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ABSTRACT Energy hubs (EHs), due to their multiple nature in the production, consumption, and storage of
energy, as well as the ability to participate in different energy markets, have made their optimal and profitable
scheduling important for operators. Considering the literature review, one of the main motivations of this
paper is the use of biogas as a pivotal fuel and through production using biomass in the structure of EHs.
Therefore, this paper proposes a linearized optimization framework for optimal scheduling of a biogas-based
EH for participation in day-ahead (DA) electricity and thermal energy markets. The proposed EH directly
converts local biomass into biogas, thereby providing the fuel to generate electricity and thermal. This EH
comprises digester, biogas storage, electric heat pump (EHP), biogas burner CHP and boiler, solar farm,
electrical storage, and internal electrical and thermal loads. In this framework, the uncertainties related to
solar radiation and the DA price are modeled to generate random scenarios using the Monte-Carlo method.
The proposed EH is simulated for numerical studies based on data from Finland’s two selected spring and
autumn days. The results show the optimal performance of the EH because it can participate in the electricity
and thermal markets by using the biogas produced inside it and providing complete internal loads, and
earns a decent income. In the autumn, operating the EH is more economical than in the spring. Moreover,
comparative results have shown that eliminating the biogas unit and using natural gas significantly increases
the expected costs of EH.

INDEX TERMS Optimal scheduling, energy conversion, renewable energy sources, biomass, biogas,
uncertainty.

NOMENUCLATURE
A. PARAMETERS
πs Probability of scenarios.
Cth Thermal price (e/MWh).
Pin/oute,min Min value of electricity input/output to/from

the EH (MW).
Pin/oute,max Max value of electricity input/output to/from

the EH (MW).
Poutth,min/max Min/max thermal output from the EH (MW).
HVBiogas The heating value of biogas (kWh/m3).
M A large number.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Liang .

ηCHPe Biogas to electricity efficiency of CHP (%).
ηCHPth Biogas to thermal efficiency of CHP (%).
PCHPe,min Min amount of electricity generation by CHP

(MW).
PCHPe,max Max amount of electricity generation by CHP

(MW).
PCHPth,min Min amount of thermal generation by CHP

(MW).
PCHPth,max Max amount of thermal generation by CHP

(MW).
CCSU Cost coefficient of CHP unit start-up (e).
CCSD Cost coefficient of CHP unit shut-down (e).
L,F Number of hours unit CHP must be on & off.
U (0) Periods unit has been on at the beginning of

the j unit planning horizon (hour).
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S Periods that CHP unit has been shut-down at
the hour (hour).

ηBoilerth Biogas to the thermal efficiency of the boiler
(%).

PBoilerth,min Min value of boiler thermal generation (MW).
PBoilerth,max Max value of boiler thermal generation

(MW).

η
EHP−Dig
e EHP Electrical efficiency of digester unit.

PEHP−Digth,min Min value of thermal power generated by
EHP (MW).

PEHP−Digth,max Max value of thermal power generated by
EHP (MW).

Rin Thermal resistance inside the digester
(◦C/kW).

RW1 The thermal resistance of the digester first
wall (◦C/kW).

RW2 The thermal resistance of the digester second
wall (◦C/kW).

Rout Thermal resistance outside the digester
(◦C/kW).

a, b Coefficients related to biogas production rate.
Toptimal The optimum temperature for most

mesophilic organisms (◦C).
αminBiogas Min coefficient for biogas storage.
αmaxBiogas Max coefficient for biogas storage.
PBESCapa Biogas storage capacity (m3).
αlosse Loss factor for electrical storage.
αmine Min coefficient for electricity storage.
αmaxe Max coefficient for electricity storage.
PESCapa Electrical storage capacity (MW).
ηche Charging efficiency of electric storage.
ηdise Dis-charging efficiency of electric storage.
COP Coefficient of performance for EHP.
PEHPth,min Min thermal generated by EHP (MW).
PEHPth,max Max thermal generated by EHP (MW).
G0 Standard solar irradiance (W/m2).
NOT Nominal operating temperature (◦C).
Tc Solar cell temperature (◦C).
Ta Ambient temperature (◦C).
I Max power point current (A).
VMPP Max power point voltage (V).
KI Current temperature coefficient (A/◦C).
KV Voltage temperature coefficient (V/◦C).
NPV Number of photovoltaic arrays.
ηInv Electricity efficiency of the inverter (%).
ηTrae Electricity efficiency of the transformer (%).
Ploade The amount of electrical load inside the EH

(MW).
Ploadth The amount of thermal load inside the EH

(MW).

