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Abstract: Centralized and one-way logistics services and the lack of real-time information of logistics 
resources are common in the logistics industry. This has resulted in the increased logistics cost, energy 
consumption, logistics resources consumption, and the decreased loading rate. Therefore, it is difficult 
to achieve efficient, sustainable, and green logistics services with dramatically increasing logistics 
demands. To deal with such challenges, a real-time information-driven dynamic optimization strategy 
for smart vehicles and logistics tasks towards green logistics is proposed. Firstly, an ‘Internet of 
Things’-enabled real-time status sensing model of logistics vehicles is developed. It enables the 
vehicles to obtain and transmit real-time information to the dynamic distribution center, which manages 
value-added logistics information. Then, such information can be shared among logistics companies. A 
dynamic optimization method for smart vehicles and logistics tasks is developed to optimize logistics 
resources, and achieve a sustainable balance between economic, environmental, and social objectives. 
Finally, a case study is carried out to demonstrate the effectiveness of the proposed optimization 
method. The results show that it contributes to reducing logistics cost and fuel consumption, improving 
vehicles’ utilization rate, and achieving real-time logistics services with high efficiency. 
Keywords: Internet of Things; Green logistics; Dynamic optimization; Real-time information 
 
Notations 
V′ Vehicle set T� Task set VID� Vehicle i 
VID






�� Vehicle vector of VID� SW� Surplus weight of VID� SWi'  Updated surplus weight of VID� SV� = �lv, wv, hv� Surplus volume of VID�: length, width, and height SVi'  Updated surplus volume of VID� Wi Weight of VID� CP� = �x��, y��� Current position of VID�: X-axis and Y-axis position ND� = �x���, y���� Next destination of VID�: X-axis and Y-axis position α A variable parameter (loading, α=-1; unloading, α=1) TL� Current task list of VID� TID� Task j 
TIDj







� Task vector of TID� 
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W� Weight of TID� Vj = �lt, wt, ht� Volume of TID�: length, width, and height CP� = �x"�, y"�� Current position of TID�: X-axis and Y-axis position ND� = �x�"�, y�"�� Next destination of TID�: X-axis and Y-axis position T� Time of delay of TID� dt� Allowed time of delay of TID� on the task lists w�� Delayed penalty parameter of the j-th task on VID� f�VID�� Angle between VID� and TID� d Distance from the midpoint of |CPiNDi












�| to the midpoint of |CPjNDj












�| 
D Distance of VID� finishing TID� O�R� Center of the circle C Total logistics cost of finishing all the tasks C( Cost of finishing all the tasks in the centralized and one-way logistics service 
C) Delivery cost of vehicles finishing all the tasks, including the accepted task TID� C* Cost of vehicles finishing the tasks on the task lists C+ Delayed delivery penalty cost caused by accepting TID� VCi Cost per kilometer of VID� 
Lij Total distribution distance of finishing all the tasks after receiving  TID� Li Distance of VID� Lj Efficient distance of TID� L'i Total distance of VID� finishing the tasks on the task lists t� Time of delay of TID� on the task lists. L'j Distribution distance of TID� V` Average effective loading rate of vehicles 
V-i Real-time loading volume of VID� L. i Real-time distance of VID� W` Average effective weight of vehicles 
W- i Real-time weight of VID� R` Average loading rate of vehicles TFC Total fuel consumption FCi Fuel consumption per kilometer of VID� FC.... Average fuel consumption per kilometer 
C` Rate of saving cost 
R- Utilization rate of vehicles N Number of vehicles needed in the current method N- Number of vehicles needed in the proposed method 

1. Introduction 
Green logistics is the study of practices that aims to reduce the environmental externalities that are 

mainly related to the environmental issues of logistics operations and therefore develop a sustainable 
balance among economic, environmental and social objectives (Green logistics, 2010; Chhabra et al., 
2017). Green logistics is an important trend of development and an efficient strategy in practice to 
address the challenges faced by the logistics industry such as dramatically increasing logistics 
demands, requirements in environmental protection, and high-efficiency logistics services (Dekker et 
al., 2012; He et al., 2017; Zaman and Shamsuddin, 2017; Rose et al., 2018). Currently, the typical 
challenges that logistics industry faces are composed of the rapid increase of logistics demands, the 
lack of real-time information of logistics resources and the sharing of information, the low-efficiency 
management and allocation of logistics resources, and high requirements of logistics services in cost 
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and environmental issues (Savelsbergh and Van Woensel, 2016). For example, the rapid growth of E-
commerce, online shopping, and transportation services in the last decades led to the scattered and 
exploding logistics demands characterized by randomness and unpredictability (European E-commerce 
Report, 2017; Pålsson et al., 2017). This contributes to the improvement of employment and the 
promotion of the logistics industry. It also results in many problems in the logistics industry such as the 
environmental issues and the increase of logistics costs. The environmental issues like fuel 
consumption and air pollution result from the large and low-efficiency logistics transportation. Serious 
competition among logistics enterprises also leads to the increase of logistics costs in terms of the 
economic and environmental aspects.  

In addition, the lack of real-time information of logistics resources makes it difficult to achieve 
green and cost-effective logistics services (Muñoz-Villamizar et al., 2018). A good example of this is 
that a centralized and one-way logistics service pattern is widely adopted by logistics companies in 
practice, especially in small and medium-sized enterprises (Langevin et al., 1996). Logistics enterprises 
in a certain region intensively assign tasks to vehicles only considering destinations of tasks, and in 
most cases, vehicles finish logistics delivery services in the one-way. In this case, real-time information 
of logistics resources is often ignored and new logistics tasks cannot be sensed. Therefore, it is 
common that vehicles are in low loading rates in the round-trip and even empty running, which leads to 
the low average loading of vehicles and the increase in the number of vehicles needed (Crainic et al., 
2004). Meanwhile, the sharing of information among logistics enterprises, vehicles, and tasks is also a 
major bottleneck of achieving real-time information-driven dynamic optimization of logistics resources 
(Vieira et al., 2015). Logistics enterprises, in particular, small and medium-sized enterprises, are 
unwilling to share the information of logistics resources because of the fierce competition and the 
issues of profit sharing. Thus, the real-time status of logistics resources such as the vehicle load and 
new logistics tasks cannot be shared. Therefore, the lack of real-time information of logistics resources 
and the sharing of information leads to the waste of logistics resources and the increase of logistics 
costs. The optimal allocation of logistics resources and the efficient decision-making of logistics 
services cannot also be achieved (Sheu, 2006). These issues related to the delivery and transportation of 
tasks, for example, the low loading rates of vehicles and the lack of technologies for exchanging data, 
have challenged the effectiveness of city logistics services (Muñoz-Villamizar et al., 2018). The 
management of logistics resources and the routing optimization of logistics transportation are also 
important issues faced by the logistics industry (Lai et al., 2012; Cattaruzza et al., 2017). The high cost 
of advanced information technologies applied in the logistics industry makes the efficient management 
of logistics resources difficult for small and medium-sized enterprises. This is an impact factor of 
leading to the increase of logistics costs and the issues of management of logistics resources such as the 
visualization of logistics resources. Routing optimization of vehicles can provide the optimal path for 
drivers and contribute to the improvement of efficiency of logistics. However, the lack of vehicle 
routing optimization in the logistics industry often leads to the increase in the total distribution distance 
of vehicles (Niu et al., 2018). Further, this results in the increase of logistics costs and energy 
consumption, and even the delivery tardiness of tasks. For example, when exceptions occur in logistics 
distribution activities such as traffic congestion and new tasks, this could lead to the increase of 
logistics costs and delivery tardiness.  

