community costs
for 30 days.

TABLE IV
COMPARISON OF THE RELATIVE CONFIDENCE LEVELS OF 20 SCENARIOS

WITH 5 SCENARIOS

Number of Scenarios Max Confidence [%] Avg Confidence [%]
20 9.1433 2.7674
5 8.2390 2.0067

illustrated in this histogram. Scenarios with a cost around
2320-2340 [Pence] have repeated 7 times. The deterministic
value of the community cost for the same day is 2331 [Pence]
which has been covered by the proposed method. Table V
reveals the impact of the EVs in the amount of the total P2P
trading in the community. As can be seen, involving EVs -
even with unidirectional chargers- in P2P trading augments
the volume of energy traded. This impact scales up when the
EVs can actively participate in the trades, using bidirectional
chargers. An interesting finding is the different tendency of
the mentioned clusters in P2P trades, as can be seen in Fig.
6. The EVs belong to CNH cluster tend to export energy to
their peers, when is possible. It means that in case of using the
bidirectional chargers for charging EVs near the houses, the
EVs behave like the stationary batteries in their availability.
On the other hand, the EVs belong to CNW tend to import
energy from the other prosumers. It’s due to the simultaneous
availability times and PV production periods.

The energy community model has been implemented in
Matlab R2019b. Solving the community model for 25 houses
and 5 EVs (on a laptop: RAM 32 GB, CPU intel core i 7 )
on average takes 11 sec. This run-time includes building and
solving the model using the linprog solver. It should be noted
that the sparse implementation of the model can speed up
the building process. However, in this case, the time reported
is based on the Matlab optimization toolbox. The proposed
method reduces the number of runs (compared to MCs) by
eliminating the unimportant sample points.

B. Case II: The impact of EV Uncertainties in collaborative
energy consumption on the grid operation

This case study focuses on the impact of energy sharing
on the distribution feeder that supplies the end-users. In this



TABLE V
IMPACT OF THE EVS IN P2P TRADING - ONE MONTH RESULT

Total trades [kWh] No EV One-way charger Bidirectional charger
Import-all participants 1088 1154 1356
Export-all participants 1178 1249 1467

Import-EVs - 139 161.4
Export-EVs - 0 241.5
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Fig. 5. Histogram of the community cost with 20 scenarios
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Fig. 6. Total P2P trading of EVs- (a) Import, Unidirectional charger - (b)
Export, Unidirectional charger - (c) Import, Bidirectional charge - (d) Export,
Bidirectional charger

case, in addition to the demand profiles, prices, and solar
profiles, a low voltage distribution feeder is employed to
evaluate the energy sharing impact. This feeder (feeder lvgd-
2388 connected to the medium voltage grid called mvgd-2) is
not a real but a realistic synthetic low voltage grid generated
by the Ding0 package2 in python. The feeder has 84 buses
and 83 branches and supplies 27 residential end-users, and
the nominal voltage is 0.4 kV. The grid topology and the line
characteristics are shown in the appendix. Since this synthetic
grid only provides information about one snapshot of the de-
mand and distributed generation, various energy consumption,
and generation profiles are assigned to different grid nodes.
In addition, there are 5 EVs in the neighborhood. The battery
capacity of the EVs in this case is 50 kWh with a round-trip
efficiency of 96% as the average of Nissan Leaf, Volkswagen
e-Golf and Tesla S [9]. The charging and discharging rate of
the EVs are set to 7.3 kWh per hour. It is worth noting that
the profiles are based on the same references as the previous
case. To analyze the impact of the local energy transactions on
the grid, the community is first analyzed under the uncertain
behavior of the EVs, regardless of the grid constraints. Then,
the ex-post analysis is conducted to understand the impact of

2https://dingo.readthedocs.io/en/dev/welcome.html
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Fig. 7. Comparing the performance of the proposed method with MCs

the EV uncertainty on the grid. In other words, the outcome
of the energy community is converted to the active power
injections into different nodes of the grid. The reactive power
injections also are estimated based on the loads’ power factor.
The Matpower toolbox3 then is employed to run the powerflow
calculation on the grid. This assumption is based on [39] and
[40], that have separated the market and grid layers.

Before dig in the result of this case, it is worth mentioning
that the this case is based on 100 scenarios extracted from 1000
scenarios. Figure 7 compares the voltage profiles obtained
by each scenario with the minimum and maximum voltage
magnitudes given by MCs. Indeed, the solid blue and red lines
illustrate the maximum and minimum voltages over the feeder
during the day calculated by MCs (850 scenarios). The dashed
lines are the voltage profiles for extracted scenarios. Two time
steps, representative of low load (10 - 05:00), afternoon (30),
and high load (43 - 21:30) are exhibited in figure 7. As can
be seen, the voltage profiles lay in the voltage range estimated
by MCs. This figure also indicates that energy sharing does
not jeopardize the grid in terms of over or under-voltage
problems, even under heavy load. Obviously, this is not a
general conclusion and is relevant for the case study. However,
there might be some situations, especially in the future, that
the end-users may experience overvoltage due to either EV
participation in energy sharing programs or an increase in
the share of renewable generation. Comparing the histograms
of the energy imported from the grid for these two cases
could be interesting. Figure 8 shows the histograms of the
energy imported from the main transformer at 05:00 and 21:30.
Although the histograms do not represent a specific PDF,
the proposed method provides similar histograms to the ones
obtained by MCs.

