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Abstract: This paper presents a proposal for potential bioelectrochemical power to gas stations. It
consists of a two-level voltage source converter interfacing the electrical grid on the AC side and an
electromethanogenesis based bioelectrochemical system (EMG-BES) working as a stacked module on
the DC side. The proposed system converts CO2 and electrical energy into methane, using wastewater
as the additional chemical energy input. This energy storage system can contribute to dampening
the variability of renewables in the electrical network, provide even flexibility and grid services by
controlling the active and reactive power exchanged and is an interesting alternative technology
in the market of energy storage for big energy applications. The big challenge for controlling this
system lays in the fact that the DC bus voltage of the converter has to be changed in order to regulate
the exchanged active power with the grid. This paper presents a cascade approach to control such a
system by means of combining external control loops with fast inner loops. The outer power loop,
with a proportional-integral (PI) controller with special limitation values and anti-windup capability,
is used to generate DC bus voltage reference. An intermediate loop is used for DC bus voltage
regulation and current reference generation. A new proportional resonant controller is used to track
the current reference. The proposed scheme has been validated through real-time simulation in
OPAL OP4510.

Keywords: biomethane; microbial electrochemical technologies; microgrid; proportional resonant
controller; power to gas station

1. Introduction

The electricity production from renewable-based Distributed Generation (DG) tech-
nologies has rapidly increased due to the growth of electrical energy consumption and
environmental concerns [1,2]. The integration of microgrids is a pathway to facilitating a
flexible integration of DG, loads and energy storage systems [3,4]. In the microgrid, the
loads and renewable-based energy resources have random and unpredictable behavior.
Therefore, using energy storage systems and programmable generators is necessary to
control the voltage, frequency and power exchanged with the upstream network [5,6]. The
energy capacity constraint is the most significant limitation in common energy storage
systems, such as batteries, leading to the development of new electrical energy storage
solutions [7,8].

The production of CH4 from CO2 using renewable energy surplus, known as Power to
Gas (P2G), represents a potential high-capacity energy storage technology [9–12]. The P2G
process links the power grid with the natural gas grid by converting CO2 and electrical
energy into a grid-compatible, synthetic natural gas (mostly CH4), increasing the overall
resilience of the energy system and decreasing its price. The position and perspectives
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of P2G plants for managing high contributions of renewable energies has been discussed
previously [13].

H2 production through water electrolysis represents the state-of-the-art for P2G tech-
nology; however, the gas distribution grid is not prepared for H2, contrary to methane,
which limits the energy storage capacity. Alternatively, the chemical and biological pro-
duction of methane is implemented in several pilot plants, spread around Europe [14,15].
However, both methanation options present drawbacks, e.g., requirement of an expensive
catalyst, high operating temperature and pressure and limited efficiency [14].

Bioelectrochemical systems performing electromethanogenesis (EMG-BES) were first
proposed in 2009 as an alternative way to drive the reduction of CO2 (dissolved into an
aqueous medium) into CH4 [16]. This represented a milestone for the development of likely
processes, producing different added-value chemicals and fuels from CO2 and renewable
energy surplus [17]. The process is performed under mild operational conditions (20–35
◦C and atmospheric pressure) and is driven by electroactive microorganisms, without the
need of an expensive catalyst, meaning higher energy efficiency and potentially lower
construction and operational costs compared to chemical methanation [18]. Thus, P2G
based on EMG-BES represents an innovative and flexible energy storage technology for
renewable energy surplus (RES) management. It offers a suitable solution for seasonal
energy storage of RES, and it enables the convergence of an electrical grid with an existing
natural gas grid into one hybrid energy system [19]. Besides, this technology can also help
to reduce CO2 emissions from industries, decarbonizing the electricity sector [20].

