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ABSTRACT: 
This thesis examines the forecasting accuracy of implied volatility and investigates whether the 
expected volatility of implied volatility or the market volatility level affects the forecasting 
performance. Therefore, the OLS and quantile regressions are used to test the relationship 
between future realised volatility and the VIX index on various levels of market volatility. In 
addition, the impact of the VVIX index on the absolute percentage deviation between S&P 500 
realised volatility and one-month lagged VIX is examined. The realised volatility is estimated 
using the range-based volatility estimator.  
 
Consistent with prior literature, the results show that implied volatility is a reasonable but biased 
forecast of future volatility over a one-month forecasting horizon. The conclusion remains the 
same regardless of whether overlapping data, non-overlapping data or log-transformed varia-
bles are used. The forecasting accuracy seems to increase during periods of high market volatil-
ity. However, the results for the quantile regression indicate that the forecasting accuracy does 
not significantly vary within the level of realised volatility. Moreover, the implied volatility of the 
VIX index seems to be negatively associated with the forecasting performance of VIX. 
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TIIVISTELMÄ: 
Tämä tutkielma tarkastelee implisiittisen volatiliteetin kykyä ennustaa tulevaisuuden realisoitu-
nutta volatiliteettia. Tavoitteena on selvittää, vaikuttaako implisiittisen volatiliteetin odotettu 
volatiliteetti tai markkinavolatiliteetin taso ennustetarkkuuteen. Pienimmän neliösumman me-
netelmää ja kvantaaliregressiota käytetään tulevaisuuden realisoituneen volatiliteetin ja VIX-
indeksin välisen yhteyden analysointiin volatiliteetin eri tasoilla. Lisäksi tarkastellaan, vaikut-
taako VVIX-indeksi S&P 500 -indeksin ja yhden kuukauden takaisen VIX-indeksin absoluuttiseen 
prosentuaalisen hajontaan. Realisoitunut volatiliteetti estimoidaan käyttäen päivittäisten avaus- 
ja päätösarvojen lisäksi päivän korkeinta sekä matalinta arvoa. 
 
Aiempien tutkimusten mukaisesti tutkimustulokset osoittavat, että implisiittinen volatiliteetti 
kykenee ennustamaan tulevaa 30 päivän volatiliteettia, mutta se ei ole harhaton estimaattori. 
Johtopäätökset pysyvät muuttumattomina riippumatta siitä, käytetäänkö päällekkäisiä havain-
toja tai muuttujien logaritmisia muunnoksia. Ennustetarkkuus näyttää kasvavan korkean mark-
kinavolatiliteetin aikoina. Toisaalta kvantaaliregression tulosten mukaan ennustetarkkuudessa 
ei ole tilastollisesti merkittäviä eroja realisoituneen volatiliteetin eri tasojen välillä. VIX-
indeksioptioista johdetulla implisiittisellä volatiliteetilla näyttää puolestaan olevan negatiivinen 
vaikutus VIX-indeksin ennustekykyyn. 
 

AVAINSANAT: Implied volatility, volatility forecasting, VIX, range-based volatility 
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1 Introduction 

Volatility plays a significant role in finance (Andersen and Bollerslev, 1998; Dumas et al., 

1998). It is applied to explain price movements (Schwert, 1989; Grullon et al., 2012), 

manage risk (Fleming et al., 2001), value financial derivatives (Black & Scholes, 1973; Cox 

et al., 1979), and construct profitable trading strategies (Cremers et al., 2015; Moreira & 

Muir, 2017). Therefore, both volatility estimation and forecasting have received rather 

unsurprisingly considerable attention in the literature over the past decades (e.g., Engle, 

1982; Bollerslev, 1986; Figlewski, 1997; Christensen & Prabhala, 1998; Britten-Jones & 

Neuberger, 2000; Seo & Kim, 2015).  

Financial volatility is forecastable (Engle, 1993; Poon & Granger, 2005), but there seems 

to be no agreed consensus on the most efficient forecasting model (e.g., Figlewski, 1997; 

Taylor et al., 2010). Since most studies focus on comparing the performance of various 

models, little attention is given to investigate the factors affecting the forecasting perfor-

mance of implied volatility. Instead, commonly found biases in the implied volatility fore-

casts are entirely explained by market inefficiency. Hence, this thesis aims to provide a 

more comprehensive analysis of the forecasting performance of implied volatility. 

1.1 Purpose of the paper 

Even though implied volatility is often found as the most accurate forecast of future vol-

atility (e.g., Latané & Rendleman, 1976; Jorion, 1995; Poon & Granger, 2005), the fore-

cast accuracy appears to be inconsistent and imperfect (Figlewski, 1997; Christensen & 

Prabhala, 1998). Furthermore, implied volatility tends to be a biased estimate of future 

volatility despite the calculation method (Jiang & Tian, 2005; Biktimirov & Wang, 2017). 

Consequently, the purpose of this thesis is to examine how accurately implied volatility 
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can forecast future realised volatility. The addressed research question leads naturally to 

the following hypothesis: 

𝐻1: Implied volatility forecasts future realised volatility. 

The topic is widely discussed in the literature, and it seems that implied volatility is a 

reasonable predictor. However, in contrast to the majority of previous studies, which 

commonly use squared returns (e.g., Canina & Figlewski, 1993; Jorion, 1995; Christensen 

& Prabhala, 1998; Corrado & Miller, 2005; Biktimirov & Wang, 2017) or high-frequency 

data (e.g., Blair et al., 2001; Busch et al., 2011; Seo & Kim, 2015), the Garman-Klass (1980) 

range-based estimator is applied to estimate realised volatility. In addition, the recent 

behaviour of the VIX index, especially the high values during 2020, produce data that 

may reveal unrecognised features of volatility forecasting.  

As the first hypothesis provides limited evidence of the forecasting accuracy, the infor-

mation content of implied volatility requires further analysis. In the context of informa-

tionally efficient financial markets, implied volatility should be an unbiased estimate that 

contains all the available information regarding future volatility (Figlewski, 1997). If im-

plied volatility was not the most accurate forecast of future realised volatility, profitable 

trading strategies based on mispriced options could be built (Jorion, 1995). Hence, the 

second hypothesis is: 

𝐻2: Implied volatility is an unbiased estimate of future volatility. 

To avoid the joint hypothesis problem (e.g., Fama, 1991; Jorion, 1995), the VIX index is 

used to estimate implied volatility in this thesis. The VIX is based on the model-free im-

plied volatility (Jiang & Tian, 2005; Biktimirov & Wang, 2017), which facilities a direct test 

of the informational efficiency instead of a joint test (Jiang & Tian; 2005). 
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In prior research, the forecasting accuracy is found to vary over time (e.g., Christensen 

& Prabhala, 1998; Seo & Kim, 2015; Wang & Wang, 2016; Plíhal & Lyócsa, 2021). For 

instance, Plíhal and Lyócsa (2021) find the forecasting power to increase during periods 

of high market volatility. Furthermore, implied volatility tends to over-forecast high vol-

atility and under-forecast low volatility (Poon & Granger, 2005). For investigating the po-

tential changes in the forecasting performance, the third hypothesis is: 

𝐻3: The forecasting performance of implied volatility is not affected by 

the level of market volatility. 

