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ABSTRACT

Given a network of receivers and transmitters, the process of
determining their positions from measured pseudoranges is
known as network self-calibration. In this paper we consider
2D networks with synchronized receivers but unsynchronized
transmitters and the corresponding calibration techniques,
known as Time-Difference-Of-Arrival (TDOA) techniques.
Despite previous work, TDOA self-calibration is computa-
tionally challenging. Iterative algorithms are very sensitive to
the initialization, causing convergence issues. In this paper,
we present a novel approach, which gives an algebraic solu-
tion to two previously unsolved scenarios. We also demon-
strate that our solvers produce an excellent initial value for
non-linear optimisation algorithms, leading to a full pipeline
robust to noise.

Index Terms— Time Difference of Arrival, Sensor Net-
works Calibration, Minimal Problems

1. INTRODUCTION

Wireless Sensor Networks have been widely studied [1, 2,
3, 4] and have been successfully applied to several domains,
such as positioning [5], mapping [6], microphone array cal-
ibration [7] and beamforming [8]. In order to be properly
used, the network must first be calibrated, i.e. the positions of
its nodes need to be determined. This can be done e.g. using
transmitters at a known position and trilaterating the network
nodes. However, several applications require simultaneous
localization of both receivers and transmitters [9, 10]. This is
known as network self-calibration and it is the main theme of
this paper.

Let us consider a network with m receivers and n trans-
mitters, shortly denoted as mr/ns. From the measurements
mn equations will be available to solve the self-calibration
problem. Now, we consider two different scenarios:

• Synchronized RXs and TXs: In this situation, the time
instants at which the signal is transmitted and measured
are known and hence the distances between RX and TX
are measured. For each pair of receiver-transmitter, the

following polynomial equation is obtained

f2ij = d2ij = ‖ri − sj‖2, (1)

where fij is the measured range and dij is the distance
between the receiver located at ri and the transmitter
located at sj . In total we will have K(m + n) − G
degrees of freedom (DoF), where K denotes the spa-
tial dimension (K = 2, 3) and G is the Gauge freedom
(G = 3 in 2D and G = 6 in 3D). Since we measure
only distances, the positions can be recovered only up
to a Euclidean transformation. Practically, this means
that the coordinate systems in which we solve the co-
ordinates can be chosen freely, reducing the degrees
of freedom. This formulation is known as Time-Of-
Arrival (TOA) [11].

• Synchronized RXs and unsynchronized TXs: In this
situation, all receivers will measure the time of arrival
in the same clock frame. For each pair of transmitter-
receiver, the following polynomial equation is obtained

(fij − oj)2 = d2ij = ‖ri − sj‖2. (2)

As equation (2) shows, each transmitter introduces an
extra unknown oj , the time offset between the transmit-
ter local clock and the receivers clock. The total num-
ber of degrees of freedom will thus beK(m+n)+n−
G. This formulation is known as Time-Difference-Of-
Arrival (TDOA) [12].

The above mentioned equations could be solved by numeri-
cal iterative methods [13, 14]. These approaches, however,
can suffer from several issues such as getting stuck in lo-
cal minima, slow convergence and sensitivity to outliers. It
has been shown that algebraic non-iterative approaches can
achieve higher accuracies [11, 12, 15, 16, 17]. Furthermore,
using the algebraic solution as initial value for iterative meth-
ods allows a faster and more accurate convergence.

This paper focuses on 2D-TDOA (K = 2, G = 3), i.e.
we simultaneously determine both receivers and transmitters
positions, as well as transmitters time offsets. The total num-
ber of degrees of freedom is 2m+ 3n− 3 and the configura-
tions for which the number of DoF equals the number of equa-



Table 1: Different TDOA configurations. X: solved in [12].
M: minimal. O: solved in this paper. *: reducible to a solved
configuration. -: Unsolved. u: underdetermined

m/n 3 4 5 6
4 u u M -
5 u - - X
6 M O * *
7 - X * *
8 - * * *
9 O * * *

tions are referred to as minimal configurations and the prob-
lems of network self-calibration with the minimum amount of
receivers and transmitters are called minimal problems. The
minimal configurations for 2D TDOA are 6r/3s and 4r/5s.
Previous work developed algebraic solvers for non-minimal
cases, such as 7r/6s, 5r/6s [12] and 8r/4s [18], however the
minimal problems cannot be solved algebraically yet.