In this paper, bioelectrochemical power to gas stations based on an EMG-BES stack
is discussed, based on preliminary data collected from a laboratory prototype [21]. The
technology has the ability to receive active power and exchange reactive power with the
grid (Figure 1). For achieving this goal, the proposed topology for the power converter,
located upstream of the bioelectrochemical plant, is a two-level voltage source converter
(2L-VSC) because: (1) the EMG-BES stack has to be fed by regulated DC voltage and
(2) 2L-VSC can draw the sinusoidal current from the grid. Using 2L-VSC provides high
power quality performance and grid support capability in contrast to other solutions such
as diode rectifier and DC/DC converter in [22]. The conventional control schemes of
grid-connected 2L-VSCs cannot be used directly for this system because they are only
designed to control variables such as PQ (active/reactive powers), PV (active power/AC
terminal voltage), VdcQ (DC link voltage/reactive power) and VdcV (DC link voltage/AC
terminal voltage) [3]. However, Vdc, P and Q need to be controlled at the same time for
this application. Recently, Reference [23] suggested a two-loop control scheme for BES
applications that included an outer power loop and an inner current loop; however, this
approach is not applicable because the DC link voltage must be controlled with 2L-VSC.
Therefore, this paper proposes a control scheme that consists of three loops: an outer
power loop, a middle DC link voltage loop and finally an inner current loop, which are
implemented in the stationary reference frame. The contribution of the control scheme
consists of three parts: (1) BES works a controlled PQ load with this method, (2) a new
Proportional-Resonant (P + R) controller with harmonic compensation capability and anti-
windup capability is to be used as the current controller and (3) a new DC-link voltage
reference modifier, which defines the appropriate reference to keep the system stable. It is
worth mentioning that the basic idea of this paper was already published by authors as a
conference paper in [24].
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Figure 1. Schematic of a microgrid with bioelectrochemical power to gas station. 
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Figure 1. Schematic of a microgrid with bioelectrochemical power to gas station.

This paper is organized as follows. In Section 2, the EMG-BES based energy storage
system is briefly introduced, and a medium-scale laboratory prototype is presented. In
Section 3, the description of the proposed topology scheme for the electrical converter and
its control system are presented. In Section 4, the simulation results that allowed us to
analyze the performance of the proposed controller are presented. Finally, the conclusions
arising from this work are presented in Section 5.

2. EMG-BES Stack

The standard BES reactor comprises an anode and a cathode, sometimes separated
by an ionic exchange membrane [25]. In the case of the developed EMG-BES technology,
the reactor is membrane-less, and an electrical input drives the set of anode and cathode
reactions, which would be otherwise thermodynamically unfavorable. At the cathode,
electro-autotrophic microorganisms utilize CO2 as a carbon source and electricity as the
source of reduction equivalents to produce CH4 [26]. On the other hand, at the anode
the organic matter contained in wastewater is oxidized by electroactive bacteria (EAB),
transferring the required electrons to the cathode.

In [9], a medium-scale EMG-BES prototype was built by connecting 45 cells (i.e., each
pair of electrodes) in parallel, grouped by 3 into 15 single-chamber, membrane-less reactor
modules. The voltage stack was increased from 0.7 to 18 V to guarantee a voltage drop near
1–1.2 V for each series-connected module. The voltage drop of each EMG-BES cell needed
to be balanced to allow the proper operation of the anode and cathode and to convert the
electrical current into methane. A passive voltage balancing system was adopted [18].

The electrical stabilization time of the EMG-BES prototype, due to voltage variation
from the open-circuit voltage (OCV) to operational voltage, was in the minute scale time.
The peak of current observed when the voltage was applied was due to the self-capacitance
of the bioelectrodes [27]. This capacitance was produced by the electrons accumulated
at the anode due to the spontaneous oxidation of organic matter by EABs and the high
surface area of carbon material used as the electrode.

In terms of electrical current conversion to methane, this was slower than the shown
electrical dynamics, resulting in difficult-to-quantify electrical-driven CH4 production [23].
This behavior (among other factors) caused the EMG-BES reactor to continue producing
methane also when no energy input was applied.



Electronics 2021, 10, 1470 4 of 15

Figure 2 shows experimental results of current vs. voltage for 15 parallel EMG-BES
modules, wherein: (1) the level of current can be controlled by the input voltage; (2) the
input voltage must be higher than 0.45 V and less than 1 V for linear operation of EMG-BES;
moreover, a reverse current will flow into the DC source at low input voltages, and the
EMG-BES saturates at voltages higher than 1 V, where the current remains constant and
(3) all parallel modules behave similarly and tend to follow the same pattern. Therefore, the
electrical characteristic of an EMG-BES pack, with several modules in series and parallel,
can be interpreted from a module behavior since they operate together. In this paper,
several modules are considered in parallel and series to make a 10 kW EMG-BES stack.
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Figure 2. Current vs. voltage for 15 parallel EMG-BES cells.

The considered model for the EMG-BES cell is shown in Figure 3 [10,28]. The model
parameters in Table 1 are chosen based on the method mentioned by [10] and data of
experimental tests in the nominal state. In a stack with ns series cell in each branch and np
parallel branches, the following parameters can be used in the model:

E0,stack = ns × E0,
C0,stack =

np
ns
× C0,

R0,stack =
ns
np
× R0,

R1,stack =
ns
np
× R1.

(1)
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Table 1. EMG-BES cell model parameters.