In the same way, the forecasting accuracy appears to be affected by the level of investor 

sentiment (Seo & Kim, 2015). Since implied volatility is considered the market’s assess-

ment of future volatility (Mayhew, 1995), and volatility is inconstant (Schwert, 1989; An-

dersen & Bollerslev, 1997), the expected volatility of implied volatility could affect the 

forecasting accuracy. Therefore, the fourth hypothesis is: 

𝐻4: The forecasting performance of implied volatility is not affected by 

the expected volatility of implied volatility. 

For this purpose, the VVIX index is used as an estimate of the expected volatility (implied 

volatility) of implied volatility. 

1.2 Structure of the paper 

The rest of this thesis is organised as follows. Section 2 discusses the theoretical back-

ground of option valuation and volatility estimation. Section 3 reviews the prior litera-

ture related to the forecasting performance of implied volatility. Section 4 describes the 

data used, descriptive statistics, and the methodology for conducting the thesis. Section 

5 presents the empirical results. Section 6 concludes the paper. 
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2 Theoretical background 

As implied volatility is derived from option prices, and volatility is an unobservable vari-

able, both option valuation and volatility estimation are discussed in this section. Fur-

thermore, the VIX and VVIX indices are examined since they represent implied volatilities 

in this thesis. 

2.1 Option value 

Despite the long history of options trading (e.g., Franklin & Colberg, 1958; Kairys & Va-

lerio, 1997; Mixon, 2009; Haug & Taleb, 2011), not until 1973 was a listed options ex-

change introduced (Cox et al., 1979; Kairys & Valerio, 1997). In the same year, Black and 

Scholes (1973) presented the option pricing formula that has substantially impacted op-

tion pricing theory (Jarrow, 1999). Since then, both the options market and the literature 

relating to option valuation have expanded rapidly (Cox et al., 1979; Mixon, 2009; Hull, 

2015). 

Before the introduction of exchange-traded options, option pricing remained somewhat 

mysterious as the price quotations were not published (Franklin & Colberg, 1958). Nev-

ertheless, options seem to have been overpriced relative to theoretical valuation models 

(Kairys & Valerio, 1997), and the difference between the market prices and theoretical 

values have since decreased (Mixon 2009). Mixon (2009) argues that the shift in option 

prices toward their theoretical values stems mainly from the opening of the exchange 

rather than from the publication of the Black-Scholes (1973) model, and option pricing 

in practice has not considerably changed over time. In addition, Haug and Taleb (2011) 

suggest that options have been priced based on sophisticated heuristics and tricks, at 

least since 1902. 
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Even though traders price options arguably the same way as before (Mixon, 2009; Haug 

& Taleb, 2011), the option pricing theory has evolved over the years (Jarrow, 1999). The 

origin of the theory arises from Bachelier’s (1900) work, where essential mathematics 

related to Brownian motions and option valuation are derived (Jarrow, 1999). These find-

ings are since applied and extended in many studies that attempt to discover a theoret-

ical value for an option (e.g., Boness, 1964; Samuelson, 1965; Stoll, 1969; Black & Scholes, 

1973). 

In the early literature, it is well recognised that option values vary depending on the 

exercise price, volatility, expected growth rate of the underlying asset, and time to expi-

ration (Boness, 1964). The option value is still determined by these variables, including 

the initial value of the underlying asset and potential dividends (Hull, 2015). However, in 

the more recent literature (e.g., Black & Scholes, 1973), option values are often calcu-

lated under the assumption of risk-neutral valuation. Thus, the expected return from the 

underlying asset is assumed to be the risk-free interest rate (Hull, 2015). 

The option value can alternatively be considered in relation to its intrinsic value and 

(time) premium (Carr & Jarrow, 1990; Quigg, 1993). Because an option gives the right to 

buy or sell the underlying asset, its intrinsic value must be equal to the difference be-

tween the underlying asset's current price and the exercise price but not less than zero 

(Carr & Jarrow, 1990; Hull, 2015). The difference between the option price and its intrin-

sic value is referred to as time value (Carr & Jarrow, 1990). Hence, the value of a call 

option is 

 𝑐 = max(𝑆0 − 𝐾, 0) + 𝑡𝑖𝑚𝑒 𝑣𝑎𝑙𝑢𝑒, (1) 

and the value of a put option is 

 𝑝 = max(𝐾 − 𝑆0, 0) + 𝑡𝑖𝑚𝑒 𝑣𝑎𝑙𝑢𝑒, (2) 
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where 𝑆0 is the current price of the underlying asset, and 𝐾 is the exercise price (Carr & 

Jarrow, 1990; Hull, 2015). 

For the relationship between European put and call option values, Stoll (1969) formalises 

the put-call parity. When the risk-free interest rate is continuously compounded, the put-

call parity is given by  

 𝑐 + 𝐾𝑒−𝑟𝑇 = 𝑝 + 𝑆0, (3) 

where 𝑐 is the call option price, 𝑟 is the risk-free rate, 𝑇 is the time to expiration, and 𝑝 

is the put option price (Hull, 2015). If the relationship is considered for American options 

or dividend-paying stocks, the put-call parity requires adjustments (Hull, 2015). The em-

pirical results show that, while the put-call parity holds on average, it frequently mis-

prices options (Stoll, 1969; Klemkosky & Resnick, 1979; Evnine & Rudd, 1985; Kamara & 

Miller, 1995). However, Kamara and Miller (1995) suggest that the mispricing may hap-

pen less frequently and on a smaller scale with European than American options. 

The Black-Sholes (1973) option pricing model is “the first completely satisfactory equilib-

rium” model for option valuation (Cox et al., 1979). Since the model is expanded by Mer-

ton (1973), it is commonly known as the Black-Scholes-Merton model (Jarrow, 1999). 

The Black-Scholes formula for a European call option is  

 𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2), (4) 

and for a European put option 

 𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1), (5) 

where 
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 𝑑1 =
ln(𝑆0 𝐾⁄ ) + (𝑟 + 𝜎2 2⁄ )𝑇

𝜎√𝑇
, (6) 

   

 𝑑2 =
ln(𝑆0 𝐾⁄ ) + (𝑟 − 𝜎2 2⁄ )𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇, (7) 

𝑆0 Is the current stock price, 𝐾 Is the exercise price, 𝑟 is the continuously compounded 

risk-free rate, 𝑇 is the time to expiration, 𝜎 is the stock price volatility, 𝑁(𝑑1) and 𝑁(𝑑2) 

are the cumulative probability distributions of standard normal distributions for the ar-

eas below 𝑑1 and 𝑑2, respectively (Black & Scholes, 1973; Hull, 2015). 

Along with the Black-Scholes (1973) model’s high impact on the literature (e.g., Rubin-

stein, 1994; Jarrow, 1999), its failure to price options correctly is well recognised (Black, 

1975; Macbeth & Merville 1979; Rubinstein, 1985; Hull & White, 1987; Lauterbach & 

Schultz, 1990; Mayhew, 1995). Even though the strict assumptions behind the Black-

Scholes (1973) model are regularly violated in the real market (Lauterbach & Schultz, 

1990), many of these assumptions, such as the absence of riskless arbitrage opportuni-

ties, seem to be rather necessary for option valuation (Hull, 2015). 

