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Abstract—Given a sensor network, TDOA self-calibration aims
at simultaneously estimating the positions of receivers and trans-
mitters, and transmitters time offsets. This can be formulated as
a system of polynomial equations. Due to the elevated number
of unknowns and the nonlinearity of the problem, obtaining
an accurate solution efficiently is nontrivial. Previous work has
shown that iterative algorithms are sensitive to initialization and
little noise can lead to failure in convergence. Hence, research
has focused on algebraic techniques. Stable and efficient algebraic
solvers have been proposed for some network configurations, but
they do not work for smaller networks. In this paper, we use
homotopy continuation to solve four previously unsolved configu-
rations in 2D TDOA self-calibration, including a minimal one. As
a theoretical contribution, we investigate the number of solutions
of the new minimal configuration, showing this is much lower
than previous estimates. As a more practical contribution, we also
present new subminimal solvers, which can be used to achieve
unique accurate solutions in previously unsolvable configurations.
We demonstrate our solvers are stable both with clean and noisy
data, even without nonlinear refinement afterwards. Moreover,
we demonstrate the suitability of homotopy continuation for
sensor network calibration problems, opening prospects to new
applications.

Index Terms—homotopy continuation, minimal problems,
TDOA, sensor networks calibration

I. INTRODUCTION

Given a network of receivers and transmitters, network
self-calibration refers to the simultaneous estimation of po-
sitions of both receivers and transmitters [1], [2]. Network
self-calibration is essential in several applications, such as
beamforming [3] or structure from sound [4]. The case of
synchronized networks, where all time delays are known and
only the positions of the nodes need to be estimated, has been
greatly investigated in the literature [5], [6], [6], [7] and it is
mainly solved. The case of unsynchronized networks, where
also some time offsets of the nodes need to be estimated, has
proven more challenging and is still an active research area [8],
[9]. In this paper, we focus on 2D self-calibration of networks
with synchronized receivers but unsynchronized transmitters,
known as network 2D Time Difference Of Arrival (TDOA)
self-calibration [10], [11].

Let a network with m receivers and n transmitters, from
now on shortly denoted as mr/ns, the TDOA self-calibration
can be formalized by a set of mn equations in the form

‖ri − sj‖2 = (fij − oj)2 = d2ij , i = 1, . . . ,m j = 1, . . . , n
(1)

where ri, sj are the unknown positions of receiver i and
transmitter j, dij is the distance between them, oj is the
unknown transmitter offset and fij is the pseudorange, i.e.
what the receiver i measures from the transmitter j. To study
the solvability of this problem, the excess constraint is defined
as the number of constraints minus the number of unknowns.
For 2D TDOA, the excess constraint is

mn− 2m− 3n+ 3, (2)

where the term +3, called Gauge freedom, is introduced
because only distances are measured and hence the positions
can be recovered only up to Euclidean transformation. If the
expression in (2) is negative, then we have less constraints
than unknowns, and the problem will have infinitely many
solutions, if it is zero, then the problem is determined and
it will have a finite, but not necessarily unique, number of
finite solutions. These determined problems are referred to
as minimal, because they are the smallest problems to have
a finite solution. Finally, if the expression in (2) is positive,
then the problem is overdetermined, or subminimal, and it will
have a unique solution (given zero noise there will a unique
solution that satisfies the constraints exactly, otherwise we find
a solution that minimizes the constraint equations).

Given the strong nonlinearity and the high number of
unknowns, numerical iterative approaches are very sensitive
to initialization and hence perform poorly with a random or
grid-searched initial value [12], [13]. Algebraic techniques
have proved more efficient for both synchronized [6], [14]
and unsynchronized [10], [11], [15], [16] network calibration.
These algebraic techniques, based on Gröbner bases, are split
into two phases [17]: an offline phase, during which an
optimized solver for a specific kind of problem is generated;
and an online phase, during which the generated solver can be
applied to quickly solve any instance of that problem. While
these techniques have proved successful in several applications
[18], [19], they are somehow bounded by the complexity
of the problem and they have not been able to solve more
challenging TDOA configurations. Homotopy continuation, a
numerical algorithm for systems of polynomial equations [20],
has on the other hand been shown to solve more complex
problems, where Gröbner bases methods failed [21], [22].
In this paper, we demonstrate that homotopy continuation
can also be applied to self-calibration of sensor networks,
presenting stable solvers for several previously unsolvable



TABLE I: Different TDOA configurations for m receivers and
n transmitters. X: previously solved. O: solved in this paper.
*: reducible to a solved configuration. -: underdetermined. u:
unsolved. Underlined the minimal configurations

n
3 4 5 6

m

4 - - u u
5 - O O X
6 O O/X * *
7 O X * *
8 * * * *
9 X * * *

configurations. To the best of our knowledge, we are the
first to apply homotopy continuation to sensor networks self-
calibration.