Therefore, how to achieve green logistics transportation and services is a hot issue for the supply 
chain management and logistics industry. Growing attention was given to this issue throughout the 
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world by many researchers and governments. Logistics activities comprise freight transportation, 
storage, inventory management, materials handling, and all the related information processing 
(McKinnon et al., 2015). As many researches are ongoing, we do not cover every aspect, but focus on 
the real-time optimization and handling of new tasks for vehicles who are delivering the tasks on them. 
However, logistics distribution systems have become increasingly complex because of the increases in 
logistics demands, government regulations, traffic congestion, the requirement of high-frequency 
logistics deliveries, and environmental issues (Vieira et al., 2015). The state-of-the-art literature was 
surveyed in green logistics such as green logistics transportation (Fahimnia et al., 2015; Masson et al., 
2017), the optimal allocation of logistics resources (Powell, 1986; Sheu, 2006), vehicle routing 

optimization services (Bramel and Simchi-Levi, 1995; Chen et al., 2006; Kim et al., 2015; Soleimani et 

al., 2017), and green supply chain management (Lai and Wong, 2012; Fahimnia et al., 2015; Khan et 
al., 2018). The optimal allocation of logistics resources and vehicles routing problem (VRP) play a vital 
role in the logistics delivery. For example, research on the allocation methodologies of logistics 
resources for quick response to the variety of customer order demands changing in short-term time 
intervals was of vital importance to efficient demand-responsive city logistics distribution operations 
(Poon et al., 2006). Research in terms of incorporating real-time logistics information into green 
logistics was also limited in the existing literature. In addition, the government in taxation, financial 
incentives, regulation, infrastructure, and land-use planning policies has an important effect on 
promoting the development of green logistics (McKinnon, 2010). With the growing interest in the 
issues of green logistics, the government takes actions in policies, financial support, guidance, and 
strategies to balance economic, environmental, and social objectives towards sustainable logistics 
(Srivastava, 2007; Rehman et al., 2016; Zaman and Shamsuddin, 2017). From logistics to the green 
supply chain, green logistics is one of the vital sub-components of green supply chain management 
process (Sarkis, 2003; Isaksson et al., 2011), which contributes to achieving a more sustainable balance 
between energy demand, environment, and economic health (Zaman and Shamsuddin, 2017). For 
example, improving economic efficiency and competitiveness is helpful to reduce environmental 
concerns from green growth agenda (Rao and Holt, 2005).  

Despite significant progress achieved in green logistics, major challenges still exist in the real-
time information-driven logistics services and the optimal allocation of logistics resources as follows. 

(1) The lack of real-time, accurate and consistent information of logistics resources and the 
sharing of information is a major bottleneck to achieve modern green logistics. Meanwhile, new 
logistics tasks cannot be sensed and handled in real time. Therefore, a typical challenge is how to sense 
and obtain real-time information of logistics resources. 

(2) The current practice where a centralized and one-way service pattern is widely used by 
logistics companies has many typical problems like the low-efficiency management and allocation of 
logistics resources, the low utilization rate of vehicles, and even the errors in the process of logistics 
delivery. Therefore, how to achieve the optimal management and allocation of logistics resources and 
the efficient services of routing optimization and loading of tasks is another huge challenge.  

(3) Logistics industry is facing the dramatic increase in logistics demands, the environmental 
issues related to the logistics activities, and high logistics costs. Developing a balance among 
economic, environmental, and social objectives for sustainability is an urgent target for the logistics 
industry. Therefore, it is vital to develop a method for achieving a sustainable balance among these 
objectives. 
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To address the above challenges, by applying the Internet of Things technologies (IoT), IoT-based 
real-time information sensing model for logistics resources is built to sense and obtain real-time 
logistics information. The value-added logistics information is managed and shared among logistics 
enterprises, vehicles, and tasks. Implementing the optimal management and allocation of logistics 
resources is the key to maximizing the utilization of logistics resources. A new, real-time, and dynamic 
logistics service strategy is adopted to improve the current logistics service pattern. Real-time 
information enabled routing optimization and navigation, and loading services are developed to provide 
routing optimization and navigation for smart vehicles, and avoid incorrect loading of tasks. An IoT-
enabled dynamic optimization method for smart vehicles and logistics tasks (IOMVT) is developed to 
improve the efficiency of logistics services, and achieve green and sustainable logistics. 

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 
outlines the overall architecture of IOMVT. Section 4 describes IOMVT. In Section 5, a case study is 
used to demonstrate the efficiency of the proposed method. Conclusions and future works are given in 
Section 6. 

2. Related work 
Green logistics have been ongoing for decades and taken a wide-ranging and profound reform in 

the logistics industry. Surrounding the projects of transportation and logistics, significant progress and 
research productions have been achieved in the field of logistics. Three streams of literature are 
relevant to this research. They are management and allocation of logistics resources, real-time 
information acquisition and sharing, and logistics transportation and routing optimization. 
2.1. Management and allocation of logistics resources 

Logistics management is the set of integrated logistics activities, including freight transport, 
storage, inventory management, materials handling, and all the related information processing that 
requires to move products through the efficient supply chain process (Martel and Klibi, 2016). The 
objective of logistics resources management is to facilitate information flow and share knowledge, and 
determine the most effective approach for allocating the appropriate logistics resources to different 
logistics functions (Ross, 2003). Green logistics management, as a novel management approach, was 
developed to manage logistics activities in a green and sustainable manner with environmental 
considerations (Lai and Wong, 2012). However, the low-efficiency logistics resources management is 
still a typical issue in the current logistics activities. To address this problem, many works on logistics 
resources management such as the use of logistics resources, the improvement of transportation service 
performances, and the current methods on the logistics resources management were surveyed (Crainic 
et al., 2004; Sheu, 2006; Poon et al., 2009). This facilitated to integrate and manage logistics resources, 
orders, enterprises, and customers with high efficiency, given the chaotic logistics management, 
especially in logistics enterprises. However, logistics resources management systems cannot sense and 
obtain the real-time information of logistics resources, and the data collection technique is either 
manual-based or barcode-based (Poon et al., 2009). The lack of the sharing of real-time information is a 
typical challenge faced by logistics resources management. Therefore, logistics resources management 
systems are incapable of implementing the real-time response, monitoring, and handling of logistics 
resources, especially for new tasks. The optimal allocation of logistics resources is also impossible.  
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Therefore, real-time information enabled logistics resources management can better serve to the 
optimal allocation of logistics resources, which is quite important in green logistics. The optimal 
allocation of logistics resources is to maximize the utilization of logistics resources, further reduce the 
number of vehicles needed in the logistics activities (Liu et al., 2018). The progress of this field in 
research and application is significant in terms of the allocation methodologies of logistics resources 
(Sheu, 2006; Yang et al., 2016; Zhang et al., 2018a). It focuses on the high-quality logistics services 
within lower logistics costs and fewer logistics resources, therefore, provides a strategic support for 
current logistics practice towards green logistics. In addition, research on approaches in how to achieve 
the optimal allocation of logistics resources was widely developed such as vehicle assignment and 
order processing (Vukadinović et al., 1999; Sheu, 2006; Chow et al., 2014). Nevertheless, the decision-
making plan of the allocation of logistics resources is carried in advance in most cases, and the frequent 
deviation between the execution and plan still exists because the dynamic feature of the optimal 
allocation of logistics resources is ignored. Therefore, it is essential to implement the optimal allocation 
of logistics resources driven by the real-time information which can support the real-time optimization 
of new tasks.   
2.2. Real-time information acquisition and sharing 

The motivation of sensing and collecting real-time information of logistics resources is to have 
vehicles be smart, and make dynamic optimization for smart vehicles and logistics tasks in real time. It 
is essential to develop real-time decision-making functions that can sense and handle exceptions 
throughout the whole logistics process. It can address the issues existing in current logistics decision-
making with the lack of real-time information. Therefore, how to sense and obtain real-time 
information of logistics resources becomes a key issue. Research on methods, technologies, and tools 
in real-time information acquisition offers a good support for the collection of real-time information 
(Wang et al., 2011; Zhang et al., 2017a, b). Radio frequency identification (RFID) technology with high 
reliability and transmission speed is applied to multiple fields for collecting real-time information and 
has achieved remarkable results (Want, 2006). RFID can enable “process freedoms” and real-time 
visibility into supply chains, especially in logistics industry (Angeles, 2006). The real-time information 
capturing and integration framework of the Internet of Manufacturing Things (IoMT) provided a 
technical and strategical guidance to address the issue of sensing real-time information of logistics 
resources (Zhang et al., 2015). Under this framework, the configuration of IoMT sensing environment 
within installed RFID tags, readers, and sensors was developed to sense and capture real-time logistics 
information. Real-time monitoring and tracking of logistics resources can also be achieved, such as 
real-time monitoring of goods delivery (Ruan and Shi, 2016) and planning and execution processes 
(Koh and Wang, 2010). After collecting real-time information of logistics resources, instead of directly 
entering the optimization stage, value-added mechanisms of logistics information are entailed to 
achieve the processing and management of real-time information (Qu et al., 2015; Zhang et al., 2018b). 
Value-added information of logistics resources is transmitted in real time through the communication 
protocol (Sheng et al., 2013; Li et al., 2017). The sharing of value-added logistics information 
throughout the entire logistics process is important to real-time decision-making (Lee et al., 2000; 
Wang and Koh, 2010; Nativi and Lee, 2012), which can promote the optimal allocation of logistics 
resources in real time.  