The binomial option pricing model (Cox et al., 1979) is a more simplified approach for 

valuing options. In contrast to the Black-Scholes (1973) model, the binomial model al-

lows for calculating the underlying asset and the option for multiple periods (Cox et al., 

1979). The option value is solved by constructing a binomial tree, which represents the 

possible outcomes of the stock price in each time step until the expiration (Cox et al., 

1979; Hull, 2015). Because the binomial model can incorporate the changes at different 

periods, it is also suitable for valuing American options (Hull, 2015). 

A general two-step binomial tree is illustrated in Figure 1. Since the price of the underly-

ing asset is assumed to have two possible outcomes, up to 𝑢 times its initial value and 

down to 𝑑 times its initial value, the option price, 𝑓, in each step is calculated as 
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 𝑓 = 𝑒−𝑟∆𝑡[𝑞𝑓𝑢 + (1 − 𝑞)𝑓𝑑], (8) 

where the probability of an up movement, 𝑞, in a risk-neutral world is 

 𝑞 =
𝑒𝑟∆𝑡 − 𝑑

𝑢 − 𝑑
, (9) 

𝑟 Is the risk-free interest rate, ∆𝑡 is the length of the time step, 𝑓𝑢 is the option if the 

stock moves up, and𝑓𝑑  is the option value if the stock moves down (Hull, 2015). 𝑆0 in 

Figure 1 denotes the initial value of the underlying asset.  

 

Figure 1. A general two-step binomial tree (Hull, 2015). 

In searching for a realistic result, the parameters 𝑢 and 𝑑 should be chosen to match the 

underlying asset's volatility (Cox et al., 1979; Hull, 2015). Therefore, the proportional up 

movement of the underlying asset is  
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 𝑢 = 𝑒𝜎√∆𝑡 , (10) 

and the proportional down movement is 

 𝑑 = 𝑒−𝜎√∆𝑡 , (11) 

where 𝜎 is the volatility of the underlying asset (Cox et al., 1979; Hull, 2015). Further-

more, when considering the real world instead of the risk-neutral world, the probability 

of the up move is given by 

 𝑞∗ =
𝑒𝜇∆𝑡 − 𝑑

𝑢 − 𝑑
, (12) 

where 𝜇 is the expected return of the underlying asset (Cox et al., 1979; Hull, 2015). 

Out of all the factors that directly impact option value, volatility is the only one that is 

not observable in the market (Mayhew, 1995; Hull, 2015). Thus, option valuation is 

closely related to the estimation of volatility, and this relationship depends on the as-

sumptions underlying the option valuation formula (Dumas et al., 1998). For instance, as 

the assumption of constant volatility is often unrealistic (Schwert, 1989; Andersen & 

Bollerslev, 1997), the option pricing models may misprice options relative to their market 

prices (Black, 1975; Macbeth & Merville 1979; Lauterbach & Schultz, 1990). Conse-

quently, several other option pricing models and extensions of the Black-Scholes (1973) 

and binomial (Cox et al., 1979) models are developed in the literature (e.g., Boyle, 1977; 

Hull & White, 1987; Heston, 1993; Rubinstein, 1994). 
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2.2 Volatility 

Volatility is a measure of the dispersion of possible outcomes around the expected value, 

i.e., the uncertainty about the returns (Hull, 2015; Bodie et al., 2018). It is widely used 

to estimate investment risk among practitioners and academic research (Schwert, 1990). 

Even though volatilities of financial assets are assumed to be constant in numerous mod-

els (e.g., Black & Scholes, 1973), empirical evidence shows that volatility is usually highly 

variable, persistent and changes over time (Schwert, 1989; Andersen & Bollerslev, 1997; 

Moreira & Muir, 2017). Furthermore, actual volatility is unobservable and must be esti-

mated over a specified period (Molnár, 2012; Corsi et al., 2013). 

Volatility is generally measured by calculating the standard deviation of returns (Schwert, 

1990), although there is no agreed consensus on the most efficient measure (Engle & 

Gallo, 2006). The sample standard deviation of returns is given by 

 �̂� = √
1

𝑛 − 1
∑(𝑅𝑖 − �̅�)2

𝑛

𝑖=1

, (13) 

where 𝑅𝑖 is the return at time interval 𝑖, �̅� is the average return (sample mean), and 𝑛 

denotes the number of observations (Ederington & Guan, 2006; Hull, 2015). Since stock 

prices are widely assumed to follow a geometric Brownian motion, 

 𝑑𝑆 = 𝜇 𝑆 𝑑𝑡 + 𝜎 𝑆 𝑑𝑧 (14) 

or 

 
𝑑𝑆

𝑆
= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑧, (15) 
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where 𝑑𝑆 is the asset price change over a time interval 𝑑𝑡, 𝜇 is the mean return, 𝜎 is the 

volatility, and 𝑑𝑧 is a Wiener process, a stock return over any period 𝑖 can be calculated 

as 

 𝑅𝑖 = ln (
𝑆𝑖

𝑆𝑖−1
), (16) 

where 𝑆𝑖 is the stock price at the end of the interval 𝑖 (Figlewski, 1997; Hull, 2015). 

When volatility is computed from historical returns, the estimated volatility refers to his-

torical volatility (Figlewski, 1997; Poon & Granger, 2005). In estimating historical volatility, 

asset prices are commonly observed at fixed intervals of time, e.g., daily closing prices 

(Molnár, 2012; Hull, 2015). However, because asset prices do not follow the geometric 

Brownian motion exactly, historical volatility varies depending on the length of intervals 

in the estimation (Figlewski, 1997). Moreover, the sample mean is a noisy estimate of 

the true mean in financial time series, particularly over short horizons (Figlewski, 1997; 

Poon & Granger, 2005). Thus, instead of calculating the deviation from the average re-

turn, the sample mean is sometimes set to zero as average short-term (e.g., daily or 

weekly) returns tend to be close to zero (Figlewski, 1997; Poon & Granger, 2005; Molnár, 

2012). 

Even though the mean estimate cannot be improved by sampling data more frequently 

(Poon & Granger, 2005), the use of high-frequency data increases the accuracy of esti-

mates of actual volatility (Andersen & Bollerslev, 1998; Poon & Granger, 2005; Molnár, 

2012). For instance, Andersen and Bollerslev (1998) find that volatility measures based 

on high-frequency returns reduce noise and improve temporal stability relative to 

measures based on daily returns. However, volatility estimation from intraday high-fre-

quency data is complex in practice because of the issues with data accessibility and mar-

ket microstructure features (Andersen & Bollerslev, 1998; Molnár, 2012). Furthermore, 

sampling at longer intervals can limit the effect of serial dependence (Figlewski, 1997). 
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As discussed above, the assumption of constant volatility is often unrealistic. Conse-

quently, Engle (1982) introduces the autoregressive conditional heteroscedasticity 

(ARCH) model to recognise the time-varying volatility. In the ARCH model, the condi-

tional variance of the error term at a particular time point is described as a function of 

past residuals, which implies that the volatility of the time series varies depending on 

the data point (Engle, 1982). The ARCH model and its extensions are widely applied in 

volatility modelling (Bollerslev et al., 1992; Figlewski, 1997; Hansen et al., 2012). 

The generalized autoregressive conditional heteroscedasticity (GARCH) model, proposed 

by Bollerslev (1986), is an extension of the ARCH model. The GARCH model includes past 

conditional variances in the current conditional variance equation (Bollerslev, 1986). 

