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Abstract: Production scheduling has great significance for optimizing tasks distribution, reducing 

energy consumption and mitigating environmental degradation. Currently, the research of 

production scheduling considering energy consumption mainly focuses on the traditional 

manufacturing workshop. With the wide application of the Internet of Things (IoT) technology, the 

real-time data of manufacturing resources and production processes can be retrieved easily. These 

manufacturing data can provide opportunities for manufacturing enterprises to reduce energy 

consumption and enhance production efficiency. To achieve these targets, a multi-period 
production planning based real-time scheduling (MPPRS) approach for the IoT-enabled low-
carbon flexible job shop (LFJS) is presented in this study to carry out real-time scheduling based 
on the real-time manufacturing data. Then, the mathematical models of real-time scheduling are 
established to achieve production efficiency improvement and energy consumption reduction. To 
obtain a feasible solution, an infinitely repeated game optimization approach is used. Finally, a 
case study is implemented to analyse and discuss the effectiveness of the proposed method. The 
results show that in general, the proposed method can achieve better results than the existing 
dynamic scheduling methods. 
Keywords: Energy consumption, Real-time scheduling, Flexible job shop, Infinitely repeated 

game 
1. Introduction 

Currently, with global warming, the manufacturing industry is facing huge challenges in 
environmental protection and cleaner production (Y. Zhang et al., 2018; Ma et al., 2019). As 
pointed by Wu et al. (2018), today, the industrial enterprise accounts for about half of the world’s 

energy consumption, which has almost doubled in the last sixty years. The rising energy 
consumption has brought enormous environmental pressures, for instance, greenhouse gas 
emissions contribute to global warming (Z. Zhang et al., 2016). (Hondo, 2005) studied the amount 
of greenhouse gases (CO2 and CH4) emitted to generate per kWh of electricity. Therefore, 
improving energy efficiency in industrial enterprises to reduce carbon emissions has become an 



urgent problem (Cassettari et al., 2017). Over the past ten years, reducing energy consumption has 
been achieved mainly by improving existing machines and processes. In recent years, new 
operation strategies for reducing energy consumption have raised concerns. In particular, 
researchers have realized that appropriate scheduling mechanisms and methods could play a 
crucial role in energy-saving during the production execution stage (Dai et al., 2015; Yan et al., 
2016; Raileanu et al., 2017). Moreover, production scheduling has attracted much attention (Lei, 
2008; Renna, 2010), especially for flexible job shop scheduling (FJSS) problem (Jula and Kones, 
2013; Nouiri et al., 2015). However, most research on this topic assumed that the production 
environment is static, thereby no unexpected disruption occurred during the production processes. 

In the real production workshop, it is quite common for the production processes to encounter 
unexpected disruption such as rush order, machine breakdown and worker absenteeism (Nguyen 
et al., 2015). In such circumstances, the predetermined schedules lose their optimality or even 
become infeasible to be executed (Zhang and Wong, 2017). This means that static scheduling has 
little contribution to reducing energy consumption in a real production environment. Thus, the 
dynamic scheduling problem has attracted some researchers’ attention in recent years (Ning et al., 
2016; Wang et al., 2017). Meanwhile, some approaches and algorithms have been proposed, such 
as swarm intelligence approach (Rossi, 2014), gravitational emulation local search algorithm 
(Hosseinabadi et al., 2015), and the approach of integrating genetic algorithm with particle swarm 
optimization (Wang et al., 2018). However, the above-mentioned studies focus mainly on the 
dynamic scheduling problem in a traditional production workshop. 

In recent years, the development of information and communications technology provide 
technical support for manufacturing enterprise to implement production management based on 
real-time data (Zhang et al., 2017; Zhang et al., 2019; Wang et al., 2020). With these technologies, 
manufacturing enterprises can carry out real-time traceability and visibility of manufacturing 
resources and improve workshop scheduling performance (Qian et al., 2019; Liu et al., 2019). 
Today, by applying the IoT technology to manufacturing fields (Guo et al., 2015; Qian et al., 
2020), the real-time manufacturing data of workshop has become more accessible to create a big 
data environment for manufacturing (Y. Zhang et al., 2018b; Huang et al., 2019). In this 
environment, the traditional scheduling methods could be challenged in dynamic FJSS problem. 
Recently, Ren et al. (2018) introduced the development trends of a future production system in a 
big data environment. They pointed out that real-time data of workshop can make dynamic 
scheduling more efficient. 

Despite these researchers have made significant progress, the following research questions 
should be solved in applying FJSS methods to the real-world production workshop. They are 
listed as follows. 

How to design a real-time scheduling method to implement production optimization for the 
IoT-enabled LFJS by the infinitely repeated game? In general, there are two kinds of mainly 
dynamic scheduling methods: periodic and event-driven dynamic scheduling. For the periodic 



dynamic scheduling, a new schedule is generated after a certain scheduling interval. For the event-
driven dynamic method, the dynamic scheduling is performed when the previous schedule is 
modified to accommodate the new manufacturing environment. However, the scheduling 
strategies derive from these two methods have some problems. For instance, the new schedule 
may be completely different from the original one, meaning that tasks that were not processed in 
the original schedule may be processed earlier or delay (Rangsaritratsamee et al., 2004). It has a 
serious effect on other production activities planning related to the original schedule and reduces 
the stability of the production scheduling system (Shen and Yao, 2015). However, in an infinitely 
repeated game based real-time scheduling approach, during the real-time scheduling stage, each 
machine can automatically send its real-time status and request of the operations when it is idle at 
each time. The operations continually interact with the machines and operators according to their 
real-time status. Each time, only one optimal operation is assigned to the requested machine. 
When the machine finishes the assigned operation, it automatically sends its current status and 
requests the operations again until all the operations are finished. Since the operation allocation is 
real-time data-driven and the infinitely repeated game based real-time scheduling approach is only 
started for the idle machine, the efficiency can be largely improved. Thus, the infinitely repeated 
game based real-time scheduling approach needs to be developed to reduce the adverse impacts of 
the unpredictable exceptions in the IoT-enabled LFJS. 

How to design a production operation allocation policy to enhance the production efficiency 
and alleviate the environmental pollution of the IoT-enabled LFJS? In a production environment, 
production planning is very important to improve the processing efficiency of the workshop 
(Davis and Thompson, 1993). Production scheduling is also a key factor affecting production 
efficiency (Luh et al., 1997). Their results can strongly influence the development of corporate 
profits, as well as the efficiency of utilization of resources (Chen, 2016). Recently, many studies 
have been devoted to exploring the production planning and scheduling problem. However, there 
are few studies on simultaneously optimizing the production planning and scheduling for a 
flexible production environment. Although some literature considered the integration of the 
production planning and scheduling problem, these studies only generate a production planning at 
the initial time and do not consider the impact of unexpected events on production planning. 
Moreover, the research on the integration of production planning and scheduling based on real-
time data is almost vacant. Therefore, a new MPPRS method should be proposed to enhance 
production efficiency and energy efficiency in the IoT-enabled LFJS. 