In this paper, we fill the gap towards minimal problems,
proposing a new approach, able to solve two previously un-
solved configurations: 9r/3s and 6r/4s, as summarized in
Table 1 In contrast to previous methods, where TDOA was
tackled by first solving for the offsets and then solving the
remaining TOA problem, our approach combines TOA and
TDOA ideas and jointly solves both offsets and positions, re-
ducing the overall computation load of the pipeline. Further-
more, we provide a quantitative estimate of the computational
complexity of several unsolved configurations.

The paper is structured as follows: in Section II the cur-
rent state of the art of TOA and TDOA solving techniques is
reviewed. In Section III our proposed method is explained,
and our solvers are benchmarked in Section IV. Finally, con-
clusions are drawn in Section V.

2. RELATED WORK

In these sections, we review the state-of-the-art techniques
that have been used to algebraically solve TOA and TDOA so
far.

2.1. TOA

From the distances dij we can define the compaction matrix
[11] D̃ ∈ R(m−1)×(n−1) such that

[D̃]ij = d2i+1,j+1 − d21,j+1 − d2i+1,j + d211. (3)

With algebraic manipulation, it can be shown that the fol-
lowing factorization holds

D̃ = −2RTS, (4)

where Ri = [ri+1 − r1] for i = 1 . . .m − 1 and similarly
Sj = [sj+1 − s1] for j = 1 . . . n− 1.

This factorization is not unique, suppose we have a fac-
torization D̃ = R̃S̃. Clearly, for each full-rank matrix L, it
holds D̃ = R̃TL−1LS̃ = R̃T S̃. After R̃ and S̃ have been
computed using e.g. Singular Value Decomposition, the prob-
lem is reduced to determine the matrix L so that R = L−T R̃
and S = LS̃. The receivers and transmitters can now be
parametrized as follows

r1 = 0 s1 = Lb,

ri = L−T R̃i−1, i = 2 . . .m,

sj = L

(
−1

2
S̃j−1 + b

)
, j = 2 . . . n,

(5)

where b is a vector to be determined. Finally, defining H =(
LTL

)−1
, the following equations can be derived

(A) d211 = bTH−1b,

(B) d21j − d211 =
1

4
S̃T
j−1H

−1S̃j−1 − bTH−1S̃j−1,

(C) d2i1 − d211 = R̃T
i−1HR̃i−1 − 2bT R̃i−1,

(6)

with i = 2 . . .m and j = 2 . . . n. Since the matrix H is
symmetric, it can be parametrized in 3 unknowns and hence
H and b will depend on 5 parameters in total. Given m re-
ceivers and n transmitters, one equation of type (A) with de-
gree 3, n − 1 equations of type (B) with degree 2 and m − 1
equations of type (C) with degree 1 are obtained. A fast poly-
nomial solver can finally be derived from these equations us-
ing Gröbner basis [19, 17, 20]. This approach was exploited
in [11] to solve the TOA minimal problems.

2.2. TDOA

For TDOA, D̃ depends on the offsets and hence it cannot be
factorized numerically. As a consequence, the parametriza-
tion of the previous section cannot be used. However, from
the dimensions of R and S, we notice that rank D̃ = 2. If
m > 3 and n > 3, this means that D̃ is rank deficient and
thus all 3 × 3 subdeterminants must be equal to zero. De-
spite having in general

(
m−1
3

)
·
(
n−1
3

)
subdeterminants, the

following theorem holds.