Although significant progress has been made in the above researches, there are some challenges 
existing in the current logistics industry, especially for the application of the real-time data-driven 
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dynamic optimization of logistics resources. For example, these studies have been carried out 
separately and mainly focused on how to apply the IoT-related techniques on the collection of real-time 
information. They do not take into account the profiles of the overall solution for the integration and 
management of whole logistics services (e.g., the configuration of smart vehicles, updating logistics 
information, and implementation of real-time logistics systems) or profiles of companies. 
2.3. Logistics transportation and routing optimization  

Logistics transportation is the freight transportation in the process of logistics activities, which 
associates with the loading of tasks and the selection of the optimal tasks, as well as tasks delivery 
(Zhang et al., 2016). The freight transportation constitutes a very small proportion of the total 
transportation time for goods, but it may represent up to 28% of the total transportation costs (Munoz-
Villamizar et al., 2018). However, logistics transportation is in an assignment-centralized and artificial 
way in practice in the current logistics. Therefore, the waste of loading capacity, errors in loading tasks, 
and low-efficiency logistics delivery are common resulting from the lack of real-time logistics 
information and effective routing optimization methods (McKinnon and Edwards, 2010). Routing 
optimization, as the core of logistics transportation, is to improve freight delivery services in cost, 
distance, and energy consumption in an optimal path.  

The vehicle routing problem, as one of the more widely-used logistics transportation problems, 
has been used to optimize the routing costs. In a recent book, Toth and Vigo (2014) systematically 
reviewed the research of VRP, related methods and applications. However, challenges in VRP for real-
time optimization of logistics resources still exist, for example, several issues related to VRP including 
the real-time information of vehicles’ paths, sensing logistics exceptions in real time, and delivery 
requests of new tasks are ignored. As a result, there is a growing attempt in recent literature in VRP to 
investigate the issues of real-time vehicle routing (Ghiani et al., 2003; Liao and Hu, 2011). This is 
because that the solutions of real-time information-driven vehicle routing can make a quick response 
for the logistics exceptions, and reduce the costs caused by rescheduling. Real-time tracking and 
locating for logistics resources could be achieved and shared among stakeholders, further, to avoid 
errors in the tasks delivery (Zhang et al., 2017c; Zhang et al., 2018c). In addition, real-time VRP is 
characterized by high dynamics and randomness of logistics tasks. This leads to the increase in the 
complexity of VRP. To address such challenges, a comprehensive review of real-world applications and 
the state-of-the-art solution methods for dynamic VRP was studied (Wang et al., 2012; Pillac et al., 

2013; Okulewicz and Mańdziuk, 2017). Many algorithms of VRP focused more on the shortest delivery 
distance and one-way routing optimization with the consideration of cost, energy consumption, and 
delivery time (Yu et al., 2009; Marinakis and Marinaki, 2010; Pavone et al., 2011). This often results in 

the low loading rate of vehicles, the waste of logistics resources, and the increase in logistics costs. The 
delivery requests of new tasks cannot be sensed and handled in real time in the ongoing logistics 
delivery activities. As a result, the number of vehicles used in logistics delivery increases. It should be 
noted that the standard objective function of VRP is to minimize the total distribution distance. Most 
VRPs are formulated as a single objective function of minimizing the cost of the solutions (Braekers et 
al., 2016), despite the fact that the majority of problems in industry, particularly in logistics, are not 
limited to minimizing the operational costs derived from the distribution distance, and other objectives 
should be considered. Moreover, real-time response and handling of new tasks in VRPs is few. 
However, this case in the current logistics activities is quite common due to the rapid increase of 
logistics demands, and this issue is really worth studying.  
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3. Architecture of IoT-enabled dynamic optimization for vehicles 
and tasks 
The overall architecture of IOMVT consists of three modules as shown in Fig. 1, namely smart 

vehicle terminals (SVT), enterprise information systems (EIS), and dynamic distribution center (DDC). 
The following sections will introduce the functions of each module.  

EIS is used to integrate and manage logistics enterprises and resources, including enterprises’ 
accounts, tasks, and vehicles. Logistics enterprises, especially small and medium-sized enterprises, 
create an account in EIS and register the information of their enterprises. It includes the information of 
tasks and vehicles and the individual information of each enterprise like the address, property, etc. The 
task management module is responsible for updating information of tasks in real time such as the 
current position, the destination, and the delivery date, etc. It also numbers the tasks, and documents 
the dimension and weight of the tasks. Then, the vehicle management module is used to integrate and 
manage the information of the vehicles like the vehicle’s registry, the rated volume and weight, and the 
coding of the vehicles. Then, the tasks and vehicles are intensively managed in EIS and shared among 
different logistics enterprises. Finally, real-time information of vehicles and tasks can be collected and 
monitored in EIS. In addition, the interfaces of the logistics resources registry platform and real-time 
vehicle sets in EIS are introduced in Case study.  

DDC is responsible for extracting vehicles’ real-time information and building IOMVT based on 
the real-time information of logistics resources. Real-time information of vehicles and tasks is extracted 
and created as the vehicle sets and task sets. These information sets of vehicles and tasks contain the 
useful and value-added information that can be used in the optimization model after filtering. The 
information of task lists of the vehicles can also be created. Then, the value-added information of 
vehicles and tasks is transmitted to the IoT-enabled dynamic optimization module. Based on the real-
time information of logistics resources, an IoT-enabled dynamic optimization method is developed to 
implement the optimal allocation and scheduling of logistics resources, and real-time response and 
optimization of new tasks. The optimal tasks can be assigned to the vehicles in a competitive manner. 
Further, a sustainable balance of economic, environmental, and social objectives can be achieved. 
Finally, high-efficiency logistics services based on optimal logistics results is developed to improve the 
efficiency of logistics. Real-time routing optimization and navigation services provide the optimal 
distribution routing for drivers and real-time sensing of exception events. Loading optimization service 
is designed to avoid errors in the process of logistics delivery.  

SVT is used to sense and obtain the real-time information of vehicles. It is composed of three sub-
modules. Firstly, identification devices like RFID devices and communication devices are selected and 
configured on the vehicles. These devices are used to make the vehicles have the capacity of sensing 
and obtaining the real-time information of logistics resources. Then, the real-time information of the 
vehicles such as the position and the task lists can be sensed and monitored.  Information processing is 
developed to process primitive information of the vehicles to the meaningful information where an 
information updating mechanism of logistics resources is developed. The value-added logistics 
information can be shared and transmitted with other modules through the communication protocol. 
Finally, the visualization of the real-time information of the vehicles is developed to provide the routing 
optimization and navigation services. This visual interface has the ability of interactive communication 
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with drivers and is constructed to improve the efficiency of logistics services. Real-time information of 

vehicles can also be shown in it.  

 
Fig. 1. The architecture of IOMVT 

The overall workflow of this architecture is that the information of logistics resources registered 

in EIS and the real-time information of vehicles in SVT is transmitted into DDC. Then, the optimal 

results obtained by the IoT-enabled dynamic optimization method can be sent to the vehicles in SVT. 