To address these problems, in this study, an MPPRS method based on the infinitely repeated 
game for IoT-enabled LFJS is proposed to give a new production scheduling idea. The proposed 
method integrates three important features. First is the application of IoT technology to the real-
time scheduling problem. In the IoT-enabled production workshop, the manufacturing resources 
can interact with each other, and the real-time status of manufacturing resources can be monitored. 
The results of real-time scheduling can be obtained based on their real-time status. Second is the 



developed MPPRS method to enhance production efficiency and reduce environmental pollution. 
The production horizon is divided into multiple periods. At the start of each period, the production 
planning is generated, and then the real-time scheduling can be realized to satisfy the requirement 
from the production planning in each period. Third is the proposed infinitely repeated game 
optimization method for MPPRS. It is used to assign the operations to the corresponding machines 
depending on the machine’s real-time status. Therefore, the designed MPPRS based on real-time 
manufacturing data provides a new production scheduling paradigm to further alleviate 
environment pollution and improve production efficiency for the IoT-enabled LFJS. 

The remainder of the study is arranged as follows. A literature review is conducted in Section 2. 
The implementation processes of MPPRS are illustrated in Section 3. In Section 4, the MPPRS 
model is proposed. Section 5 develops the infinitely repeated game optimization method for 
MPPRS. A case study is used to demonstrate the efficiency of the designed MPPRS in Section 6. 
Section 7 gives the conclusions and future works. 
2. Literature review 

Related literature is reviewed under two parts: (1) the real-time scheduling and (2) the game 
theory based production scheduling considering energy consumption. 
2.1 Real-time scheduling 

The dynamic scheduling problem occurs when exceptional events such as rush order and 
cancellation of jobs are considered in a static production scheduling system. Holloway and Nelson 
(1974) were the first to address the dynamic scheduling problem. They pointed out that the 
periodic policy is useful in a dynamic job shop problem. Subsequently, Muhleman et al. (1982) 
further studied the application of the periodic scheduling strategy in a dynamic random job shop 
system. Over the next few years, Church and Uzsoy (1992) developed periodic and event-driven 
rescheduling methods in a single machine scheduling system with rush order. Then, a simple 
heuristic dispatching rule, called a shift from standard rules, was designed by Pierreval and 
Mebarki (1997). The same year, Kouiss K and Pierreval H (1997) first proposed a scheduling 
strategy based on a multi-agent for a dynamic job shop. In recent decades, more and more 
dynamic scheduling methods have been put forward to cope with the exceptional events in the 
dynamic scheduling system (Aytug et al., 2005; Ouelhadj and Petrovic, 2009). In the literature, the 
dynamic scheduling method can be categorized into three groups: (1) artificial intelligence (AI) 
and knowledge-based approaches, such as genetic algorithm (GA) (Zambrano Rey et al., 2014; 
Kundakci and Kulak, 2016), neural networks (Tang et al., 2005; Araz and Salum, 2010), expert 
systems (Vieira et al., 2000; Umar et al., 2015), and fuzzy logic (Zhao et al., 2010; Xanthopoulos 
et al., 2013); (2) simulation-based approaches, like the priority dispatching rules (Lu and 
Romanowski, 2013; Sharma and Jain, 2016); (3) multi-agent-based approaches (Wang et al., 2008; 
Sahin et al., 2017). However, these traditional dynamic scheduling methods are intrinsically 
inflexible, slower responsive to exceptional events and cannot satisfy the needs of unanticipated 



real-time situations.  
With the wide application of computer and communication technologies, some new 

management manners have been proposed to optimize the production process and to enhance the 
efficiency of production scheduling. Especially, over the past decade, many enterprises have used 
IoT technology to support workshop management, where the manufacturing resources can interact 
with each other dynamically. Consequently, a new manufacturing environment namely the 
Internet of Manufacturing Things (IoMT) is built. Under this IoMT environment, large amounts of 
manufacturing data in the workshop are constantly exchanged and interplayed. As a result, the 
traditional dynamic scheduling methods may no longer be appropriate in the IoMT environment. 

In addition, the existing researches on production planning based real-time scheduling for 
manufacturing workshop are quite limited. There are only a few papers address this area by a 
rigorous literature search. In this literature, Luo et al. (2015) present a multi-period hierarchical 
scheduling mechanism to optimize the objectives of production planning and real-time scheduling 
respectively for hybrid flow shop. In follow-up work, Shukla et al. (2018) developed an agent-
based architecture that enables the integration of production planning and scheduling for a job 
shop. However, these works seldom focus on the FJSS problem considering the real-time 
manufacturing data. 
2.2 Game theory based production scheduling considering energy consumption 

Game theory is a popular approach to deal with the optimal decision problem (Li et al., 2012). It 
is mainly used in economics, political science, communication, and psychology, as well as logic 
and biology. In recent decades, some researchers extended the application of game theory to solve 
the problem from different areas of engineering (Miyamoto et al., 2008; Hu and Rao, 2009). At 
present, more and more researchers have begun to pay close attention to game theory and use it to 
solve the production scheduling problem. The game theory can be divided into two categories: 
cooperative game and non-cooperative game (Sun et al., 2014). For the cooperative game, Calleja 
et al. (2006) considered one machine sequencing situations using the cooperative game. Arasteh et 
al. (2014) developed the application of cooperative game theory in scheduling optimization. Han 
et al. (2016) used a cooperative game to study the flexible flow shop scheduling problem (FFSP). 
For the non-cooperative game, an agent-based production scheduling method is presented to deal 
with the flexible flow shop scheduling problem using incorporating game theoretic (Babayan and 
He, 2004). Zhou et al. (2009) presented a production scheduling method in a networked 
production workshop using the non-cooperative game. Manupati et al. (2012) proposed a scheme 
to generate optimal production planning and scheduling for network manufacturing workshop. 
Agnetis et al. (2015) developed a minimax strategy to deal with a scheduling problem using game 
theory. 

