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1 INTRODUCTION 
In recent years, approaches towards energy transition and sustainable development have been 

ever-increasing due to the need for mitigating climate change issues and the efficient utilization of 
existed energy resources. With this regard, state-of-the-art technologies and infrastructures along with 
active operation and control of different energy resources would become crucial. Amongst all energy 
resources, microgrids (MGs) are believed to be one of the highly potent resources to deal with the 
issues of electrical systems. In other words, active operation and control of MGs in which there exist 
different kinds of demands and energy resources (e.g. energy storages, micro-generation units, etc.) 
would be beneficial not only for MG stakeholders in terms of cost-benefit efficiency but also for 
power system operators in terms of MGs’ contribution to grid’s flexibility. 

In order to unlock the active utilization of MGs, cutting-edge technologies along with efficient 
infrastructure are a necessity. These technologies together in communication with the MGs’ energy 

resources are known as energy management system (EMS). EMSs are intelligent automated systems 
that contribute to, for instance, lowering/shifting energy consumption in critical moments along with 
a reduction in the MGs’ costs. Although the utilization of EMS might consider other objectives such 
as CO2 emission reduction or self-sufficiency, they mostly employ optimization techniques either as 
single-objective or multi-objective approaches. EMSs can also enable either the bidirectional energy 
exchange with the network in grid-connected mode, or stand-alone operation of MGs in islanded-
mode. 
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In this chapter, the focus of the study is on the MGs equipped with EMS. There have been 
introduced several approaches to the energy management of MGs. However, in most of them, 
economic aspects, i.e. cost reduction, are the top priority desire of the problem from the MG 
stakeholders’ point of view. This could be done in different ways. On the one hand, reducing the total 

costs of the MGs by maximum utilization of self-production facilities (PV panels, wind turbines, etc.) 
as well as changing the energy consumption over time from peak hours to off-peak hours during the 
day. On the other hand, exploiting MGs’ flexibility so as to help the upstream grid in critical moments 
for monetary profits in return. Accordingly, the authors first present an introduction to flexible energy 
resources (FERs) in MG along with their characteristics in Section 2. Afterward, the MGEM 
modeling approaches are widely presented in Section 3. In this section, first, the different kind of 
management method deployed in the MGs are illustrated. Then, various objectives for energy 
management in MGs will be introduced. Regarding this section, we introduce a number of approaches 
based on well-known optimization algorithms considering different MG-related as well as grid-
related constraints. Microgrids’ constraints are related to the physics and limitations of the MG’s 

resources whilst the constraints of the grid are related to the limitation of energy exchange with the 
upstream grid (e.g. congestion management, emission reduction and/or energy loss reduction). 
Moreover, the application of the MGEM system in MGs with FERs such as energy storages, electric 
vehicles (EVs), and thermostatically controllable loads (TCLs) which exchange energy and flexibility 
with the grid will be discussed as well which is followed by the flexibility services that MGs could 
provide to the different levels of power system. Finally, the chapter will be summarized and 
concluded in Section 4. 

2 FLEXIBLE ENERGY RESOURCES IN MICROGRID 
There could be various types of energy sources in MGs. They might be supplied by either fossil fuels 
or renewable sources such as wind, solar, etc. [1].  Fig. 1 depicts the most common energy resources 
in MGs. In general, any energy resource that is located in the MG’s demand-/generation-side, and 
enables the MG’s reacting to the needs, could be defined as flexible energy resources. However, based 

on the amount of flexibility, these energy resources could be divided into two main categories namely 
high-flexible energy resources and low-flexible energy resources.  



 
Fig. 1. An overview of microgrids’ energy resources 

 
The low-flexible energy resources in the MG consist of renewable generation units which their output 
power is not fully controllable. This originates from the fact that renewable energy sources such as 
wind, solar radiation, etc. depending on meteorological conditions. In certain situations, the only way 
to take action for low-flexible energy resources is to curtail their generation from MG’s generation 

side. Therefore, in MGEM systems, they could be entitled to low-flexible energy resources. 
On the contrary, there might be some flexible energy resources in MGs which could help to increase 
the flexibility of the MG. These types of energy sources could be entitled to high-flexible energy 
resources. The high-flexible resources could be utilized either in demand-side or generation-side of 
the MG. In other words, they might be among the consumers’ assets, consumers’ load, or as a part of 

a bulk PV system. Having employed the high-flexible energy resources in MGs, the MGEM system 
could take advantage of them to enhance the flexibility of MG by the active utilization of these 
resources. Therefore, the focus of this section is on the high-flexible energy resources in MGs. In the 
following subsections, the explanation about the characteristics of the high-flexible energy resources 
in MGs is presented. 
2.1 Storage-based Flexible Resources 
The storage-based FERs refers to the devices that could store the energy in different shapes (i.e. 
electrical, thermal, mechanical, etc.) in order to utilize it when there is a shortage or in critical 
moments. Energy storages could help the MGs to enhance their flexibility by injecting the power 
back to the MG, especially in islanding situations. Storage-based energy resources could be mostly 
categorized as electric vehicles, battery energy storages, thermal energy storages, flywheels, fuel 
cells, etc. In the following subsections, the most common storage-based flexible resources are 
illustrated. 



2.1.1 Electric Vehicle (EV) 
Electric vehicles as one of the ever-increasing types of flexible energy resources in future smart grids 
are believed to be among the potential solutions to systems’ flexibility. These FERs are adjustable, 

shiftable, and fast-response which could considerably enhance the MG’s flexibility in flexibility 

services provision. Moreover, EVs could be charged when the prices are at the lowest level meaning 
that they could be contributing to the cost-reduction target at all system levels. Although the EVs act 
as the load consumption when they are in charging mode, the recent version of EVs with new charging 
facilities makes the EVs capable of injecting power back to the grid (i.e. vehicle-to-grid mode) when 
it is needed. The equations related to the EV’s operation are defined as follows. Eq. (1) presents the 
energy stored in the EV’s battery at time t: 

𝐸𝑡 = 𝐸𝑡−1 +

{
 
 

 
 

 

𝜂𝑐ℎ𝑃𝑡
𝑐ℎΔ𝑡 charging

𝑃𝑡
𝑑𝑖𝑠

𝜂𝑑𝑖𝑠
Δ𝑡 discharging

0 unplugged

               (1) 

Where 𝜂𝑐ℎ/𝜂𝑑𝑖𝑠 are the charging/discharging efficiency and 𝑃𝑡𝑐ℎ/𝑃𝑡𝑑𝑖𝑠 are the power of 
charging/discharging, respectively. Δ𝑡 is the duration time at which the EV is being charge or 
discharge. According to this equation, the energy of EV’s battery depends on its current level of 

energy as well as its current mode of charging. The EVs’ battery are mostly chosen from Li-Ion 
technology batteries since they are highly efficient compared to the other types of batteries. However, 
the capital cost of these batteries is nowadays high. Therefore, it is recommended to restrict the lower 
and upper levels of the battery’s stored energy in MGEM systems. This restriction could be 
considered as a constraint in MGEM problems as in (2) which helps to reduce the number of charging 
or discharging cycles over a time span. 