Finally, vehicles finish the tasks assisted by the optimal logistics services. The workflow in details is 

introduced as follows. Firstly, logistics enterprises create an account in EIS and register their 

information of the enterprises, tasks, and vehicles, and EIS integrates and manages all the logistics 

resources registered by the logistics enterprises. Then, the information of logistics resources is 

transmitted to DDC that creates the vehicle sets and task sets. Then, SVT establishes direct connections 

with DDC, and the value-added information of vehicles and task lists on the vehicles can be timely 

transmitted to DDC from SVT. The optimization method for vehicles and tasks developed in DDC 

obtains the optimal results with a sustainable balance of economic, environmental, and social 

objectives. Finally, the optimal tasks assigned to the vehicles in SVT are finished based on the 

visualization services. The communication protocol of information transmission between DDC, EIS, 

and SVT is based on RFID (intranet protocol) and 4G (extranet protocol). Within the intranet protocol, 

logistics resources attached RFID tags can be sensed by RFID readers, and real-time information of 

logistics resources in EIS, DDC, and SVT can be sensed and collected. Within the extranet protocol, 

information transmission among EIS, DDC, and SVT is achieved. 
The IoT-based real-time sensing model is the foundation of SVT and IOMVT, and includes three 

sub-modules as shown in Fig. 2, namely identification device selection and configuration (IDSC), real-
time information sensing and processing (RISP), and information visualization (IVIS). 
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Fig. 2. The IoT-enabled real-time sensing model  

Sensing devices are selected and configured into SVT to sense and transmit real-time information 

of vehicles and tasks in IDSC. These devices include GPS locator devices, RFID information collection 

devices, 4G communication devices, and integrated geographic information systems (GIS). GPS is 

used to locate vehicle’s location; RFID information collection devices are installed on vehicle’s back 

doors and used to collect and monitor the loading or unloading of tasks. When tasks attached RFID tags 

are loaded into or unloaded from vehicles, the configured RFID devices automatically collect 

information of logistics resources which is written in tags. This can reveal vehicles’ real-time utilization 

rate and update the current task lists of the vehicles. Loading verification services are to ensure the 

consistency of information read by RFID readers and that on task lists needed to be loaded or unloaded. 

If tasks are loaded wrongly, the alarming will be triggered, and further to avoid errors in loading tasks. 

4G is responsible for both-way communication between SVT and DDC. GIS is used to offer the 

optimal routing navigation services for drivers based on real-time task lists of vehicles. 
Within the configuration of intelligent identification devices in IDSC, the real-time information 

sensing and processing system can sense and obtain the real-time information of the vehicles, then 

process and transmit the value-added real-time information to DDC. For example, when a task comes 

to a sensing area, this event can be sensed by the registered sensors. Then, based on the value-added 

information, vehicles’ real-time information model is built, and includes the vehicle number, vehicle’s 

surplus weight, surplus volume, current position, next destination, cost per kilometer, and current task 

lists. When receiving instructions from DDC, the sensing and processing module transfers vehicles’ 

information to DDC in real time. The updating mechanism of real-time status information updates SW 

and SV once RFID readers perceive the loading/unloading of tasks (if information of the same task is 

read for the first time, loading information; otherwise, the unloading information). Vehicle’s task lists 

are also updated. The updating functions are formulated as:  
SWi'=SWi0α*Wj                                                               (1)                                                                                    

SVi'=SVi0α*Vj                                                                    (2)   
Eq. (1) and Eq. (2) indicate the updating functions of the volume and weight of the vehicles. 

When tasks are loaded in or unloaded from the vehicles, the volume and weight of the vehicles are 

updated in real time. Current position, next destination, and the current task lists of the vehicles are also 
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updated.   

 
Fig. 3. The visualization of vehicles’ real-time information 

The real-time information sensing and processing system uploads the real-time task information 

of vehicles to GIS. GIS monitors current road condition and applies the path optimization software to 

offer the optimal routing services based on drivers’ requests onto the real-time information 

visualization interface. Five function tabs located on the top of the visualization interface as shown in 

Fig. 3: Bulletin, Road Condition, Optimized Path, Vehicle IF, and Task IF, are designed to provide the 

real-time information of vehicles, and routing optimization and navigation services. Bulletin board on 

the left of the interface is used to show instructions from DDC when clicking on these tabs. For 

example, when clicking on Road Condition, the speech-based road information is broadcasted and 

shown on the bulletin board. Vehicle IF and Task IF are responsible for showing information of 

vehicles and tasks. Real-time routing optimization methods are applied in logistics transportation, and 

integrated into DDC on vehicles. In the case of unexpected events such as the traffic jam and the 

delivery of new tasks, the optimized routing is re-optimized and pushed to drivers if Optimized Path is 

clicked. The routing navigation is shown on the homepage when no other function buttons are clicked. 

4. IoT-enabled dynamic optimization method for smart vehicles and 
logistics tasks 
The IoT-enabled dynamic optimization method for vehicles and tasks is developed to achieve the 

optimal allocation of logistics resources and real-time response and optimization for new tasks. It 

targets to develop a sustainable balance between economic, environmental, and social objectives for the 
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current logistics activities. The whole procedure of the proposed method is shown in Fig. 4. The 

optimization follows 7 steps as follows: 
Step 1: Initialize the vehicle sets V′ and task sets T� based on the real-time information.  
Step 2: Create the vehicle vectors VID






�� and task vectors TID






�� in terms of distribution information 

of vehicles and tasks.  
Step 3: Build the pre-optimized subsets of vehicles and tasks satisfying the constraints by a 

circular region partition method.  
Step 4: Re-optimize the task sets and vehicle sets based on the theory of the circle inscribed 

triangle.  
Step 5: Classify the tasks according to the number of vehicles in the circular regions and their 

intersections.  
Step 6: Optimize the tasks with multiple vehicles in the circular regions. 
Step 7: Finish the tasks delivery.  

 
Fig. 4.  The flow chart of the IOMVT 

Firstly, DDC instructs SVT to transfer the real-time information of logistics resources at a certain 

time interval t. t is a variable parameter which is inversely proportional to the scale of tasks and 

vehicles, and generally its default value is 5 minutes. SVT filters loading or unloading information of 

vehicles. Vehicle sets and task sets are created and initialized based on the real-time information of 

logistics resources. Vehicle sets V� = 2VID�, SW�, SV�, CP�, ND�, TL�3, and i represents the serial number 

of vehicle i  in V′ . Task sets T� = 2TID�, W�, V�, CP�, ND�, T�, dt�, w��3 . Vehicle vector VID






��  that is the 

distribution routing of vehicle i is defined as positive X-axis (X5). The starting and ending points of the 

vector are CP� and ND�, respectively. Task vector TIDj







� is also created, and the starting and ending points 

of the vector are CP� and ND�, respectively. A circular region with the center of the circle (O�R�) located 

at the starting point of VID






�� is established and the norm of VID






�� is the radius of the circle (R). Vehicle 
vector VID






��, task vector TIDj







�, and  R are formulated as follows: 

VID






�� = CPiNDi












� = �CP�, ND�� = 6�x��, y��� → �x′��, y′���8                             (3) 
       TIDj







�=CPjNDj












� = 9CP�, ND�: = ;9x"�, y"�: → <x′"�, y′"�=>                                (4) 
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R = ?�x′�� − x���* 0 �y′�� − y���*, O�R� = CP� = �x��, y���                           (5) 
The number of tasks is huge, while that of vehicles is limited. Therefore, the vehicles in the 

circular regions select tasks meeting constraints, and this is defined as the circular region partition 
method that can effectively decrease the complexity of optimization for tasks and vehicles. The 
vehicles in the circular regions actively select the optimal tasks in a competitive way once delivery 
requests of new tasks are released. The circular region partition method is used to build the pre-optimal 
subsets of the vehicles and tasks. A task is defined as a point that indicates the starting point of the task. 
A circular region contains n (n ≥ 0) tasks. It is an assumption that each vehicle in the circular regions 
is an independent element. If the tasks locate at the intersection of the circular regions, S = 1 ; 

otherwise, S = 0 (intersection: S = 1 and no-intersection: S = 0). If n = 0, then this circular region is 
released and the planned distribution routing is executed. If n = 1, S = 0 , the tasks are directly 
assigned to the vehicles. If n = 1, S = 1, the tasks are assigned to the vehicles within the circular 
region with the minimal R. If n ≥ 2, S = 0, the tasks with the minimal total distance are assigned to the 
vehicles. If n ≥ 2, S = 1, the tasks with the minimal total distance are assigned to the vehicles within 
the circular region with the minimal R. TID






�� = k9VID






��:, k ≠ 0. k > 0 means that TID






�� points to VID






�� 
(positive X-axis: X5); otherwise, TID






�� points to the negative X-axis (XI). If n ≠ 0, k ≠ 0. Here, the 
loading constraints for tasks are formulated as follows.   