These works have put forward many new ideas for the application of game theory in a 
production scheduling problem. However, from the literature, we have noticed that the above 
works mainly focus on time-based performances, especially the minimization of makespan. Little 



attention has been paid to the energy consumption of production. In recent years, given concerns 
related to climate change, many researchers turn their attention to the energy consumption of 
production scheduling, especially the LFJS (Mokhtari and Hasani, 2017). For example, Zhang et 
al. (2016) proposed an innovative approach to study the dynamic scheduling problem in FMS, 
taking the objectives of minimum or maximum energy consumption into account. Yin et al. (2017) 
presented a low-carbon mathematical scheduling model for the flexible job shop environment that 
optimizes productivity, energy efficiency and noise reduction. Lei et al. (2017) considered the 
total energy consumption and workload balance and proposed a shuffled frog leaping algorithm to 
solve the FJSS problem. Wu and Sun (2018) applied a non-dominated GA for the FJSS problem 
with energy-saving measures. Meng et al. (2019) proposed several mixed-integer linear 
programming models of higher efficiency to solve the LFJS problem. However, the above works 
did not use game theory to solve the LFJS problem. The author only found a few studies after a 
systematic literature search. For example, Zhang et al. (2017b) proposed a two-layer scheduling 
method based on dynamic game theory to reduce energy consumption in a flexible job shop. Then, 
Wang et al. (2018) proposed a multi-agent-based real-time scheduling (MARS) method to 
optimize energy objective using a bargaining game. However, in the above papers, players of the 
game only play once. Thus, players focus too much on the short-term interests of individuals to 
make strategic choices, and the payoff of each player may have less benefit than the infinitely 
repeated game solution, meaning that the solutions of these studies may not be optimal. To 
address these challenges, this study proposed an MPPRS method to realize real-time data-driven 
scheduling for IoT-enabled LFJS by using the infinitely repeated game. 
3. The implementation processes of MPPRS 

This section mainly discusses the implementation processes of MPPRS in the IoT-enabled LFJS. 
The objective of the proposed MPPRS is to enhance the real-time interaction of distributed 
manufacturing resources by applying IoT technology to LFJS, and then the real-time optimization 
of manufacturing operations can be achieved in a sensible manufacturing environment. The 
sensible manufacturing environment is enabled by RFID facilities. Each machine is equipped with 
a reader and some antennas to connect them. These antennas can capture the real-time data from 
kinds of RFID tags that are attached to manufacturing resources (e.g. machines, key WIP (work-
in-progress) items, operators, etc.) Thus, the machines can actively sense the manufacturing 
environment and dynamically interact with each other. The real-time data of the production 
workshop could be tracked and traced. 

The implementation processes of MPPRS are shown in Fig.1, which includes two layers, 
namely the production planning layer and real-time scheduling layer. The production planning 
layer divides the production horizon into multiple periods T and makes one decision at the 
beginning of every period T. The real-time scheduling layer divides one period T into multiple 
time t, and the real-time scheduling results can be worked out at each time t according to the real-



time manufacturing data of the workshop. In this study, the time unit of T is calculated by 
equation (1). 

 '
max[ ]ciCT n=                                                   (1) 

The ciC  denotes the planned completion time of task i in the first production planning. The 'n  

denotes the parameter, which is used to adjust T. If 'n  is larger, it means that T is smaller, and the 
frequency of production planning generation is higher. Therefore, the system can respond to the 
influence of exceptional events on production planning in time, which means that the system 
requires higher rapidity and stability. On the other hand, if 'n  is smaller, it means T is larger, and 
the frequency of production planning generation is lower. Therefore, the response time of 
production planning to exceptional events is longer, which means that the system requires lower 
rapidity and stability. 

 
Fig.1. The implementation processes of MPPRS 

The implementation processes of MPPRS are shown as follows: 
Step 1: at the beginning of Th, the real-time data of the new arriving production tasks and the 

unallocated operations can be obtained by the production planning layer. Here, Th denotes the hth 
period. Then, the first unallocated operations of each task are put into a task pool (TP). Next, only 
one operation of the TP is added to the planning processing queue (PPQ) of the machines by using 
the infinitely repeated game. Repeat the above processes until all operations are put into the PPQ 
of the machines. At last, the production planning result is released to the real-time scheduling 
layer. 

…

Task pool 1 Real-time scheduling task pool

… …

Task pool 1 Real-time scheduling task pool
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Step 2: at time t0 ( 0 ht T ), all operations of the PPQ within Th and the operations of rush order 
are added to a task pool 1 (TP1). Then, according to the production planning result, the optional 
operations of the TP1 at time t0 are added to a real-time scheduling task pool (RSTP). Next, each 
machine constantly interacts with the operations and competes to process these operations. At last, 
the operations are assigned to the appropriate machine by using the infinitely repeated game. The 
rest of the operations of the TP1 enter the next time t1. Repeat the above process until the last time 
tn ( n ht T ), the operations are assigned to the most appropriate machines. 

Step 3: At the beginning of Th+1 the real-time scheduling results within Th is informed to the 
production planning layer. Repeat the above steps until the assignment is complete. 
4. The MPPRS model 
4.1 Problem statement 

The MPPRS could be formulated as follows in this study. The workshop has a total of m 
machines and n tasks. Each task i consists of ni operations. Each operation of task i has to be 
processed on machine Mk. The MPPRS is needed to determine that which operation should be 
processed in which machine and the start process time of the operation so as to satisfy the 
objective of production planning layer at the beginning of every period T and the objective of real-
time scheduling layer at each time t based on the real-time manufacturing data. The notations used 
in this study are summarized in Table 1. 

Table 1 Notations 
Notations Description n  The total number of tasks m  The total number of machines 

in  The total number of operations of task i 
1 2{ , ,..., }mM M M M=  The set of machines 

Mij The set of machines for processing the operation ‘j’ of task ‘i’  
tidleM

 
The idle machine at time t 

ijO  The jth operation of task i 
toptionO

 
The set of the optional operations at time t 

ijC
 

The completion time of ijO  
hT  The thh  period  

'1,2,3, ,h n=  
kW  The workload of kM  
MW  The critical machine workload, which is the machine with the heaviest workload 
zwlW  The total workload of machines 

E  The total energy consumption of production 
ijkx

 
1,if kM  is selected for the ijO ; 0,otherwise 

idle
kP  The idle power of kM  (kW) 
cutting
kP  The cutting power of kM  (kW) 

kidlet  The total idle time of kM  



ijkct
 

The cutting time of ijO  operated on kM  
ijktt  The tool change time of ijO  operated on kM  

ig
 

The maximum feasible payoff for player i of the stage game 
Because the complexity of MPPRS is so high, in the study, some assumptions are made as 

follows. 
(1) Once an operation is started on a machine, it cannot be interrupted unless the machine breaks 
down. 
(2) Each machine can start to process an operation only after the previous operation is completed. 
(3) The tool change time is not zero for two consecutive operations. 
(4) The task transportation time among machines is not considered. 
4.2 Mathematical model 
4.2.1 Objective functions of production planning layer  

In the production planning layer, the workshop manager makes upper-level production planning. 
The aim of production planning is to improve the production efficiency and critical machine 
workload in every period T. 

