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ABSTRACT The present article aims at modeling a day-ahead local electricity market (DA LEM) for
transactive energy trading at the distribution level. In this regard, a wide range of distributed energy
resources (DERs) in the form of multiple aggregators (AGs) participates in the DA LEM in order to trade
energy with the distribution system operator (DSO), the operator of the market. On the other hand, the DSO,
as the owner of the system, has the responsibility to procure the required energy of its customers with respect
to the technical constraints of the distribution network. To settle the designed local market, a Stackelberg
game-based approach is exploited in this research work. In the raised Stackelberg scheme, the leader of
the game, the DSO, seeks to maximize its expected profit, while followers of the game, DER AGs, tend
to minimize their operating costs. Ultimately, to evaluate the proposed framework, a typical case study is
implemented on a modified IEEE-33 bus test system.

INDEX TERMS DER aggregator, distribution system operator, local electricity market, Stackelberg game,
transactive energy trading.

NOMENCLATURE
Acronyms:

AG Aggregator
BS Battery Storage
DA Day-Ahead
DER Distributed Energy Resource
DG Dispatchable Generator
DSO Distribution System Operator
LEM Local Electricity Market
PV Photovoltaic System
WT Wind Turbine
WEM Wholesale Electricity Market

Sets and Indices:

b ∈ B Set of BSs
i ∈ I Set of DGs

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

m Index in modeling the DGs’ minimum
up / down time

n ∈ N Set of AGs
l ∈ L Set of Loads
t ∈ T Set of Hours
v ∈ V Set of PVs
w ∈ W Set of WTs
α, β Set of Buses
3 Set of Lines
�× Set of × connected to set of buses
4nthFollower Set of nth follower’s decision variables
4Leader Set of leader’s decision variables

Parameters:

aDGDSO, b
DG
DSO Linear cost coefficients of

DSO’s DGs
bαβ , gαβ Susceptance / conductance of

line αβ
cDGAG Marginal generation cost of

AGs’ DGs
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dtDGDSO, ut
DG
DSO Parameters in modeling the

DGs’ minimum down / up time
EBS,iniAG Initial energy stored in AGs’

BSs
EBS,maxAG , EBS,minAG Maximum / minimum energy

stored in AGs’ BSs
mdtDGDSO,mutDGDSO Minimum down / up time of

DSO’s DGs
PBS,ch,maxAG , PBS,ch,minAG Maximum / minimum charge

power of AGs’ BSs
PBS,dch,maxAG , PBS,dch,minAG Maximum / minimum discharge

power of AGs’ BSs
PDG,iniAG Initial generation power of

AGs’ DGs
PDG,maxAG , PDG,minAG Maximum / minimum

generation power of AGs’ DGs
PDG,maxDSO , PDG,minDSO Maximum / minimum

generation power of DSO’s DGs
PLoad,FDSO Forecasted demand of DSO

PLEM ,DA,maxexch Maximum exchange power in
DA LEM

PPV ,FAG , PPV ,FDSO Forecasted generation power
of AGs / DSO’s PVs

PWT ,FAG , PWT ,FDSO Forecasted generation power of
AGs / DSO’s WTs

Pmaxαβ Maximum capacity of line αβ
RDDG

AG , RU
DG
AG Ramp down / up rate of AGs’

DGs
sdcDGDSO, suc

DG
DSO Shut down / start up price of

DSO’s DGs
Vnom Nominal voltage
λCus Price of DSO’s sold energy to

customers
λLEM ,DA,max Maximum amount of energy

price in DA LEM
λWEM ,DA Energy price in DA WEM
η
BS,ch
AG , η

BS,dch
AG Charge / discharge efficiency

of AGs’ BSs
ε Maximum voltage variation

Variables:

EBSAG Energy stored in AGs’ BSs

PBS,chAG Charge power of AGs’ BSs

PBS,dchAG Discharge power of AGs’ BSs

PDGAG Generation power of AGs’ DGs

PDGDSO Generation power of DSO’s DGs

PLEM ,DAexch Exchange power in DA LEM

PWEM ,DAexch Exchange power in DA WEM

SDCDGDSO Shut down cost of DSO’s DGs

SUCDGDSO Start up cost of DSO’s DGs

V Voltage magnitude
1V Voltage deviation
λLEM ,DA Energy price in DA LEM
λ, µ Dual variables
θ Voltage angle

Binary Variable:

UDG
DSO Binary variable for operation of DSO’s DGs

Z Binary variable in Big-M method

I. INTRODUCTION
Over the past few years, the high penetration of real DERs,
including generation units, as well as virtual DERs, including
storage units and demand response programs, aligned with
the growing development of smart technologies, has led to the
transformation of centralized electricity systems into decen-
tralized and smart networks [1]. These trends have challenged
the conventional methods of supplying and selling electricity.
That is because, for the effective integration of DERs and
benefit from their provided advantages, the implementation
of new control and operational layers at the distribution level
is highly required. Recently, various solutions have been
raised to implement these layers and exploit these emerging
resources. One of the most important and practical ways is
to create a new platform called the local electricity market
(LEM) [2]. In different references, several definitions have
been provided for LEMs. For instance, in [3], the LEM is
considered as a marketplace for the energy exchange between
producers and consumers at variable prices. In [4], the LEM
is based on a local community in which a variety of pro-
sumers, producers, and consumers are engaged to serve more
sustainable energy on involved members. In [5], the LEM
is taken into account as a market platform for exchanging
locally produced electricity between residential agents within
a community. Finally, in [6], the LEM is interpreted as
transactive energy management based on market rules and
regulations. Transactive Energy is a framework that enables
the integration of the individual preferences and resource
characteristics of prosumers in the energy management pro-
gram [7]. The entire mentioned definitions for the LEM
contain two common features: engagement of customers as
well as the localization of the market [8]. Engagement of
customers indicates that customers are active players in the
LEM decision-making process. Furthermore, localization of
the market emphasizes on both the position of customers
in the formation of the LEM and the transactive energy
exchange at the distribution level.