Parameter Value

R0 (Ω) 2.576
C0 (F) 316.8
R1 (Ω) 0.3193
E1 (V) 0.115

3. Proposed Topology and Associated Control Scheme

According to Section 2, the EMG-BES stack must be fed by variable and regulated
DC voltage to control the EMG-BES current. The applied voltage must be higher than
the specific value (0.45 V for a cell with 0.7 V nominal voltage). Therefore, an AC/DC
converter is required as an interface to connect the EMG-BES to the electrical grid. This
paper proposes a 2L-VSC with an LCL filter for this purpose (Figure 4). The hardware
design of 2L-VSC is explained in [29,30] and is out of the scope of this paper. This paper
aims to develop a control scheme for this system to feed an EMG-BES with a regulated
voltage. With this control method, the EMG-BES works as an active load that can absorb a
controlled active power from the grid and is able to exchange reactive power with the grid.
The converted energy inside the EMG-BES adds a new degree of freedom which can be
exploited to provide ancillary services such as energy management, flexibility, frequency
regulation, voltage profile improvement and power oscillation damping.
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In this study, the overall system controller is supposed to send the power reference (P*
and Q* in Figure 4) to the EMG-BES power plant. This power reference can be determined
by distribution system operators (DSOs) to manage the grid by ancillary services. The latter,
counting on a 2L-VSC converter as an interface with the grid, converts the power reference
to a DC link voltage reference, then it is tracked by the voltage and current controller.

For the linear operation of 2L-VSC, the relationship between the DC side and AC side
voltage can be expressed as in Equation (2) (see also Figure 5):

Vdc =
2Vi
m

, (2)

where Vi, Vdc and m are the maximum phase voltages of the 2L-VSC, DC bus voltage and
2L-VSC modulation index, respectively. The maximum value of m for linear operation of the
2L-VSC depends on the switching method and can be a value between 1 and 1.154 [31]. In
terms of controllability, 2L-VSC becomes uncontrollable for m higher than 1.1547; therefore,
the DC bus voltage cannot reduce less than a specific value. This limitation must be
considered in a loop scheme design.
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The proposed control scheme consists of three main parts: (1) The outer power
loop for DC link voltage reference generation, (2) the middle DC link voltage loop and
(3) the inner current loop with a new PR controller with harmonic compensation and
anti-windup capabilities.

In the outer loop, according to Figure 6, the active power reference (P*) is compared
with the active output power of the 2L-VSC (P), generating an error value. Then, this
error is the input of a PI controller, which determines at the output the initial DC link
voltage reference Vdc ref. In the present application, the grid voltage is fixed, hence the
2L-VSC works in the linear region, the DC link voltage should be higher than the specific
value (Vdcmin). The DC link voltage reference modifier is proposed to keep the 2L-VSC
converter under control and also to avoid instabilities in the system. The output of the DC
link voltage reference modifier (V∗dc) is used as a reference value for the middle DC link
voltage loop. The reference of current in the stationary reference frame can be found based
on the output of the DC link voltage controller, reactive power reference and the positive
sequence of PCC voltage. The current reference is tracked by the proposed proportional
resonant controller with anti-windup and harmonic compensation capabilities.
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3.1. DC Bus Voltage Reference Modifier

This part proposes a new DC bus voltage reference modifier to prevent converter
instabilities. This method does not require the values of the grid voltage (Vg) or the
equivalent grid impedance (Zg), and certificates the converter to stay stable for any active
and power references. Considering the equivalent circuit diagram of the system in Figure 7,
the active and reactive powers (P and Q) absorbed by the 2L-VSC from the point of common
coupling (PCC) can be written as follows:

P =
V.Vi
X f

sinδ = Ssinδ, (3)

Q =

(
VVicosδ−V2)

X f
= Scosδ − V2

X f
(4)

where V, Vi and δ are PCC voltage, 2L-VSC voltage and angle, respectively. Xf is equal to
2 × π × f o wherein f o is the grid frequency in Hz, and S is apparent power. By squaring
the relationships of P and Q in Equations (3) and (4) and arranging terms, the following
expression can be obtained:(

Q +
V2

X f

)2

+ P2 = S2sin2δ + S2cos2δ = S2 (5)
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Therefore, the converter must produce the following voltage to exchange power with
the grid:

Vi =
X f

V

√√√√√
(Q +

V2

X f

)2

+ P2

 (6)

Therefore, the minimum DC bus voltage (Vdcmin) can be found as:

Vdc_min ≥
√

3Vi

→ Vdcmin ≥
X f
√

3
V

√((
Q + V2

X f

)2
+ P2

)
(7)