Objectives: 
(1) Minimizing the makespan: 

1Min maxp ijf Makespan C= =                                    (2)
 

(2) Minimizing the critical machine workload: 
2Min Max{ }p M kf W W= =                                        (3) 

1 1
[( ) ]inn

k ijkc ijkt ijki j
W t t x

= =

= +                                        (4) 
Subject to: 

0, ,ijC i j     , 1 ( ) , 2,3, ,ij i j ijkc ijkt ijk iC C t t x j n−−  + =                (5) 
1

ij
ijkk M

x


=                                                     (6) 

Equation (2) guarantees the minimization of maximal completion time of all the assigning 
operations. Equation (3) ensures the minimization of the critical machine workload. Equation (4) 
defines the workload of machine Mk. Inequity (5) guarantees that the operations precedence 
constraints of tasks. Equation (6) indicates that an operation can only be processed by one 
machine. 
4.2.2 Objective functions of real-time scheduling layer 

In the real-time scheduling layer, the scheduling manager assigns all the tasks from upper-level 
production planning and rush orders during period T. The objective is to minimize the makespan, 
the total workload of machines and the total energy consumption of production. 



Objectives: 
(1) Minimizing the makespan: 

1Min maxr ijMakesf pan C= =                                      (7) 
(2) Minimizing the total workload of machines: 

2 1
Min mr zwl kk

f W W
=

= =                                           (8)
 

(3) Minimizing the total energy consumption of production: 
3 1 1 1 11 1 1

Min ( ) ( ) ( )i i
cutting

n nm n m nk k k kidle idle ijkc ijk idle ijkt ijkk i j

m

j
r

k k i
P t P t x t xE Pf

= = = = = = =

= =  +   +     (9) 
The equations (7)–(9) are the objective functions. In this study, the real-time scheduling layer 

considers all these three objectives. 
5. Infinitely repeated game optimization method for MPPRS In this section, the infinitely repeated game based MPPRS method for manufacturing tasks is 
designed. Through the infinitely repeated game method, the optimal combination of all operations 
for each machine can be acquired. In view of the huge manufacturing operations in the production 
enterprises, the production planning layer and real-time scheduling layer are designed respectively 
in MPPRS to make the complexity of the task allocation reduction and achieve the solving 
efficiency improvement. In MPPRS, a production planning result can be generated by the 
production planning layer at the beginning of every period T  according to the static 
manufacturing information. The real-time scheduling result can be generated by the real-time 
scheduling layer according to the real-time manufacturing data of the workshop at each time t. 
5.1 Infinitely repeated game model 

The studied MPPRS problem can be regarded as an infinitely repeated game in which the same 
stage-game repeats periodically ( 0,1,2,gt = ) when the number of repetitions is infinite. A 
stage-game is a tuple { , , }N A  , where N is the set of players. Player i N  has a finite set Ai of 
actions. Each player i choose a certain action i ia A ; the resulting vector form an action profile. 
The action profile is then executed, and the corresponding stage-game outcome is realized. To 
build the infinitely repeated game model, firstly, it is necessary to determine three elements in 
stage-game: players, strategies, and payoffs. The detailed descriptions are as follows:  

{ , , }G N A =  
{1, , }N n=  is the set of players. In this problem, two objectives of production planning layer 

and three objectives of real-time scheduling layer correspond to players respectively. 
ii NA A


=  and iA is the set of player i’s strategies. In production planning layer, the 

operations of the TP to the strategies are denoted as a strategy profile. In real-time scheduling 
layer, the operations of the RSTP are the strategies. 



1( , , )n  =  and i  is the set of stage-game payoff function for player i. In this problem, 
whether production planning layer or real-time scheduling layer, the stage-game payoff function 
of each player is the reciprocal value of the corresponding objective function.  

For any stage-game { , , }G N A = , the infinitely repeated game is denoted by G . In G , at 
every stage ( 0,1,2,gt = ), every player must decide his own action gti ia A . Due to the number 
of repetitions of the stage-game is unknown, the weighted sum is used to calculate the total payoff 
function of each player of the infinitely repeated game (Leyton-Brown and Shoham, 2008): 

g 0
( ) (1 ) gti it

U s   


=

= −                                             (10) 
Where ( )iU s  is the total payoff,  is the weighting factor, which only accepts values between 0 

and 1. 
5.2 Production planning layer 

Production planning layer can generate a production planning at the beginning of every period T 
in the static manufacturing environment by using the infinitely repeated game. The input of this 
layer includes the task information and the real-time scheduling result of the last period. At the 
beginning of hT , the implementation steps of the infinitely repeated game based production 
planning are shown in Fig.2. The detailed steps are described as follows. 

 
Fig.2. The implementing processes of the production planning layer 

Step 1: The machines of the workshop are assigned to the two objectives of production planning 
layer in turn until the assignment ends. 

Step 2: The two objectives work as two players and make their own decisions independently. 
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Step 3: Put the first unallocated operations of all tasks into the TP based on the real-time 
scheduling result of the last period. The operations in the TP called the strategies of the players. 
Thus, the operations of the TP can be competed by each machine. 

Step 4: According to Eqs. (2)-(4) calculate the stage-game payoff of each player from various 
possible strategies combinations.  

Step 5: Get the infinitely repeated game solution according to a grim trigger strategy and a folk 
theorem, which are detailed in Section 5.4. 

Step 6: According to the result of Step 5, some or all operations are assigned to the machines. In 
order to ensure that the allocation of the operation is optimal, only one operation is assigned to the 
corresponding machine at a time. This operation is called real operation and others are called 
virtual operations, which are put back into the TP. This step distinguishes between real operation 
and the virtual operation according to the following rule in Fig.3, which refers to the classic 
scheduling allocation rules (e.g. Shortest Processing Time, Most Operation Number Remaining, 
Random). 

 

Fig.3. Allocated rules 
Repeat the above steps until all operations are put into the corresponding PPQ of the machine. 

The output of this layer is the task PPQ. This output determines which operation should be 
finished in which real-time scheduling period. 

//The steps of rules Input: The assigned result of the operations. Start For each ijO which is assigned to each Mk 
If ( 1,2, 1, 1, , )ijkc ijkt ijlc ijltt t t t l k k m+  + = − +  {Put the ijO  into operation pool 1 If the number of operations in operation pool 1 is greater than 1 {Select the  of the earliest completion time which belong to operation pool 1, and switch to 

operation pool 2 If the number of operations in operation pool 2 is still greater than 1       {Select the  of the most operation number remaining which belong to operation pool 2, 
and switch to operation pool 3           If the number of operations in operation pool 3 is still greater than one {Select one  according to the random rule and this  is put into PPQ of Mk 

         Else  which belongs to operation pool 3 is put into PPQ of Mk. }          Else which belongs to operation pool 2 is put into PPQ of Mk } Else  which belongs to operation pool 1 is put into PPQ of Mk } Else select others infinitely repeated game solution End  Output: Only one operation is put into PPQ of machines in the end. 