In general, the development of LEMs presents numerous
advantages to different stakeholders [9]. In this regard, the
LEM participants are able to consume their generated energy
and share their excess with the DSO or with other customers
on a local platform. Hence, customers strengthen their posi-
tion as effective and active players in the LEM. Moreover,
local energy trading not only reduces voltage fluctuations
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and losses in transmission and distribution lines but also
increases the stability and reliability of the whole power
system.On the other hand, through the integration and coordi-
nation of small-scale DERs in the LEM framework, a variety
of services including energy sales to different markets as well
as voltage and frequency control of distribution networks
can be provided. To achieve these goals, designing a proper
model for the LEM is very essential. Nonetheless, since the
LEMneeds to address conflicting objectives, the procedure of
designing an efficient framework for these types of markets is
a challenging matter [10]. Accordingly, several studies have
been carried out in the most recent years in order to model
the LEM. In the following, some of these research works are
highlighted:

For coordination of the DSO with multiple microgrids,
a local market-based platform has been provided in [11].
In this framework, the DSO attempts to promote its profit,
whereas microgrid owners try to diminish their operating
costs. This research has proposed a game-based approach
to settle the considered LEM. For the optimal operation of
distribution networks, a DA LEM has been modeled in [12],
in which various prosumers, producers, and consumers are
administered at the local level by participating in the market.
The designed LEM is cleared by the DSO with the aim of
social welfare maximization and satisfying the technical con-
straints of the system. In [13], a LEM has been provided for
allowing small players, includingmicrogrids, to participate in
fully transactive energy systems. In this context, a two-stage
stochastic programming method has been exploited to solve
the market transactions within this framework. To organize
a variety of real and virtual DERs at the distribution level,
a DA LEM has been provided in [14]. To this end, an energy
services company, as the operator of the LEM, manages the
entire participants in a coordinated manner to maximize its
expected profit. A feeder-based market has been proposed
in [15] for energy trading at the local level. In this market,
the distribution system is divided into several LEMs with a
limited number of players, and in each market, producers
and consumers exchange power in a way to maximize their
social welfare. In this study, the feeder-basedmarket is settled
in two-step and by utilizing the primal-dual decomposition
method. In [16], an architecture of the LEM has been sug-
gested for peer-to-peer energy exchange between a group of
prosumers equipped with various DERs in a transactive envi-
ronment. In this study, a heuristic-based algorithm has been
utilized to minimize the electricity bill of market participants.
A LEM has been modeled in [17], in which the DSO and
several microgrids are able to interact with one another in this
platform. This study has implemented a game-based method
to not only set the power trading in the LEM but also evaluate
its impact on the wholesale market.

A two-step LEM has been designed in [18] for peer-to-
peer energy and uncertainty trading among PV owners and
consumers with flexible demands. The clearing mechanism
of the considered market is based on the unilateral auction
with the aim of maximizing the production and flexibility

capacities of PVs and consumers, respectively. A LEM has
been presented in [19] for transactive energy trading among
several microgrids and the DSO at the distribution level.
In this market, the DSO tends to reduce its operating costs,
while each microgrid owner tries to increase its expected
profit. Hence, to clear the LEM, a game-based method has
been used in this study. To provide an appropriate market-
place for microgrids’ interaction with one another, a DALEM
has been designed in [20]. For clearing the consideredmarket,
a bi-level programming approach has been utilized, in which
the operating cost of eachmicrogrid is minimized at the upper
level, and the social welfare of the entire players is maximized
at the lower level. A distributed optimization approach has
been exploited in [21] for clearing a grid-connected DA LEM
while preserving the privacy of the entire market participants.
The purpose of this study is to reduce the cost of energy pro-
curement in the presence of the distribution network’s techni-
cal constraints. A LEM has been suggested in [22] to support
peer-to-peer energy exchange among multiple prosumers in
a transactive framework. In this article, the impact of peer-
to-peer trading on the technical constraints of the distribution
system, including voltage fluctuations, power losses, etc., has
been investigated. A DA LEM has been designed in [23] to
manage peer-to-peer transactions among different kinds of
prosumers integrated within a local community. The modeled
market is settled from a central operator’s point of view by a
centralized method in order to minimize the total operating
costs of the community.

To get the maximum benefit from the high penetration of
electric vehicles at distribution systems, a DA LEM has been
exploited in [24]. In this regard, the market, which is cleared
by a centralized method, seeks to determine the optimal
power transaction among prosumers equipped with DERs
and electric vehicles. The objective function of the LEM
operator is to minimize the operating cost of the commu-
nity. To enable peer-to-peer local energy sharing and trading
among multiple consumers in a community, a bi-level pro-
gramming approach has been suggested in [25]. Accordingly,
the community, which is the owner of several flexible units,
seeks to maximize its profit at the upper level of the problem,
while consumers attempt to minimize their utility bills at
the lower level. A market-based framework that handles the
energy trading between the DSO and several microgrids at
the local distribution level has been proposed in [26]. To this
end, a two-level approach has been employed, in which,
at the first level, the DSO sets the energy exchange price in a
way to increase its earnings from the trading. At the second
level, each microgrid operator is responsible for solving the
optimal power flow problem to decrease both the generation
cost as well as power loss of the system. Different types
of auction-based algorithms for clearing LEMs have been
compared with one another in [27]. The primary objective of
this study is to satisfy the willingness to pay and preference of
the market participants. A potential LEM has been modeled
in [28] to facilitate the high deployment of DERs owned
by residential customers at the distribution level. The LEM
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operator, as a central entity, minimizes the cost of importing
power and maximizes the income from exporting power to
the upstream grid in the presence of distribution network
constraints. In the end, a local market-based platform has
been provided in [29] for the interaction among the DSO and
different types of AGs at the distribution level. In this study,
to settle this interaction, a bi-level programming method has
been executed.