I) = J 0, �lt ≤ lv�1, �otherwise�, I* = J 0, �wt ≤ wv�1, �otherwise�, 
I+ = J 0, �ht ≤ hv�1, �otherwise�, IP = Q 0, �W� ≤ SWi'�1, �otherwise�           

I = I) 0 I* 0 I+ 0 IP                                                                (6) 
Variable I is a multi-objective constraint function. I = 0 indicates that tasks can be loaded on the 

vehicle. Otherwise, rejecting tasks. For simplicity, the gap between tasks when loading is neglected in 
this paper. Tasks are reclassified and re-optimized after filtered by constraints. For the elements in the 
intersection regions, the element in the region with the minimal R is selected as a final result. This is 
based on the theory of the circle inscribed triangle. Besides, the elements in the no-intersection regions 
do not change. 

If n ≥ 2, the theory of the circle inscribed triangle is used to re-optimize the task and vehicle sets,  
and the tasks that meet all the following conditions are selected. 

Condition 1: the angle between VID�  and TID�  is the minimum. The equation is formulated as 
follows: 

f�VID�� = min�S)T arccos WXYZ∗\XY]
|WXYZ|∗|\XY]| , i, j ∈ �1, n�                                         (7) 

Condition 2: the distance from the midpoint of |CPiNDi












�| to the midpoint of |CPjNDj












�| is the shortest. 
The formula is shown as below: 

d = min��,"�∈�),T� _<`aZ5`baZ
* − `c]5`bc]

* =* 0 <daZ5dbaZ* − dc]5dbc]
* =*e , i, j ∈ �1, n�           (8) 

Condition 3: the distance of VID� finishing TID� is minimal.  
 D = min[|VID






��|+|TID






��|+|CPiCPj










�|+|NDiNDj















�|8                                         (9) 
TID� is classified into four kinds of tasks based on information of positions. (1) CP�, ND� ∈ O�R� ∧

X5 ; (2) CP�, ND� ∈ X5; ND� ∉ O�R� ∋ CP� ; (3) CP� ∉ X5 ∋ ND�; CP� ∉ O�R� ∋ ND� ; (4) CP�,ND� ∉
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X5; CP�, ND� ∉ O�R�. Class 1 denotes that the current position and destination of task j locate in the 
circular region and the positive X-axis. Class 2 indicates that the current position of task j locates in the 
circular region and the positive X-axis, while the destination is outside. Class 3 indicates that the 
destination of task j locates in the circular region and the positive X-axis, while the current position is 
outside. Class 4 indicates that the current position and destination of task j locate outside of the circular 
region. Tasks that are not allocated to the vehicles return to T′ and are re-optimized until all the tasks 
are completed.  

The objective function is formulated as follows, and it is composed of the total cost of tasks 
delivery and the cost of delay penalty.  

C = min cost�C)0C+�                                                    (10) 
C) = ∑ ∑ VCiji Lij = ∑ VCiLii                                                 (11) 

C* = ∑ VCii L'i                                                            (12) 
C+ = ∑ ∑ TIDjji w��T�                                              (13) 

T� = Q0, t� < dt�t�, t� ≥ dt�, t� = �Lj − L'j�/L'j                                        (14) 
C( = ∑ ∑ VCiji L'j                                                      (15) 

where Eq. (10) denotes that the total logistics cost of delivering all the tasks. Eq. (11) describes 
the delivery cost of vehicles completing all the tasks, including the accepted task TID� . Eq. (12) 
indicates that the cost of vehicles accomplishing the tasks on the task lists, and L'i is the total distance 
of vehicles finishing the tasks on the task lists. Eq. (13) indicates the delayed delivery penalty cost 
caused by accepting TID�. Eq. (14) denotes a piecewise linear function, where t� and dt� are the time of 
delay and the allowed time of delay of TID� on the task lists. Eq. (15) indicates the cost of finishing all 
the tasks in the centralized and one-way logistics service. 

Tasks are assigned to vehicles that have the minimum value of the objective function. The optimal 
distribution results are obtained and transmitted to SVT in real time. To demonstrate the efficiency of 
the proposed method, evaluation functions are formulated as follows: 

V` = ∑ �V-iL. i�/�ViLii � = ∑ VjLjj / ∑ ViLii                                             (16) 
W` = ∑ �W- iL. i�/�WiLii � = ∑ WjLjj / ∑ WiLii                                           (17) 

R` = �V`, W`)                                                                      (18) 
TFC = ∑ Lii FCi                                                                   (19) 
FC.... = TFC/ ∑ Lii                                                                   (20) 

C` = 6C − C(8/C(                                                                  (21) 
R- = 6N − N-8/N                                                                    (22) 

Eq. (16) and (17) represent the average effective loading rate of vehicles (V`) and the average 
effective weight of vehicles (W`). Eq. (16) indicates that the product of the real-time loading volume of 
vehicles and the distance of vehicles in real time divides the product of the volume of vehicles and the 
total distance of finishing tasks. Eq. (17) denotes that the product of the real-time weight of vehicles 
and the distance of vehicles in real time divides the product of the total weight of vehicles and the total 
distance of finishing tasks. Eq. (18) indicates the average loading rate of vehicles (R`), which reflects 
the average effective loading rate and weight of vehicles as a whole. Eq. (19) and (20) represent the 
total fuel consumption, and the average fuel consumption per kilometer. Eq. (21) and (22) indicate the 
rate of saving cost and the utilization rate of vehicles. 
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5. Case study 
5.1. A case study for optimization of tasks and vehicles 

A case study is used to demonstrate the efficiency of the proposed IoT-enabled dynamic 
optimization method for tasks and vehicles. Before conducting the case study, logistics resources 
registry and integration in EIS discussed in Section 3 is introduced as shown in Fig. 5 where logistics 
enterprise registry platform and real-time vehicle sets are presented. Firstly, logistics enterprises 
register and login the logistics resources registry platform, and then choose the right user roles and 
enter the interface of this platform. Logistics enterprises can edit and submit their enterprise 
information and vehicle information on this platform. The enterprise information includes enterprise 
name, number, and address. The vehicle information consists of vehicle name, number, length, width, 
height, current weight, and the maximum weight, etc. Finally, the integration of vehicles and tasks from 
different enterprises will be accomplished. Real-time vehicle sets and task sets can be established. 
When clicking on Vehicle Set as shown in the bottom left of Fig. 5, real-time information of vehicles 
can be shown. Vehicle 1 (VID) ) is taken as an example to introduce the real-time information of 
vehicles. It includes the current position, the next destination, surplus weight and volume, the task lists 
on vehicles, and quality of services. The information of tasks on the task lists of vehicles can also be 
shown. Tables 1 and 2 show the information of vehicles and tasks at time T. Table 3 is the task list 
information of the vehicles.  
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Fig. 5. Logistics resources registry and integration 