5.3 Real-time scheduling layer 
In the production planning layer, the PPQ of the machine can be known at the beginning of 

hT , meaning that the real-time scheduling layer knows which operations must be processed within 
hT . Thus, it is used to assign operations from production planning layer to the most optimal 

machine. The inputs of this layer include the PPQ of each machine decided from production 
planning layer as well as the various exceptional events and machine status. This section describes 
the infinitely repeated game based process of the operations assignment in the real-world 
workshop environment at each time t ( ht T ). In addition, before solving real-time scheduling of 

hT , pick out all operations which should be processed within hT  according to the PPQ of each 
machine and put into the TP1. Thus, at each time t, the detailed steps of the real-time scheduling 
are introduced as follows and shown in Fig.4. 

 
Fig.4. The implementing processes of the real-time scheduling layer 

Step 1: Pick out the tidleM  from M, then tidleM  are allocated to the 1
rf , 2

rf , and 3
rf  in turn 

until the assignment completes. 
Step 2: The 1

rf , 2
rf , and 3

rf  are seen as three players respectively. They can make their own 
decisions. 

Step 3: Pick out the toptionO  from TP1 and put it into the RSTP. The toptionO  satisfy the 
following constraints: 

(1) Operations precedence constraints of tasks; 
(2) PPQ precedence constraints of production planning on each Mk ;  
In addition, there is a special case as follows: if an operation is assigned to Mk in production 

planning layer and this operation is not assigned to Mk in real-time scheduling layer in the end, the 



next operation which meets the PPQ precedence constraints can be known as toptionO  , even if the 
previous operation does not complete in real-time scheduling layer. 

The toptionO  in the RSTP are known as the strategies. Thus, tidleM which is assigned to the rif  
(i=1, 2, 3) can choose the most optimal operations from the RSTP. 

Step 4: According to Eqs. (7)-(9) calculate the payoff of each player from each possible 
combination of strategies.  

Step5: Find the infinitely repeated game solutions, which are detailed in Section 5.4. Then, 
the toptionO  are put into the process queue of most optimal machines. 

Step 6: Repeat step 1 to step 5 until the end of hT .  
The output of this layer is the task process sequence according to the real-time manufacturing 

data. Each machine should follow this output to process operation. When exceptional events occur, 
the above method also can reduce the effect of the exceptions in time. 
5.4 Infinitely repeated game solution 

In the dynamic game, the sub-game perfect Nash equilibrium (SPNE) is considered to be a 
balance point where there is no reason for each player to change his behaviour. Many dynamic 
games use the backward induction method to find the SPNE. However, the infinitely repeated 
game does not exist in the last stage of a game, and the backward induction method no longer 
works. Thus, in this study, the grim trigger strategy is introduced.  

The grim trigger strategy is defined as follows: in the grim trigger strategy, *a refers Nash 
equilibrium (NE) of the stage-game, and ' ' ' '1 2 n( , , , )a a a a=  is a strategy combination of G. For 
any player i with ' *( ) ( )i ia a  , the player i that can adopt the strategy is described as follows: (1) 

'ia  is chosen in the first stage-game, and this strategy is also chosen in all subsequent stages-game; 
(2) If any other player chooses the maximum payoff of the period instead of 'ja  before the t stage-
game, player i will select the *ia  and repeat until the end. 

From the above analysis, it can be seen that the SPNE of infinite repeated game consists of two 
parts: (1) the NE or SPNE of the stage game, namely *a  in the grim trigger strategy, and this 
equilibrium solution is called the non-cooperative equilibrium solution; (2) namely 'a in the 
combination of grim trigger strategy, and this equilibrium solution is called cooperative 
equilibrium solution. Since players can get more benefits under 'a  than under *a , the SPNE of the 
infinitely repeated game required is 'a  in this paper. 

In the grim trigger strategy, the   of Eqs. (10) plays an essential role in the SPNE of the 
infinitely repeated game. If   is bigger, the number of repetitions of the stage-game is larger and 
players are patient and cooperative. Thus, a specific SPNE of an infinitely repeated game, which 
could be called a cooperative equilibrium solution, can be obtained as soon as the   is large 



enough. 
Friedman (1971) proposed a cooperative equilibrium solution existence theorem (a folk 

theorem) as follows: 
Let *a  be an equilibrium (an equilibrium of the stage game) with payoffs 1 2

* * * *( , , , )n   = . 
Then for any 1 2( , , , )nv v v v V= 

 
( V  is the set of feasible payoffs of the stage-game) with 

*
iiv   of all player i, there is a (0,1)   that there is an SPNE of G  with payoffs v .  

Thus, the payoffs of SPNE can be gained quickly to find the appropriate , which means that 
the SPNE can be known. In this study, a folk theorem-based solution procedure is proposed. The 
solution algorithm is summarized in Fig. 5. 

 

Fig.5. Solution algorithm 

6. Case study 
This section describes the MPPRS method through a simulation example to demonstrate the 

effectiveness and performance of the proposed method. All the simulation examples were 
performed with MATLAB 2010b on a personal computer with Intel Core i5, 3.1GHz CPU and 
4GB RAM. The real-time data captured in the IoMT environment were put into the MySQL 
database that is a relational database management system. The stored data in this database can be 
retrieved during real-time scheduling.  

The basic data of simulation example come from Kacem’s instance (Kacem et al., 2002) and the 
dimensions of the instance are 8 tasks × 8 machines . In order to obtain the total energy 
consumption of production during the manufacturing execution stage, it's different from the 
Kacem’s instance that the cutting power, the tool change time and the cutting time are presented in 
this study. Here, the sum of the tool change time and the cutting time is processing time. In 
additional, J9 in this simulation is considered as a rush order. The detailed data of the simulation 
example is shown in Table 2. In Table 2, the three figures (i.e. a/b/c) in Oij row and Mk column 
represent that the tool change time, the cutting time and the cutting power respectively, when the 
operation ‘j’ of task ‘i’ is processed on machine ‘k’. Table 3 shows the machine idle power, which 

//Algorithm for infinitely repeated game equilibrium solution Input: A static stage-game procedure. Start Step 1. Determine an Nash equilibrium (NE) solution of G  according to each player’s payoff. The contents of NE solution are described in our previous paper (Zhang et al., 2017a). The NE 
solution denotes as *a  and the corresponding payoffs are 1 2

* * * *( , , , )n   = ; 
Step 2. Find out 1 2( , , , )nv v v v V=   from   with *

iiv   for all player i; 
Step 3. Find out the corresponding strategies '

ia of iv ; 
Step 4. Suppose the triggering strategy is adopted in the first time of infinitely repeated game 
and calculate the  according to * 2

0
(1 ) max ( )g

i
g

t
i it

v g    


=

−  + + + . 
END 
Output: A sub-gameperfect equilibrium ( 'a ) of G  and  . 