Analyzing the above articles demonstrates that, normally,
the LEM modeling has been implemented from a central
operator’s perspective, and independent financial identity has
not been considered for the market participants. Indeed, the
entire stakeholders are required to share all their information
with the operator as passive players in the LEM. Thus, these
works have not been able to raise practical solutions for
establishing a competitive environment among the existing
participants. On the other hand, the proposed models in these
works have not provided a suitable platform for the coordina-
tion and cooperation of decentralized DERs and getting fully
advantages from their provided services. Therefore, these
works have not been able to properly assess the technical and
operational constraints of the distribution system and manage
the DSO’s challenges in the presence of a wide range of
DERs. Since the presented paper is conducted to handle the
mentioned gaps, its primary contributions are as follows:

1. Integration of decentralized DERs in the multi-AG plat-
form for the transactive energy trading with the DSO at
the local level and dealing with technical challenges of the
distribution system in the presence of an extensive amount
of DERs.

2. Modeling a DA LEM and utilizing a Stackelberg
game-based approach to consider the selfish behavior of
independent financial entities with distinguished objective
functions in this market.

Table 1 clarifies the novelties and contributions of this
article by comparing it with the reviewed research works.

II. METHODOLOGY
As previouslymentioned, the key goal of this article is model-
ing a DA LEM to facilitate the participation of various small
and medium-sized DERs in the energy management program
of the DSO. To this end, it is assumed that different types of
decentralizedDERs are integrated into themulti-AG platform
to trade energy with the DSO in the local marketplace as
autonomous financial entities. On the contrary, the DSO,
as the owner of the system, has the responsibility to procure
the needed energy of its customers from the LEM and whole-
sale electricity market (WEM) as well as its local generation
resources with respect to the technical constraints of the
distribution network. Owing to the existence of independent
players with distinguished objective functions in the modeled
LEM, a Stackelberg game-theoretic method is utilized in this
paper to settle the market [30]. The general scheme of the
proposed framework is illustrated in Figure 1.While the DER
AGsmight be able to participate in othermarkets aswell, their

TABLE 1. Taxonomy of the previous studies.

participation in the proposed LEMwill be more beneficial for
these players and the DSO. The reason is that since integrated
DERs within the AGs are located at the distribution networks,
these entities are required to utilize the DSO’s infrastructure
for their energy trading in different markets. However, the
extensive presence of these resources and their independent
energy exchange with other markets endanger power quality
indices of distribution systems and cause voltage fluctuations,
high power losses, etc. Accordingly, by exploiting the pre-
sented local market-based framework, not only the DER AGs
can sell their energy to the DSO by considering their financial
interests, but also the technical constraints of the distribution
network are well satisfied.

In the raised Stackelberg scheme, the leader of the game,
the DSO, seeks to maximize its expected profit, while fol-
lowers of the game, DER AGs, tend to minimize their daily
operating costs. In this procedure, LEM energy price sig-
nals, as well as market players’ bids/offers, act as linking
variables between the leader and followers. Accordingly, the
DSO sends the energy price signal to the AGs at the local
level. Based on the signal, AGs submit their offers/bids to the
LEM operator. Afterward, the DSO optimizes its objective
function and evaluates its expected benefit based on AGs’
received offers/bids. For the sake of clarification, non-linking
and linking decision variables of the leader and followers are
stated in Figure 1 as well.

In the following of this section, objective functions and
also technical constraints of players are mathematically
formulated.

A. PROBLEM FORMULATION OF THE LEADER—DSO
The DSO, as the leader of the game, has the responsibility to
provide its demand by taking part in the existing markets, the
LEM andWEM, as well as utilizing its local dispatchable and
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non-dispatchable units. Hence, the objective function of the
DSO is to promote its expected profit, which is defined as the
difference between income and expenditure. The considered
objective function is formulated mathematically in Eq (1).

O.FLeader

= Max
∑
t∈T

{∑
l∈L

PLoad,FDSO (l, t) λCus (t)

−PWEM ,DAexch (t) λWEM ,DA (t)

−

∑
n∈N

PLEM ,DAexch (n, t) λLEM ,DA (t)

−

∑i∈I aDGDSO (i)PDGDSO (i, t)+ bDGDSO (i)UDG
DSO (i, t)

+SUCDGDSO (i, t)+ SDCDGDSO (i, t)

,
(1)

The first term of Eq (1) is related to the DSO’s revenue
from selling energy to its customers. The second and third
terms are related to the DSO’s costs from participating in the
WEM and interacting with DER AGs in the LEM platform,
respectively. Finally, the last term is associated with the oper-
ating costs of the DSO’s DGs.

This objective function is subject to a set of constraints as
follows:

PWEM ,DAexch (t)

=

∑
β : (α,β)∈3

[
Vnom (1V (α, t)−1V (β, t)) gαβ
−V 2

nom (θ (α, t)− θ (β, t)) bαβ

]
,

∀α = 1, t (2)∑
w : (w,α)∈�W

PWT ,FDSO (w, t)+
∑

v : (v,α)∈�V

PPV ,FDSO (v, t)

+

∑
i : (i,α)∈�I

PDGDSO (i, t)−
∑

l : (l,α)∈�L

PLoad,FDSO (l, t)

+

W∑
w : (w,α)∈�W

∑
n∈N

PWT ,FAG (n,w, t)

+

V∑
v : (v,α)∈�V

∑
n∈N

PPV ,FAG (n, v, t)

+

I∑
i : (i,α)∈�I

∑
n∈N

PDGAG (n, i, t)

+

I∑
β: (β,α)∈�B

∑
n∈N

(
PBS,dchAG (n, b, t)−PBS,chAG (n, b, t)

)
=

∑
β : (α,β)∈3

[
Vnom (1V (α, t)−1V (β, t)) gαβ
−V 2

nom (θ (α, t)− θ (β, t)) bαβ

]
,

∀ a 6= 1, t (3)

−Pmaxαβ

≤

[
Vnom (1V (α, t)−1V (β, t)) gαβ
−V 2

nom (θ (α, t)− θ (β, t)) bαβ

]
≤ Pmaxαβ ,

∀ (α, β) ∈ 3, t (4)

−ε Vnom ≤ 1V (α, t) ≤ ε Vnom, ∀α, t (5)

V (α, t) = Vnom +1V (α, t) , ∀α, t (6)