Figure 8 shows the minimum DC link voltage (Vdcmin) based on active and reactive
powers. It can be concluded that Vdcmin is directly related to the reactive power and is
almost independent of the active power.
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3.2. Proposed PR Controller

The anti-windup of the PR controller and the DC voltage reference modifier must
work complementary to each other. In the transient case, the anti-windup part of the PR
controller limits the input of the switching modulator (SM) and avoids the saturation of the
integral terms of the PR controller. In steady-state, the DC voltage reference modifier does
not allow the reduction of the DC-link voltage lower than a specific value, avoiding the
saturation of the controller. For drawing a sinusoidal current from the grid, a PR controller
with harmonic compensation capabilities should be used. Typical ones can be expressed by
Equation (8):

PR = Kp + ∑
h=1,5,7,11,13

2Kihωchs
s2 + 2ωchs + h2ω2

o
(8)

where h, Kp, Kih, ωo and ωch are the harmonic order, the proportional coefficient, the
resonant coefficients, the resonant frequency and the resonant bandwidths, respectively.
The output of the PR controller (input of switching modulator) has to be smaller than the
specific value Omax; otherwise, there will be over modulation. In over modulation, the
switching frequency is reduced, and the waveforms at the converter’s output are distorted.

The suggested anti-windup scheme for the PR controller consists of three main parts
(see Figure 9): AC limiter, anti-windup for the resonant controller in fundamental frequency,
and anti-windup for resonant controllers in the other frequencies. The AC limiter (ACL) to
limit the input of SM can be considered as [32]:

O∗αβ =

{
Oαβ ,

∣∣Oαβ

∣∣ < Omax
Omax
|Oαβ| outαβ,

∣∣Oαβ

∣∣ ≥ Omax

where
∣∣Oαβ

∣∣ = √O2
α + O2

β

(9)Electronics 2021, 10, 1470 10 of 14 
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With this limiter, the SM input is not clipped and is always sinusoidal. The value of
Omax is chosen based on the switching method.

The integrators within the controller may experience wind-up while a limiter hinders
the output of a controller. In the proposed controller, the ACL is used inside of the anti-
wind-up as the core block. If the absolute value of the output of the controller |Oαβ|
is more than the threshold Omax1, the harmonics compensation is cancelled, so that the
controller still can track the current reference at the fundamental frequency. In addition,
the difference between the AC limiter (ACL) and the controller’s output lays mainly on the
feedback signal to compensate the inputs of the integrators of the resonant controller in the
fundamental frequency, so if the |Oαβ| is going higher than threshold Omax, the output of
the PR controller is clamped by the AC limiter and the input of the resonant controller in
the fundamental frequency is modified by the anti-windup scheme.

The main essential variables in the anti-windup scheme are the maximum available
outputs of the PR controller (Omax and Omax1), which should be chosen based on Vdc. The
proposed values for thresholds are given as:

Omax1 = Vdc

(
0.5− tdead

Ts

)
, (10)

Omax = Vdc

(
1√
3
− tdead

Ts

)
, (11)

where tdead and Ts are the switching dead time and the switching period, respectively.
The switching dead time reduces the maximum available output of the PR controller and
also degrades the quality of the output current. However, these drawbacks can be easily
overcome by using dead time compensation methods [33].

4. Processor-in-the-Loop Results

The Processor-in-the-Loop (PiL) studies were carried out by OPAL-RT OP4510 to
verify the effectiveness of the proposed control system for a BES-P2G station. Figure 10
shows the schematic and setup of the implementation of the proposed system in OPAL-RT.
The hardware part includes the EMG-BES model, switches, diodes, electrical components
and voltage/current sensors as implemented in FPGA of OPAL-RT. The hardware part
runs fast with a sample time of 875 ns. The control system is implemented in the CPU of
OPAL-RT and runs slowly with a sample time of 10 µs. Due to the increase in the switching
frequency, the time step of the real-time model should be much lower than the converter’s
switching time step. Typical CPU-based real-time simulation can only realize a minimum
time step of Ts ≥ 10 µs, which is affected by the large bus latencies in a CPU. Also, the
OP4510 connects to an oscilloscope to monitor voltage, current and electrical power in
real-time. The values of currents and voltages are routed from the FPGA based model to
the DAC channels.

The parameters of 2L-VSC in the proposed BES-P2G are listed in Table 2. A 10 kW
EMG-BES module is modelled based on [10], where it is supposed that 10 stacks with 70 V
and 14.25 A rating are installed in series. Two simulations have been done to verify the
performance of the proposed control system.