Thus, the volatility at a certain time point is dependent not only on the past squared 

residuals but also on the past conditional variances (Bollerslev, 1986). The GARCH mod-

els seem to work better with short estimating horizons (Lamoureux & Lastrapes, 1993; 

Figlewski, 1997). However, the GARCH models based on daily returns cannot precisely 

capture volatility (Hansen et al., 2012; Molnár, 2012). For instance, Andersen et al. (2003) 

find that the standard GARCH model is unsuitable for situations where volatility changes 

rapidly to a new level. 

Since high-frequency data is not always available for every financial asset, and volatility 

measures based only on low-frequency closing prices may be inaccurate and inefficient, 

range-based volatility estimators are proposed in the literature (e.g., Parkinson, 1980; 

Garman & Klass, 1980; Rogers & Satchell, 1991; Alizadeh et al., 2002; Brandt & Diebold, 

2006; Yang & Zhang, 2000). These estimators use the price range, defined as the differ-

ence between the highest and lowest log asset prices over a fixed sampling interval, in 

contrast to the daily return-based volatility measures that use only the information con-

tained in opening and closing prices (Alizadeh et al., 2002; Brandt & Diebold, 2006). 

Because range-based approaches recognise volatility information from the entire intra-

day price path, they can improve the estimation accuracy and even challenge the esti-
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mators based on high-frequency data (Alizadeh et al., 2002; Brandt & Diebold, 2006; 

Molnár, 2012). For instance, Molnár (2012) show that the daily returns normalised by 

the standard deviations calculated from Garman-Klass (1980) formula are almost nor-

mally distributed, and this result is similar to the results that Andersen et al. (2001) ob-

tain from high-frequency data. In addition, the range-based estimator is robust to market 

microstructure noise arising from bid-ask bounce (Alizadeh et al., 2002; Brandt & 

Diebold, 2006). 

The Garman-Klass (1980) range-based estimator is an improvement on the Parkinson 

(1980) estimator as, in addition to the high and low prices, the opening and closing prices 

are included in the formula (Alizadeh et al., 2002). The Garman-Klass (1980) volatility 

estimator is given by 

 �̂�𝐺𝑎𝑟𝑚𝑎𝑛−𝐾𝑙𝑎𝑠𝑠
2 = 0.5(ℎ − 𝑙)2 − (2 ln 2 − 1)𝑐2, (17) 

where the open-to-close return, 𝑐, is  

 𝑐 = ln(𝐶) − ln(𝑂), (18) 

the open-to-high return, ℎ, is  

 ℎ = ln(𝐻) − ln(𝑂), (19) 

the open-to-low return, 𝑙, is  

 𝑙 = ln(𝐿) − ln(𝑂), (20) 

𝐶 is the daily closing price, 𝑂 is the opening price, 𝐻 is the highest price of the day, and 

𝐿 is the lowest price of the day (Garman & Klass, 1980; Molnár, 2012). 
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Despite the strong results of producing accurate volatility estimates (Molnár, 2012), the 

Garman-Klass (1980) estimator has limitations. For instance, it does not recognise open-

ing jumps and depends on the continuous-time geometric Brownian motion with zero 

drift (Yang & Zhang, 2000; Shu & Zhang, 2006). If the drift term is significant, the Gar-

man-Klass (1980) estimator overestimate the actual variance (Shu & Zhang, 2006). None-

theless, the suitability of range estimators in historical volatility estimation is supported 

by the empirical results (Shu & Zhang, 2006; Molnár, 2012). 

2.3 Implied volatility 

In contrast to backwards-looking historical volatility, implied volatility is considered the 

market’s assessment of the volatility derived from option prices, i.e., the expected vola-

tility of the underlying asset over the option’s maturity (Mayhew, 1995; Hull, 2015). Im-

plied volatility is calculated by inverting the given option pricing formula to determine 

the volatility implied by the option market prices (Mayhew, 1995). The interpretation of 

implied volatility depends on the assumption of volatility (Mayhew, 1995). Under the 

strict assumptions of the Black-Scholes (1973) model, implied volatility represents a mar-

ket’s estimate of the constant volatility, whereas, under the assumption of time-varying 

volatility, it is the market’s expectation of the average volatility over the remaining life of 

the option (Mayhew, 1995). 

As a forward-looking estimate, implied volatility is widely used to forecast future realised 

volatility (e.g., Poon & Granger, 2005). However, since implied volatility is derived from 

market prices, it is influenced by the noisy forces of supply and demand in the market 

(Figlewski, 1997). Consequently, the forecasting accuracy of implied volatility is related 

to market efficiency (Jorion, 1995; Figlewski, 1997). In an efficient market, implied vola-

tility should contain all the available information and provide the most accurate forecast 

of future volatility (Figlewski, 1997). 
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One issue with implied volatility is its dependency on the assumptions underlying the 

option valuation formula (Dumas et al., 1998). Conversely, the model-free implied vola-

tility, derived by Britten-Jones and Neuberger (2000), is independent of any option pric-

ing formulas and extracts information from the full range of available strike prices. Jiang 

and Tian (2005) establish the validity of the model-free implied volatility and present a 

more straightforward derivation method. However, the empirical results for comparing 

model-based and model-free implied volatilities regarding forecasting performance 

seem inconsistent (e.g., Jiang & Tian, 2005; Cheng & Fung, 2012; Biktimirov & Wang, 

2017). 

2.4 The VIX and VVIX 

The CBOE Volatility Index, more commonly known as VIX, measures the 30-day expected 

volatility of the S&P 500 index implied by the real-time prices of the S&P 500 call and 

put options (Whaley, 2009; Cboe, 2019). In other words, the VIX index is an estimate of 

the implied volatility of the S&P 500 index over the following 30 calendar days (Cboe, 

2019). The VIX was introduced in 1993 by the Chicago Board Options Exchange, and its 

values are quoted in percentage points and annualised terms (Whaley, 2009; Cboe, 

2019). 

The methodology for the VIX calculation was switched from model-based to model-free 

approach in 2003 (Biktimirov & Wang, 2017). The generalised formula for the VIX is 

 𝜎2 =
2

𝑇
∑

∆𝐾𝑖

𝐾𝑖
2

𝑛

𝑖=1

𝑒𝑟𝑇𝑄(𝐾𝑖) −
1

𝑇
(

𝐹

𝐾0
− 1)

2

, (21) 

where 𝑇  is time to expiration, 𝐹  is the forward index level derived from index option 

prices, 𝐾0 is the first strike below 𝐹, 𝐾𝑖 is the strike price of 𝑖th out-of-the-money option 
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(a call if 𝐾𝑖 > 𝐾0, a put if 𝐾𝑖 < 𝐾0 and both put and call if 𝐾𝑖 = 𝐾0) and 𝑟 is the risk-free 

interest rate based on U.S. Treasury yield curve rates (Cboe, 2019). 