−π ≤ θ (α, t) ≤ π, ∀α, t (7)

0 ≤ λLEM ,DA (t) ≤ λLEM ,DA,max , ∀t (8)

PDG,minDSO (i)UDG
DSO (i, t)

≤ PDGDSO (i, t) ≤ P
DG,max
DSO (i)UDG

DSO (i, t) , ∀ i, t (9)

UDG
DSO (i, t)− U

DG
DSO (i, t − 1)

≤ UDG
DSO

(
i, t+utDGDSO (i,m)

)
, ∀i, t (10)

UDG
DSO (i, t − 1)− UDG

DSO (i, t)

≤ 1− UDG
DSO

(
i, t+dtDGDSO (i,m)

)
, ∀i, t (11)

utDGDSO (i,m)

=

{
m, m ≤ mutDGDSO (i)

0, m > mutDGDSO (i) ,
∀ i (12)

dtDGDSO (i,m)

=

{
m, m ≤ mdtDGDSO (i)

0, m > mdtDGDSO (i) ,
∀ i (13)

SUCDGDSO (i, t)

≥ sucDGDSO (i)
[
UDG
DSO (i, t)− U

DG
DSO (i, t − 1)

]
,

∀ i, t (14)

SDCDGDSO (i, t)

≥ sdcDGDSO (i)
[
UDG
DSO (i, t − 1)− UDG

DSO (i, t)
]
,

∀ i, t (15)

Eqs (2) and (3) are related to the power balance constraints
of the DSO in the slack and other buses, respectively. In this
study, a linear AC power flow has been exploited, as pre-
sented in [31]. In this regard, Eq (4) limits the amount of
power flow in distribution lines. Eq (5) restricts the voltage
deviation of buses. The voltage magnitude of each bus is
represented by Eq (6). Eq (7) illustrates the limitation of
voltage angle. Furthermore, energy price in the DA LEM is
a non-negative variable that is limited by Eq (8). Operational
constraints of the DSO’s DGs are specified by Eqs (9) to (15).
Accordingly, the generation power of DGs is limited by Eq
(9). Eqs (10) to (13) model the minimum up and down time
limitations of these units. Finally, Eqs (14) and (15) formulate
the start up and shut down costs of these sources. It should
be noted that the produced power of non-dispatchable units,
namelyWTs and PVs, are calculated by expressions that have
been presented in [32].
In the end, the leader’s set of decision variables are listed

as follows:

4Leader
=

{
PWEM ,DAexch (t) , λLEM ,DA (t) ,PDGDSO (i, t)

UDG
DSO (i, t) , 1V (α, t) ,V (α, t) , θ (α, t)

}
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FIGURE 1. Overview of the proposed framework.

B. PROBLEM FORMULATION OF THE
FOLLOWERS—DER AGS
On the other hand, each DER AG seeks to diminish its
daily operating cost by integrating decentralized DERs at the
distribution level and exchanging their generation as well as
storage capacities with the DSO in the LEM platform. Each
DER AG’s objective function is mathematically formulated
in Eq (16).

O.Fn
th Follower

= Min
∑
t∈T


∑
i∈I

PDGAG (n, i, t) c
DG
AG (n, i)

−PLEM ,DAexch (n, t) λLEM ,DA (t)

 , (16)

The first and second terms of Eq (16) are related to the
operating costs of the nth AG’s DGs and its income from
participating in the LEM, respectively.

This objective function is also subject to a set of constraints
as follows:∑
w∈W

PWT ,FAG (n,w, t)+
∑
v∈V

PPV ,FAG (n, v, t)

+

∑
i∈I

PDGAG (n, i, t)

+

∑
b∈B

(
PBS,dchAG (n, b, t)− PBS,chAG (n, b, t)

)
= PLEM ,DAexch (n, t) , λ1 (n, t) , ∀ n, t (17)

−PLEM ,DA,maxexch (n) ≤ PLEM ,DAexch (n, t) ≤ PLEM ,DA,maxexch (n) ,

µ1 (n, t) , µ2 (n, t) , ∀ n, t (18)

PDG,minAG (n, i) ≤ PDGAG (n, i, t) ≤ P
DG,max
AG (n, i) ,

µ3 (n, i, t) , µ4 (n, i, t) ∀ n, i, t (19)

PDGAG (n, i, t)− P
DG
AG (n, i, t − 1) ≤ RUDG

AG (n, i) ,

µ5 (n, i, t) , ∀n, i, t > 1 (20)

PDGAG (n, i, t)− P
DG,ini
AG (n, i) ≤ RUDG

AG (n, i) ,

µ6 (n, i, t) , ∀n, i, t = 1 (21)

PDGAG (n, i, t − 1)− PDGAG (n, i, t) ≤ RDDG
AG (n, i) ,

µ7 (n, i, t) , ∀n, i, t > 1 (22)

PDG,iniAG (n, i)− PDGAG (n, i, t) ≤ RDDG
AG (n, i) ,

µ8 (n, i, t) , ∀n, i, t = 1 (23)

PBS,dch,minAG (n, b) ≤ PBS,dchAG (n, b, t) ≤ PBS,dch,maxAG (n, b) ,

µ9 (n, b, t) , µ10 (n, b, t) , ∀n, b, t (24)

PBS,ch,minAG (n, b) ≤ PBS,chAG (n, b, t) ≤ PBS,ch,maxAG (n, b) ,

µ11 (n, b, t) , µ12 (n, b, t) , ∀n, b, t (25)

EBSAG (n, b, t)

= EBSAG (n, b, t − 1)+ PBS,chAG (n, b, t) ηBS,chAG (n, b)

−PBS,dchAG (n, b, t, s) /ηBS,dchAG (n, b) ,

λ2 (n, b, t) , ∀n, b, t > 1 (26)

EBSAG (n, b, t)

= EBS,iniAG (n, b)+ PBS,chAG (n, b, t) ηBS,chAG (n, b)

−PBS,dchAG (n, b, t, s) /ηBS,dchAG (n, b) ,

λ3 (n, b, t) , ∀n, b, t = 1 (27)