Table 1 Vehicle information at time T 
VID SW/t SV/m3 CP ND VC 

($/Km) OC 
(L/Km) TL X�Km� Y�Km� X�Km� Y�Km� VID1 12 17 6.1 40.1 56.9 20.2 1.6 0.24 TL1 VID2 13 15 33.1 -10.7 5.9 -18.8 1.6 0.24 TL2 VID3 14 23 55.4 68.4 70.1 2.1 1.6 0.24 TL3 VID4 5.4 8.1 -28.1 33.5 -14.0 14.5 1.6 0.24 TL4 VID5 7.5 9.3 -31.7 20.9 -5.1 1.3 1.4 0.24 TL5 VID6 12 16 -29.8 -32.4 45.6 -12.8 1.4 0.24 TL6 VID7 16.8 19 -27.1 -49.4 -77.3 -21.3 1.8 0.24 TL7 VID8 9 12 -97.9 1.1 -8.1 18.7 2.1 0.24 TL8 VID9 17 21 -19.5 -75.8 -38.6 -70.3 2.1 0.32 TL9 VID10 16 13 -37.8 -12.9 2.5 -37.1 2.1 0.32 TL10 VID11 16 16 8.8 -49.1 -38.3 -56.9 2.1 0.32 TL11 VID12 27 29 31.3 -83.8 9.5 -31.0 2.1 0.32 TL12 VID13 26 37 36.9 -56.6 80.4 -7.5 2.6 0.32 TL13 VID14 15 31 43.9 10.8 81.8 21.8 2.6 0.32 TL14 VID15 16 23 21.1 -22.8 28.5 -35.4 2.6 0.4 TL15 VID16 21 27 -25.8 68.70 52.5 33.7 2.6 0.4 TL16 VID17 10 21 31.5 -26.1 41.2 -53.4 2.6 0.4 TL17 VID18 16 32 5.8 70.8 60.2 -8.7 2.6 0.4 TL18 VID19 17 24 0.8 68.67 71.2 -5.2 2.6 0.4 TL19 
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VID20 21 36 6.1 87.13 87.4 -21.0 2.6 0.4 TL20 
Table 2 Task information at time T 

Task No. W/t V/m3 CP ND X�Km� Y�Km� X�Km� Y�Km� TID1 2.6 4.5 -39.0 22.9 -10.1 -0.2 TID2 6.2 14 35.3 12.5 64.9 19.4 TID3 6.3 7 15.8 -88.0 0.6 -20.1 TID4 8.2 13 21.4 -57.2 -18.9 -36.1 TID5 7.4 7.1 -80.1 1.7 -18.0 33.1 TID6 4.5 9 -34.4 -17.9 20.4 -34.9 TID7 10 15 33.5 -18.5 64.9 -43.7 TID8 7 13 55.2 39.4 62.4 -3.3 TID9 14 18 56.2 -51.6 81.4 -17.6  TID10 4.8 6.3 -19.2 -57.5 -72.7 -23.2 TID)) 2.6 9.4 10.1 42.1 50.3 21.3 TID12 4.2 6.9 43.2 -54 -50.8 -56 TID13 1.3 1.3 -20.2 16.3 -9.6 4.9 TID14 3.2 5.5 -44.3 -5.6 -10.6 15.4 TID15 5.5 3 36.2 31.3 60.2 20.3 TID16 6.4 3.6 -20.8 -22.2 -4.5 -23.4 TID17 2.3 7.3 32.5 -50 59.3 -30.7 TID18 4.4 2.3 20.2 -17.3 -6.2 -19.9 TID19 2 3.6 57.4 13.2 68.3 4.7 TID20 3.7 4.5 20.70 32.1 48.2 19.1 TID21 3 2.1 69.3 3.7 74.2 1.5 TID22 9.4 8 -26.7 -64 -36.1 -64.2 TID23 2 3 -26.2 29.3 -16.0 17.2 TID24 1 2 21.1 23.9 -12.1 12 TID25 1.1 2 -15.7 12.9 -1.5 -4.4 TID26 3.7 8.5 30.2 -11.4 18.2 -16.3 TID27 2.7 7.4 7.9 -26.6 40 -18.1 TID28 2 4.2 60.2 48.3 70.2 3.8 TID29 2.1 6.8 58.2 0 65 -11.2 TID30 4.3 3.9 -23.2 -46.2 -47.6 -33.7 TID31 2.5 4 -60 -40 -73 -17.4 TID32 8.1 4.5 -80 -19.2 -81 -34.9 TID33 4.3 3.2 -92 -10 -49.7 14 TID34 16.8 19.9 -15.3 -8.5 -30.1 -65.4 TID35 4.9 6.9 57.6 -40.3 79.4 -5.7 TID36 10.9 6.3 70.3 0 86.7 -17.3 TID37 3.2 1.3 -35.2 -20 -20.3 -15.2 TID38 2.5 4.5 47.8 -13.2 50.8 -1 TID39 6.9 2.4 -6 -37.2 -6 -30 TID40 9.3 19 33.2 40.7 50.1 6 TID41 7.9 5.6 22.3 -57.3 8.1 -28.5 TID42 7.2 10 -23.8 75 0 50.3 TID43 5.1 6.9 30.6 60.2 50.1 30.1 TID44 4.7 17.3 10 80.1 35.7 60.3 TID45 2.4 3.1 -14 14.5 -11.4 10.9 TID46 2.2 1.4 -32.2 24.7 12.3 4.4 TID47 2 7.6 32.8 -24.3 35.2 -37.2 TID48 6.3 8 0 -60.2 -22.3 -53.4 TID49 4.3 3.1 28 -82.1 20 -60.5 TID50 3 4.8 36.3 -40 40.9 -54.8 TID51 3.7 5.1 7.0 76.5 25 49.6 TID52 8.1 12 50.1 13.6 75.5 19.5 TID53 4.5 4.1 26.4 -14.1 6.2 -17.6 
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TID54 15.2 20 3.7 70.4 68.3 -6.7 TID55 4.5 14 40.1 -53 66.3 9.23 TID56 12.3 13.8 8.7 68.2 23 40.4 
Table 3 Task list information of vehicles 

TL No. Task No. W/t V/m3 CP ND dt�/day w��/$ X�Km� Y�Km� X�Km� Y�Km� 
TL1 TID1 9 3.6 6.1 40.1 56.9 20.2 0.5 60 TID2 6 4.5 6.1 40.1 60.9 23.5 1 80 TL2 TID1 7 2.3 33.1 -10.7 5.9 -18.8 0.46 45 TL3 TID1 6 6.1 55.4 68.4 70.1 2.1 0.6 65 TL4 TID1 10 1.3 -28.1 33.5 -14.0 14.5 0.7 56 TL5 TID1 7.5 6 -31.7 20.9 -5.1 1.3 0.8 42 TL6 TID1 10 8.3 -29.8 -32.4 45.6 -12.8 0.4 35 TL7 TID1 12 5.6 -27.1 -49.4 -77.3 -21.3 1 27 TL9 TID1 8 7.2 -19.5 -75.8 -38.6 -70.3 1.2 34 TL10 TID1 6 3.2 -37.8 -12.9 2.5 -37.1 1.1 54 

TL11 TID1 8 4.5 8.8 -49.1 -38.3 -56.9 0.7 25 TID2 6 25 8.8 -49.1 -48.9 -32.8 0.8 47 TL13 TID1 4 3.5 36.9 -56.6 80.4 -7.5 0.9 35 TL14 TID1 7 2.9 43.9 10.8 81.8 21.8 0.8 41 TL15 TID1 8 7.2 21.1 -22.8 28.5 -35.4 1.4 24 TL16 TID1 10 6.2 -25.8 68.7 52.5 33.7 1.3 35 
TL17 TID1 13 4.6 31.5 -26.1 41.2 -53.4 0.5 29 TID2 4 3.3 31.5 -26.1 59.6 -50.0 0.9 54 TL18 TID1 8 3.6 62.0 -34.1 60.2 -8.7 1.2 42 TL19 TID1 9 4.7 48.8 48.3 71.2 -5.2 1.1 39 
TL20 TID1 6 6.1 86.2 -12.4 87.4 -21.0 0.8 43 TID2 10 7.3 86.2 -12.4 87.4 3.5 1.2 48 
Table 1 shows that 20 vehicles are conducting the delivery of tasks at time T. It also shows the 

current position, next destination, surplus weight and volume, cost per kilometer, fuel consumption per 
kilometer, and task lists of vehicles. The task lists on these vehicles in Table 3 show that 18 smart 
vehicles are transporting 22 tasks. TID) and TID*  in Table 3 denote the tasks on the task lists. For 
example, TL) has two tasks that are numbered as TID) and TID*. TL* has one task numbered as TID). 
VID), VID)), VID)v, and VID*( have two tasks, respectively, while VIDw and VID)* do not have tasks. 
At this moment, 56 new tasks from different enterprises are submitted to DDC. Then, DDC publish 
these tasks among these vehicles in real time. Each vehicle obtains real-time information of these tasks, 
and selects the optimal tasks in a competitive manner. The optimization procedure of vehicles and tasks 
is introduced as follows.  