B. VARIABLES
Pin/oute Total electricity purchased/sold from/to the

energy market (MW).
Poutth Thermal power sold to the energy market

(MW).
CDA Day-ahead electricity market price

(e/MWh).
BiogasGen Generated biogas (m3).
FuelCHPBiogas Biogas consumed by CHP (m3).
FuelBoilerBiogas Biogas consumed by a boiler (m3).
Fth Total thermal power input to digester (kW).
PNet2Digth Thermal power input to the digester of the

thermal network (kW).
PEHP−Digth Thermal generated by EHP of digester unit

(kW).
PEHP−Dige Electricity consumed by EHP of digester unit

(kW).
Td The temperature inside the digester (◦C).
TW1 The temperature of the first wall of the

digester (◦C).
TW2 The temperature of the second wall of the

digester (◦C).
Tout The temperature outside the digester (◦C).
PSOCBiogas Biogas level stored in biogas storage (m3).
PchBiogas Charging power of biogas storage (m3).
PdisBiogas Dis-charging power of biogas storage (m3).
PCHPe Electricity generated by CHP biogas burner

(MW).
PCHPth Thermal generated by CHP biogas burner

(MW).
U Binary variable to on/off unit of CHP.
v Binary variable for the commitment of CHP

unit.
UT ,DT MUT/MDT of CHP unit (hour).
y, z Binary variable to startup/shutdown the CHP

unit.
PBoilerth The thermal generated by the boiler biogas

burner (MW).
Pche Electric charging power of electric storage

(MW).
Pdise Electric charging power of electric storage

(MW).
Plosse Loss power of electric storage (MW).
PSOCe Electrical storage level (MW).
I che Binary variable for electric storage charging

status.
Idise Binary variable for electric storage dis-

charging status.
PEHPe Electrical power consumed by EHP (MW).
PEHPth Thermal power generated by EHP (MW).
PSF Electric power generated by the solar farm

(MW).
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FIGURE 1. Installed capacity and number of biogas units in Europe.

G Solar irradiance (m/s,W/m2).
Kt Clearness index.
I ,V Output current/voltage of PV (A, V).

C. INDICES
s Scenario index.
T , t Set and index of hours in the time horizon.

I. INTRODUCTION
Today, energy as the main element has become so impor-
tant that it has made things like economic growth and
social welfare dependent on itself. According to the world
bank, energy and four other factors, namely water, food,
information technology, and waste, form the Achilles heel
of each city. Accordingly, the focus and priority of cities
are focused on the current sustainable development. The
increasing growth of electrical energy demand as a mother
and main energy has led to challenges such as security
and increased competition in energy supply, adaptation
and observance of environmental issues, retirement, and
depreciation of energy transfer equipment are among the
most important study priorities of the beneficiaries of these
systems.

With studies conducted by researchers, solutions have
been proposed to meet these challenges. The most important
of these options are smart grids (establishing relationships
between producers and consumers using automation system)
and energy platforms, changing the approach and applying
policies for the use of renewable energy sources (RESs),
as well as creating and applying cooperation and exchange
between energy carriers. Cooperation between energy car-
riers means minimizing losses and increasing efficiency in
conversion between energy by converters. For example, when
electricity is generated by a prime mover such as an internal
combustion engine, surplus thermal can be used to supply
thermal loads in the electrical energy production process. The
combined heat and power units, which are briefly called CHP,
can be a great example of this.

The use of water potential, wind speed, sunlight, and
biomass are among the most important RESs that opera-

FIGURE 2. The overall structure of an EH.

tors and politicians of organizations and governments have
shown more willingness to use [1]. Considering the impor-
tance of municipal waste and wastewater management, air
pollution control, and cost reduction for energy production,
biomass resources in urban energy converters are important
fuels. Fig. 1 shows the amount of installed capacity and
the number of energy generation units fed with biogas fuel
in Europe between 2011 and 2018 [2]. Multi-energy sys-
tems (MESs) are very suitable infrastructures for covering the
mentioned items. These systems are more receptive to one
type of energy carrier. Their advantages include increasing
energy efficiency, being the most suitable platform for RESs
and waste management, increasing actors and reducing the
monopoly of energy markets, as well as increasing flexibility
in the operation of energy systems [3].

One of the most common smart elements in MES is the
energy hub (EH). EHs resemble a black box such as Fig. 2,
which usually have one or more energy carriers as input,
and one or more energy carriers as output [4], [5]. These
elements depend on the application and geographical location
in which they are located and can receive different energies
and implement various operations such as energy transfer,
storage, and conversion to provide the desired output carriers.
EHs include electricity, thermal, cooling, hydrogen, biogas,
etc., that can be best used for cooperation and exchanges
among them. Accordingly, it is natural for different energy
converters to be used in the body of an EH. Themost common
energy converters include CHP units, electric and thermal
boilers, electric heat pumps (EHPs), wind and solar farms,
as well as electrical and thermal storages.

Considering the connection of EHs to the incoming and
outgoing energy carriers and the energy converters that are
placed in their structure, the dimensions of EHs can vary from
home, regional, and area to smart grids. Of course, it should
be noted that the dimensions of these MESs can vary smaller,
such as cars, or much larger ones, such as a country. One of
the most important divisions that can be implemented on EHs
is the division based on the participation of these elements
with energy markets. With researches conducted and paying
attention to the nature and structure of EHs, it can be con-
cluded that the exchanges of these MESs for the purchase
and sale of energy carriers are divided into four types in the
following form. The first type is the EH, which buys a series
of energy carriers from energy networks to generate energy
and does not intend to sell its converted energy to any market.
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FIGURE 3. Types of EHs based on participation in energy markets.

The second type is the opposite of the first type of EH, and
using its domestic energy resources, it intends to participate
and sell its produced energies to the energy markets.