The forward index level 𝐹 is derived from the out-of-the-money S&P 500 index options 

centred around an at-the-money strike price (Cboe, 2019). Thus, the forward index level 

is given by 

 𝐹 = 𝑆𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒 + 𝑒𝑟𝑇(𝐶𝑎𝑙𝑙 𝑝𝑟𝑖𝑐𝑒 − 𝑃𝑢𝑡 𝑝𝑟𝑖𝑐𝑒), (22) 

where 𝑆𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒 is the price at which the absolute difference between the call and 

put prices is the smallest (Cboe, 2019). The variable ∆𝐾𝑖 measures the interval between 

strike prices above and below 𝐾𝑖 and is calculated as (Cboe, 2019) 

 ∆𝐾𝑖 =
𝐾𝑖+1 − 𝐾𝑖−1

2
. (23) 

The value 𝑄(𝐾𝑖) is the midpoint of the bid-ask spread for each option with the strike 

price 𝐾𝑖 (Cboe, 2019). The time to expiration 𝑇 is given by 

 𝑇 =
𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑦 + 𝑀𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑎𝑦 + 𝑀𝑂𝑡ℎ𝑒𝑟 𝑑𝑎𝑦

𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟
, (24) 

where 𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑦 denotes the minutes remaining until midnight of the current day, 

𝑀𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑎𝑦 denotes the minutes from midnight until 9.30 a.m., and 𝑀𝑂𝑡ℎ𝑒𝑟 𝑑𝑎𝑦  de-

notes the minutes between current and expiration day (Cboe, 2019).  

The VIX is calculated from the put and call options with more than 23 days and less than 

37 days to expiration (Cboe, 2019). All the options with a bid price of zero are excluded 

from the calculation (Cboe, 2019). Furthermore, if there are two call (put) options with 

consecutive strike prices and zero bid prices, no call (put) options with higher (lower) 

strike prices are considered for inclusion (Cboe, 2019). In the VIX calculation, options 
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with a remaining time between 23 and 30 days are distinguished as near-term options, 

and options with a remaining time between 30 and 37 as next-term options (Cboe, 2019). 

Since, at any given time, there are no options that expire precisely in 30 days, the VIX 

value is an interpolation between the results, 𝜎1
2 and 𝜎2

2, given by Equation 21 for the 

near- and next term options (Cboe, 2019). Thus, the VIX index value is obtained as fol-

lows: 

 𝑉𝐼𝑋 = 100 ∗ √[𝑇1𝜎1
2 (

𝑁𝑇2
− 𝑁30

𝑁𝑇2
− 𝑁𝑇1

) + 𝑇2𝜎2
2 (

𝑁30 − 𝑁𝑇1

𝑁𝑇2
− 𝑁𝑇1

)] ∗
𝑁365

𝑁30
, (25) 

where 𝑇1 and 𝑇2 denote the time to expiration of the near- and next term options re-

spectively,  𝑁𝑇1
 is the number of minutes to a settlement of the near-term options, 𝑁𝑇2

 

is the number of minutes to a settlement of the next-term options, 𝑁30 is the number of 

minutes in 30 days, and 𝑁365 is the number of minutes in a 365-day year (Cboe, 2019). 

In the same way as the VIX, The CBOE VVIX index is a volatility measure derived from 

option prices (Cboe, 2012). However, the VVIX is derived from the VIX options, making it 

a volatility of volatility measure (Cboe, 2012). In that sense, the VVIX estimates the im-

plied volatility of the VIX index over the following 30 days, or in other words, it represents 

the expected volatility of the VIX (Cboe, 2012). The calculation method is similar to the 

VIX index (Cboe, 2012). The correlation between the VIX and VVIX tends to be low, except 

at extreme values of VIX (Cboe, 2012). 
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3 Literature review 

After the publication of the Black-Scholes (1973) model, the research concerning option 

valuation and implied volatility has expanded. A large part of the literature examines the 

forecasting ability of implied volatility and compares implied volatility to other forecast-

ing models. In this section, the literature relating to the forecasting accuracy of implied 

volatility is reviewed. 

Analysing the options of 24 companies traded on the Chicago Board Options Exchange, 

Latané and Rendleman (1976) compare the implied volatilities derived from the Black-

Scholes (1973) model to the actual volatilities. To address the Black-Scholes (1973) im-

plied volatilities varying among the exercise prices in the real market, Latané and Rendle-

man (1976) use a weighted average implied standard deviation that considers the mon-

eyness of options. They find that the weighted average implied volatility is significantly 

correlated with the actual standard deviation and generally a more accurate predictor of 

future volatility than historical volatilities (Latané & Rendleman, 1976). 

Schmalensee and Trippi (1978), Chiras and Manaster (1978) and Beckers (1981) confirm 

the forecasting performance of implied volatility by examining options listed on the Chi-

cago Board Options Exchange. All these studies suggest that implied volatility outper-

forms historical volatility as a predictor of future realised volatility. In particular, Schma-

lensee and Trippi (1978) find the expectations of future volatility to be not influenced at 

all by historical volatility. Furthermore, Beckers (1981) shows that the information con-

tent of option prices depends on the moneyness of options, and the at-the-money op-

tions include the most relevant information.  

Unlike the previous studies (cf. Latané & Rendleman, 1976; Schmalensee & Trippi, 1978; 

Chiras & Manaster, 1978; Beckers, 1981), Gemmil (1986) and Vasilellis and Meade (1996) 

use the data from the London Traded Options Market and London Stock Exchange. The 

former finds similarly to Beckers (1981) that the moneyness of an option affects the fore-



24 

casting performance. However, Gemmil (1986) suggests that the in-the-money implied 

volatility is the most accurate forecast but only slightly better than the forecasts based 

on past share prices. Moreover, the out-of-the-money implied volatilities contain no in-

formation relevant to forecasting future volatility (Gemmil, 1986). Vasilellis and Meade 

(1996) report opposite results as the combination of time series forecast and implied 

volatility is found to outperform either of its components. 

Investigating S&P 100 index options, Canina and Figlewski (1993) find completely differ-

ent results than previous studies as implied volatility is found to have no statistically sig-

nificant correlation with future volatility. More specifically, neither implied volatility nor 

historical volatility provides accurate forecasts of future volatility (Canina & Figlewski, 

1993). On the other hand, the findings of Christensen and Prabhala (1998) and Fleming 

(1998) indicate that the volatility implied by S&P 100 option prices outperforms histori-

cal based volatility predictors. Concerning prior studies (e.g., Canina & Figlewski, 1993), 

Christensen and Prabhala (1998) argue that implied volatility is a more biased estimate 

before the regime shift around the stock market crash of 1987. 

Lamoureux and Lastrapes (1993) apply the Hull and White (1987) stochastic volatility 

option pricing model for analysing informational efficiency in the options market. They 

find that, even though implied volatility tends to unpredict future volatility, it still con-

tains valuable information not contained in the historical price process (Lamoureux & 

Lastrapes, 1993). However, as explained in Figlewski (1997), tests of the information con-

tent of implied volatility may suffer from the joint hypothesis problem. Jorion (1995) 

recognises the efficiency test results to have two possible interpretations: either the test 

procedure is faulty, or markets are inefficient.  