𝐸𝑚𝑖𝑛 ≤ 𝐸𝑡 ≤ 𝐸
𝑚𝑎𝑥                   (2) 

0 ≤ 𝑃𝑡
𝑐ℎ, 𝑃𝑡

𝑑𝑖𝑠 ≤ 𝑃𝑚𝑎𝑥              (3) 
Another constraint related to the EVs’ battery could be found in (3). This one similarly helps to limit 

the charging/discharging power of the battery to avoid the battery from early depreciation. Note that, 
in order to take advantage of flexibility provision by EVs, the EVs, as well as the charging facilities, 
must have the capability of working in the vehicle-to-grid mode.    
2.1.2 Battery Energy Storage (BES) 
Battery energy storages are one of the best solutions for future smart grids. They could be centrally 
controlled, they have very rapid response, and also they could be useful in remote local energy 



systems, islanded MGs, or in power shortage situations. Moreover, they could effectively help the 
grid in terms of stability, resiliency, and flexibility. BESs could be found in different sizes, from 
domestic level to MG level or even grid levels. There have been introduced several materials used in 
manufacturing BESs such as Li-Ion, Vanadium Redox Flow, etc. The equations related to BES are 
similar to those mentioned in the previous subsection. However, all the BESs support the bidirectional 
power flow since they are meant to be discharged when it is needed. 
2.1.3 Thermal Energy Storage (TES) 
Thermal energy storages are used to store the thermal energy and utilized it when it is required. These 
storages could be beneficial in MGEM systems in order to store the heat in off-peak low-price times 
over night for using in high-price moments. The heat might be coming from combined heat and power 
(CHP) units, the waste heat from biomass/biogas units, or the exhausting heat from industrial units. 
They can be also beneficial not only for storing heat in summers but also for preserving the cold in 
the winters and reverting it to the MG’s facilities in summers (i.e. seasonal TES). Thermal storages 
could be various in size and also in response time. Table I presents the typical types of thermal 
storages with their characteristics [2]. 

Table I. The typical types of thermal storages with their characteristics 
Technology Capacity (kWh) Power (kW) Efficiency (%) Cost (€/kWh) Storage Time 
Sensible 10-50 1-10000 50-90 0.1-10 days-month 
Phase-change 50-150 1-1000 75-90 10-50 hours-month 
Chemical 120-250 10-1000 75-100 8-100 hours-days 

 
2.1.4 Flywheel 
Flywheel is a mechanical energy storage which consists of a rotational part and other facilities for 
connecting to the system. In charging mode, flywheel is speeding up to its nominal rotational speed 
and store energy as kinetic type. Afterward, the stored kinetic energy is preserved in standby mode. 
When energy is required, the flywheel starts to discharge the stored energy back to the grid [3].  



 
Fig. 2. Flywheel storage utilization in a hybrid grid-connected MG 

 
Fig. 2, depicts a flywheel storage utilization in a hybrid grid-connected MG. In order to calculate the 
energy of a flywheel storage the following well-known formula is [3]: 

𝐸 =
1

2
𝑚𝑟2𝜔2                 (4) 

In (4), E is the kinetic energy stored in the flywheel and m, r and 𝜔 are the mass of cylinder, radius 
and rotational speed, respectively. 
2.1.5 Fuel Cell (FC) 
Fuel cell (FC) as another high-flexible energy resources could also be utilized in MG applications. 
FCs can produce electricity by converting the chemical energy originating from hydrogen-oxygen 
reactions into electrical energy. The capacity of FC could be different based on their applications 
from 100 kW to 100 MW [4]. In solid-oxide FC, for example, anode supplies hydrogen and 
catalytically split it into a number of protons and electrons. The electrons are then flowing towards 
the positive side (i.e. the cathode) by flowing through the external circuit. The oxygen then reacts 
with the protons and also the electrons flowing in the circuit, forming water formula [5]. Solid-oxide 
FC can operate in parallel with MG’s PV panels, meaning that it can be integrated with solar power 
as a hybrid PV system since they can store the produced energy for hours [4]. Therefore, in the night 
time, when PV panels cannot produce electricity, the FC could be employed to supply the demand. 
This could help the MG to have the flexibility to reduce the power exchange with the connected grid 
aiming at a generation cost reduction or provision of flexibility to the grid for monetary profits in 
return. 
2.2 Demand-based Flexible Resources 
The demand-based FERs refers to the devices that only consume energy. In residential MGs, for 
example, they might be found in the residential home appliances [6]. In other types of MGs, they 



might be in the shape of an industrial unit’s demand or a commercial building’s load. In general, all 

the devices in demand-side that their consumption power could be controlled, are considered as 
demand-based FER. Since a great number of demand-based FERs are widely being utilized in 
residential/commercial units, it would be beneficial for MGs to unlock the flexibility that could be 
emerged from these resources. Thereby, the demand-based FERs in the consumers’ premises that are 

capable of controlling, changing, or shifting are at the center of attention for MGs’ manager/operator. 
Note that, the demand response programs [7] could be a key factor for incentivizing small-scale 
consumers in MGs for flexibility provision. In the following subsections, some of these demand-
based FERs that could enhance the flexibility of MG are presented. 
2.2.1 Thermostatically Controllable Load (TCL) 
Thermostatically controllable loads refer to the loads that their power consumption could be adjusted 
by sending command signals to their thermostat. These loads have a great portion of the total demand. 
In summers, the power consumption is used for cooling whilst in winters, the power consumption is 
utilized to heat the internal spaces of houses, offices, etc. For instance, electric water heaters (EWH), 
heating, cooling, air conditioning systems (HVAC), and refrigerators could be categorized in TCLs. 
These appliances are closely intertwined with the thermal comfortness and other consumers’ 

preferences. Therefore, in MGEM systems, in addition to the operational constraints of appliances, 
the constraints regarding TCLs must also be considered. One of these constraints is thermal comfort 
of the users for HVACs and EWHs which could be found in (5)-(6): 

𝜃𝑖
𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑡 ≤ 𝜃𝑖

𝑚𝑎𝑥  (5) 
𝜃𝑖
𝑤,𝑚𝑖𝑛 ≤ 𝜃𝑖,𝑡

𝑤 ≤ 𝜃𝑖
𝑤,𝑚𝑎𝑥  (6) 

Where 𝜃𝑖𝑚𝑖𝑛 and 𝜃𝑖𝑚𝑎𝑥 are the minimum and maximum desired temperature requested by user i, 
respectively. 𝜃𝑖𝑤,𝑚𝑖𝑛 and 𝜃𝑖𝑤,𝑚𝑎𝑥 are the minimum and maximum desired temperature of hot water 
requested by user i, respectively. Finally, 𝜃𝑖,𝑡 and 𝜃𝑖,𝑡𝑤  is the interior and hot water temperature of user 
i, respectively.  
In order to unlock the flexibility from TCLs in an MG, they must be aggregated. Aggregating several 
TCLs in an MG could help to reduce or increase the power consumption in certain moments for the 
provision of upward or downward flexibility services to the connected upstream network. However, 
it is worth mentioning that the response time of some TCLs is a bit low. Therefore, they might not be 
suitable for all kinds of flexibility services but still beneficial for those services that have a slow 
activation time. 