The third type of EH, which is the most common type
in smart grids, is a combination of the first and second
types. In addition to contributing to the provision of incoming
energies, this type of EHs also sell its produced energies.
The fourth type of EH, which is the most independent type
relative to participation in energy markets, uses its domestic
resources to convert energy and merely supplies its domestic
loads. A summary of this division of EHs from participation
in energy markets is shown in Fig. 3.

In [6], the authors presented an MINLP model to minimize
the cost for the probabilistic scheduling of the sample EH,
which is composed of natural gas-fueled boilers and CHP, and
electrical and thermal storages. This study considers demand
response (DR) and uncertainties related to loads and prices
of incoming energy carriers. In [7], optimal operation of an
EH for power generation, thermal and cold is presented in
the form of a robust chance-constrained optimization frame-
work. This reference has modeled the uncertainties related to
sunlight and loads by a robust chance-constrainedmodel. The
framework for the stochastic operation of electricity, thermal,
natural gas, and hydrogen for a sample EH is presented in [8].

The authors have only considered the uncertainty associated
with electricity prices alongside constraints such asMUT and
MDT to minimize operational risks. Mansouri et al. in [9]
have presented a stochastic framework for optimal operation
and planning of an EH to supply electrical, thermal, and
cold loads. For modeling the uncertainties of wind speed
and loads, the Monte Carlo (MC) method has been used to
generate scenarios, and the K-means algorithm is used to
reduce them. Also, benders decomposition is used to reduce
the complexity of the problem. The results of this modeling
show its appropriate efficiency.

The researchers of [10] have considered an EH by linking
the energy conversions made from CHP, boiler, chiller, and
electrical storage units. The operation of this EH has been
optimized in the form of a stochastic problem due to uncer-
tainties related to loads and prices, as well as compliance
with pollution and risk production constraints. Moreover,
the MCmethod has been used to model uncertainties. In [11],
the optimal operation of an EH, including wind farm, elec-
trical and thermal storages, electricity, and thermal demand
response programs to participate in the electricity and thermal
markets, is presented. In this reference, theMCmethod is also
used to cover the uncertainty aspects of loads, market prices,
and wind speed. One of the things that can be implemented
well in the EH platform is converting cheap and alternating
energy such as wind to another valuable energy such as
natural gas. By presenting an EH including electricity, heat,
and natural gas, authors in [12] have proposed an optimal
probabilistic framework, the results of which indicate a 7%
reduction in operating costs. In [13], a planning framework
for an EH in the structure of a distribution network has
been considered considering energies such as hydrogen and
water. The results of this study show that operating costs are
reduced, and the consumption pattern is smoother. One of the
modeling methods used in optimal operation EH concerning
uncertainty is robust optimization. Reference [14] introduced
an energy management framework for a typical EH in terms
of electricity and heat carriers, as well as parking for electric
vehicles using robust scenario-based optimization. In this
reference, it was shown that there is a direct relationship
between the number of electric vehicles and the operating
profit. Zhang et al in [15] have tried to provide the electrical,
thermal and cooling energy needed by the residents of a
remote village in China using biogas fuel. Biogas production
in this structure is done using biomass fuel in the digester.
References [16]–[18] have tried to introduce the operating
frameworks of an EH to convert wind or solar energy to
other energies such as electricity and heat using biogas. In the
presented frameworks, only uncertainties related to the pro-
duction of renewable energy sources have been taken into
account, and the aim has been to minimize operating costs.

Table 1 summarizes the literature review for structural
comparison. Also, the proposed framework of this paper is
clarified by comparing previous studies in this table. One of
the main motivations of this paper is the use of biogas fuel as
a pivotal fuel in the structure of EHs. Moreover, the lack of
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an optimal scheduling framework for the supply of electrical
and thermal loads inside a biogas-based EH and participation
in day-ahead (DA) energy markets, as well as considering the
uncertainties of electricity prices and solar radiation, is fully
felt.

According to the importance and growth of biogas fuel
application as a clean and valuable energy carrier as well as
the gaps shown in Table 1, this paper proposes a stochastic
optimization framework for optimal scheduling of a biogas-
based EH for DA power and thermal markets. This EH is
the third type of EHs (in terms of participation in energy
markets) and is composed of digester units for generating
biogas, biogas burner CHP and boiler, EHP, electrical and
thermal loads, solar farm, as well as electrical and biogas stor-
ages. According to the comparison of previous researches,
the contributions of this article are in two parts. The first
contribution is the suggestion of a new biogas-based EH
structure with biomass fuel, in which all the electrical and
thermal energy generated by this system is taken through
the biogas production unit and a solar farm. Therefore, it is
environmentally friendly. The second contribution is propos-
ing a stochastic optimization framework for optimal schedul-
ing of the suggested EH to supply internal electrical and
thermal loads and participation in DA energy markets. This
framework considers the uncertainties of sunlight and the
price of the DA electricity market. In addition to having the
proper environmental conditions, the proposed EH is also
cost-effective to operate, so that eliminating the biogas pro-
duction unit and replacing it with conventional energy carriers
will greatly increase its operation cost. For numerical studies,
actual data in Finland is used. Finland is considered as a case
study due to geographical conditions such as the widespread
presence of biomass fuel as the input of digester, temperature
changes, and sunlight in different seasons.