The contribution of our paper is mainly two-fold. First, we
show that homotopy continuation can robustly solve sensor
network localization problems, opening frontiers for even more
applications in this domain. Secondly, through homotopy con-
tinuation we present several new algebraic solvers for network
configurations that were previously unsolvable. Particularly,
we present solvers for the following previously unsolvable
configurations (also summarized in Table I).

• 6r/3s: this is a minimal configuration, i.e. it is the
smallest network to have a finite number of solutions.
The solution, however, is not unique. From a theoretical
perspective, it is interesting to investigate how many
solutions the problem can have. It was speculated in
[23], that this configuration could have up to 150 distinct
solutions, but some of those might be false roots. Using
our homotopy solver, we are able to give empirical
evidence that the number of solutions is actually much
smaller.

• 6r/4s and 7r/3s: these can be regarded as the subminimal
configurations of the previous ones, obtained adding one
extra point to achieve uniqueness of the solution. While
the 7r/3s solver is new, an algebraic solver for 6r/4s was
already presented in [16]. This, however, required an extra
nonlinear refinement of the solution, while our homotopy
continuation solver is already stable without this post-
processing step.

• 5r/4s: This configuration has an interesting property,
while it is not minimal, it is the only subminimal configu-
ration which cannot be reduced to a minimal one. Hence,
it requires its own specialized solver.

• 5r/5s: This solver can be considered the subminimal
configuration of 4r/5s (which remains unsolved), with
an extra point to ensure the uniqueness of the solution.
Even if a solver for the 4r/5s were found, it would still
have multiple solutions. This solver, hence, is the smallest
solver to achieve a unique solution in a network with five
transmitters.

This paper is structured as follows: The theoretical back-
ground of homotopy continuation is discussed in Section II
and the algorithms for network calibration are presented in

Section III. Finally, the results are discussed in Section IV
and conclusions are drawn in Section V.

II. BACKGROUND: HOMOTOPY CONTINUATION

Homotopy continuation is an iterative algorithm to solve
systems of polynomial equations [20] and it has several
success stories in e.g. computer vision [21], [24], signal
processing [25], [26], and process design [27], [28]

Let F (x) = [f1, . . . , fn]
T and G(x) = [g1, . . . , gn]

T be
vectors of polynomials from the ring C[x1, . . . , xn]. Suppose
we want to solve the system F (x) = 0 and that the system
G(x) = 0, referred to as starting system, can be solved easily
and has at least as many distinct roots as F . We can now
define the homotopy

H(x, t) = (1− t)F (x) + γtG(x), (3)

where t is a new variable and γ is a complex number with
‖γ‖ = 1, introduced for numerical stability reasons [20] . It is
now easy to see that H(x, 1) = γG(x) and H(x, 0) = F (x).
Also if x0 is a root of G, then H(x0, 1) = 0 and if x∗ is a
root of F , then H(x∗, 0) = 0.

The core idea is that if we have a solution xt of H(x, t) =
0, then for a small perturbation h the solution xt+h of
H(xt+h, t + h) = 0 will be close to xt, and hence it can be
computed fast with Newton method using xt as initial values.
Hence, as t varies smoothly from 1 to 0, x0 will smoothly
converge to a root x∗ of F . Obviously, this process has to be
iterated for each root x0 of G.

It remains to decide how to choose the starting system.
Suppose F has n polynomials of degree d1, . . . , dn. By Bézout
theorem [29], F can have at most K =

∏n
i=1 di distinct roots.

Hence choosing G to have exactly K distinct solutions will
guarantee finding all solutions of F . A system satisfying this
property can be easily constructed by choosing

G =

x
d1
1 − a1

...
xdn
n − an

 , (4)

where ai are some non-zero complex numbers. The system
G(x) = 0 will then have exactly K solutions.