Theorem 1 Given a rank 2 matrix A ∈ R(m×n), m,n > 2
then (m − 2)(n − 2) independent rank constraints can be
obtained. [12]

Since the compaction matrix is D̃ ∈ R(m−1)×(n−1), given
m receivers and n transmitters, (m − 3)(n − 3) indepen-
dent constraints can be obtained. This approach was used
to solve some TDOA configurations in [12], where the rank
constraints were used to determine all the offsets, reducing
the problem to TOA. It is good to notice, however, that rank
constraints alone cannot be used to solve the minimal cases of
TDOA. For the minimal problem 6r/3s, the compaction ma-
trix will already have two columns, and hence no rank con-
straints can be derived. For the other minimal case, 4r/5s,



only two independent constraints can be obtained, which is
not enough to solve for the five unknown offsets. In this pa-
per we propose a different symbolic factorization of the com-
paction matrix, which allows to exploit the parametrizations
(5)-(6), leading to new solvers for previously unsolved cases.

3. PROPOSED METHOD

In this section we describe the numerical techniques used to
solve the problems arising in TDOA. The core idea is to use
the factorization in (4) to produce new equations depending
on both offsets and coordinates. Opposed to previous TDOA
approaches, we aim at solving all unknowns in one step. First,
we show how a trivial factorization can be obtained when only
three transmitters are present. Next, we show how this can
be generalized to more transmitters. In all our formulations,
we fix the Gauge freedom by imposing r1 = 0 and r2 =
[r2x, 0]

T .

3.1. Three transmitters

If only three transmitters are available, no rank constraints
can be imposed. However, it can be noticed that the following
holds

D̃ = (D̃T )T I, (7)

where I, is the identity matrix. Hence, we can formulate the
equations in (6) imposing R̃ = D̃T and S̃ = I, obtaining
m+ 2 equations in 8 unknowns (5 for H and b and 3 for the
offsets). The minimal case is, as previously shown, 6r/3s. It
is good to notice that now equations of type (C), despite being
linear in H and b, are overall of degree 3, as R̃ depends on
the unknown offsets. For the subminimal cases (m > 6), we
have more constraints than unknown. This raises the question
how should we pick the eight equations from the m+2 avail-
able? First, let us introduce the notation abc to denote the
formulation using a equations of type A, b equations of type
B and c equations of type C. Now for each formulation we
compute the standard monomial basis B [21] associated with
its polynomial ideal. It was shown in previous work [19, 17],
that the size of the standard monomial basis can be used as
a complexity measure for the problem. The smaller it is, the
faster and more accurate the final solver will be. The results
of the simulation are shown in Table 2.

Table 2: Size of the standard monomial basis for different
formulations using 3 receivers.

A B C |B|
0 0 8 75
0 1 7 116
1 0 7 160
1 1 6 198
0 2 6 144
1 2 5 181

As can be noticed from Table 2, equations of type C lead
to the lowest computational complexity and equations of type
A to the highest computational complexity. Particularly, for
the 9r/3s case, the problem can be solved using only equations
of type C. The last row of the table corresponds to the minimal
problem 6r/3s. Observing Table 1, this new solver allows to
calibrate a network using as little as 3 transmitters, whereas
previous state-of-the-art solvers could not handle networks
with only 3 transmitters.

Summarizing the previous discussion, we obtain the fol-
lowing final numerical receipt for the new 9r/3s solver:

1. Formulate the polynomial equations using the factor-
ization (7) and the equations of type (C) from (6).

2. Using the techniques described in [19] and [17], gener-
ate a solver for the polynomial system.

3. Compute the receivers and transmitters positions using
(5)

4. Refine the solution of the previous step using non-linear
optimisation (e.g. Levenberg-Marquardt algorithm).

3.2. More than three transmitters

If we have more than three transmitters, then S̃ will not be
square and it cannot be directly replaced by the identity ma-
trix. Thus, in order to use the factorization in (7), we need
to discard some transmitters. Particularly, let us consider the
previously unsolved case 6r/4s, using the parametrization in
(6), we obtain 9 unknowns in total, 5 for H and b and 4 for
the offsets. Now our compaction matrix D̃ has size 5× 3. To
solve this configuration, we consider the new compaction ma-
trix D̂, obtained discarding the last column of D̃. Using the
same method described in the previous section, we obtain 1
equation of type (A), 2 equations of type (B) and 5 equations
of type (C), i.e. 8 equations in total. Furthermore, since the
original compaction matrix D̃ has to be rank 2. Imposing all
3×3 minors to 0, we obtain 10 equations in the offsets, out of
which only 3 are independent by Theorem 1. Again, we have
computed the standard monomial basis for different combina-
tions of the above mentioned equations and determined that
the most efficient solver was obtained including all 5 equa-
tions of type (C), one equation of type (B) and all 10 rank
constraints. This formulation leads to a standard monomial
basis of size |B| = 22. Despite only 3 rank constraints would
have been enough, numerical experiments revealed that using
all 10 equations leads to a more stable solver. Particularly, if
only 3 rank equations had been used, we would have obtained
|B| = 66. Once the offsets and the parameters H and b have
been determined, the receivers and the first 3 transmitters can
be determined with (5). The last transmitter s4 is finally com-
puted using trilateration.



Table 3: Estimate of the size of the standard monomial ba-
sis for different TDOA configurations. X: solved in [12]. -:
unsolved u: underdetermined. *: reducible to an solvable
configuration. Underlined the new solvers proposed in this
paper.

m/n 3 4 5 6
4 u u - -
5 u 154 64 X
6 181 22 * *
7 144 X * *
8 116 * * *
9 75 * * *

4. RESULTS

In this section, the experiments to quantitatively evaluate our
solvers are presented. The solvers are benchmarked against
synthetic data. The positions of the receivers and transmit-
ters are sampled from a zero-mean normal distribution with
standard deviation 10. The time offsets are generated from a
standard normal distribution. Our generated Matlab solvers
lead to accurate solutions and run in ∼ 200ms on an Intel i7-
8565U processor, thus being suitable for near-real-time appli-
cations.

In addition to the two proposed solvers, we also computed
the standard monomial basis for configurations between the
previously solved and the minimal ones, using the approach
described in this paper. The results, depicted in Table 3, can
be used to roughly assess the computational complexity of the
unsolved cases, giving hints on their feasibility.

4.1. Clean data

To evaluate our solvers, we randomly generate input data and
solve the self-calibration problem with them. At this step, we
consider noiseless data. We also compare our solvers with the
situation where the iterative algorithm is initialized with ran-
dom positions and offsets, drawn from the same distributions
of the ground truths. The relative error distributions, obtained
running the solvers 1000 times with different random data,
are shown in Fig. 1 and the median relative errors in Table 4.
As can be noticed, even for clean data, a random initialization
fails to converge. Our solver, on the other side, produces ac-
curate solutions, with the relative error being practically equal
to the machine epsilon of the computer. Furthermore, using
the solution of our solver as a starting point, the iterative al-
gorithm converges already after very few iterations.

4.2. Noisy data

We also investigate how our solvers perform with noisy data,
adding zero-mean Gaussian noise with varying standard devi-
ation σ to the measurements fij . The results of the simulation

Table 4: Median relative errors in logaritmic scale of the pro-
posed solvers.

Solver Position error (log10) Offset Error (log10)
9r/3s rand 0.31 1.63
9r/3s ours -15 -14
6r/4s rand 0.55 1.93
6r/4s ours -15 -14
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Fig. 1: Relative error distribution for position and offsets
when Levenberg-Marquardt is initialized with our solver
(ours) and with a random initial value (rand).
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Fig. 2: Median error as a function of σ for position (left) and
offsets (right).

are shown in Fig. 2. As it was discussed before, TDOA prob-
lems are sensitive to the choice of the initial value and a poor
initialization can cause convergence issues. While random
initialization fails, using our solvers removes this problem,
allowing fast and accurate convergence, even at higher noise
levels.

5. CONCLUSIONS

In this paper we considered the sensor network self-calibration
problem from 2D TDOA measurements. We proposed a novel
algorithm which led to new robust and efficient polynomial
solvers, which allowed to solve two previously unsolved con-
figurations. We showed that the solutions obtained with our
approach are stable both for clean and noisy data.
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