2.2.2 Shiftable Load 
Shiftable loads are those that their consumption power cannot be controlled, however, the operating 
time could be shifted from high-price to low-price hours. These loads also need to work for a constant 
cycle and they could not be disconnected once they started which means shiftable loads must run a 
cycle completely. Therefore, the MGEM system can only schedule the related start time. Dishwasher, 
washing machine, and clothes dryer, as the devices which might be found mostly in residential 
households in the MG, could be grouped in shiftable loads’ category [8]. A MG operator could take 
advantage of shiftable loads for energy scheduling during a day considering the consumers’ 

comfortness constraints. 
2.2.3 Curtailable Load 
The power consumption of curtailable loads could be adjusted, usually without any significant effect 
on consumers' comfortness. These adjustments limit the energy consumption of devices by changing 
the settings thorough a command signal, without any consequences. As an example, lighting devices 
could be curtailed by a command during the day or as an automated function of natural daylight [8]. 
2.3 Fuel-based Flexible Resources 
The fuel-based FERs are those that could be categorized in the generation side. Naturally, these FERs 
produce power by using fossil fuels as input energy sources. However, their output generating power 
could be regulated according to the system’s needs. The output power generation of fuel-based FERs 
could be adjusted by changing the amount of intake fuel. Therefore, these FERs could contribute to 
increasing the MG’s flexibility. Although these resources could not be categorized as a totally 
sustainable energy resource, their power production could be controlled in critical moments for 
flexibility provision targets. In the following subsections, a brief overview of the most important fuel-
based FERs are provided. 
2.3.1 Combined Heat and Power (CHP) 
The most famous fuel-based flexible resource in MGs is combined heat and power (CHP) unit. A 
CHP unit is generally a power generation unit which combines the heat production with electricity 
generation. CHPs could be regarded as a decentralized distributed generator located at the MG level. 
This DG has the ability to produce heat and electricity simultaneously which could be beneficial in 
increasing the efficiency and flexibility of the MG. The exhausted heat from the power generation 
cycle in the CHP could be utilized to provide the required energy for the heating load as well as hot 
water within the MG internal network. In the MG level, the size of the CHPs depends on the size of 
the MG which could be found up to 20 MW. CHPs, however, could also be installed in customer-



level applications with a maximum capacity of 15 kW [9]. Although the energy efficiency of the CHP 
unit can be assumed to be constant, the CHP unit’s efficiency practically differs with dynamic 

operation due to the variation of output power. This could help the MGs to enhance their flexibility 
or providing flexibility services to the upstream grid. Note that, ramping constraints need to be 
considered in MGEM problems since the CHP unit requires some time to reach the steady-state 
condition after changing its set point [10].  
2.3.2  Diesel Generator (DiGen) 
Diesel generator as one of the fuel-based FERs could be beneficial in MGEM. This FER may be 
utilized when there is a power shortage in the MG. They could also be considered as flexibility sources 
when upward flexibility is needed from the upstream network. However, the sizing of the diesel 
generators in the MG is quite crucial since the ramping rate of the generator should be adequate for 
fulfilling the MG’s/network’s need. In fact, diesel generators play a quite important role when, for 
example in an islanded MG, the power generation is not enough and the energy storages are almost 
discharged. Therefore, these FERs are also called backup units in local energy systems. They could 
be different in size from 5 kW to 5 MW or more. The equation regarding fuel consumption of the 
diesel generator can be calculated from (7) that should be considered in MGEM optimization 
problems [11]. 

𝒞𝑜𝑠𝑡 = 𝑐1 × 𝑃
𝐷𝐺  +  𝑐2 × 𝑃

𝑛 (7) 
In (7), 𝑃𝐷𝐺  and 𝑃𝑛 is the produced power and the nominal power of the generator, respectively. 𝑐1 
and 𝑐2 are the coefficients related to fuel consumption’s curve which typically considered 𝑐1 = 0.246 
l/kW and 𝑐2 = 0.08145 l/kW, respectively [12]. 

3 MODELLING THE MICROGRID ENERGY MANAGEMENT 
Microgrid, as one of the potential solutions to the future smart grids, usually confronts the lack of 
power generation. This is due to the variability and intermittency both from generation and demand 
sides [13]. Energy management methods have been believed as one of the solutions to this issue. The 
most important target of energy management is to find the optimal operation point of different kinds 
of energy resources in order to supply the requested demand constantly and efficiently [14]. It should 
be mentioned that the main objective of these studies is reducing consumption costs whilst taking 
advantage of the MGs’ flexible capacity for the provision of energy and flexibility services. However, 
there might be various approaches and tools towards this target. Before discussing the MGEM tools 
and techniques, the MG management methods are briefly illustrated in the next subsection. 



3.1   Microgrid Energy Management Methods 
The approaches toward the control and operation of MG resources as well as dispatchable loads are 
known as MG management methods. These management method could be deployed by having an 
agreement between the MG operator and the MG’s members/stakeholders. The microgrid energy 
management (MGEM) could be defined in two perspectives [15]:  

1) Decentralized energy management 
2) Centralized energy management 
3) Distributed energy management 

In decentralized MGEM, the control and operation of FERs located at the MG have more degree of 
freedom. This means the FERs’ adjustability in this management method helps more to meet the 
preferences of the stakeholders/consumers. In centralized MGEM, however, a central controller 
decides how the FERs and generation units should be operated. It has to be mentioned that in both 
centralized and decentralized management methods, the technical constraints of the MG must be 
taken into account. The most important constraint would be the balance between load and production 
within the MG [16]. 
Distributed MGEM as another management method in MGs is presented in the literature as well. This 
type of management method is mostly based on game-theoretic approaches. In distributed MGEM, 
game players, as the agents in the MG, seek the best management method for their own objectives 
taking into account the overall goal of the MG regarding energy management considerations [17]. 
Having mentioned the above approaches, the MGEM problems generally aim at scheduling the 
operation of generation units, storage systems, and even controllable loads in the MG [18]. These 
problems have been presented with various objectives. In the following section, some of these 
objectives with the related considerations are elaborated. 
3.2   Microgrid Energy Management Objectives 
3.2.1  Cost Reduction / Profit Maximization 
One of the most important objectives of energy management is reducing the total operation cost of 
MGs’ components. This operational cost includes, for instance, the fuel cost, cost of purchasing 
energy from the grid, degradation cost of battery energy storages, etc. [19]. The cost reduction in an 
MGEM could be over different time spans from real-time to daily, monthly, or even yearly periods. 
However, energy management sometimes might be defined for real-time operation. In this case, the 
real-time operational cost of MG is the objective of the problem. Accordingly, the generation and 
demand as well as the scheduling of the FERs should be in a way that the overall cost of the MG 



tends to be minimized in real-time [20]. Accordingly, the MGEM system is in charge of scheduling 
the generation and flexible loads so that the total cost of energy purchasing from the grid as well as 
the operational costs of the DGs become minimized as in (8). 