In Section II, the proposed biogas-based EH and stochas-
tic optimization framework are expressed. This section is
divided into two subsections to describe the modeling of the
structure and elements located in the EH and to model the
uncertainties related to DA electricity prices and solar radi-
ation. Section III presents the simulation results performed
in MATLAB and GAMS in the spring and autumn seasons.
Finally, Section IV expresses the conclusions of this research.

II. PROPOSED SCHEDULING FRAMEWORK
When the owner or operator of an energy system wants to
operate its system in terms of modeling its elements, along
with cost minimization or maximizing profits, the topics
related to optimization are discussed with a mathematical
approach. In this case, various optimization methods such as
classic, modern and hybrid methods can help him. However,
if the operator wants to consider the aspects of uncertainties,
well-known methods, such as stochastic optimization, robust
optimization, information gap decision theory (IGDT), come
before him, which other researchers use more.

Among these methods and according to the research his-
tory of energy systems planning, the stochastic optimiza-

FIGURE 4. Operators’ overview of uncertainty modeling in stochastic
optimization problems.

tion method has been used more widely. Fig. 4 shows an
overview of scheduling using optimization and considering
scenarios. In this figure, after determining the uncertainty
parameters, the operator models their behavior in each time
interval related to the future and uses scenario generation.
This modeling causes uncertain parameters to be associated
with each other at any time and with a certain probability
similar to chains. In the modeling subsection, the uncertainty
and optimization framework will be discussed in more detail.

A. BIOGAS-BASED EH MODELING
The proposed EH under study in this paper, connected to
power and thermal networks, is shown in Fig. 5. This EH
comprises biogas burner CHP unit, section related to bio-
gas production and transmission (including digester, biomass
fuel, separate EHP, and biogas storage), biogas-fueled boiler,
solar farm, electrical storage, EHP, electrical and thermal
loads. This framework provides optimal scheduling for sup-
plying domestic electrical and thermal loads and profitable
participation in the DA electricity and thermal markets to
sell surplus energies. As mentioned earlier, stochastic opti-
mization will be used as a suitable framework for the optimal
scheduling of the desired EH.

This framework consists of two main parts: objective func-
tion and constraints modeling.

1) OBJECTIVE FUNCTION OF FRAMEWORK OPTIMIZATION
The main objective in the DA operation of the proposed EH
is to minimize the total cost, according to (1).

OF=πs
Ns∑
s=1

24∑
t=1

[
Pin/oute (t, s).CDA(t, s)+ y(t, s).CCSU
+z(t, s).CCSD− Poutth (t, s).Cth

]
(1)
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TABLE 1. The structure of the proposed EH in comparison to the literature review.

The items considered in this objective function include the
costs associated with the purchase of electricity from the DA
market (taking into account its price uncertainties) along with
the costs of start-up and shut-down of the CHP unit. Note that
Pin/oute variable, if negative, means selling electricity to the
grid, and if it is positive, it means buying electricity from the
network.

2) CONSTRAINTS OF FRAMEWORK OPTIMIZATION
a: BIOGAS PRODUCTION
Biogas is a renewable and environmentally friendly fuel that
can be produced in a variety of ways. The primary input ele-
ment in biogas production is biomass fuel such as municipal
wastewater, animal manures, and agricultural waste. In gen-
eral, the biogas production process is such that microorgan-
isms start to decompose and break down biomass fuel in the
absence of oxygen, and the result of this chemical process
produces biogas fuel. The process is usually performed on
devices called digesters. These devices provide the condi-
tions for the activity of microorganisms and form the main
infrastructure for biogas production. Fig. 6 shows a sample
of the digester that, after entering the biomass fuel into it
and establishing the appropriate conditions, with the chemical
process created, produces biogas and finally, by collecting
the produced gas and transferring it to the desired location,
is used as a valuable fuel [19]–[21].

Digesters are usually composed of two walls, and the bio-
gas process produced in them depends on four temperatures,

including digester internal temperature, first wall temper-
ature, second wall temperature, and ambient temperature.
By analyzing thermodynamics, these temperature changes
and their dependence can be considered as an electrical circuit
such as Fig. 7 [18].

In the modeled circuit, Fth is the incoming thermal into the
circuit. This thermal can be obtained in two ways, i.e., direct
reception of the total thermal generated by the EH or from its
own EHP digester. This thermal similar to electrical current
can cause voltage drops if it passes through a resistance.
The drop in voltages modeled in this circuit is the same
temperature drop as Td (temperature inside the digester), Tw1
(first wall temperature), Tw2 (second wall temperature), and
Tout (temperature outside digester). In this circuit, given that
all elements are series to each other, so the current passing
through all of them is the same. The equations of (2) to (12)
have done this modeling.

Equation (8) is nonlinear, and if used in the framework
of EH optimal scheduling based on biogas presented in this
paper, it makes the desired optimization framework nonlin-
ear. The Nonlinearization of this scheduling framework can
harm operational decision-making, computation time, and the
burden of the problem. Therefore, (8) shown in Fig. 8 as
nonlinear (the blue curve) is estimated using four lines (the
red curve), and its equations are estimated by (13)-(14).