comes from He et al. (2015).  
Table 2 The instance of MPPRS 

Tasks Operations Available machine (tool change time [hour]/ cutting time [hour]/ cutting power [KW]) 
M1 M2 M3 M4 M5 M6 M7 M8 

J1 O11 1/4/1.3 1/2/1.8 1/4/3.2 2/1/1.1 1/2/1.1 - 4/6/0.8 2/7/1.1 
O12 2/8/1.3 - 2/3/3.4 3/5/3.2 1/2/0.8 3/6/0.8 4/5/0.9 2/4/1.3 
O13 - 3/7/1.8 - 2/3/1.4 4/2/0.7 1/1/0.9 2/2/1.2 3/2/1.3 

J2 
O21 2/3/1.6 4/3/2.1 2/1/2.6 2/7/1.5 1/7/1.2 - 5/4/1.1 - 
O22 - 3/5/2.4 1/4/2.4 1/1/1.6 2/4/1.4 2/5/1.2 2/8/1.3 1/8/1.4 
O23 - 4/6/2.3 - 2/3/1.5 5/1/0.9 2/2/1.8 0.5/0.5/1.4 3/4/1.3 
O24 3/7/1.4 3/5/1.8 2/7/2.4 4/2/3.2 1/3/0.8 3/4/1.7 - - 

J3 
O31 3/7/2.1 - - 1/6/1.5 3/3/0.7 4/1/1.6 1/1/1.3 3/1/1.2 
O32 - 2/8/1.9 1/5/2.6 3/1/1.6 2/6/1.2 5/4/1.7 2/8/1.4 - 
O33 0.5/0.5

/1.4 1/3/2.5 2/3/4.2 2/4/1.4 - 2/8/1.3 - 2/5/0.8 
J4 O41 1/2/1.3 0.2/0.8/2.4 2/4/3.2 1/4/2.1 2/7/1.3 3/4/1.7 5/3/1.3 2/2/1.1 

O42 3/9/1.4 4/7/2.6 3/4/4.2 5/3/3.2 2/8/1.5 3/2/0.8 5/1/1.2 3/6/1.3 
O43 2/2/1.4 4/2/3.7 1/1/3.2 3/7/1.5 2/1/0.8 2/7/0.7 4/1/1.4 2/5/1.8 

J5 
O51 1/2/1.3 2/4/1.2 3/4/2.4 4/4/1.2 4/5/0.8 - 4/6/1.3 - 
O52 2/8/1.2 - 3/4/2.8 3/1/2.1 2/7/1.3 5/3/0.7 4/2/1.3 - 
O53 - 3/6/3.2 2/6/3.2 2/5/1.8 1/3/1.2 1/1/1.2 2/5/1.4 - 
O54 2/9/2.1 2/6/1.6 - 2/4/1.7 4/3/1.5 2/3/1.3 2/1/1.3 2/4/1.3 

J6 O61 1/5/1.4 2/5/1.7 0.3/0.7/4.2 1/3/1.6 2/4/0.8 2/7/1.4 - 3/7/1.3 
O62 4/7/1.3 - 3/6/3.2 2/7/1.4 5/4/0.9 2/5/0.9 1/5/1.3 2/2/1.3 
O63 5/5/1.4 2/3/2.1 4/5/2.4 3/7/1.5 2/9/1.2 - 2/8/1.2 - 

J7 O71 2/3/1.1 2/2/2.2 1/1/3.2 2/4/1.3 4/3/1.3 - 2/8/0.8 - 
O72 - 4/5/2.5 - 5/4/1.4 6/5/0.8 2/7/1.6 2/8/1.3 2/3/1.4 
O73 - 2/6/2.4 4/5/4.2 2/1/1.2 3/5/1.2 2/4/2.1 - 5/5/1.6 

J8 
O81 1/1/1.4 1/7/3.2 2/3/2.2 2/7/1.4 - 1/3/1.2 - 3/7/1.8 
O82 2/5/1.3 2/2/1.7 3/4/2.9 4/4/1.4 4/5/1.1 - 2/8/1.3 - 
O83 2/7/1.4 2/7/3.2 - 6/2/1.2 3/2/0.8 5/1/1.3 2/5/1.4 0.5/0.5/1.3 
O84 4/5/1.7 - 1/2/4.1 4/3/1.2 0.2/0.8/0.9 2/3/1.4 2/6/0.9 - 

J9 O91 2/3/1.3 2/5/2.4 4/4/3.2 3/2/1.1 4/1/1.1 - 3/4/1.6 2/2/1.2 
O92 2/2/1.6 2/5/2.3 4/10/2 2/2/1.2 1/3/1.3 2/4/1.1 - 3/7/1.3 
O93 1/4/1.2 1/3/2.2 4/2/3.2 3/8/1.3 2/5/2.1 3/10/1.3 1/4/1.3 3/2/1.5 Table 3 Idle power of machines 

Mk M1 M2 M3 M4 M5 M6 M7 M8 
Idle power [KW] 0.995 1.485 1.91 0.6 0.43 0.56 0.47 0.72 
In this case, the implement processes of MPPRS consist of five main steps, which are shown as 

follows:  
(1) The equation (1) is used to calculate the time unit of T. Here, the 'n  is 3.  
(2) At the beginning of hT , all remaining unprocessed operations are put into the PPQ of the 

machines. Thus, production planning is generated based on the static environment for the real-
time scheduling within hT . For each machine, operations are assigned to the PPQ of the machine 
using the method of production planning layer (refer to Section 5.2). Then, the result of production 
planning is released to the real-time scheduling layer. 

(3) After putting all remaining unprocessed operations into the PPQ of the machine, a real-time 
scheduling method (refer to Section 5.3), is used to assigned operations to the most appropriate 
machine in the real-time manufacturing workshop at each time t ( ht T ). 

(4) At the beginning of 1hT + , the production planning layer obtains the unprocessed operations 



and the real-time scheduling result within hT . Then, new production planning can be generated 
according to the above information. After that repeat the above process until finish all operations. 
Table 4 shows the real-time scheduling process in a static environment. 

(5) During the processing stage, real-time manufacturing data can be known by each 
manufacturing resource. If the exceptions occur, the corresponding method can reduce the effect 
of exceptions event in time, which is presented in Section 5. 