EBS,minAG (n, b) ≤ EBSAG (n, b, t) ≤ E
BS,max
AG (n, b) ,

µ13 (n, b, t) , µ14 (n, b, t) , ∀n, b, t (28)
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Eq (17) is related to the power balance constraint of the
nth AG. Eq (18) confines the exchange power of the AG in
the DA LEM. Eqs (19) to (23) are associated with DGs’ oper-
ational constraints and their power limitations. Accordingly,
the generation power of the AG’s DGs is limited by Eq (19).
Moreover, Eqs (20) and (21) limit the maximum increase,
and Eqs (22) and (23) limit the maximum decrease in the
output power of DGs. Ultimately, mathematical and technical
requirements of the AG’s BSs are demonstrated in Eqs (24)
to (28). In this regard, BSs’ discharge and charge power
limitations are stated in Eqs (24) and (25), respectively. Also,
energy stored in BSs and their related limitations are illus-
trated in Eqs (26) and (27) as well as Eq (28), respectively.

In the end, the nth follower’s set of decision variables are
listed as follows:

4nthFollower

=

{
PLEM ,DAexch (n, t) ,PDGAG (n, i, t) ,P

BS,dch
AG (n, b, t)

PBS,chAG (n, b, t) ,EBSAG (n, b, t) , λ, µ

}

C. SOLVING THE PROPOSED STACKELBERG
GAME-BASED FRAMEWORK
Since problems of followers, DER AGs, are linear, con-
tinuous, and thus convex, the considered one-leader-multi-
follower game-based model could be reformulated to a
single-level model by replacing the followers’ problem with
their Karush-Kuhn-Tucker (KKT) conditions [33]. In this
context, KKT conditions, including the stationary, comple-
mentary slackness, and dual feasibility, are illustrated in
Eqs (29) to (48).

∂ LF

∂PLEM ,DAexch (n, t)

= −λLEM ,DA (t)+ λ1 (n, t)

+µ1 (n, t)− µ2 (n, t) = 0, ∀n, t (29)
∂ LF

∂PDGAG (n, i, t)

= cDGAG (n, i)− λ1 (n, t)+ µ3 (n, t)− µ4 (n, t)

+µ5 (n, t)|t>1 − µ5 (n, t + 1)+ µ6 (n, t)|t=1
−µ7 (n, t)|t>1 + µ7 (n, t + 1)− µ8 (n, t)|t=1 = 0,

∀n, i, t (30)
∂ LF

∂PBS,dchAG (n, b, t)
= −λ1 (n, t)+ µ9 (n, b, t)− µ10 (n, b, t)

− λ2 (n, b, t) /η
BS,dch
AG (n, b)

∣∣∣
t>1

− λ3 (n, b, t) /η
BS,dch
AG (n, b)

∣∣∣
t=1
= 0, ∀n, b, t (31)

∂ LF

∂PBS,chAG (n, b, t)
= λ1 (n, t)+ µ11 (n, b, t)− µ12 (n, b, t)

+ λ2 (n, b, t) η
BS,dch
AG (n, b)

∣∣∣
t>1

+ λ3 (n, b, t) η
BS,dch
AG (n, b)

∣∣∣
t=1
= 0, ∀n, b, t (32)

∂ LF

∂EBSAG (n, b, t)
= −λ2 (n, b, t)|t>1
+ λ2 (n, b, t + 1) −λ3 (n, b, t)|t=1
+µ13 (n, b, t)− µ14 (n, b, t) = 0, ∀n, b, t (33)

0 ≤ PLEM ,DA,maxexch (n)− PLEM ,DAexch (n, t) ⊥ µ1 (n, t) ≥ 0,

∀ n, t (34)

0 ≤ PLEM ,DAexch (n, t)+ PLEM ,DA,maxexch (n) ⊥ µ2 (n, t) ≥ 0,

∀ n, t (35)

0 ≤ PDG,maxAG (n, i)− PDGAG (n, i, t) ⊥ µ3 (n, i, t) ≥ 0,

∀ n, i, t (36)

0 ≤ PDGAG (n, i, t)− P
DG,min
AG (n, i) ⊥ µ4 (n, i, t) ≥ 0,

∀ n, i, t (37)

0 ≤ RUDG
AG (n, i) − P

DG
AG (n, i, t)

+PDGAG (n, i, t − 1) ⊥ µ5 (n, i, t) ≥ 0,

∀ n, i, t > 1 (38)

0 ≤ RUDG
AG (n, i) − P

DG
AG (n, i, t)

+PDG,iniAG (n, i) ⊥ µ6 (n, i, t) ≥ 0,

∀ n, i, t = 1 (39)

0 ≤ RDDG
AG (n, i)− P

DG
AG (n, i, t − 1)

+PDGAG (n, i, t) ⊥ µ7 (n, i, t) ≥ 0,

∀ n, i, t > 1 (40)

0 ≤ RDDG
AG (n, i) − P

DG,ini
AG (n, i)

+PDGAG (n, i, t) ⊥ µ8 (n, i, t) ≥ 0,

∀ n, i, t = 1 (41)

0 ≤ PBS,dch,maxAG (n, b)− PBS,dchAG (n, b, t)

⊥ µ9 (n, b, t) ≥ 0, ∀ n, b, t (42)

0 ≤ PBS,dchAG (n, b, t) − PBS,dch,minAG (n, b)

⊥ µ10 (n, b, t) ≥ 0, ∀ n, b, t (43)

0 ≤ PBS,ch,maxAG (n, b)− PBS,chAG (n, b, t)

⊥ µ11 (n, b, t) ≥ 0, ∀ n, b, t (44)

0 ≤ PBS,chAG (n, b, t)− PBS,ch,minAG (n, b)

⊥ µ12 (n, b, t) ≥ 0, ∀ n, b, t (45)

0 ≤ EBS,maxAG (n, b)− EBSAG (n, b, t) ⊥ µ13 (n, b, t) ≥ 0,

∀ n, b, t (46)