As an alternative to the model-based implied volatilities, the tests based on the model-

free implied volatility (Britten-Jones & Neuberger, 2000) are direct tests of market effi-

ciency instead of the joint test (Jiang & Tian, 2005). However, neither approach is con-

firmed to provide better forecasts of future volatility. For instance, Jiang and Tian (2005) 
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find the model-free implied volatility to outperform the Black-Sholes (1973) implied vol-

atility. In contrast, Biktimirov and Wang (2017) suggest that both model-based and 

model-free implied volatilities contain efficient information, but the Black-Scholes (1973) 

implied volatility provides a more accurate forecast. Furthermore, Cheng and Fung (2012) 

conclude that the Black-Scholes (1973) implied volatility subsumes all the information in 

the model-free implied volatility over one to six weeks forecasting horizons. 

Consistent with the majority of previous studies on equity options, implied volatilities of 

currency (Jorion, 1995; Xu & Taylor, 1995; Busch et al., 2011; Plíhal & Lyócsa, 2021) and 

crude oil options (Day & Lewis, 1993; Martens & Zein, 2004) are found superior com-

pared to the historical predictors. Poon and Granger (2005) summarise the findings of 

volatility forecasting literature in their review of 93 studies. First of all, they conclude 

that financial market volatility is forecastable (Poon & Granger, 2005). Second, based on 

the results of stock indexes, individual stocks, exchange rates, and interest rates from 

both developed and emerging financial markets, implied volatility seems to provide the 

most accurate forecasts of future volatility (Poon & Granger, 2005). 

For the forecasting performance of the VIX index, Fleming et al. (1995) find a strong re-

lationship between VIX and future realised stock market volatility, implying that the VIX 

performs well as a volatility forecast. Furthermore, Blair et al. (2001) show that the VIX 

provides more accurate forecasts than the forecasts based on high-frequency index re-

turns, regardless of the calculation method of realised volatility or the forecasting hori-

zon. Since the calculation of the VIX index was switched from model-based to model-

free approach in 2003 (Biktimirov & Wang, 2017), the VIX in early studies refers to the 

VXO index.  

The forecasting accuracy of VIX and VXO indices is examined by Corrado and Miller 

(2005). They find that both indices provide more accurate forecasts of the corresponding 

stock indices than historical volatilities over a one-month forecasting horizon (Corrado & 

Miller, 2005). Conversely, Becker et al. (2008) suggest that the VIX index forecasts are 
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inferior to model-based forecasts. Moreover, Han and Park (2013) compare the infor-

mation content of VIX to several realised measures constructed from high-frequency 

data. In the out-of-sample forecast, implied volatility is found more informative than the 

realised measures (Han & Park, 2013). 

Some studies detect the forecasting ability of implied volatility varying over time. For 

instance, Seo and Kim (2015) find that the forecasting performance depends on the level 

of investor sentiment. In addition, the forecasting models that recognise investor senti-

ment are shown to improve the forecasting ability (Seo & Kim, 2015). Wang and Wang 

(2016) verify the time-varying forecasting performance of implied volatility as the infor-

mation content of the intraday VIX index is found to vary during a day. More specifically, 

they conclude that the most accurate forecasts are provided around noon (Wang & 

Wang, 2016). Furthermore, Plíhal and Lyócsa (2021) find evidence of the predictive 

power of implied volatility to increase during periods of high market volatility.  

The behaviour of implied volatility indices around macroeconomic news is examined in 

several studies. Nikkinen and Sahlström (2004) show that the VIX increases prior U.S. 

macroeconomic news announcements and drops after the announcement. However, the 

findings by Chan and Gray (2018) indicate that implied and realised volatilities behave 

very differently over the days surrounding news announcements. In particular, the real-

ised volatility increases sharply, while implied volatility tends to decline (Chan & Gray, 

2018). Similarly, the OVX index seems to decrease after the release of EIA’s weekly pe-

troleum status report (Nikkinen & Rothovius, 2019). 

In summary, implied volatility is regularly found to forecast future realised volatility, but 

it is not an unbiased estimate. Instead, some findings suggest that the forecasting per-

formance varies over time. In addition, implied volatility indices are found to be affected 

by macroeconomic news announcements, which may imply that they provide biased 

forecasts if the corresponding future realised volatilities do not behave identically. This 

thesis contributes to the existing literature in two ways. First, for addressing the time-
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varying forecasting ability, this thesis examines whether the level of market volatility in-

fluences the forecasting accuracy of implied volatility. Second, the effect of the expected 

volatility of implied volatility on the forecasting performance is investigated to reveal 

further details behind the forecast bias. 



28 

4 Data and methodology 

The data and methodology for examining the forecasting performance of implied vola-

tility are presented in this section. The VIX index is used as an estimate of implied vola-

tility to diminish the probability of measurement errors. Thus, the relation between the 

VIX and future realised volatility of the S&P 500 index is tested. 

4.1 Data 

All the data is obtained from the Thomson Reuters Datastream. The data consist of the 

daily opening, closing, high and low values of the S&P 500 index, the daily closing values 

of the VIX index, and the daily closing values of the VVIX index. The time series covers 

the period from June 2006 to April 2021. 

In order to test the forecasting performance of the VIX index, the actual volatility of the 

S&P 500 index needs to be measured. Since the Garman-Klass (1980) volatility estimator 

produces accurate results from daily data (Molnár, 2012), and it is suitable for the S&P 

500 index (Shu & Zhang, 2006), the realised volatility of the S&P 500 index is measured 

by applying the Garman-Klass (1980) formula. Hence, the realised volatility estimate for 

each day is calculated as follows: 

 �̂�𝑡 = √
1

𝑛
∑

1

2
(ln (

𝐻𝑡+1−𝑖

𝐿𝑡+1−𝑖
))

2

− (2 ln 2 − 1) (ln (
𝐶𝑡+1−𝑖

𝑂𝑡+1−𝑖
))

2𝑛

𝑖=1

, (26) 

where 𝑛  denotes the number of days in the estimation horizon and 𝑂𝑡+1−𝑖 , 𝐻𝑖+1−𝑖 , 

𝐿𝑡+1−𝑖 and 𝐶𝑡+1−𝑖 are the open, high, low and close values on day 𝑡 + 1 − 𝑖. 
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The VIX represents the implied volatility of the S&P 500 index over the following 30 cal-

endar days (Whaley, 2009). Assuming that 30 calendar days correspond to 21 trading 

days on average (e.g., Figlewski, 1997), the realised volatility estimate for each day is 

calculated from the previous 21 observations, resulting in 𝑛 = 21 in Equation 26. Be-

cause the VIX index is quoted in annual terms and as a percentage (Whaley, 2009), the 

realised volatility estimate is annualised and multiplied by 100. As explained in Fleming 

et al. (1995) and Corrado and Miller (2005), the annualised volatility requires an addi-

tional adjustment of √30 21⁄  when compared to the VIX. Under the general assumption 

of 252 trading days per year, the annualised 21-day realised volatility is given by 

 �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡 = 100 ∗ �̂�𝑡√
30

21
∗ 252, (27) 

which is used as an estimate of the actual 21-day volatility of the S&P 500 index in this 

thesis. 

Table 1. Descriptive statistics of the S&P 500 realised volatility, VIX and VVIX from June 2006 to 
April 2021. 

 �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑   𝑉𝐼𝑋  𝑉𝑉𝐼𝑋 

Mean 14.87  19.75  91.37 

Median 11.95  16.91  88.99 

Maximum 80.26  82.69  207.59 

Minimum 4.05  9.14  36.14 

Standard deviation 9.75  9.60  15.98 

Skewness 3.01  2.40  1.32 

Kurtosis 15.15  10.93  7.08 

Jarque-Bera 28693.83***  13422.43***  342356.8*** 

Number of observations 3747  3747  3747 

The S&P 500 realised volatility is measured by the Garman-Klass (1980) estimator. *** indicates that 
the Jarque-Bera test rejects the null hypothesis of normality at the 1% significance level. 
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The descriptive statistics for the S&P 500 realised volatility, VIX and VVIX are presented 

in Table 1. The VIX has a 4.88 higher mean than the realised volatility, but the standard 

deviations are almost equal. However, the VIX is less skewed (2.40 vs. 3.01) and not as 

leptokurtic (10.93 vs. 15.15) as the realised volatility. The VVIX has skewness (1.32) and 

kurtosis (7.08) much lower than the VIX and realised volatility. Nonetheless, the hypoth-

esis of normality is rejected for all the variables. Furthermore, the minimum is signifi-

cantly lower for the realised volatility (4.05) compared to the minimum of the VIX (9.14), 

whereas the difference between the maximum values (80.26 vs. 82.69) is not as signifi-

cant. 

Figure 2 illustrates the VIX index and 21-day realised volatility measure of the S&P 500 

index for the whole sample period. The graph indicates a positive correlation between 

the VIX and the realised volatility. Furthermore, a visual inspection of the figure reveals 

several major spikes simultaneously in both times series, most notably, during 2008–

2009 and 2020. 

 

Figure 2. The S&P 500 realised volatility and VIX from June 2006 to April 2021. 
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4.2 Methodology 

If implied volatility is an informationally efficient forecast of future volatility, then 

 𝜎𝐴𝑐𝑡𝑢𝑎𝑙 = 𝜎𝐼𝑉 + 𝜀, 𝐸(𝜀) = 0, (28) 

where 𝜎𝐴𝑐𝑡𝑢𝑎𝑙 is the actual volatility, 𝜎𝐼𝑉 is the implied volatility, and 𝜀 is the random er-

ror with a zero mean (Figlewski, 1997). Hence, following Canina and Figlewski (1993), 

Jorion (1995), Figlewski (1997), Christensen and Prabhala (1998), and Corrado and Miller 

(2005), the forecasting performance of implied volatility is tested by running the OLS 

regression of the realised volatility on the 21-day lagged VIX values, 

 �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡 = 𝛼 + 𝛽1𝑉𝐼𝑋𝑡−21 + 𝜀𝑡 , (29) 

where �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡 is the 21-day realised volatility of the S&P 500 index observed on day 

𝑡, and 𝑉𝐼𝑋𝑡−21 is the VIX value on day 𝑡 − 21. Non-zero 𝛽1 indicates that the VIX con-

tains some information about future volatility (Christensen & Prabhala, 1998). Further-

more, the VIX is an unbiased estimate of the future volatility if 𝛼 = 0  and 𝛽1 = 1.0 

(Figlewski, 1997; Christensen & Prabhala, 1998). In addition, some information regarding 

the predictive power is indicated by 𝑅2 (Corrado & Miller, 2005). 

To examine whether the forecast accuracy is affected by historical volatility, the regres-

sion model is extended by adding the 21-day lagged realised volatility measure as follows: 

 �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡 = 𝛼 + 𝛽1𝑉𝐼𝑋𝑡−21 + 𝛽2�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡−21 + 𝜀𝑡 , (30) 

where �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡−21 is the 21-day realised volatility of the S&P 500 index observed on 

day 𝑡 − 21. If the VIX contains all the information involved in the historical volatility, the 

coefficient estimates should be 𝛼 = 0, 𝛽1 = 1.0 and 𝛽2 = 0 (Figlewski, 1997). 
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Because of the overlapping data, the possibility of serial correlation needs to be consid-

ered. Therefore, the Newey and West (1987) standard errors are used to correct for het-

eroskedasticity and autocorrelation. In some studies (e.g., Christensen & Prabhala, 1998; 

Corrado & Miller, 2005; Cheng & Fung, 2012), log-transformed data is used instead of 

the absolute values of volatility measures as the distributions of these transformed val-

ues are closer to normal. Thus, the OLS regressions are performed with the log-trans-

formed values in addition to the original volatility measures. Furthermore, 30 calendar 

days (or one month) are sometimes assumed to match 22 trading days instead of 21 (e.g., 

Corrado & Miller, 2005; Seo & Kim, 2015). However, this adjustment does not signifi-

cantly affect the conclusions of this study. 

As explained in Christensen and Prabhala (1998), non-overlapping data increases the re-

liability of regression estimates. Therefore, following Christensen and Prabhala (1998), 

Corrado and Miller (2005) and Biktimirov and Wang (2017), the OLS regressions defined 

by Equations (29) and (30) are run with monthly non-overlapping observations in addi-

tion to the full sample. Despite the smaller number of observations, diminishing serial 

correlation may decrease the probability of invalid test statistic (Jian & Tian, 2005). 

Hence, the non-overlapping sample is also used in further analysis. 

The quantile regression (Koenker & Bassett, 1978) approach is applied to investigate 

whether the forecasting performance varies among realised volatility levels. In contrast 

to the OLS regression that estimates the average relationship between dependent and 

independent variables based on the conditional mean, the quantile regression provides 

estimates in different points of the conditional distribution of a dependent variable 

(Koenker & Bassett, 1978). Therefore, the following quantile regression is constructed to 

estimate the relationship between realised volatility and VIX in five different quantiles 

(𝜏) ∈ (0.1, 0.25, 0.5, 075, 0.9): 

 𝑄𝜏(𝜏|�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚) = 𝛼(𝜏) + 𝛽1(𝜏)𝑉𝐼𝑋𝑚−1 + 𝛽2(𝜏)�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚−1 + 𝜀𝑚 , (31) 
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where 𝑄𝜏(𝜏|�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚) is the 𝜏-th conditional quantile of the 21-day S&P 500 realised 

volatility in month 𝑚, 𝑉𝐼𝑋𝑚−1 is the VIX index value in month 𝑚 − 1, and �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚−1 

is the realised volatility in month 𝑚 − 1 . The standard errors are obtained using the 

bootstrap method with ten thousand replications to consider heteroskedasticity and se-

rial correlation. 

The percentage difference between the realised volatility and lagged VIX is calculated 

for each month as 

 𝐷𝑚 = 100 ∗ |
𝑉𝐼𝑋𝑚−1 − �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚

�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚
|, (32) 

where 𝐷𝑚 is the absolute percentage difference between the matched realised volatility 

and VIX value in month 𝑚. The smaller the deviation, the more accurate is the forecast. 