Table 4. The real-time scheduling process in a static environment 
Time Result 

0 O81→ M1; O41→ M2; O71→ M3; O11→ M4; O31→ M7; 
1 O42→ M6 
2 O51→ M1; O82→ M2; O61→ M3 
3 O21→ M3; O32→ M4; O12→ M5; O62→ M8 
4 None 
5 None 
6 O43→ M3; O13→ M6 
7 O33→ M1; O63→ M2; O22→ M4; O72→ M8 
8 None 
9 O52→ M4; O23→ M7 

10 O24→ M5 
11 None 
12 O83→ M8 
13 O73→ M4; O53→ M6 
14 O84→ M5 
15 O54→ M7 

To demonstrate the effectiveness of the MPPRS for the LFSP, we compare the MPPRS with the 
existing scheduling methods including AL+CGA (Kacem et al., 2002b), PSO+TS (Zhang et al., 
2009), AIA (Bagheri et al., 2010), and P-DABC (Li et al., 2011) in a static workshop environment. 
The AL+CGA refers to a genetic algorithm controlled by the assigned model which was generated 
by the approach of localization (AL) to multi-objective flexible job shop. The PSO+TS uses the 
PSO algorithm to assign operations on machines and to schedule operations on each machine, and 
TS is applied to local search for the scheduling sub-problem originating from each obtained 
solution. The AIA uses several strategies for generating the initial population and selecting the 
individuals for reproduction. Different mutation operators are also utilized for reproducing new 
individuals. In the P-DABC, a well-designed crossover operator is presented for information 
sharing among the employed bees. An external Pareto archive set is developed to memorize the 
nondominated solutions found so far. Although the above methods optimize multiple objectives of 
a flexible job shop, only two objectives are considered in the instance of kacem (8 tasks × 8 
machines), such as the makespan and the total workload of machines. The total energy 
consumption of production is not considered as an objective. To compare with our proposed 
method, we calculate the values of the total energy consumption of production base on the existing 
optimized result of each scheduling method. The results of the comparison between MPPRS and 
existing scheduling methods are shown in Table 5. 

Table 5. Results of the comparison between MPPRS and existing scheduling methods 
Objectives AL+CGA AIA PSO+TS P-DABC Proposed approach 



1
rf   [hour] 15 14 14 14 18 

2
rf   [hour] 79 77 77 77 75 

3
rf   [kWh] 121.59 118.01 117.67 119.30 112.91 

As seen in Table 5, the proposed approach in this study obtained the best 2
rf , which is 75 hours. 

However, the best solution and the worst solution are 77 hours and 79 hours respectively in 
existing scheduling methods. The minimum improvement is 2.6%, and the maximum 
improvement is 5.1%. According to Table 5, compared with the existing scheduling method, 1

rf in 
our proposed method is slightly increased. However, the 3

rf  obtained by our proposed method is 
112.91 kWh, which means that the minimum improvement is 4.0%, and the maximum 
improvement is 7.1% compared to the other four algorithms. It can be seen that although less 
makespan can reduce the total idle time of machines, it may increase the cutting energy 
consumption resulting in larger total energy consumption of production. Thus, it can be seen from 
the above analysis that the proposed method is effective to realize the tri-objective optimization to 
minimize the makespan, the total workload of machines and the total energy consumption in the 
LFJS without considering the exceptional events. 

In order to illustrate the performance of the proposed method for the real-time LFJS scheduling 
under the dynamic manufacturing environment, it is compared with several traditional dynamic 
scheduling methods, such as an NSGA-II+right shift rescheduling method (W. Wang et al., 2018), 
and completely reactive scheduling methods, which used a machine assignment rule to assign 
operations to machines and the machine chooses the operations according to a heuristic 
dispatching rule. In this study, four common heuristic dispatching rules which are the shortest 
processing time (SPT), the longest processing time (LPT), the most work remaining (MWKR) and 
the least work remaining (LWKR) are employed. In addition, three machine assignment rules 
(MAR) are considered: (1) each operation is assigned to the available machines with the shortest 
processing time, (2) each operation is assigned to its available machines with minimum workload 
currently, and (3) each operation is assigned to the random alternative machine. These three 
machine assignment rules can be named as MAR1, MAR2, and MAR3. 

In order to compare the simulation results of each scheduling method, three test cases are 
proposed and the results are shown in Table 6-8: (1) Test case 1: M2 and M5 break down at time 
t1=3 and t2=5. The recovered time are t3=6 and t4=7 respectively. Test case 2: J9 are added at time 
t5=8. Test case 3: the above three exceptions are involved at the same time. 

Table 6. Test case 1 
Scheduling methods 1

rf  [hour] 2
rf  [hour] 3

rf  [kWh] 
MAR1+SPT 19 73 113.91 
MAR1+LPT 22 73 114.98 

MAR1+MWKR 21 73 119.32 
MAR1+LWKR 22 73 128.89 



MAR2+SPT 26 107 173.56 
MAR2+LPT 31 104 223.11 

MAR2+MWKR 29 112 236.89 
MAR2+LWKR 32 124 186.54 

MAR3+SPT 23 91 156.98 
MAR3+LPT 25 93 176.54 

MAR3+MWKR 28 98 203.18 
MAR3+LWKR 31 106 197.26 

NSGA-II+right shift rescheduling 25 79 153.26 
Proposed method 18 75 113.21 Table 7. Test case 2 

Scheduling methods 1
rf  [hour] 2

rf  [hour] 3
rf  [kWh] 

MAR1+SPT 21 85 119.76 
MAR1+LPT 28 85 135.11 

MAR1+MWKR 22 85 129.84 
MAR1+LWKR 24 85 132.30 

MAR2+SPT 29 132 230.56 
MAR2+LPT 32 143 328.69 

MAR2+MWKR 33 156 276.34 
MAR2+LWKR 37 149 257.83 

MAR3+SPT 27 113 178.56 
MAR3+LPT 30 124 239.23 

MAR3+MWKR 29 142 214.91 
MAR3+LWKR 35 137 221.48 

NSGA-II+right shift rescheduling 27 105 157.53 
Proposed method 19 87 117.53 Table 8. Test case 3 

Scheduling methods 1
rf  [hour] 2

rf  [hour] 3
rf  [kWh] 

MAR1+SPT 20 85 124.36 
MAR1+LPT 28 85 133.98 

MAR1+MWKR 21 85 125.86 
MAR1+LWKR 23 85 132.78 

MAR2+SPT 27 121 212.36 
MAR2+LPT 30 130 229.56 

MAR2+MWKR 30 145 218.29 
MAR2+LWKR 34 137 236.59 

MAR3+SPT 24 101 163.38 
MAR3+LPT 27 114 223.12 

MAR3+MWKR 27 133 203.82 
MAR3+LWKR 31 130 206.34 

NSGA-II+right shift rescheduling 28 112 180.24 
Proposed method 19 87 122.41  

The results of test case 1 are shown in Table 6. By comparing the solutions, it can be seen that 
the proposed method is better than the traditional dynamic scheduling methods. For example, the 

1
rf  value is 18 hours in our proposed method and the maximum improvement is 43.8% compared 

with the traditional scheduling methods. Although the proposed method is not dominant to the 
optimization of 2

rf  compared with the completely reactive scheduling method with the MAR1, the 
maximum improvement is 55.36%, and the minimum improvement is 6.25% compared with other 
traditional dynamic scheduling methods. In addition, the proposed method can reduce 3

rf obtained 
by traditional dynamic scheduling method from the maximum 236.89kWh and the minimum 