Now, for each root x0 of G, we apply homotopy continua-
tion and track the path to the roots of F . It is good to notice
that F needs not have K distinct solutions. Indeed, sparse sys-
tems are very likely to have strictly less distinct solutions than
K. Practically, this means that a starting system built with (4)
will introduce some computational overhead, as it will track
more paths than necessary. Recently, more efficient initial-
izations, exploiting polyhedral geometry, have been proposed
for sparse systems [30], [31]. In our numerical experiments,
we used the Julia implementation HomotopyContinuation.jl
[32] and the polyhedral starting system proposed in [31] as
initialization.



III. SOLVER DESIGN

Directly applying homotopy continuation to the equations
as in (1) would result in a poorly conditioned solver. In this
section we describe the algebraic manipulation that leads to a
more stable formulation of the problem.

A. Parametrization of positions

In the general 2D case, node positions require 2m+2n−3
unknowns. However, it was shown in [6], that for the case
with n = 3, the positions can be parametrized using only five
unknowns.

We start by defining the compaction matrix D̃ ∈
R(m−1)×(n−1) as

[D̃]ij = d2i+1,j+1 − d21,j+1 − d2i+1,1 + d211, (5)

and fix the Gauge freedom by setting r1 = 0 and r2y = 0.
The remaining points can be parametrized as follows [16]

s1 = Lb,

ri = L−TD̃T
i−1, i = 2 . . .m,

[s2 s3] = L

(
−1

2
I+ [b b]

)
,

(6)

where b is a vector of 2 unknowns and L is a 2 × 2 upper
triangular matrix, I is the identity matrix and D̃i denotes the
ith row of D̃. Defining the symmetric matrix H = (LTL)−1

we can derive the equations

(A) d211 = bTH−1b,

(B) d21j − d211 =
1

4
eTj−1H

−1ej−1 − bTH−1ej−1,

(C) d2i1 − d211 = D̃i−1HD̃T
i−1 − 2bTD̃T

i−1,

(7)

where [e1, e2] are the standard basis of R2 and i = 2, . . . ,m
and j = 2, 3. Since H is symmetric, it has only 3 unknowns.
Recalling we also have 3 unknown offsets, the total number
of unknowns will be 8. For a general configuration with m
receivers and 3 transmitters we will have 1 equation of type
(A), 2 equations of type (B) and m− 1 equations of type (C),
hence m+ 2 constraints in total.

B. Offset constraints

It can be shown [10], that the compaction matrix (5) must
have rank 2. For configurations with m ≥ 4 and n ≥ 4,
this means that some extra constraints can be imposed on the
offsets by setting all 3 × 3 determinants in D̃ to 0. While
we can obtain

(
m−1
3

)
·
(
n−1
3

)
rank constraints in total, only

(m− 3)(n− 3) of those are independent. This approach was
used in [6] to solve some overdetermined problems by first
solving for the offsets separately and then localizing the nodes
using synchronized network calibration techniques. Note that
this approach alone is not suitable for smaller networks, but
it can still offer extra constraints to add to (7).

During the experiments we will use both the initial formu-
lation and the one described in this section. To distinguish
between the two, we call the one using equations as in (1)
the primal formulation, and the one using equations (7) and
eventual offset constraints the dual formulation.

C. Summing up: building the homotopy solvers

The dual formulation significantly reduced the complexity
of the problem and it can thus be efficiently solved by
homotopy continuation. Here we discuss some solver-specific
implementation details, to allow reproducibility of the exper-
iments.

• 6r/3s: This is a minimal configuration. Using the dual
formulation, we obtain a total of 8 unknowns and 6+2 =
8 equations like (7). This nonlinear polynomial system
can now be solved with homotopy continuation. Next
L can be retrieved with Cholesky factorization and the
positions can finally be computed with (6). Being a non-
linear minimal problem, the uniqueness is not guaranteed.
However, not all the solutions of the dual formulation
are necessarily solutions of the primal. Particularly, we
accept only real solutions of the dual formulation, i.e.
solutions which are real and lead to a positive definite
matrix H. However, some of the real solutions may still
be false solutions. These can be pruned even more by
substituting the real solutions into the primal formulation
and accepting only those with a residual error lower than
a given threshold.