Fth(t, s) = PNet2Digth (t, s)+ PEHP−Digth (t, s) (2)

PEHP−Digth (t, s) = ηEHP−Dige × PEHP−Dige (t, s) (3)

136050 VOLUME 9, 2021



A. Tavakoli et al.: Linearized Stochastic Optimization Framework for DA Scheduling of Biogas-Based EH

FIGURE 5. Proposed biogas-based EH structure.

FIGURE 6. The general structure of a digester.

PEHP−Digth,min ≤ PEHP−Digth (t, s) ≤ PEHP−Digth,max (4)

Fth(t, s) =
Td (t, s)− TW1(t, s)

Rin+ R
W1
/
2

(5)

FIGURE 7. Modeling a digester into an electrical circuit.

FIGURE 8. Nonlinear and linear curves in this paper for modeling biogas
production rate.

Fth(t, s) =
TW1(t, s)− TW2(t, s)

R
W1
/
2+

R
W2
/
2

(6)

Fth(t, s) =
TW2(t, s)− Tout (t, s)

RW2
/
2+ Rout

(7)

BiogasGen(t, s) = a× (Td (t, s)− Toptimal)2 + b (8)

PSOCBiogas(t, s) = PSOCBiogas(t − 1, s)+ PchBiogas(t, s)

−PdisBiogas(t, s) (9)

PSOCBiogas,min ≤ PSOCBiogas(t, s) ≤ P
SOC
Biogas,max (10)

αmin
Biogas.P

BES
Capa ≤ PchBiogas(t, s) ≤ α

max
Biogas.P

BES
Capa (11)

αmin
Biogas.P

BES
Capa ≤ PdisBiogas(t, s) ≤ α

max
Biogas.P

BES
Capa (12)

BiogasGen(t, s) = [3.75× Td (t, s)+ 193.75] .IRegion1Bio (t, s)

+ [1.25× Td (t, s)+ 256.25]

.IRegion2Bio (t, s)

+ [−1.25× Td (t, s)+ 343.75]

.IRegion3Bio (t, s)

+ [−3.75× Td (t, s)+ 456.25]

.IRegion4Bio (t, s) (13)

IRegion1Bio + IRegion2Bio + IRegion3Bio + IRegion4Bio ≤ 1

(14)

To investigate four linear equations in the optimization
framework, (13), with the help of four binary variables, has
been used. To linearize the binary variable multiplication in
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the continuous variable, (15)-(17) are used as follows [22].

W1,2,3,4(t, s) ≤ Td(t, s) (15)

W1,2,3,4(t, s) ≤ M × IRegion1,2,3,4Bio (t, s) (16)

W1,2,3,4(t, s) ≥ Td(t, s)−M (1− IRegion1,2,3,4Bio (t, s)) (17)

The order of W1,2,3,4 is the result of multiplying binary
variables IRegion1,2,3,4Bio in the Td continuous variable.

b: BIOGAS-BURNER CHP WITH CONSIDERING MUT & MDT
CHP units are commonly known as the main energy gener-
ation sector in EHs due to their high efficiency and cogen-
eration of electricity and thermal. In this paper, the internal
combustion engine with biogas fuel forms the prime mover
of the CHP unit [18].
Equations (18)-(21) show biogas-fueled electricity and

thermal generation, while for modeling MUT and MDT con-
straints, this unit is used from (22)-(29) [23].

PCHPe (t, s) = ηCHPe .FuelCHPBiogas(t, s).HVBiogas (18)

PCHPth (t, s) = η
CHP
th

/
ηCHPe

.PCHPe (t, s) (19)

PCHPe,min × U (t, s) ≤ PCHPe (t, s) ≤ PCHPe,max × U (t, s) (20)

PCHPth,min × U (t, s) ≤ PCHPth (t, s) ≤ PCHPth,max × U (t, s) (21)
L∑
t=1

[1− v(t, s)] = 0, ∀s (22)

k+UT−1∑
t=k

ν(t, s) ≥ UTy(t, s),

∀s,∀k = L + 1 . . . T − UT + 1 (23)
T∑
t=k

[ν(t, s)− z(t, s)] ≥ 0, ∀s,∀t = T − UT + 2 . . . T

(24)

L = Min [T , (UT − U (0)ν(0)] (25)
F∑
t=1

ν(t, s) = 0, ∀s (26)

k+DT−1∑
i=k

[1− ν(t, s)] ≥ DT .z(t, s),

∀s, ∀k = F + 1 . . . T − DT + 1 (27)
T∑
t=k

[1− ν(t, s)− z(t, s)] ≥ 0,

∀s, ∀t = T − DT + 2 . . . T (28)

F = Min {T , [DT − s(0)] [1− ν(0)]} (29)

c: BIOGAS-BURNER BOILER
The boiler unit considered in this paper consumes part of the
biogas produced in this EH. By consuming biogas, it produces
thermal based on (30) that the permissible limit of this pro-
duction is based on (31) [18].