Firstly, these vehicles and tasks are initialized to create the vehicle sets and task sets, then vehicle 
and task vectors are constructed. The circular region partition method proposed in Section 4 is used to 
select vehicles and tasks satisfying Constraint (3) as the pre-optimized subsets. Tasks in the circular 
regions created by information of vehicles are classified. The tasks in the intersections within more 
than one vehicle are re-optimized by the proposed method in Section 4. Finally, the optimal results 
meeting the optimization objective for new tasks and the tasks on the task lists of vehicles at time T are 
obtained as shown in Tables 4 and 5. Table 4 denotes the optimal results for 56 new tasks, and Table 5 
denotes the re-optimized results for the tasks on the task lists of vehicles.  

To demonstrate the optimization procedure of the proposed method, 20 smart vehicles and 78 
tasks are simulated by applying the proposed optimization method in MATLAB as shown in Fig. 6. It 
should be noted that the center of Fig. 6, namely the point (0,0), is the position of DDC. Fig. 6 (a) 
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shows the optimal results obtained by IOMVT, in which blue, red, and green lines indicate real-time 
information of vehicles, the tasks on the task lists of vehicles, and new tasks. These lines also denote 
the vehicle vectors and task vectors. Blue lines indicate the vehicle vectors. Red and green lines denote 
task vectors for the tasks on the task lists of vehicles and new tasks, respectively. The center of a 
circular region created by a vehicle vector is the starting point of the vector that is numbered by vehicle 
No. (1-20 marked in blue), and the ending point of the vector is numbered by the value of the starting 
point plus the number of vehicles. For example, the starting and ending points of VID






�) are numbered by 1 and 21. The radius is the norm of the vector. The direction of the vector is the positive X-axis (X5). 
For a task vector, the starting point of the vector for new tasks is numbered by task No. (marked in red), 
while the ending point of the vector is not numbered. For example, the starting point of TID






�)  is numbered by 1. The tasks on the task lists of vehicles are not numbered because they are on the 
vehicles that are already numbered.  

To describe the optimization process of IOMVT, VIDP and VIDx are taken as an example, and the 
results are shown in Fig. 6 (b). It is clear that n = 4, S = 1, VIDP and VIDx ∈ �n ≥ 2, S = 1�, where 
n = 4 indicates TID), TID)+, TID*+ and TIDPy. For the circular region created by VIDP, TID*+ belongs 
to Class 1, and TID), TID)+ , and TIDPy belong to Class 2. For the circular region created by VIDx , 
TID), TID)+, and TID*+ belong to Class 1, and TIDPy belongs to Class 2. The circular region partition 
method selects tasks for vehicles as shown in Fig. 6 (c). Firstly, VIDP and VIDx select 8 tasks and 11 
tasks, respectively, namely n = 8, and n = 11. For VIDP , the tasks selected are TID) , TIDx , TID)+ , 
TID*+, TID*P, TID*x, TIDPx, and TIDPy. For VIDx, the tasks selected include TID)P, TID++, and TID+P 
besides tasks in the circular region created by VIDP. Optimized by the proposed IOMVT, tasks meeting 
constraints of Eqs. (3) - (7) are TID*+, TID*P, and TIDPx for VIDP, and TID), TID)+, TID*x, and TIDPy 
for VIDx. Red lines in Fig. 6 (c) indicate the distances from the midpoints of |CP4ND4
















�| (VIDP) and 
|CP5ND5















�| (VIDx) to the midpoint of |CPjNDj














�| (TID�).  Table 4 is the optimal results of IOMVT for vehicles and tasks. It shows the optimal tasks selected 
by vehicles, the effective distribution distance of tasks (Lj), and the effective distribution distance of 
vehicles (Li). Here, to verify the efficiency of the proposed method on reducing the total distribution 
distance, the distance of vehicles (L'i) obtained by CM is also included in Table 4, and the current 
method will be introduced in the next section. Table 5 is the optimal results of IOMVT for the tasks on 
the task lists of vehicles. 
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 (c) 
Fig. 6 (a) The optimal results obtained by IOMVT; (b) The optimization process of IOMVT for VIDP 

and VIDx; (c) The results of using IOMVT for VIDP and VIDx. 
Table 4 The optimal results of IOMVT for vehicles and tasks 

Vehicle 
No. Task 

No. Lj(Km) Li/L'i(Km) 

VID) 
TID)) 69.26 

76.78/264.54 TID)x 29.18 TID*( 57.73 
VID* 

TID)w 27.69 
42.32/136.27 TID*y 13.87 TIDx+ 21.28 

VID+ 
TIDw 43.53 

93.87 /280.55 TID)z 27.18 TID*) 8.11 TID*w 68.59 
VIDP 

TID*+ 15.83 
98.51 /136.74 TID*P 70.27 TIDPx 4.44 

VIDx 
TID) 42.51 

78.40/275.06 TID)+ 15.70 TID*x 27.15 TIDPy 63.80 
VIDy 

TID)y 18.95 
98.47/229.10 TID*v 67.57 TID+w 80.03 

VIDv 
TID)( 148.47 

263.94/329.34 TID+( 26.87 TID+) 59.09 TID+* 76.30 VIDw TIDx 114.45 141.28/249.66 

TID)P 39.71 TID++ 49.48 VIDz TID+P 75.86 143.29/144.72 
VID)( 

TIDy 57.38 
143.57/210.07 TID+v 136.01 TID+z 7.20 

VID)) TID** 9.40 
92.31/164.28 TIDPw 23.31 

VID)* 
TID+  103.38 

131.90/276.44 TIDP 45.49 TIDP) 82.88 TIDPz 41.37 
VID)+ 

TIDz 42.32 
307.81/428.97 TID)v 33.03 TID+x 65.92 TIDxx 109.16 

VID)P TID* 64.89 
73.66/159.25 TIDx* 39.45 VID)x TIDv 54.96 68.08/72.50 

VID)y TIDP* 53.11 
115.01/257.99 TIDxy 44.94 

VID)v 
TID)* 94.14 

162.35/221.10 TIDPv 13.12 TIDx( 52.30 
VID)w 

TID*z 57.41 
161.79/160.63 TIDP( 38.60 TIDx) 38.19 VID)z TIDxP 114.85 114.85/220.30 
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VID*( TID+y 25.09 164.82/179.75 TIDP+ 38.56 TIDPP 41.76 
Table 5 The optimal results of IOMVT for tasks on the task lists of vehicles

TL No. Task No. Lj/Km L'j/Km t�/day 
TL) TID) 67.0 54.6 0.2 TID* 60.5 57.3 0.1 TL* TID) 30.2 28.4 0.1 TL+ TID) 87.6 67.9 0.3 TLP TID) 23.8 23.7 0.0 TLx TID) 55.3 33.0 0.7 TLy TID) 83.7 77.9 0.1 TLv TID) 155.2 57.5 1.7 TLz TID) 133.5 19.9 5.7 TL)( TID) 112.0 47.0 1.4 

TL)) TID) 66.0 47.7 0.4 TID* 92.3 60.0 0.5 TL)+ TID) 114.6 65.6 0.7 TL)P TID) 56.4 39.5 0.4 TL)x TID) 30.7 14.6 1.1 TL)y TID) 115.0 85.8 0.3 
TL)v TID) 32.6 29.0 0.1 TID* 51.3 36.9 0.4 TL)w TID) 28.5 25.5 0.1 TL)z TID) 58.0 58.0 0 
TL*( TID) 8.7 8.7 0.0 TID* 33.2 16.0 1.1 5.2. Analysis of optimal results between IOMVT and current method (CM) 

To demonstrate the effectiveness of the proposed method, the same tasks in Table 2 are optimized 
by using CM. Currently, a centralized and one-way logistics service pattern is widely used by logistics 
companies in practice. This method in practice is defined as the current method in this paper. The 
optimal results for two methods are shown in Table 6. 