• 7r/3s and 6r/4s: For both instances, we first discard the
extra receiver (for 7r/3s) or transmitter (for 6r/4s) and call
the 6r/3s solver. For each candidate solution of the 6r/3s
we trilaterate the extra receiver from 3 transmitters for
7r/3s, or trilaterate the extra transmitter and offset from
4 receivers for 6r/4s. Finally, we substitute the candidate
solutions into the primal problem and output the one that
leads to the smallest residual error.

• 5r/4s: As mentioned in the introduction, this problem is
interesting because it is not minimal, but it cannot be
reduced to minimal configurations either. Using the dual
formulation, this configuration has 5 + 4 = 9 unknowns.
From the whole compaction matrix, we obtain 2 inde-
pendent rank constraints and leaving the last transmitter
out, we can obtain 7 equations in H,b and the first 3
offsets, having 9 equations in total. We can thus solve
the dual formulation using homotopy continuation and
finally trilaterate the last transmitter from 3 receivers. As
this problem is subminimal, the solution is unique. Hence,
from the multiple solutions of the dual formulation, we
accept the one that leads to the smallest residual error in
the primal formulation.

• 5r/5s: To solve this configuration, we simply leave out
the last transmitter and offset, call the 5r/4s solver and
finally trilaterate the last transmitter and offset from 4
receivers.

IV. RESULTS

In this section we discuss benchmarking of the solvers on
synthetic data. Th experiments are run with Matlab 2019b and
Intel i7-8565U CPU@1.80GHz processor. Each solver ran in
approximately 10 s.



Fig. 1: Quantitative benchmark of our solvers. Upper row: relative error distributions for clean data. Lower row: median
relative error at different noise levels, both in logarithmic scale.

(a) (b)

Fig. 2: Number of solutions and primal residual errors for 6r/3s
solver.

A. Minimal solver: 6r3s

The 6r3s configuration is minimal and as such, it is guar-
anteed to have a finite, but not unique, number of solutions. It
was speculated in [23] that the 6r3s configuration would have
up to 150 solutions. To investigate this claim, we simulate
this configuration with nodes at random positions and offsets
and compute the number of real solutions obtained from the
dual formulation. The distribution of the number of solutions
is depicted in Figure 2a. As the histogram and Table II reveal,
the dual formulation has from 2 to 55 real solutions. However,
not all the real solutions of the dual are necessarily solutions of
the primal. Indeed, Figure 2b shows the residual errors when
the dual solutions are substituted into the primal system. As
this histogram reveals, only some of the dual solutions are
solutions of the primal problem and the others are false roots.
Practically, this means that we can prune even more the set
of real solutions by accepting only those that have a residual
error in the primal problem less than a given threshold. In the
experiments, we used a threshold of 10−10 and the distribution
of the feasible real solutions is also reported in Figure 2a
and Table II. Despite the number of solutions is significantly
smaller than what was predicted in [23], still a unique solution
cannot be obtained without some extra knowledge of the
system. Furthermore, removing the false solutions thresholding
the residuals in the dual formulation works fine for clean data.

TABLE II: Number of solutions of the 6r/3s solver

min max mean st. deviation
real solutions 2 55 8.7 7.6
feas. solutions 1 32 3 3.9

In the presence of noise false roots may also be included, or
feasible roots excluded. For this reason, in the next section
we also examine subminimal configurations, for which the
uniqueness of the solution is guaranteed.

B. Subminimal solvers

We first benchmark our solvers with clean data, by gener-
ating hundreds of random instances of the problems, using
a Gaussian distribution for both position and offset. The
distributions for position and offset errors are depicted in
Figure 1. As can be noticed, the solvers can achieve very
accurate solutions, with the relative error in the order of
magnitude 10−12. We also study how our solvers perform with
noisy measurements. As the lower row of Figure 1 shows,
our homotopy solver is alone stable also for noisy data even
without nonlinear refinement afterwards.

V. CONCLUSIONS

This paper addressed the problem of sensor networks self-
calibration with unsynchronized transmitters. Due to the high
number of unknowns and degree of the system, this is a
computationally challenging problem to solve. We showed that
homotopy continuation offers a powerful tool to overcome
these challenges and developed new solvers, stable both for
clean and noisy data, which allowed to solve previously
unsolved configurations. This opens several perspectives for
the applications of homotopy continuation in the domain of
network calibration and localization algorithms in general.
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