113.91kWh to 113.21kwh (-52.21% and -0.61%).  
The results of test case 2 are shown in Table 7. These results further demonstrate that the 

proposed method obtains better solutions than the traditional dynamic scheduling methods. From 
Table 7, it is clear that the 1

rf  obtained by our proposed method is 19 hours. However, the 
minimum 1

rf  obtained by the traditional dynamic scheduling methods is 21 hours. Compared with 
the completely reactive scheduling method with the MAR1, 2

rf in our proposed method is slightly 
increased. By the other existing dynamic scheduling methods, the best 2

rf  is 105 hours and the 
worst 2

rf is 156 hours. The maximum improvement is 44.23%. As the same to the test case 1, the 
3
rf  also can be decreased. 
Test case 3 can be viewed as a comprehensive form of test case 1 and test case 2, where contain 

both types of exceptions. The results are given in Table 8. It can be seen that the proposed method 
is not dominant to the optimization of 2

rf  compared with the completely reactive scheduling 
method with the MAR1, however, the proposed method has better solutions than other traditional 
dynamic scheduling methods. In addition, compared with the traditional dynamic scheduling 
methods, it can be found that 1

rf  and 3
rf can achieve the maximum improvement is 44.1%, and 

48.3%, and the minimum improvement is 5%, and 1.6% respectively.  
It can be seen from the above three test cases that the completely reactive scheduling method 

with the MAR1 can obtain better 2
rf  than the proposed method. The reason is that the MAR1 

always assigns an operation to its alternative machine with the minimum processing time, which 
tends to reduce the total workload of machines. But on the other hand, it may lead to long waiting 
queues in specific machines, which results in a long finishing time of all the operations. 

In order to further evaluate the performance of the proposed method, a generic simulation is set 
up where for each of 100 runs, k (1≤k≤8) random machines are chosen to break at a random time 
within the production horizon and (or) one rush order are inserted randomly. The machine repair 
time is assumed to follow a random integer uniformly distributed on [1, 4]. We compare the 
average values of objectives found by the proposed method and the traditional dynamic 
scheduling methods. The experimental results were obtained by all methods in Table 9. 

Table 9. The average values of objectives 
Scheduling methods 1

rf  [hour] 2
rf  [hour] 3

rf  [kWh] 
MAR1+SPT 42  107  329.35  
MAR1+LPT 49  107  348.04  

MAR1+MWKR 43  107  335.02  
MAR1+LWKR 46  107  351.34  

MAR2+SPT 49  148  315.50  
MAR2+LPT 54  167  380.47  

MAR2+MWKR 53  166  353.85  
MAR2+LWKR 57  166 346.04  

MAR3+SPT 47  160 376.32  
MAR3+LPT 50  139  332.98  



MAR3+MWKR 50  152  317.31  
MAR3+LWKR 55  153  328.38  

NSGA-II+right shift rescheduling 49  127  273.69  
Proposed method 39  110 227.74  Table 9 reveals that although the proposed method in terms of the total workload of machines is 

not always better than the traditional dynamic scheduling method, the proposed method in terms 
of the makespan and the total energy consumption of production can obtain better results. This 
further verifies our proposed method that real-time manufacturing information based real-time 
scheduling is more likely to generate satisfactory results.  

It is worth mentioning that the CPU time plays a critical role in prompt effective real-time 
scheduling. Table 10 lists the mean CPU time of all methods at each time t or rescheduling point. 
It can be seen that the mean CPU time of some completely reactive scheduling methods is much 
shorter than the proposed method. However, the proposed method can improve the schedule 
efficiency and reduce energy consumption at the same time. Meanwhile, with acceptable CPU 
time (1-2min), the CPU time of the proposed method is acceptable for the real production system. 

Table 10. CPU time comparisons of  all scheduling methods 
Scheduling methods Mean CPU time (s) 

MAR1+SPT 2.352 
MAR1+LPT 5.321 

MAR1+MWKR 3.562 
MAR1+LWKR 4.234 

MAR2+SPT 3.986 
MAR2+LPT 10.351 

MAR2+MWKR 4.136 
MAR2+LWKR 10.417 

MAR3+SPT 3.536 
MAR3+LPT 11.248 

MAR3+MWKR 4.196 
MAR3+LWKR 10.348 

NSGA-II+right shift rescheduling 38.567 
Proposed method 4.146 Based on the above analysis, compared with the traditional dynamic scheduling methods, the 

proposed method considers the optimization objective of production planning before real-time 
scheduling and conducts real-time scheduling at each time t according to the production planning. 
It not only considers the needs of workshop managers but also significantly reduces the 
complexity of scheduling calculation in dynamic scheduling. 

In addition, compared with the traditional dynamic scheduling method, at any time, each 
machine can obtain the optimal operation. Therefore, the complexity of real-time scheduling is 
stable with the increasing of operation because only one optimal operation is selected for one 
machine at each time by using infinite repeated games. Thus, the proposed method is better than 
the traditional dynamic scheduling methods in a real manufacturing environment when exceptions 
occur. 
7. Conclusions and future work 

In this study, an MPPRS method is put forward on the basis of the IoT technology for LFJS. 



Three contributions are important. Firstly, a real-time production scheduling method is proposed 
based on real-time manufacturing data. all machines of the workshop can send their real-time data 
and request the operations of the RSTP. At the same time, operations constantly interact with the 
machines. Then, the machines can acquire corresponding operations. Secondly, the MPPRS 
method is developed. It includes two parts, namely the production planning layer and real-time 
scheduling layer. In the production planning layer, a new schedule is generated as a production 
planning at the beginning of every period T in the static manufacturing environment. In the real-
time scheduling layer, each operation is assigned to the most appropriate machine based on the 
real-time manufacturing data of the workshop. The third contribution is a proposal of the infinitely 
repeated game optimization method for MPPRS. Under the general game condition, the strategy 
with the greatest overall payoff may not be a stable and usable one. This study proposes the 
infinitely repeated game optimization model. It can use the interaction between short-term 
interests and long-term incentives and promote the cooperation between players through the 
reputation mechanism in the game. Therefore, a better optimal result can be obtained compared 
with the general game. The case study shows that the performance of the proposed method in 
terms of the production efficiency and energy-saving are effective and efficient compared against 
the traditional dynamic scheduling methods. 

Future research will focus on the real-time data based production scheduling problem at the 
enterprise level. In addition, the integration of this study with the real-time data-driven material 
delivery will be also considered. 
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Highlights 
➢ Infinitely repeated game method was used to reduce real-time scheduling’s 

complexity. 
➢ Production planning layer was used to generate new scheduling as a production 

planning. 
➢ Real-time scheduling layer was used to finish operations from production 

planning layer. 
➢ Applying real-time data can timely reduce the influence of exceptions. 
 