min    CostMG = ∑ (𝐶𝑜𝑠𝑡𝑡
𝐸𝑁 + ∑ 𝐶𝑜𝑠𝑡𝑖 𝑡

𝐷𝐺𝑖 + ∑ 𝐶𝑜𝑠𝑡𝑗 𝑡

𝐵𝐸𝑆𝑗 + ∑ 𝐶𝑜𝑠𝑡𝑗 𝑘

𝐸𝑉𝑘)𝑡  (8) 
Subject to:   Constraint {DGs, FERs} 

In (8), 𝐶𝑜𝑠𝑡𝑡𝐸𝑁 is the cost of purchasing energy from the grid at time t. Accordingly, the total temporal 
operational cost of DGs, BESs and degradation cost of EVs that must be paid to the EV owners for 
vehicle-to-grid contribution, are ∑ 𝐶𝑜𝑠𝑡𝑖 𝑡

𝐷𝐺𝑖, ∑ 𝐶𝑜𝑠𝑡𝑗 𝑡

𝐵𝐸𝑆𝑗  and ∑ 𝐶𝑜𝑠𝑡𝑗 𝑘

𝐸𝑉𝑘  , respectively. 
This objective could also be considered in a different shape which says the MGEM objective is to 
maximize the total profit of the MG instead of operational cost. The monetary profit for a MG mostly 
comes from selling energy to the grid or providing flexibility services to balancing responsible parties. 
Accordingly, the objective function of the MG could be defined considering the following 
formulation: 

max    ProfitMG = ∑ (𝑃𝑡
𝑠𝑒𝑙𝑙𝜆𝑡

𝑠𝑒𝑙𝑙 − 𝑃𝑡
𝑏𝑢𝑦

𝜆𝑡
𝑏𝑢𝑦

− 𝐶𝑜𝑠𝑡𝑡
𝑀𝐺)𝑡   (9a) 

max    ProfitMG = ∑ (𝐹𝑡
𝑢𝑝𝜆𝑡

𝑢𝑝 + 𝐹𝑡
𝑑𝑛𝜆𝑡

𝑑𝑛 − 𝑃𝑡
𝐸𝑁𝜆𝑡

𝐸𝑁 − 𝐶𝑜𝑠𝑡𝑡
𝑀𝐺)𝑡  (9b) 

Subject to:   Constraint {DGs, FERs, Grid Limits} 
Eq. (9a) indicates the objective function of MGEM problem for a grid-connected MG which only 
exchange energy with the grid while the (9b) presents the objective for a flexibility provider MG. In 
(9a)-(9b), 𝑃𝑡𝑠𝑒𝑙𝑙 and 𝜆𝑡𝑠𝑒𝑙𝑙 are the exported power to the grid and the price of selling to the grid, 
respectively. 𝑃𝑡𝑏𝑢𝑦 and 𝜆𝑡𝑏𝑢𝑦 are the imported power from the grid and the price of energy to the grid, 
respectively. 𝐹𝑡𝑢𝑝 and 𝐹𝑡𝑑𝑛 are the upward and downward flexibility provided to the network, 
respectively. 𝜆𝑡𝑢𝑝and 𝜆𝑡𝑑𝑛 are the price of upward and downward flexibility, respectively. 𝑃𝑡𝐸𝑁and 𝜆𝑡𝐸𝑁 
are the quantity and price of purchased energy from the grid, respectively. Finally, 𝐶𝑜𝑠𝑡𝑡𝑀𝐺  refers to 
the total operational cost of the MG which includes degradation cost of energy storages, EVs as well 
the operational cost of generation-side resources. Note that, in both definitions, the constraints related 
to the operational consideration of the assets as well as members’ comfortness must be taken into 
account in MGEM problem. 
3.2.2  Self-sufficiency 
One of the important targets of MGEM in MG is self-sufficiency. A MG is self-sufficient when there 
is a balance between the generation and consumption within the MG. In other words, the power 



produced by the MG’s resources could fulfill its demand over a period of time. This objective 

becomes pivotal mostly when an islanding situation is predictable since, in that case, the MG becomes 
disconnected from the grid and the stability of the MG becomes critical. The MGEM with an objective 
of self-sufficiency could be tackled by reducing the peak demand, load shedding as well as 
discharging the storage-based flexible resources. In this way, based on the level of emergency, the 
MGEM should define a priority for the utilization of fast-response FERs located in the MG. However, 
this objective could have other targets inside itself. For example, the self-sufficiency of MG in 
moments at which the renewable energy resources have production and the energy storages have a 
sufficient level of charge could be deployed to reduce energy purchasing from the grid. Therefore, 
fewer greenhouse gases emission as well as cost reduction could also be considered as the results of 
self-sufficiency objective. The objective function regarding the self-sufficiency in MGEM systems 
must satisfy the following constraint: 

𝐺𝑡
𝑀𝐺 ≥ 𝐷𝑡

𝑀𝐺    (10) 
𝐺𝑡
𝑀𝐺 = ∑ 𝑃𝑡

𝐷𝐺𝑖
𝑖 + ∑ 𝑃𝑡

𝑑𝑖𝑠𝑗
𝑗   (11) 

𝐷𝑡
𝑀𝐺 = 𝑃𝑡

𝐵𝐿 + ∑ 𝑃𝑡
𝐹𝐿𝑖

𝑖 + ∑ 𝑃𝑡
𝑐ℎ𝑗

𝑗  (12) 
In the above equation, 𝐺𝑡𝑀𝐺  is the MG total generation and 𝐷𝑡𝑀𝐺  is the MG total demand at time t. In 
(10)-(12), the 𝑃𝑡𝐷𝐺𝑖 is the production of DG i at time t. 𝑃𝑡𝐵𝐿 and 𝑃𝑡𝐹𝐿𝑖 are the baseline load and power 
consumption of flexible load i in the MG at time t, respectively. 𝑃𝑡𝑑𝑖𝑠𝑗 and  𝑃𝑡𝑐ℎ𝑗 are the discharging 
and charging power of storage-based resources j at time t, respectively. It has to be mentioned that 
the other constraint regarding the simultaneous charging/discharging limitation and the operational 
constraints of DGs also must be taken into account. 
3.2.3  Flexibility Provision 
As the traditional power systems have been experiencing a fast and vast transition to the smart, local, 
and decentralized ones, the flexibility services concept has been introduced in order to cover the 
whole system-related issues. In this light, MGs as the local energy systems is believed to be a suitable 
choice in providing local and system-wide flexibility. Flexibility services could be provided by MGs 
through the effective utilization of FERs and also distributed energy resources in MG by using 
MGEM systems. However, before mentioning the flexibility services provision by the MGs, the 
definition of flexibility in an electrical system should be clarified. A comprehensive definition of the 
flexibility of electrical systems could be the ability of the system to adjust its operating point 
continuously and also to resist the predicted and unpredicted differentiations happening in operating 



conditions. Accordingly, a flexible electrical system must adapt to the possible changes both in 
generation and consumption in a temporal manner [21]. Therefore, another possible objective of 
MGEM might be providing flexibility services by MGs to the connected upstream networks. These 
services could appear in different shapes. An overview of the flexibility services (e.g. in Nordic 
countries [22]) that MG can provide to other entities are presented in Fig. 3. 