0 ≤ EBSAG (n, b, t)− E
BS,min
AG (n, b) ⊥ µ14 (n, b, t) ≥ 0,

∀ n, b, t (47)

λ, Unrestricted (48)

Nonetheless, the final single-level model of the problem is
non-linear due to the presence of some sources of nonlineari-
ties, i.e., complementary slackness in Eqs (34) to (47) as well
as PLEM ,DAexch (n, t) λLEM ,DA (t) in Eq (1). For linearization of
these expressions, the Big-M methodology and strong dual-
ity theorem (SDT) are utilized in this article [34]. Eq (49)
demonstrates the generic formulation of the Big-M method.
The important point in utilizing this method is selecting a
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proper value for ‘‘M’’ as a sufficiently large parameter. That
is because, too small ‘‘M’’ leaves the optimal solution out
of the feasible space, while too large ‘‘M’’ may lead to
computational inefficiencies in the solution of the obtained
model. Furthermore, the dual problem of Eq (16) that leads
to deriving the linear form of PLEM ,DAexch (n, t) λLEM ,DA (t) is
stated in Eq (50).

0 ≤ ψ⊥υ ≥ 0→

{
ψ ≤ MZ
υ ≤ M (1− Z )

(49)

∑
t∈T


∑
i∈I

PDGAG (n, i, t) c
DG
AG (n, i)

−PLEM ,DAexch (n, t) λLEM ,DA (t)


=

∑
t∈T

−λ1 (n, t)

∑
w∈W

PWT ,FAG (n,w, t)

+

∑
v∈V

PPV ,FAG (n, v, t)


−µ1 (n, t)P

LEM ,DA,max
exch (n)

−µ2 (n, t)P
LEM ,DA,max
exch (n)+

∑
i∈I

×



−µ3 (n, i, t)P
DG,max
AG (n, i)

+µ4 (n, i, t)P
DG,min
AG (n, i)

−µ5 (n, i, t)RUDG
AG (n, i)

∣∣
t>1

− µ6 (n, i, t)
[
RUDG

AG (n, i)+ P
DG,ini
AG (n, i)

]∣∣∣
t=1

−µ7 (n, i, t)RDDG
AG (n, i)

∣∣
t>1

− µ8 (n, i, t)
[
RDDG

AG (n, i)− P
DG,ini
AG (n, i)

]∣∣∣
t=1



+

∑
b∈B



−µ9 (n, b, t)P
BS,dch,max
AG (n, b)

+µ10 (n, b, t)P
BS,dch,min
AG (n, b)

−µ11 (n, b, t)P
BS,ch,max
AG (n, b)

+µ12 (n, b, t)P
BS,ch,min
AG (n, b)

−µ13 (n, b, t)E
BS,max
AG (n, b)

+µ14 (n, b, t)E
BS,min
AG (n, b)

+ λ3 (n, b, t)E
BS,ini
AG (n, b)

∣∣∣
t=1





,

∀ n, t (50)

As a point of interest, if the feasibility of the resulting
single-levelmodel is not obtainedmomentarily due to the vio-
lation of the distribution network’s operational constraints,
as well as technical constraints of the existing resources, the
DSO as the operator and monitor of the system is potentially
able to relax some constraints if the electricity supply relia-
bility and quality can still be maintained at the feasible and
allowable level.

III. SIMULATION RESULTS AND DISCUSSION
In this part of the article, the proposed LEM model for
enabling the possibility of transactive energy exchange
between the DSO and DER AGs is implemented and

evaluated on a modified IEEE-33 bus test system, depicted
in Figure 2.
As shown in Figure 2, the DSO has two DGs, one WT and

one PV, which have been located at buses 3, 8, 13, and 22,
respectively. In addition, it is presumed that two DER AGs
trade energy with the DSO at the distribution level. DER AG
1 contains five DGs, three WTs, and two PVs without any
BS. These resources have been located at buses 2, 8, 13, 18,
23, 5, 18, 25, 10, and 15, respectively. DER AG 2 contains
three DGs, three PVs, and three BSs without any WT. These
resources have been located at buses 19, 27, 33, 29, 31, 33,
22, 29, and 31, respectively.
The output power of all these units is depicted in Figure 3.

Note that both wind speed and solar irradiation profiles
have been assumed to be the same for these DERs in the
distribution system. On the other hand, the input data and
technical specifications of these resources are summarized in
Tables 2, 3, and 4.
It is worth noteworthy that since the primary purpose

of this study is not to size and cite the available DERs at
the distribution level, it has been assumed that the entire
resources already exist in the network, and it is only attempted
to evaluate their operating status.
On the other hand, the peak demand of the DSO’s cus-

tomers in each bus is reported in Table 5.
The per-unit forecasted demand profile of the DSO is

shown in Figure 4. Notably, in this research work, a fore-
casting technique or model has not been utilized, and it has
been presumed that the demand profile is a forecasted value
obtained from historical data.
Moreover, the DSO’s price of sold energy to its customers

is a three-tariff price, which includes 30e/MWh, 55e/MWh,
and 45 e/MWh in off-peak, peak, and mid-peak hours,
respectively. Finally, it is assumed that the DSO’s maximum
amount of exchange power with the upstream grid, WEM,
is 10 MW.
Before presenting the output results, the list of assumptions

that have been made in the simulation process is summarized
as follows:
1. The entire DERs are assumed to be already located in the

distribution system.
2. The wind speed and solar irradiation profiles are assumed

to be the same for all DERs in the distribution system.
3. The forecasted demand profile is assumed to be obtained

from historical data.
4. The price of sold energy to customers is assumed to be a

three-tariff price.
5. The maximum amount of exchange power with the

upstream grid is assumed to be 10 MW.
The optimal participation of the DSO in both WEM and

LEM, as well as WEM forecasted price and LEM clearing
price, have been displayed in Figure 5. Notably, the DSO’s
purchased power is shown by positive bars, and its sold power
is shown by negative bars.
Based on Figure 5, in the peak of the DA WEM price, i.e.,

hours 12 to 13 and 21 to 22, the DSO has supplied its excess
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FIGURE 2. Single-line diagram of the modified IEEE-33 bus test system.