3https://matpower.org/
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Fig. 8. Comparing the histograms of the grid import, obtained by the proposed
method and MCs

VI. CONCLUSION

This paper proposed a novel and accurate stochastic method
for uncertainty modeling based on the superposition of un-
certain input parameters. To this end, the most significant
and probable samples of the input uncertain parameters are
recognized through the superposition of various sampling
vectors under fuzzy transformation. After forming some vec-
tors containing samples of the uncertain parameter, an arbi-
trary fuzzy membership function is assigned to each vector.
The simulation results show the appealing performance of
the proposed method with high accuracy and a very low
computational burden. As another significant feature of the
proposed method, it can calculate the output histogram with
just a few number of input samples. These findings reveal
a promising role for the proposed method in modeling the
uncertainty effects in the real practical power system problems.
For example, EVs that are being utilized increasingly impose
uncertainty on the grid or market operation. Besides, their
arrival or sojourn times may have bi-modal and skewed or
non-skewed PDFs that can not be modeled by the methods
like PEM or UT accurately. But, the proposed method showed
satisfactory performance in the described situation. Such a
special feature can play an important role in addressing the
big issues of computational burden, high complexity and
low accuracy in the literature. Taken together, this paper has
identified the tendency of the EVs to participate in local P2P
tradings. Indeed, the EVs that are charged near the owners’
houses tend to export energy to the other prosumers. Because
they are connected to the charging stations in the evening and
leave the house in the morning. So, case of using bidirectional
chargers, their operation is similar to stationary batteries in the
sojourn time. It means that active operation of the EVs belong
to CNH cluster in P2P trading can increase the flexibility of
the local markets. On the other hand, the availability time of
the CNW cluster is from the morning when the people go to
their offices until they go back to their homes. So, they tend
to import energy from the neighborhood buildings that have

renewable productions.
To sum up, regarding the input data, the energy price,

renewable profiles, and the demand of the houses are available
and can be easily found. However, the arrival and departure
times of the EVs for a certain period are not available to
be considered as the basis of the comparisons. The results
have been compared to the artificial EV data generated by the
known PDFs.
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APPENDIX

Low voltage synthetic grid data generated by Ding0
package: The low voltage distribution feeder used in the
second case study has been generated by the Ding0 package
which is a tool for generating synthetic medium and low
voltage grids. The grid topology and the line impedance are
presented in the table below. The base values for voltage and
power are 0.4 kV and 0.25 MVA, respectively. This grid has
13 solar units connected to different nodes. All of them are
models as PQ buses, as they do not have control on the voltage.
This feeder supplies 27 residential houses. The ID of this grid
is lvgd-2388, connected to the medium voltage grid mvgd-2.

Branch information

From bus To bus R [P.U] X [P.U]

1 2 0.00135625 0.00013296875
15 16 0.0165 0.004227896875
16 17 0.0007015625 0.0001325
18 19 0.009 0.002306125
18 21 0.0066625 0.00326725625
15 18 0.0066625 0.003265625
19 20 0.0007015625 0.0001325
21 22 0.0165 0.004227896875
21 24 0.0066625 0.003265625
22 23 0.0007015625 0.0001325
24 25 0.009 0.002306125
24 27 0.0066625 0.003265625
25 26 0.0007015625 0.0001325
27 28 0.0165 0.004227896875
27 30 0.0066625 0.003265625
28 29 0.0007015625 0.0001325
30 31 0.009 0.002306125
30 33 0.0066625 0.003265625
3 4 0.012628125 0.002390625
1 3 0.02510625 0.00980176875

31 32 0.0007015625 0.0001325
33 34 0.0165 0.004234375
33 36 0.0066625 0.00326725625
34 35 0.0007015625 0.0001325
36 37 0.009 0.0023125
36 39 0.0066625 0.00326725625
37 38 0.0007015625 0.0001325
39 40 0.0165 0.004234375
39 42 0.0066625 0.00326725625
40 41 0.0007015625 0.0001325
42 43 0.009 0.0023125
42 45 0.0066625 0.00326725625
43 44 0.0007015625 0.0001325
45 46 0.0165 0.004234375
45 48 0.0066625 0.00326725625
4 5 0.0007015625 0.0001325

46 47 0.0007015625 0.0001325
48 49 0.009 0.002306125
48 51 0.0066625 0.003265625

From bus To bus R [P.U] X [P.U]

49 50 0.0007015625 0.0001325
51 52 0.0165 0.004227896875
51 54 0.0066625 0.003265625
52 53 0.0007015625 0.0001325
54 55 0.009 0.0023125
54 57 0.0066625 0.003265625
55 56 0.0007015625 0.0001325
57 58 0.0165 0.004227896875
57 60 0.0066625 0.003265625
58 59 0.0007015625 0.0001325
60 61 0.009 0.002306125
60 63 0.0066625 0.003265625
6 7 0.012628125 0.002385646875
6 9 0.0066625 0.00326725625
1 6 0.005078125 0.003234375

61 62 0.0007015625 0.0001325
63 64 0.0165 0.004227896875
63 66 0.0066625 0.003265625
64 65 0.0007015625 0.0001325
66 67 0.009 0.002306125
66 69 0.0066625 0.00326725625
67 68 0.0007015625 0.0001325
69 70 0.0165 0.004227896875
69 72 0.0066625 0.003265625
70 71 0.0007015625 0.0001325
72 73 0.009 0.002306125
72 75 0.0066625 0.003265625
73 74 0.0007015625 0.0001325
75 76 0.0165 0.004227896875
75 78 0.0066625 0.003265625
7 8 0.0007015625 0.0001325

76 77 0.0007015625 0.0001325
78 79 0.009 0.0023125
78 81 0.0066625 0.00326725625
79 80 0.0007015625 0.0001325
81 82 0.0165 0.004234375
82 83 0.0007015625 0.0001325
9 10 0.0231515625 0.0043736859375
9 12 0.005078125 0.003234375

10 11 0.0007015625 0.0001325
12 13 0.012628125 0.002390625
12 15 0.0066625 0.00326725625
13 14 0.0007015625 0.0001325