 
Fig. 3. An overview of the flexibility services (in Nordic) 

 
3.2.3.1 TSO-level Flexibility Services 
The transmission system operator is the responsible party for TSO-level balancing issues which could 
be addressed by the contribution of all system-level flexible resources, e.g. MGs. There are three 
types of services that local energy systems can contribute to flexibility provision to transmission-level 
needs, which are fast frequency reserve (FFR), frequency containment reserve (FRR), and frequency 
restoration reserve (FCR). TSO-level flexibility services have been the conventional generation units’ 

responsibility. However, recently and more increasingly in future power systems, MGs as the potent 
sources of flexibility, would be among the flexibility service responsible parties. Depending on the 
size of grid-connected MGs and the flexibility needs of the upstream entities, MGs could contribute 
to one or more specific flexibility services in singular or aggregated manners. The TSO-level 
flexibility services (e.g. in Finland [23]) with their characteristics are summarized as in the Table II. 
The flexibility services in this table are categorized as reserve product services [23]. 

Table II. The characteristics of the Nordic flexibility services 
Service FFR (new) FCR-D FCR-N aFRR mFRR 
Application In very low-inertia 

situations 
In big frequency 

deviations 
Always  
in use 

In certain 
hours 

Incidents/imbalances 
of balancing parties 



Activation 1 sec. Less than 1 min. 1-5 min. 5 min. 15 min. 
Min. Bid Size Not defined yet 1 MW 0.1 MW 5 MW 5 MW 

 
 FFR: The FFR service as the recently introduced flexibility service in Nordic will be utilized in 
extremely low-inertia situations when there are ±0.5 Hz frequency fluctuations. The maximum 
amount of FFR services need in Nordic is estimated 300 MW. 
 FCR-D: The FCR-D service is needed in huge frequency deviations which at least 50% of it 
needs to be activated in 5 seconds and the rest is required to be activated in 30 seconds. The 
system’s need in this service is only for under-frequency situations (i.e. increase in generation or 
decrease in demand) 
 FCR-N: The FCR-N service is for normal operation of the system and is being activated all the 
time. The system’s need in this service is only for both under-frequency and over-frequency 
situations (i.e. increase/decrease in generation or demand). Note that, this service is symmetrical 
which means the flexibility providers like MGs must be able to provide the flexibility needs 
equally for upward and downward flexibility. 
 aFRR: The aFRR service is activated when . In this service, unlike FCR, the asymmetrical bids 
are also accepted which means the upward and downward flexibility bids could be submitted 
separately. Note that, the activation price to the service providers will be paid according to the 
price of balancing energy market. 
 mFRR: The mFRR service is activated manually in 15 minutes. Bids are needed to be delivered 
45 minutes prior to activation hour. In this service, like aFRR, the upward/downward flexibility 
bids are being submitted separately. Note that, in this service, the prices are constantly greater 
than day-ahead energy prices so that it is quite beneficial for flexibility providers like MGs. 

3.2.3.2 DSO-level Flexibility Services 
There are two types of flexibility services that are introduced in the electrical systems namely voltage 
regulation and congestion management in which MGs can contribute as DSO-level flexibility 
providers. Voltage regulation services could be provided by MG’s power electronic devices like 

FERs’ converters and also by injected active power control through the point of common coupling 

(PCC) with the distribution grid. The power electronic devices are able to control the reactive power 
which is effective in voltage regulation applications. Similarly, congestion management services 
could be provided by the mentioned FERs. In DSO-level flexibility provision by MGs, along with 
the MG-related constraints, the distribution network’s limitations such as active and reactive power 

and injected current should also be taken into account. 



3.3   Microgrid Energy Management Tools and Techniques 
There have been introduced various types of MGEM modeling techniques in the previous literature. 
These techniques include the optimization approaches along with intelligence control tools such as 
model predictive control, game theory methods, etc. In the following subsections, some of the most 
popular tools and methods will be introduced. 
3.3.1  Optimization Methods 
The basic approach to energy management problems would be based on optimization algorithms. 
This originates from the nature of the energy management since it is supposed to minimize or 
maximize an objective depending on the targets of MG’s stakeholders as well as the method of asset 

management [24]. There have been introduced many optimization techniques which could be 
employed correctly depending on the type of the problem. In general, the optimization techniques 
could be split into two main categories, convex and non-convex. Fig. 4, presents a general overview 
of the proposed types of optimization problems [25]. 

 
Fig. 4. General categorization of optimization problems 

 
The type of optimization technique could be chosen correctly depending on the problem’s 

characteristics. In MGEM, the type of problems mostly are convex or the problems are defined in a 
way that they could be solved with convex techniques (i.e. convex relaxation). This is due to the fact 
that the convex problems give better convergence compared to the non-convex ones [25]. 
Furthermore, there could be many uncertainties in MG operation due to the nature of MG 
components. For instance, the intermittent renewable components such as wind turbines, photovoltaic 
units, and on the top of them, the unpredictable demand could create the mentioned uncertainties [26]. 
These uncertainties, however, could be addressed by means of some well-known mathematical and 
statistical techniques during the definition of optimization problems for MGEM. In order to analyze 



the impact of uncertainty of data, the following three types of optimization methods have been 
proposed: 

• Deterministic Optimization 
• Stochastic Optimization 
• Robust Optimization 

Although the deterministic approach for defining an optimization problem could be beneficial for 
comparing the results of the problem with other approaches, robust and stochastic optimization 
solutions are believed as the most effective techniques in energy management problems which are 
illustrated in details in the following subsections [27]. 
3.3.1.1 Deterministic Optimization 
Deterministic problems are those that have a unique output for any kind of input [25]. As an example, 
wind speed or solar radiation which are variable over a time span could directly affect the output 
power of wind turbines or PV systems. Therefore, for different values of wind speed and solar 
radiation, the power generation of these renewable units would change. However, the power 
generation function of these renewable units could be defined deterministic meaning that, for any 
wind speed and solar radiation, the output power of wind and PV units are considered as certain 
values. This type of problem formulation would not take place in reality, however, there are some 
applications for deterministic approaches. Furthermore, this method could be beneficial when the aim 
is to have an idea about the overall operating points of the system in a certain condition. In MGEM 
problems, there is some component in the system that has strong stochasticity (e.g. renewables, 
demand, etc.) and could not be modeled as deterministic functions. Consequently, the other types of 
optimization techniques (i.e. stochastic and robust) are usually recommended that will be introduced 
in the following subsections. 
3.3.1.2 Stochastic Optimization 
In stochastic optimization, the problem of energy management could be presented by a statistical 
objective function. In this light, the uncertain parameters of the problem such as the output power of 
renewable energy units could be modeled as the well-known probability distribution functions. These 
distribution functions might be different due to the difference in the nature of renewable sources such 
as solar irradiation or wind power. They also might be different due to the uncertainties stemming 
from the stochastic behavior of consumers such as the behavior of EV owners and the pattern of 
charging their vehicles. However, all these uncertainties are can be considered as the most popular 



distribution functions since their sources mostly follow a predictable pattern. The general formulation 
of a stochastic optimization problem could be found in (13): 

min
𝑥𝜖𝜒

∑ 𝜋(𝜔)𝜔𝜖Ω 𝐹(𝑥, 𝜔) (13) 
In (13), 𝜋(𝜔) is the probability of scenario 𝜔, Ω is the set of scenarios, 𝜒 is the set of decision 
variables. The function 𝐹(𝑥, 𝜔) could be different based on the objective of the MGEM problem. 
According to the stochastic optimization method, the main objective function of the problem could 
be written as the sum of the objective function of each scenario multiplied by the scenario probability. 
In this method, the value of uncertain variables in the system is considered by defining several 
possible scenarios. Note that, for each scenario, a probability of occurrence should be considered in 
a way that the summation of the probability of all scenarios must be equal to one as follow: 