Table 6 The optimal results of IOMVT and CM 
 L/Km C/$ TFC/L R` = �V`, W`) FC.... N R- C` IOMVT 2573.01 5904.90 814.83 (0.3896,0.4170) 0.3167 20 0.7368 0.3598 CM 4397.27 9223.74 1344.01 (0.1733,0.1781) 0.3046 76   
L, C, and TFC of IOMVT are 2573.01, 5904.90, and 814.83, respectively. By contrast, those of 

CM are 4397.27, 9223.74, and 1344.201, respectively. They are decreased by 41.49%, 35.98%, and 
39.37%, compared with the results of CM. It is clear that IOMVT has significant advantages on the 
routing optimization for vehicles and tasks, and reducing the total distribution distance, the total cost, 
and the total fuel consumption. In addition, V` and W`of IOMVT are 38.96% and 41.70%, respectively, 
by contrast, those of CM are 14.33%, and 17.81%, respectively. Therefore, the average loading rate of 
vehicles (R`) obtained by IOMVT is better than that of CM. It can be concluded that IOMVT can 
effectively increase the average effective loading rate of vehicles and the average effective weight of 
vehicles. The average fuel consumption per kilometer (FC....) of IOMVT (0.3167) is larger than that of 
CM (0.3046). This is because the increase in loading weight of vehicles leads to the increase in fuel 
consumption per kilometer. However, the increase of fuel consumption per kilometer (3.9%) is very 
small, compared with near 25% of the increase in fuel consumption from the no-load to the full-load in 
the round-trip. The number of vehicles used for IOMVT is 20, while it is 76 for CM. This is because 
CM in the logistics activities is a centralized and one-way logistics service, and finishing 56 new tasks 
(TID)-TIDxy) needs 56 times of logistics delivery. Therefore, the number of vehicles used to finish the 
same number of tasks in the logistics activities is reduced significantly. The total cost in this paper does 
not consider the cost of increasing vehicles, such as the rental fees of vehicles. The rate of saving cost 
and the utilization rate of vehicles (C`, R-) are 35.98% and 72.68%, respectively. As a result, the 
efficiency of IOMVT in reducing the total cost, the total distance, the total fuel consumption, and 
increasing the utilization rate of vehicles can be verified. The reduction in the total cost, the fuel 
consumption, the total distribution distance can decrease logistics costs and the greenhouse emission 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Word count: 8866 

23 
 

 

and achieve energy conservation. The reduction in the number of vehicles used in the logistics 
activities and the increase in the utilization rate of vehicles can contribute to improving social issues 
like the burden of the traffic in cities. It can be concluded that this research enables the current logistics 
practices towards green logistics and develops a sustainable balance between economic, environmental 
and social objectives. 

It can be found that the proposed IoT-enabled dynamic optimization method in this paper 
implements the optimal management and allocation of logistics resources and the real-time response 
and optimization of new tasks. The efficiency of the real-time information enabled circular region 
partition method in the mapping and pre-optimization of vehicles and tasks is verified. The circular 
region partition method based on the theory of the circle inscribed triangle can effectively decrease the 
complexity of optimization for tasks and vehicles. Vehicles in the circular regions actively selecting the 
optimal tasks in a competitive way is a novel logistics service pattern which better improves the 
efficiency of logistics services. It also solves some of the typical challenges existing in the current 
logistics practice. In addition, the logistics resources registry and integration in EIS enhances the 
utilization and sharing efficiency of logistics resources. The real-time information enabled routing 
optimization and navigation services, and loading services developed in this paper improves the 
efficiency of logistics services and the utilization rates of vehicles, and avoids the errors in 
loading/unloading tasks. It can be concluded that this paper provides a new direction and strategy 
towards low-carbon and green logistics, and adapts to the trend of development of the logistics industry 
in the future. 

It can be seen from Table 5 that the effective distribution distance of tasks on the task lists of 
vehicles optimized by the proposed method increases because of accepting new tasks. Finishing new 
tasks and the tasks on the task lists of vehicles leads to the change of the delivery schemes for the tasks 
on the task lists. This also results in the delivery delay for the tasks on the task lists except for tasks 
TID) on TLP, TL)z, and TL*(. In addition, even though the delay of some tasks is in the range of the 
allowed time of delay, this may affect customer satisfaction. The influence of delivery delay can be 
reflected by the quality of services as shown in Fig. 5. Most importantly, the key performance 
indicators of the proposed IOMVT such as the total cost, the total distance, the total fuel consumption, 
the average loading rate, and the number of vehicles used are better than those of CM. 

There are two main differences between the proposed IoT-enabled dynamic optimization method 
for vehicles and tasks and the current method widely used in current logistics activities. Firstly, for the 
current method, it is a centralized and one-way logistics service pattern and tasks are only assigned 
based on the destination of tasks in a certain period. It lacks the real-time information of logistics 
resources and new tasks cannot be sensed and handled timely. These cases will lead to the increase of 
logistics costs, the waste of logistics resources, and the low loading rate of vehicles. While IoT is 
applied in the proposed dynamic optimization method for vehicles and tasks. Under the constructed 
IoMT environment, the real-time information of logistics resources can be sensed and collected, and 
real-time optimization and decision-making can be achieved. Secondly, vehicles in CM is only 
responsible for transporting the tasks, and do not have the ability of “thinking”. Tasks are intensively 
assigned based on their destinations in a logistics service point. Therefore, new tasks cannot be handled 
in real time. For the IoT-enabled dynamic optimization method, vehicles have the capacity of sensing 
and obtaining real-time information of logistics resources, and vehicles can actively select the optimal 
tasks in a competitive way. Thus, new tasks can be selected by smart vehicles that are in the ongoing 
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logistics activities. This can improve the average loading rate of vehicles and the efficiency of logistics 
services, and achieve the optimal allocation of logistics resources. In this case, urgent tasks can also be 
optimized and assigned timely.  

6. Conclusions and future works 
This paper proposes an IoT-enabled dynamic optimization method for smart vehicles and logistics 

tasks. Through using IoT technology, a real-time information-driven dynamic optimization strategy 
effectively improves vehicles’ utilization rate and reduces the cost, the fuel consumption, and the 
number of vehicles used, and provides the optimal routing with ensured efficiency of logistics services. 
It provides a new direction and strategy towards low-carbon and green logistics, and adapts to the trend 
of logistics industry in the future. 

There are three contributions in this paper. The first is the real-time information sensing model for 
logistics resources. Intelligent identification devices are selected and configured to construct the IoT-
based sensing environment among vehicles, tasks, and enterprises, then real-time, accurate, and value-
added information of logistics resources can be sensed and collected timely and shared among logistics 
enterprises. The second is that the optimal management and allocation of logistics resources based on 
EIS is developed to achieve integration, management, sharing, and allocation of logistics resources. 
Besides, real-time information enabled routing optimization and navigation services, and loading 
services of tasks are developed to improve the efficiency of logistics and the utilization rates of 
vehicles, and avoid the errors in loading/unloading tasks. The third is the IoT-enabled dynamic 
optimization method for vehicles and tasks. A real-time information enabled circular region partition 
method is developed to achieve optimization and mapping between vehicles and tasks. The objective 
function for optimizing vehicles and tasks is formulated, and the theory of the circle inscribed triangle 
is used to obtain the optimal distribution results. The results show that IOMVT contributes to improved 
efficiency of logistics and the utilization rate of vehicles, reduced logistics cost, and achieving 
sustainable logistics services.  

Future research will focus on the optimization of the global logistics network of logistics 
resources, and the optimal management and allocation of logistics resources in the global logistics 
network. This is an upcoming challenge faced by the logistics industry with the rapid increase of 
logistics demands. The global logistics network is a complex network of the logistics system with many 
network nodes. How to obtain the global optimal results developed from the local optimal strategies for 
the entire logistics supply chain is worth studying. This involves in the design of the optimization 
methods and strategies and the sharing of real-time information among all the network nodes.  
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