FIGURE 3. Output power of non-dispatchable DERs. (A) WTs. (B) PVs.

power to the market. This power has been procured from the
DALEMaswell as the DSO-own local DERs. In other words,
at these hours, the WEM price is at the maximum value, and

TABLE 2. Technical specifications of system’s dispatchable units.

it is higher than the operating costs of the DSO’s DGs as well
as the LEM clearing prices. Hence, the DSO has exploited its
DGs at full capacity and purchased the maximum amount of
energy from the LEM to not only meet the system’s demand
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TABLE 3. Technical specifications of system’s non-dispatchable units [35].

TABLE 4. Technical specifications of the system’s battery storage units.

TABLE 5. Peak load of the system.

but also sell its surplus to the WEM. Therefore, it can be
inferred that the operating costs of the DSO’s DGs and its
costs from interacting with AGs in the LEM platform are
lower than the profit made by selling energy to the WEM.
On the contrary, in the off-peak of the DA WEM price, i.e.,
hours 3 to 4 and 16 to 17, the DSO has supplied its excess

FIGURE 4. Load profile of the system.

FIGURE 5. DSO’s participation in both markets and market prices.

FIGURE 6. Operating points and generation profiles of the DSO’s local
resources.

power to the DER AG 2 in the LEM platform. This power
has been procured from the WEM and DER AG 1. Moreover,
during the whole day, the DSO has purchased the power from
AG 1 in the LEM platform. On the other hand, as shown in
Figure 5, the LEM clearing price has reached its highest value
in the middle hours of the day, where the DSO’s demand and
the WEM price are high as well. Hence, the peak of the LEM
clearing price is aligned with the peak of the WEM price.
Indeed, owing to the peak demand, the DSO’s bids in the
LEM have increased.

The optimal operating points of the DSO’s DGs and
the generation profile of its non-dispatchable renewable
resources are illustrated in Figure 6.

According to Figure 6, the DSO’s DG 1 has been exploited
with the maximum capacity during the whole day. Nonethe-
less, the DG 2, which has a high production cost, has been
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FIGURE 7. Optimal performance of the DER AG 1 in the DA LEM.

FIGURE 8. Optimal performance of the DER AG 2 in the DA LEM.

exploited only in the middle hours of the studied day. The
generated power of these resources in the middle hours has
been exploited by the DSO to inject energy into the WEM
because their operating costs are lower than the profit made
by selling this energy to the market. It can be emphasized
that, since DGs’ operational constraints, namely minimum up
and down time, have been considered in the presented model
as well, there are some limitations for turning off/turning on
these units from the optimization point of view. By consider-
ing some specific constraints and costs, such as the amount
of emission and its related cost, it may be better for the DSO
to turn off its DGs instead of selling energy at peak hours.

On the other hand, Figures 7 and 8 represent the DER
AG 1 and DER AG 2’s optimal participation in the DA LEM,
respectively, which has resulted from operating points as well
as generation profiles of integrated DERs inside each AG.

According to Figure 7, the AG 1’s DG 1 and DG 4 have
been utilized with the maximum capacity during the whole
day. At hours 1 to 9 and 24, the AG 1’s DG 1 is the marginal
producer in the LEM. The AG 1’s DG 3 has been utilized in
the peak of the DSO’s demand and theWEM price, where the
DSO’s bids in the LEM have increased. At these hours, DG 3
has become the marginal producer, and the LEM clearing
price has reached 38.5 e/MWh. Additionally, at hour 12,
in which the DSO’s demand and WEM price are at their
highest value, the DERAG 1 has brought DG 2 to the service,
and hence the LEM price has increased to 44.5 e/MWh. It is
noteworthy that the AG 1’s DG 5 has not been used over the
studied day.

Based on Figure 8, the AG 2’s DG 1 has been utilized
with the maximum capacity during the whole day. At hours

TABLE 6. DSO’s performance to supply the demand.

10 to 23, the AG 2’s DG 2 and DG 3 have been brought to
the service and exploited with the maximum capacity. Thus,
at hours 10, 15 to 18, and 23, AG 2’s DG 2 has become the
marginal producer, and the LEM clearing price has reached
32 e/MWh. On the other hand, DER AG 2 has charged its
BSs in off-peak hours and discharged it in peak hours to
sell power to the DSO via the LEM platform. It must be
mentioned that some part of the BSs’ charge power has been
procured from the LEM,while some parts have been provided
from the AG 2’s own generation sources. For instance, at
hour 17, for charging the AG 2’s BSs, 2.7 MW power has
been purchased from the LEM, and 3.3 MW power has been
provided from DG 1, DG 2, DG 3, and PVs that are located
at different buses.

To analyze the output results more accurately, the DSO’s
performance to supply its demand via the existing sources
is reported numerically in Table 6. The second, third, and
fourth columns of this table illustrate the DSO’s exchanged
power with the WEM, AG 1 in the LEM platform, and AG 2
in the LEM platform, respectively. Similar to Figure 5, the
purchased power is shown by positive numbers, while the
sold power is shown by negative numbers. The fifth column is
associated with the generation power of the DSO-own DERs.
Finally, the last column shows the distribution system’s load
in MW.

Based on Table 6, from hour 11 to hour 12, the DSO’s sit-
uation has changed from purchasing energy to selling energy
to theWEM, while the generation profile of its DERs, as well
as its demand, are nearly the same at these hours. In this
regard, the DSO has increased its purchasing powers from
the DER AG 1 and DER AG 2 in the LEM by about 2.9 MW
and 6.1 MW, respectively, to fulfill the network’s load and
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TABLE 7. Players’ hourly revenue and costs.

export its excess, nearly about 3 MW, to theWEM. Similarly,
from hour 20 to hour 21, the DSO has been able to act as a
seller at the WEM by increasing its purchasing power from
the DER AG 2.