∑ 𝜋(𝜔)𝜔 = 1  (14) 
There have been presented a number of computational methods for generating the above scenarios. 
Amongst these methods, one of the most popular scenario generation techniques is the Monte-Carlo 
method which is widely employed in the literature [28]. The number of the considered scenarios for 
the problem has a direct impact on the accuracy of the problem. In other words, by increasing the 
number of these scenarios the result would be more accurate. However, a large number of considered 
scenarios for the stochastic optimization problems could result in a huge computational cost. In order 
to reduce the computational cost of solving, the number of scenarios should be reduced. Therefore, 
one could use a mathematical method to limit the possible scenarios. For instance, the K-means 
clustering technique is proposed in order to tackle a large number of scenarios [29]. In the following 
sub-sections, uncertainty modeling methods for different sources of stochasticity are illustrated. 
3.3.1.3 Robust Optimization  
The robust optimization method was first introduced in 1973 [30]. This method has been introduced 
and employed in many research as one of the most powerful approaches towards energy management 
in order to act as an alternative for modeling the problems with uncertain parameters. The robust 
optimization is employed when the energy management problems confront a limited amount of data 
but at the same time several uncertainties. In this optimization method, unlike the stochastic 
optimization with many possible scenarios, we consider only one scenario which means this 
optimization does not need any kind of probability distribution function [31]. This scenario is 
assumed to be the worst-case regarding the uncertain situations in the optimization procedure. In 
energy management problems, the worst-case scenario is the one that is believed to have the most 
severe outcome that happens in the real situation. In other words, in this method, it is assumed that 



the uncertain parameters are in their worst condition [30]. This could help to have a realistic paradigm 
towards the occurring scenario and if possible, it could improve the results of the optimization in 
comparison with stochastic methods [32]. 
In this method, the optimal result of the optimization has two features. First, less data is needed for 
uncertain parameters here which means only minimum, maximum, and mean of the uncertain 
parameter is required. Second, the optimal solution of the problem is feasible for all conditions which 
could be quite beneficial in decision making. 

 
Fig. 5. Applications of the robust optimization 

The robust optimization approach has many applications in MGEM such as bidding strategy [33]. 
These applications could be dealing with the uncertainty of renewable energy units’ generation, 

consumers’ load, and energy/flexibility market prices. Fig. 8, provides a summarized overview of the 
most important applications of the robust optimization techniques in MGs. 
 
In general, the basic formulation of a robust optimization problem would be as follow: 

min
𝑥𝜖𝜒

max
𝜔𝜖Ω

ℂ(𝑥, 𝜔) (27) 
Where 𝜒 is the set of uncertainties and Ω is the decision variables’ space [34]. In MGEM problems, 
for instance, the robust optimization technique could be employed in order to minimize the cost 
function of MG (i.e. ℂ) while the baseline demand of the MG is at the highest possible value. In the 
following subsection, the uncertainty characterization methods are presented. 



3.3.2  Uncertainty Characterization 
3.3.2.1 Uncertainty of Wind Units 
The uncertainty of the wind power units is due to the variable nature of wind speed in different 
weather conditions. The uncertainty related to the generation output of wind power units has been 
specifically studied in the previous works like [35], [36] and [37]. In order to model the uncertainty 
of wind power production the well-known Weibull distribution function is proposed [36]. The 
introduced formula of Weibull probability distribution function is as follows: 

𝑓𝑠(𝑠) = (
𝑘

𝑐
) (

𝑠

𝑐
)
𝑘−1

𝑒−(
𝑣

𝑐
)
𝑘

             𝑘, 𝑐 > 0     (15) 
In (15), c and k refers to the scale factor and shape factor, respectively. This distribution function 
could be divided into 𝑁𝑠𝑐 scenarios in which the probability of occurrence of each scenario could be 
defined and written as follows: 

𝜋𝜔 = ∫ 𝑓𝑠(𝑠) 𝑑𝑠
𝑠𝜔+1

𝑠𝜔
         𝜔 = 1,2, … ,𝑁𝑠𝑐  (16) 

In (16), the 𝑆𝑤 denoted the wind speed of the scenario w. Accordingly, the output power of the wind, 
𝑃𝑊𝑇, unit could be obtained by using the following equation: 

𝑃𝑊𝑇 = { 

0 0 ≤ 𝑆𝜔 < 𝑆𝑖
𝑃𝑟(𝐴 + 𝑆𝜔𝐵 + 𝑆𝜔

2𝐶) 𝑆𝑖 ≤ 𝑆𝜔 < 𝑆𝑟
𝑃𝑟 𝑆𝑟 ≤ 𝑆𝜔 < 𝑆𝑜
0 𝑆𝜔 ≥ 𝑆𝑜

   (17) 

The power generation curve of wind units could be found in Fig. 5. 

 
Fig. 6. Output power of wind units based as a function of wind speed  

 
The generation of the wind unit directly depends on the wind speed in a specific time-step. In (17), 
the constant values A, B and C could be achieved, for example from [38], and are related to the 



characteristics of the wind turbine. Note that, 𝑆𝑖, 𝑆𝑜, 𝑆𝑟 and  𝑃𝑟 indicate the cut-in speed, cut-out speed, 
rated speeds and rated power, respectively. 
3.3.2.2 Uncertainty of PV Units 
The uncertainty related to the photovoltaic units stems from the variable amount of solar irradiation. 
Solar irradiation could be different from one location to another which results in the intermittent 
generation of PV units. The amount of solar radiation is dependent on the weather temperature, 
weather conditions, and the angle of photovoltaic panels. However, by studying the long-term 
patterns of solar radiation, for instance, in a specific location, it can be realized that they mostly follow 
a pattern. These patterns could be modeled as one of the most popular probability distribution 
functions. The most utilized distribution that is being used to model the generation of PV units would 
be Beta distribution [39]. This function is introduced as following equation: 

𝑓ℛ = { 
ℛ𝛼+1(1 − ℛ)𝛽−1 (

Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
)   0 ≤ ℛ ≤ 1 ; 𝛼, 𝛽 ≥ 0 

0 otherwise
 (18) 

𝛼 = (
𝜇

1−𝜇
)𝛽     (19) 

𝛽 =
𝜇(1−𝜇2)

𝜎2
− (1 − 𝜇)    (20) 

In (18)-(20), the parameters 𝛼 and 𝛽 denote the features of function which can be obtained by means 
of (19) and (20), respectively [40]. The Beta distribution curve for different values of 𝛼 and 𝛽 is 
depicted in Fig. 6. The variable ℛ refers to the solar radiation in kW/m2. Note that, the Γ refers to 
well-known Gamma function. 