In the first test, the active power reference stepped up from zero to its nominal value
(10 kW) and the reactive power reference was set to 0 Var. The obtained results are
illustrated in Figures 11 and 12. It can be seen in Figure 11 that, although the reference
power is zero, the DC bus voltage is limited to 543 V to prevent system instability, and
consequently, the active power absorbed by the 2L-VSC converter was non-zero. Once the
reference of active power was changed from zero to 10 kW, the DC bus voltage increased,
and the reference and instantaneous value of active power were precisely the same. As
shown in Figure 11, the voltages of the LC filter’s capacitors were constant, and the grid
current increased with a convenient and fast transient response. According to Figure 12,
the current reference in the stationary reference frame was correctly followed by the current
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controller, and before increasing the power reference, the peak of the switching duty cycle
was close to its maximum value, and the system was controlled at the boundary of stability
and instability. By increasing the power reference and the DC bus voltage, the value of the
switching duty cycle was reduced, and the converter worked in the linear region. This fact
can be seen in Figure 12, where the peak of the switching duty cycle reduces from 1 to 0.85
after increasing the active power reference. The dynamics of the DC voltage variations are
also shown in Figure 12, which had the same behavior as a first-order system with a rise
time of 60 ms and there was no overshoot in DC voltage.
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Table 2. 2L-VSC parameters.

Parameter Value

Grid voltage 380 V–50 Hz

Grid short circuit capacity (SCC) 10 kA

Nominal power 10 kVA

LC filter inductor (Lf) 3.4 mH

LC filter capacitor (Cf) 5 µF

Switching frequency 10 kHz

Dead time 1 µs

DC link capacitor (C) 2200 µF

The results for reducing active power reference from 10 kW to zero are shown in
Figures 13 and 14. The most important event happens at the moment that the active
power reference changes: the DC voltage reference modifier and anti-windup of the P + R
controllers prevent the switching duty cycle and system instability from increasing. The
DC bus voltage decreases gradually in 40 ms, thus it is possible to continue connecting the
proposed system to the grid.

The presented results show that BES-P2G with the proposed control can exchange
power with the grid with a good transient response and zero steady-state error.
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Figure 11. Real-time simulator results: active power reference step-up for BES-P2G. From top: active power reference (P*,
10 kW/div), active power (P, 10 kW/div), reactive power (Q, 10 kVAR/div), grid voltage (Vabc, 1000 V/div), grid current
(iabc, 20 A/div), DC link voltage (Vdc, 1400 V/div).
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Figure 12. Real-time simulator results: active power reference step-up for BES-P2G. From top: active power reference
(P*, 10 kW/div), active power (P, 10 kW/div), reactive power (Q, 10 kVAR/div), actual and reference currents (i∗αβ&iαβ),
switching duty cycle, DC link voltage (Vdc, 700 V/div).
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Figure 13. Real-time simulator results: active power reference step-down for BES-P2G. From top: active power reference (P*,
10 kW/div), active power (P, 10 kW/div), reactive power (Q, 10 kVAR/div), grid voltage (Vabc, 1000 V/div), grid current
(iabc, 20 A/div), DC link voltage (Vdc, 1400 V/div).
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Figure 14. Real-time simulator results: active power reference step-down for BES-P2G. From top: active power reference
(P*, 10 kW/div), active power (P, 10 kW/div), reactive power (Q, 10 kVAR/div), actual and reference currents (i∗αβ&iαβ),
switching duty cycle, DC link voltage (Vdc, 700 V/div).

5. Conclusions

In this paper, an advanced control scheme has been designed and tested for a two-level
voltage source converter-based BES-P2G plant. The data of a real medium-scale EMG-BES
stack operating in different electrical conditions were considered to find a suitable and
reliable equivalent-circuit model of the BES-P2G stack. Afterwards, a cascaded control
scheme based on three loops, including power-voltage-current loops, was proposed to
achieve goals as follows: (1) track power references, (2) avoid converter uncontrollability,
and (3) keep the grid current sinusoidal. This paper proved that reducing the power
reference of a BES-P2G plant may cause uncontrollability. Therefore, firstly, the power
loop restricts the voltage reference value to keep the system stable. Secondly, the current



Electronics 2021, 10, 1470 14 of 15

reference was clamped by the voltage loop to meet the converter current limitation. Thirdly,
a new PR controller with anti-windup capability in fundamental frequency and harmonics
was introduced as the current controller to keep the output currents always limited and
sinusoidal. The results of the implementation of the proposed control system plant in
OPAL-RT OP4510 set-up verified that the system is able to exchange power with the grid
with a good performance.
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