To better investigate the income and costs of the considered
players, the hourly distribution of their revenue and costs are
reported in Table 7. The second, third, and fourth columns
are related to the DSO’s income from selling energy to its
customers, participating in theWEM, and exchanging energy
with DER AGs in the LEM platform, respectively. The fifth
column is related to the operating costs of the DSO’s DGs.
The sixth and seventh columns are associated with the DER
AG 1’s income from participating in the LEM and operating
costs of its DGs, respectively. Similarly, the eighth and ninth
columns are associated with the DER AG 2’s income from
participating in the LEM and operating costs of its DGs,
respectively. Obviously, the negative revenue in this table
determines the costs of entities.

As clear in Table 7, the DSO has purchased energy from the
WEM at most hours of the day, and only at hours 12 to 13 as
well as 21 to 22 has achieved income from selling energy to
the WEM. In addition, the DSO’s cost of buying energy from
the LEM has reached its maximum value at the mentioned
hours. Notably, at only hour 17, the DSO has received revenue
from selling energy to the LEM, where the DER AG 2 has
purchased a considerable amount of energy from the DSO
to charge its BSs. On the other hand, both DER AGs have
received the highest amount of income at 12, where the LEM
clearing price is at its maximum value.

TABLE 8. Players’ daily profit and exchanged energy.

The daily profit of the LEM’s players, as well as their
traded energy, are summarized and compared in Table 8. It is
notable that, the total exchanged energy of both DER AGs
with the LEM is equal to the DSO’s exchanged energy with
this market.

In the following of this section, the impact of the transmis-
sion line capacity between the upstream grid and distribution
network on the LEM clearing prices is evaluated. To this
end, in addition to the base case with 10 MW line capacity,
simulations are executed for 8 MW and 6 MW line capac-
ities as well. It should be pointed out that since increasing
the line capacity from 10 MW had no effect on the DSO’s
profit and its exchanged energy with the WEM, in this study,
10 MW capacity has been selected as the base case for the
line between the upstream grid and the distribution network.
Figure 9 compares the LEM prices in these three cases.

As depicted in Figure 9, by decreasing the transmission
line capacity, the LEM clearing prices have increased in peak
hours. These prices have raised in off-peak hours, i.e., 6 to 9,
as well, for 6MW line capacity. That is because, by confining
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FIGURE 9. LEM clearing prices in three different cases.

TABLE 9. Players’ daily profit in three different cases.

the DSO’s exchange power with the WEM, the DER AGs’
most expensive DGs have been brought to the service and
become marginal producers in the considered LEM.

Additionally, expected profits of the DSO and DER AGs
in the aforementioned cases are reported and compared with
one another in Table 9.

Based on Table 9, the DSO’s profit has decreased by
reducing the transmission line capacity between the upstream
and distribution networks. On the contrary, both DER AGs’
profits have increased owing to the raise in the LEM clearing
prices.

Finally, to further highlight the potential advantages of the
presented platform for implementing the LEM, another case
study is analyzed in the following, in which electricity is
traded between the DSO and DER AGs outside an organized
marketplace. In this context, a bilateral contract is assumed
to be made between the DSO and these entities to exchange
energy at fixed prices. In this case study, three different tariffs
are considered for the made bilateral contract, including:

Tariff 1 - 10 e/MWh less than the WEM price.
Tariff 2 - The WEM price.
Tariff 3 - 10 e/MWh more than the WEM price.
In Table 10, the obtained results from these three tariffs in

the second case study are presented and compared with each
other and with the first case study.

As shown in Table 10, when the price of the traded power
between the DSO and DER AGs is less than the WEM price,
the DSO has gained the highest amount of profit. In con-
trast, the DER AG 1’s profit has been reduced remarkedly
due to the decrease in the contracted price with the DSO.
In the meantime, the DER AG 2 has been able to improve
its situation and gain more profit owing to the existence of

TABLE 10. Comparison between case studies.

multiple BSs in its collation. Accordingly, the available BSs
have helped the AG 2 to store its produced energy at off-peak
prices and sell it to the DSO at peak prices.

When the price of the traded power between the DSO
and DER AGs is equal to the WEM price, due to the high
price of the WEM and the bilateral contract, the DSO has not
only failed to make a profit but also incurred a cost. On the
contrary, both DER AGs have gained more profit compared
to the first tariff since they could sell their power at a higher
price to the DSO.

When the price of the traded power between the DSO and
DER AGs is more than the WEM price, the DSO has tended
to procure its required demand from the WEM. Nonetheless,
due to the technical constraints of the network, the DSO has
had to provide some part of its needed power from the DER
AGs at a higher price. Hence, this entity has faced more costs
compared to the second tariff. Moreover, as a result of the
DSO’s unwillingness to purchase power from the DER AGs,
their profits have declined as well.

The output results from two implemented case studies
illustrate that in the presence of a local market-based platform
for energy trading, a win-win situation can establish between
the DSO and DER AGs, and these players are able to achieve
their highest possible amount of profit.

IV. CONCLUSION
A DA LEM was modeled in this article to manage various
types of real and virtual DERs at the distribution level. In this
regard, several decentralized DERs were integrated within
multi-AGs to trade their generation and storage capacities
with the DSO as the operator of the LEM and the owner of the
distribution system. In contrast, theDSO attempted to procure
its demand through the DA LEM, DA WEM, as well as its
local generation units, considering the technical constraints
of the system. Since the mentioned players were independent
financial entities with distinct objective functions, a Stack-
elberg game-theoretic method was executed in this study to
settle the modeled LEM. To assess the effectiveness of the
raised framework, two different case studies were conducted
on a modified IEEE-33 bus test system. In the first case,
the interaction between the DSO and AGs was implemented
under the market-based platform, while in the second case,
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this interaction was executed via the bilateral contract. Simu-
lation results demonstrated that the existence of a potential
LEM establishes a win-win situation between the market
participants, and these entities can gain the highest possible
amount of profit. For another point, it was observed that
LEM clearing price is associated with different key factors,
consisting of the WEM forecasted price, marginal prices of
DGs, the forecasted demand of the DSO, and the topology of
the distribution system.

For future work, the authors tend to investigate the impact
of insufficient energy generation in the LEM on the optimal
operation and profit of the market participants, as well as the
energy prices customers receive.
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