 
Fig. 7. The Beta distribution curve for different values of 𝛼 and 𝛽 

 
In (19)-(20), the mean and standard deviation of solar radiation could be denoted by 𝜇 and 𝜎. 
Accordingly, the output power of the photovoltaic unit can be calculated using the following equation 
[39]: 

𝑃𝑃𝑉 = 𝑁𝑝 ℛ (𝑉𝑜𝑐 − 𝑘𝑣𝜃𝑐)(𝐼𝑠𝑐 + 𝑘𝑐𝜃𝑐 − 25𝑘𝑐) (
𝑉𝑚𝑝𝑝𝐼𝑚𝑝𝑝

𝑉𝑜𝑐𝐼𝑠𝑐
)  (21) 

Where PPV is the power generation of PV system and the parameter 𝑁𝑝  refers to the number of panels 
in the PV unit. ℛ is the solar radiation at the location of PV unit. The constants  𝑘𝑣 and 𝑘𝑐 are related 
to coefficient temperatures of voltage and current, respectively. 𝑉𝑚𝑝𝑝 and 𝐼𝑚𝑝𝑝 denotes the respective 
voltage and current in the maximum power point condition. 𝑉𝑜𝑐 and 𝐼𝑠𝑐 refers to the voltage in open-
circuit and current in short-circuit conditions, respectively. 𝜃𝑐 is the temperature of solar cells that 
can be approximated using the following equation: 

𝜃𝑐 = 𝜃𝑎𝑚𝑏 +
ℛ(𝜃𝑛−20)

0.8
  (22) 

In (22), the term 𝜃𝑎𝑚𝑏 is the ambient temperature of PV panels and 𝜃𝑛 is the temperature in nominal 
operation condition.  
3.3.2.3 Uncertainty of EV Owners’ Behavior 
In order to model the uncertain behavior of EV owners, for example in an MG, a distribution function 
is needed that could correctly represent the usage pattern of EVs. The most usual probability 
distribution that is used to model the uncertainty of EVs is truncated Gaussian distribution function 
[41], [42] and [43]. In the case of an MG, the EVs owned by the MG stakeholder, 



residential/commercial units, and/or a charging station could be considered in the uncertainty 
modeling with single or multiple probability distributions. In this light, for every single EV, the initial 
state-of-charge (SoC) and the availability of the EV in the understudy time horizon could be taken 
into account. 

𝑆𝑜𝐶𝑖
𝑖𝑛𝑖 = 𝑓𝑇𝐺(𝑥, 𝜇

𝑠𝑜𝑐 , 𝜎𝑠𝑜𝑐 , 𝑆𝑜𝐶𝑖
𝑚𝑖𝑛 , 𝑆𝑜𝐶𝑖

𝑚𝑎𝑥) (23) 
In (23), the 𝑆𝑜𝐶𝑖𝑖𝑛𝑖 is the initial SoC of EV i. 𝜇𝑠𝑜𝑐 and 𝜎𝑠𝑜𝑐 are the mean and standard deviation of 
EVs’ SoC, respectively. 𝑆𝑜𝐶𝑖

𝑚𝑖𝑛 and 𝑆𝑜𝐶𝑖𝑚𝑎𝑥 are the minimum and maximum possible SoC of EVs 
in the MG. This equation could be utilized to generate the possible scenarios for initial SoC of the 
EVs. 
According to the above equation, the truncated Gaussian distribution that could be used for modeling 
the initial SoC of an EV is depicted in Fig. 7 [44]. In this exemplary figure, the minimum and 
maximum SoC for EVs considered 0.3 and 0.9, respectively. In Fig. 7, the value of mean and the 
standard deviation are considered 0.5 and 0.25, respectively. The exact value of the parameters could 
be estimated by studying the historical and regular patterns of EVs’ behavior. 

 
Fig. 8. Truncated distribution of EV’s SOC 

 
Moreover, the most probable availability times of each EV have to be in hand for modeling the 
behavior of EVs. This could happen by considering the historical plug-in and plug-out times of EVs 
to the grid. Accordingly, the plug-in and plug-out times of EVs in the MG could be modeled with a 
distribution function as follows: 

{ 
𝑡𝑖
𝑖𝑛 = 𝑓𝑇𝐺(𝑥, 𝜇

𝑖𝑛, 𝜎𝑖𝑛, 𝑡𝑖
𝑖𝑛,𝑚𝑖𝑛, 𝑡𝑖

𝑖𝑛,𝑚𝑎𝑥)            ∀𝑖

𝑡𝑖
𝑜𝑢𝑡 = 𝑓𝑇𝐺(𝑥, 𝜇

𝑜𝑢𝑡, 𝜎𝑜𝑢𝑡, 𝑡𝑖
𝑜𝑢𝑡,𝑚𝑖𝑛, 𝑡𝑖

𝑜𝑢𝑡,𝑚𝑎𝑥) ∀𝑖
 (24) 

In (24), 𝑡𝑖𝑖𝑛 and 𝑡𝑖𝑜𝑢𝑡 are the times of plug-in and plug-out by EV i, respectively. This equation could 
be employed to generate several possible scenarios for plug-in and plug-out times of EVs in the MG. 



3.3.2.4 Uncertainty of Flexibility Needs 
In order to schedule and operate the MG in an efficient manner, the flexibility needs of the system 
should be predicted in advance. The concept of flexibility needs refers to the amount of regulation 
up/down needed for maintaining the system’s balance in a predefined bandwidth. In fact, the 
flexibility need for a specific time is determined by the system’s operator by the time of activation. 

However, the MG manager/aggregator should have the idea about the approximate values of 
flexibility that are supposed to be assigned from the system’s operator. The flexibility need is always 

uncertain due to its dependency on several factors that need to be modeled by stochastic methods. 
In order to model the uncertainty related to the flexibility needs, one can deploy a probability 
distribution function. It is obvious that the amount of flexibility need from the upstream grid that 
needs to be activated has a value between zero and the assigned value by the MG. In other words, the 
minimum activated amount of flexibility is zero when the MG is not supposed to provide any 
flexibility for a time step, and in contrast, the maximum value of the activated flexibility by the MG 
when the MG is supposed to provide the entire amount of assigned flexibility to the upstream network. 
However, the MG aggregator must schedule the demand and generation in a way that provides all the 
offered flexibility to the upstream network. With this regard, the activated amount of upward and 
downward flexibility from the system’s operator could be modeled as uniformly distributed between 
zero and its maximum value [44]. 