PBoilerth (t, s) = ηBoilerth .FuelBoilerBiogas(t, s).HVBiogas (30)

PBoilerth,min ≤ PBoilerth (t, s) ≤ PBoilerth,max (31)

d: SOLAR FARM
Electricity generated from the solar farm is usually accompa-
nied by uncertainty due to its dependence on theweather. This
issue is considered in this paper in the uncertainty modeling
section. The conversion equations of solar radiation energy
into electricity are (32)-(36) [24].

kt (t, s) = G(t, s)/G0 (32)

Tc(t, s) = Ta(t, s)+ (G(t, s)× ((NOT − 20)/800) (33)

I (t, s) = kt (t, s)× (IMPP + (Tc(t, s)− Ta(t, s))× KI )

(34)

V (t, s) = VMPP − Tc(t, s)× Kv (35)

PSF (t, s) = I (t, s)× V (t, s)× NPV × ηInv (36)

e: ELECTRIC HEAT PUMP
Because of the type of electricity conversion to the thermal
they have, EHP converters can help the EH in profitable
opportunities. In fact, when thermal prices exceed electricity,
they can convert cheaper energy, i.e., electricity, into thermal
if they make an optimal decision. Of course, this also applies
to providing a portion of the thermal required for the internal
loads of the EH. The amount of thermal generated of EHP is
shown in (37), and (38) displays its acceptable range [25].

PEHPth (t, s) = COP.PEHPe (t, s) (37)

PEHPth,min ≤ PEHPth (t, s) ≤ PEHPth,max (38)

f: ELECTRICAl ENERGY STORAGE
Uncertainties in the EH can create challenges for optimal
scheduling. Hence, the electrical energy storage system can
reduce scheduling challenges in the EH. Constraints related
to this element in the scheduling problem are presented in
(39) to (44). It should be noted that constraint (44), which
has binary variables, has been used to prevent simultaneous
charging and discharging of the storage [11].

PSOCe (t, s) = PSOCe (t − 1, s)+ Pche (t, s)− Pdise (t, s)

−Plosse (t, s) (39)

Plosse (t, s) = αlosse .PSOCe (t, s) (40)

αmin
e .PESCapa ≤ P

SOC
e (t, s) ≤ αmax

e .PESCapa (41)

αmin
e .

(
1
/
ηche

)
.PESCapa.I

ch
e (t, s) ≤ Pche (t, s)

≤ αmax
e .

(
1
/
ηche

)
.PESCapa.I

ch
e (t, s) (42)

αmin
e .ηdise .P

ES
Capa.I

dis
e (t, s) ≤ Pdise (t, s)

≤ αmax
e .ηdise .P

ES
Capa.I

dis
e (t, s) (43)

0 ≤ I che (t, s)+ Idise (t, s) ≤ 1 (44)

g: ELECTRICITY & THERMAL NETWORK
The electricity and thermal EH exchanges proposed in this
paper are carried out with their outside environment by elec-
tricity and thermal distribution networks. Due to the physical
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limitations, these networks have with the elements attached
to them, (45) and (46), respectively, consider the limits of
the electricity purchased, the electricity sold, and the thermal
sold.

Pin/oute,min ≤ Pin/oute (t, s) ≤ Pin/oute,max (45)

Poutth,min ≤ Poutth (t, s) ≤ Poutth,max (46)

h: BALANCING OF BIOGAS, ELECTRICITY & THERMAL
According to the proposed structure of EH in this paper,
(47) to (49) constraints express the balance of generation
and consumption of biogas, electricity, and thermal energy
carriers, respectively.

BiogasGen(t, s) = FuelCHPBiogas(t, s)+ Fuel
Boiler
Biogas(t, s) (47)

Pine (t, s).η
Tra
e + P

CHP
e (t, s)+ PSF (t, s)+ Pdise (t, s)

= Poute (t, s)

+Ploade (t, s)+Pche (t, s)+PEHPe (t, s)+ PEHP−Dige (t, s)

(48)

PCHPth (t, s)+ PBoilerth (t, s)+ PEHPth (t, s) = Poutth (t, s)

+Ploadth (t, s)+ PNet2Digth (t, s) (49)

B. UNCERTAINTY MODELING
As mentioned, the first step of stochastic optimization is to
model uncertain parameters using a set of scenarios with a
specific probability of occurrence. The common method for
modeling uncertainty is the MC approach. In this approach,
first, the historical data are separated from each uncertain
parameter in the form of a vector every hour, and then the
missing data is investigated in it. Then, on each of them,
a specific probability distribution function (PDF) is fitted.
After the fitting operation, the parameters of each PDF are
extracted, based on the same parameters, several random
numbers are generated. It should be noted that PDFs that are
common for modeling the behavior of sunlight parameters
and DAmarket price include the Beta and Normal, according
to (50) and (51), respectively [26].

PDF(SL) =


0(α + β)
0(α)+ 0(β)

× Sα−1i × (1− Si)β−1,

for0 ≤ Si ≤ 1, α, β ≥ 0
0, else

(50)

PDF(Price) =
1√

2πσ 2
Price

e
−
(Price−µPrice)

2

2σ2Price (51)

Solving optimization problems with many scenarios and
at intervals can be very time-consuming or even beyond
the capabilities of computers. Therefore, researchers reduce
the generated set of scenarios considering similarity or very
low probability. This reduction is possible using different
methods. In this paper, the K-means, which is a well-known
algorithm in clustering, is used. In general, the K-means clus-
tering algorithm can be introduced as a way to determine the
representations among the scenarios that have been produced.

FIGURE 9. Uncertainty modeling process.

The initial set of cluster centers is randomly generated after
determining the number of cluster centers in this algorithm.
After this, the scenarios are initially placed in clusters. This
placement is updated by recalculating the cluster center and
forming the closest scenarios together in the cluster cen-
ter [27]. Fig. 9 shows the flowchart of the uncertainty model-
ing process. The results of generation and reduction scenarios
based on the description of this subsection are discussed and
shown in the simulation section.

III. SIMULATION RESULTS
The simulation results of the proposed framework for opti-
mal scheduling of biogas-based EH include two categories
of input and output data. This simulation uses actual data
on energy markets price and weather conditions in Fin-
land [28]–[31], the parameters listed in Table 2, and the
electrical and thermal loads shown in Fig. 10. These loads fol-
low the demand pattern of an actual commercial complex in
Finland. The historical data of the Varsinais_Suomi region in
Finland from 2010 to 2016, due to the existence of renewable
energy sources and access to electricity and heating networks,
has been used to model the uncertain parameters.

In this section, to evaluate the proper performance of the
proposed framework despite the weather conditions and var-
ious prices of energy markets, the simulation is performed
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FIGURE 10. The amount of internal electrical and thermal loads in the EH for selected days of spring and autumn.

on two selected days of spring and autumn. These days are
April 14 and October 14, respectively. Input data means mod-
eling for behavior with solar radiation uncertainty and DA
prices. Also, the output data consisted of the result of optimal
decision-making for the use of elements and EH exchanges.

A. INPUT DATA TO THE SCHEDULING FRAMEWORK
As mentioned earlier, input data to the optimal scheduling
structure included generated scenarios and reduced by MC
methods and K-means clustering algorithm for solar power
and DA price. These scenarios have been generated and
reduced in MATLAB, as Fig. 11 and Fig. 12 for selected days
in spring and autumn, respectively. For covering the broader
aspects of uncertain parameters and based on the analysis,
it has been appropriately determined that 500 scenarios for
each parameter be generated, and finally, their number has
been reduced to 10.

As it is known and also based on the studies of the behav-
ior of historical data of sunlight parameters and DA price,
the generated scenarios are of good quality and consider
different aspects of parameters. However, with its good per-
formance, the K-means algorithm summarizes this number
of scenarios into 10 numbers. This summarization, in other
words, the reduction of the scenario, has been able to transfer
the different behaviors of the generated scenarios and the
input to it in smaller numbers.

B. OUTPUT DATA FROM THE SCHEDULING FRAMEWORK
After applying the reduced scenarios by the K-means algo-
rithm to the optimal scheduling framework, this optimization

problem is solved by GAMS with CPLEX salvor. The sim-
ulation has been performed in a system with 6 GB of RAM
and CPU-Core i5-7200. According to the linearization of the
proposed problem, the computation time equals 10 seconds
for the spring day and 7 seconds for the autumn day. These
computation times are desirable for such problems. Also,
the expected cost of EH scheduling on the spring day is
112.74 euros, and on the autumn day is -317.73 euros.

As for these costs, it can be said that the EH proposed in
this paper has been able to supply its internal electrical and
thermal loads well and sell them to energy networks if it has
additional thermal and electricity. In spring, the number of
hours that the solar farm has been able to generate electricity
has been higher, but in this season, the amount of electrical
and thermal loads in the interior has been higher than in the
autumn.

Consequently, due to this issue, as well as the lower price
of thermal in the spring, it has caused, firstly, there is less
surplus energy for sale, and secondly, the revenue from this
sale is lower than in the autumn. For this reason, the cost of
scheduling in autumn has turned negative due to the EH’s
higher income than its costs. The following summarizes the
behavior and expected reactions of the EH to scheduling and
optimal decision-making on the selected days of spring and
autumn.

The expected behavior in the generation, consumption, and
storage of biogas is shown in Fig. 13 for the spring day.
As was evident from the modeling section and the shape of
the EH proposed in this paper, the generated biogas is divided
between two elements: CHP and boiler. This division, which
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FIGURE 11. Scenarios generated for modeling solar power and DA price on selected days of spring and autumn.

FIGURE 12. Reduced scenarios for modeling solar power and DA prices on selected days of spring and autumn.

is based on the scheduling problem, shows that their expected
behavior toward each other has been the opposite.When CHP
unit generation has been declining, boiler unit consumption

has been on the rise and vice versa. Given that the level of
biogas generated can be uncertain, it is therefore transferred
to the storage after biogas generation and collection. For this
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TABLE 2. Parameters of biogas-based EH.

FIGURE 13. Biogas generated, consumed, and stored EH elements on the
spring day.

reason, the biogas level has been relatively directly related
during the periods of the produced biogas ratio, and the
storage state values are located in the specified constraints.