𝑈𝐹𝑤,𝑡 = 𝑓(𝑥) =
1

𝐹𝑡
𝑢𝑝                  0 ≤ 𝑥 ≤ 𝐹𝑡

𝑢𝑝  (25) 
𝐷𝐹𝑤,𝑡 = 𝑓(𝑥) =

1

𝐹𝑡
𝑑𝑛                  0 ≤ 𝑥 ≤ 𝐹𝑡

𝑑𝑛  (26) 
In (25) and (26), the 𝑈𝐹𝑤,𝑡 and 𝐷𝐹𝑤,𝑡 are the upward and downward activated flexibility. 𝐹𝑡𝑢𝑝 and 
𝐹𝑡
𝑑𝑛 refers to the upward and downward assigned flexibility. 

3.3.3 Model Predictive Control 
Model predictive control (MPC) as a subfield of optimal control has several applications in electrical 
energy systems operation and control, especially in the energy management systems. Generally, MPC 
is a technique that makes a decision at a time through solving an approximate model over future 
horizons. There might be many engineering problems where the model is not in hand. In the MPC 
method, at least, an approximate model of the system is required. MPC is mostly employed to solve 
a problem with stochastic parameters which is modeled by means of a deterministic approximation. 
MPC might also utilize a stochastic model of the system in the future, however, the solution may be 
hard to converge [34]. In this method, the actions about the future configurations are realized by 



making the decisions now. Alternatively, it might utilize sampled approximations for the future, 
introduced as MPC in some literature, which are standard strategies in stochastic programming [45]. 
The overview of the MPC strategy for more clarification is depicted in Fig. 9. This figure states that 
how the decision made by MPC at the current moment, could predict the optimal trajectory of the 
system towards the future changes in the next time steps. This procedure will iterates every time step 
until the controller find the best solution. 

 
Fig. 9. Model predictive control analogy 

 
The MPC method is believed to be applicable in MGEM systems, especially when there are many 
stochasticities within the MG. Some of the most important applications of MPC method in MGs could 
be classified as follows [46]: 

✓ Providing an optimal solution to control the operation of MG’s FERs for different objectives 
in MGEM systems.  

✓ Providing a control-based decision making to deal with the intermittency of consumers 
(demand, EVs, etc.) as well as renewable energy resources (wind, PV, etc.) in the MGEM 
optimization problems in order to tackle the stochasticity and randomness of these 
components. 

✓ MPC is useful in handling some binary variables that need to be considered in MGEM 
problem. This could be beneficial when the situation of some components (e.g. charging mode 
of BESs, availability of EVs, ON-OFF mode of flexible loads) might possibly change and the 
new decisions should be made based on the situation. 

✓ MPC could be beneficial in dealing with sudden changes in the MG where the new decisions 
should be made based on the new situation to maintain the MG in its normal operating point. 
This could help the MG to improve its degree of freedom in unusual conditions. 



✓ MPC is also helpful when a distributed management method is taken within the MG. In this 
case, there might be several agents in the MG who make the MGEM problem complicated. 
Hence, MPC is believed to be a suitable choice in dealing with such problems. 

Despite the above advantages and usefulness of the MPC method, it might have a high computational 
cost due to several optimization problems that need to be run in each time step over a horizon. More 
information regarding different types of MPC formulation can be found in [46]. In the following 
subsection, a brief overview of the game-theory application in MGs are presented. 
3.3.4  Game-theory 
Another potential approach to MGEM problems is game theory. Game theory is believed to be among 
potential techniques in the operation of MGs due to the capability of enabling distributed management 
for MGs’ resources [47] [48]. In order to implement a MGEM problem as a game theory problem, 
the resources located at the MG could be considered as game participants. Despite the game theory’s 

shortcomings in problem convergence, it is still a good choice for multi-agent-based decision making 
studies. 
Game theory has many applications from the energy industry to economic studies in complex 
systems. In general, its concept refers to mathematical techniques that model the interaction between 
multiple decision-makers [49]. The choice of one decision-making entity could affect the choices of 
the other entities. One of the applications of game theory could be in distributed management of MGs. 
In order to implement a MGEM problem as a game theory problem, the resources located at the MG 
could be considered as game participants. The following four steps should be taken for a game-
theoretic problem: 

a) Defining players of the proposed game 
b) Defining the individual and overall goal 
c) Dealing with the coupled constraints 
d) Finding the Nash equilibrium 

Game theory methods could be split into two categories: cooperative game and non-cooperative game 
[50]. A cooperative game is the one with a number of entities in which the main goal of these players 
are in-line with each other. In contrast, the non-cooperative game refers to a game in which the entities 
are in conflict with each other and they try to act independently regarding their goals [51]. However, 
the choice of the suitable game-theory approach for MGEM problems directly depends on the method 
of MG management and the agreements between MG operator and members. 



4 SUMMARY AND CONCLUSION 
The MG is an autonomous or semi-autonomous system that consists of DGs, RESs, FERs as well as 
dispatchable loads working together which are able to operate in both grid-connected and islanded 
mode. MGs as the potential sources of sustainability are designed to expand the decentralization goals 
along with cooperation with the whole system toward flexible electrical energy systems. However, 
the increasing penetration of renewable sources and the decentralization in either MG or system-level 
networks have resulted in several stability and resiliency issues. Consequently, the EMSs are 
proposed to efficiently control and manage the operation of all energy resources locate in generation-
side and demand-side so as to deal with the stochastic outcomes of a deregulated system. Moreover, 
the smart power systems in the future will confront several uncertainties due to the very low-inertia 
situations which must be addressed by the EMS as well as the novel control techniques in advance. 
In MG concepts, the EMS also could play a pivotal role in dealing with the aforesaid issues since 
they could be employed to satisfy several objectives in operation and control of the MG. The EMSs 
could also be beneficial in providing different kinds of services to the national or regional grids. 
Accordingly, MGEM systems could be designed and planned carefully so that they can take into 
account all the individual or environmental constraints and limitations of consumers’ electrification. 

Hence, in order to have an efficient and synergetic contribution by MGs, the MGEM problems should 
be defined by problem formulations in which all the uncertainty, stochasticity, restrictions, and also 
monetary payback for its stakeholders are considered precisely. 
Different types of optimization formulations were used for the MGEM problems. Most of them 
focused on minimizing MG's operating costs such as fuel costs, maintenance costs, and the cost of 
imported energy from the grid. These optimization techniques could be categorized based on their 
optimization types, objective functions, constraints, and also tools that are utilized to solve MGEM 
problems. The most popular ones include stochastic and robust optimization techniques. Furthermore, 
there have introduced some tools such as model predictive control, intelligent techniques, and game-
theory in order the make the MGEM more efficient and predictable. 
To sum up, the utilization of MGs equipped with the MGEM system could be a potential solution to 
future power systems issues. The control and optimization techniques in MGEM system enable the 
active and sustainable utilization of energy resources. These energy management systems could help 
to enhance the flexible utilization of energy resources as well as the flexibility of the whole power 
system by providing different types of balancing and ancillary services. However, in order to make 
the most out of these MGEM plans, the smart selection of control and optimization trajectories are of 
the necessity. 
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