Fig. 14 shows the thermal and electricity exchanges taken
by the EHwith the energymarket on the spring day. Although
the EH has been able to sell electricity to a certain extent,
it has been more priority because it has large electrical loads,

FIGURE 14. Electricity and thermal exchanged EH with energy networks
on the spring day.

and its full supply has been a priority, so it has not been able
to sell surplus electricity to the energy market. In addition to
domestic electricity generation, the EH has also purchased
electricity from the energy market. In contrast, the EH has
not only supplied its domestic thermal loads but also sold
its surplus to the energy market, thereby earning money for
itself.
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FIGURE 15. Electricity and thermal generated, consumed, and stored by
CHP, boiler, EHP, and electricity storage on the spring day.

FIGURE 16. Biogas generated, consumed, and stored EH elements on the
autumn day.

Fig. 15 shows the expected behavior of CHP, boiler, EHP,
electrical storage for the generation, consumption, and stor-
age of electricity and thermal on the spring day. Also, due to
the constraints and modeling, the dependence of electricity
and thermal generation behavior of EHP and CHP units
between electricity and thermal can be seen with a certain
coefficient. Another result expressed in Fig. 16 is the appro-
priate and almost continuous behavior of electrical storage
in charging and charging situations. When the discharge has
occurred after the charge, there has been no drastic change
again, and in the scheduling, the behavior of the discharge has
been continued until the need for electrical storage charging
arises. This increases battery or electrical storage life in EH
operation.

Fig. 16, Fig. 17, and Fig. 18 have been used to investigate
the expected behavior of parameters such as Fig. 13, Fig. 14,
and Fig. 15, respectively, but on the autumn day. In autumn,
due to changes in the behavior of electrical and thermal loads
and, on the other hand, higher thermal prices in this season,
the EH has focused on selling more thermal and buying less
electricity. Boiler and CHP behaviors have been the opposite
due to their relationship in biogas feeding, such as spring.

FIGURE 17. Electricity and thermal exchanged EH with energy networks
on the autumn day.

FIGURE 18. Electricity and thermal generated, consumed and stored by
CHP, boiler, EHP, and electricity storage on the autumn day.

Also, in this season, the behavior of the electrical storage has
been such that the change in the status between the charge
and its discharge is low, and as a result, this issue, like spring,
increases its lifespan.

C. COMPARATIVE TEST RESULTS
This section evaluates and compares the biogas production
unit’s performance in the proposed EH’s optimal scheduling.
By removing the biogas production unit, the EH loses a cheap
and clean energy carrier. In this case, to supply energy to
the CHP and Boiler units located in the proposed structure,
alternative fuel (natural gas) is used, as shown in Fig. 19.
In this figure, PinNG, NGICE and NGBoiler are inlet gases to the
EH, CHP unit, and ICE unit, respectively.

The DA scheduling for the EH shown in Fig. 19 is such that
it must also participate in the natural gas distribution market
to supply the amount of natural gas it needs. The simulation of
this section uses Finnish natural gas price information on the
selected days of spring and autumn. The results of this com-
parative test are shown in Table 3. According to the results of
this table, eliminating the biogas production unit significantly
increases the expected costs of EH’s scheduling. In fact,
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FIGURE 19. The EH structure without biogas unit.

TABLE 3. Comparative test results.

the high purchase price of natural gas has increased the cost of
operating the EH. In addition, this type of operation also leads
to environmental pollution. Therefore, the proposed biogas-
based structure of the EH, in addition to reducing pollution,
makes system scheduling more economical.

IV. CONCLUSION
This paper proposed a linearized stochastic optimization
framework for DA optimal scheduling of a biogas-based EH
under the uncertainties of electricity price and solar radiation.
The EH had a digester unit as a converter for converting
biomass fuel into biogas, biogas storage unit, biogas-burning
CHP unit, biogas burner boiler, solar farm, electrical storage,
electrical and thermal loads, as well as EHP. Uncertainties
related to solar radiation and DA price were scenarioized by
the Monte Carlo method and default PDFs, and then their
number was reduced by K-means clustering. After model-
ing the uncertainty parameters, the reduced scenarios were
entered into the optimization problem framework.

The results of output from the proposed framework in
this paper show that the EH has been able to achieve the
optimal cost for scheduling in the DA market and supply its
electrical and thermal loads in both spring and autumn. The
optimal scheduling costs for the spring and autumn seasons
were 112.7363 and -317.73 euros, respectively. The reason
for the negative scheduling cost in the autumn is that the EH’s
income from participation in energy markets has been much
higher than its scheduling costs.

Biogas production in the proposed EH has resulted in a
valuable, inexpensive, and clean fuel available to the multi-
energy system’s operator. The production and use of this
fuel have brought advantages. The most important advan-
tages include minimizing the cost of scheduling, minimizing
dependence on primary energy carriers for supplying internal
loads, participation in DA energy markets, minimizing pol-
lution production, and making the DA scheduling problem
lighter. Comparative test results show that eliminating the
biogas production unit in the EH can increase the scheduling
costs and dependency for supplying energy carriers. The
existence of dependent relationships between biogas fuels
generated and consumed by CHP and boilers shows that the
relationships of electricity and thermal generation in these
units have been opposed to each other. On the other hand, the
continuous behavior in the use of electrical storage has shown
that this scheduling framework has been able to increase the
life and health of this unit.
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