The effect of volatility level on the forecast accuracy is examined by running the following 

OLS regression: 

 𝐷𝑚 = 𝛼 + 𝛽1𝑉𝑉𝐼𝑋𝑚−1 + 𝛽2𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ + 𝜀𝑚 , (33) 

where 𝑉𝑉𝐼𝑋𝑚−1  is the VVIX index value in month 𝑚 − 1 . The dummy variable 

𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ represents high market volatility and, adapting the method that Dutta et 

al. (2017) use for specifying the extreme values of the OVX index, is defined as 

𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ = 1  if both 𝑉𝐼𝑋𝑚−1 > 𝑄𝑉𝐼𝑋,3  and �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚 > 𝑄𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,3 , and 

𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ = 0 otherwise. 𝑄𝑖,3 indicates the third quartile of the corresponding vari-

able 𝑖. A positive (negative) 𝛽1 implies that the increase in VVIX (i.e., the expected vola-

tility of VIX) decreases (increases) the forecasting accuracy. Similarly, a significant 𝛽2 in-

dicates the forecasting accuracy to change during the high market volatility. 
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5 Empirical results 

In this section, the forecasting performance of implied volatility is analysed. Implied vol-

atility is shown to be able to forecast future realised volatility over a one-month fore-

casting horizon. However, the results indicate that implied volatility is a biased estimate, 

and the forecasting accuracy varies depending on the level of volatility. Furthermore, 

some evidence of the implied volatility of implied volatility affecting the forecasting abil-

ity is found. 

5.1 The relation between implied and realised volatility 

The results for the OLS regression of the realised volatility on the 21-day lagged VIX 

(Equation 29) and additionally on the 21-day lagged realised volatility (Equation 30) are 

presented in Table 2. The regression parameter estimates are reported in Columns (1) 

and (2). The Newey-West (1987) heteroskedasticity and autocorrelation consistent 

standard errors are reported in parentheses. Column 𝑡 indicates the t-statistic on the null 

hypothesis of 𝛽1 = 1.  The chi-square 𝜒2  corresponds to the null hypothesis of 𝛼 = 0 

and 𝛽1 = 1 with p-value in parentheses. 

The statistically significant slope coefficient of 0.758 for the 21-day lagged VIX, reported 

in Column (1), indicates that the VIX forecasts future realised volatility. The coefficient 

decreases slightly in the multiple regression (0.660), reported in Column (2), but remains 

significant at the 1% level, while the coefficient for the 21-day lagged historical volatility 

is much lower (0.107) and insignificant. In addition, neither of the intercept terms differs 

significantly from zero. The R-squared of 0.557 in Column (1) indicates that the VIX can 

explain 56% of the variation in the future volatility. Furthermore, R-squared values for 

both regressions are almost equal (0.557 vs. 0.559), implying that the explanatory power 

of the regression is not improved by adding the historical volatility.  
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Table 2. OLS regressions of the realised volatility on the lagged VIX. 

 (1) 𝑡 (2) 𝑡 

𝛼 -0.107  0.249  

 (1.366)  (1.095)  

𝑉𝐼𝑋𝑡−21 0.758*** -2.931 0.660*** -3.133 

 (0.082)  (0.109)  

�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡−21   0.107  

   (0.137)  

𝜒2 (p-value) 118.47  10.44  

 (0.000)  (0.005)  

Adjusted 𝑅2 0.557  0.559  

Number of observations  3726  3726  

The dependent variable is �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡. Newey-West (1987) standard errors are reported in parentheses. 

*** indicates significance at the 1% level. Column 𝑡 reports the t-statistic on the null hypothesis of 𝛽1 =
1. 𝜒2  (p-value) corresponds to the Wald test for 𝛼 = 0 and 𝛽1 = 1 and indicates its p-value in paren-
theses. 

The reported 𝑡-values of -2.931 and -3.133 in Table 2 reject the null hypothesis of 𝛽1 =

1, which suggests that the coefficient for the lagged VIX is significantly less than one in 

both models. Moreover, the chi-square statistics of 118.47 and 10.44 reject the joint null 

hypothesis of 𝛼 = 0 and 𝛽1 = 1 at the 1% significance level. According to these results, 

implied volatility does not satisfy the conditions for an unbiased estimate of realised 

volatility.  

As shown in Table 3, the OLS regression results for the log-transformed volatilities are 

consistent with the results for the original measures. The log-transformed 21-day lagged 

VIX coefficient is significantly different from zero at the 1% level despite the inclusion of 

log-transformed lagged realised volatility in the model. Moreover, the coefficient for VIX 

(0.971), reported in Column (3), satisfies the null hypothesis of 𝛽1 = 1, and the intercept 

term (-0.254) is insignificant. However, the joint hypothesis of zero intercept and unit 

slope coefficient for ln 𝑉𝐼𝑋𝑡−21 is still rejected at the 1% level.  
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Table 3. OLS regressions with the log-transformed volatility measures. 

 (3) 𝑡 (4) 𝑡 

𝛼 -0.254  -0.174  

 (0.168)  (0.153)  

ln 𝑉𝐼𝑋𝑡−21 0.971*** -0.494 0.844*** -1.765 

 (0.059)  (0.089)  

ln �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡−21   0.113  

   (0.079)  

𝜒2 (p-value) 215.85  10.56  

 (0.000)  (0.005)  

Adjusted 𝑅2 0.557  0.559  

Number of observations  3726  3726  

The dependent variable is ln �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡. Newey-West (1987) standard errors are reported in parenthe-

ses. *** indicates significance at the 1% level. Column 𝑡 reports the t-statistic on the null hypothesis of 
𝛽1 = 1. 𝜒2  (p-value) corresponds to the Wald test for 𝛼 = 0 and 𝛽1 = 1 and indicates its p-value in pa-
rentheses. 

In Column (4), the one-month lagged realised volatility is included in the regression. In 

this case, the 𝑡-statistic shows that the VIX coefficient of 0.884 is significantly different 

from one, implying a bias in the forecasting performance. However, the insignificant co-

efficient for log-transformed lagged realised volatility (0.113) implies that the lagged re-

alised volatility does not contain any information regarding future volatility beyond the 

VIX. In addition, the almost equal R-squared values (0.557 vs. 0.559) indicate that both 

models can explain roughly 56% of the variability in the realised volatility. 

Table 4 presents the results for the OLS regressions with non-overlapping monthly ob-

servations. These results are consistent with the full sample as the coefficient for VIX is 

significantly positive in both models and the 𝑅2  values indicate no substantial differ-

ences in the explanatory power. As an exception, the 𝑡-statistic of -1.246 for Column (6) 

implies that the coefficient for VIX is not significantly different from one. The null hy-

pothesis of 𝛼 = 0 and 𝛽1 = 1 is still rejected at the 5% level even though the intercept 
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and historical volatility are both insignificant. Similarly, the chi-square in Column (5) sug-

gests a rejection of the joint null hypothesis, implying that the VIX is a biased estimate. 

The results for the corresponding regression with the log-transformed variables show 

negligible dissimilarities besides the higher forecasting accuracy in the simple linear re-

gression (Appendix 1). 

Table 4. OLS regressions for the non-overlapping sample. 

 (5) 𝑡 (6) 𝑡 

𝛼 -0.951  -0.824  

 (1.629)  (1.686)  

𝑉𝐼𝑋𝑡−21 0.795*** -2.084 0.761*** -1.246 

 (0.098)  (0.192)  

�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡−21   0.037  

   (0.181)  

𝜒2 (p-value) 141.34  6.41  

 (0.000)  (0.041)  

Adjusted 𝑅2 0.571  0.567  

Number of observations  178  178  

The OLS regressions of the realised volatility on the lagged VIX for the non-overlapping monthly data. 
The dependent variable is �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑡. Newey-West (1987) standard errors are reported in parentheses. 
*** indicates significance at the 1% level. Column 𝑡 reports the t-statistic on the null hypothesis of 𝛽1 =
1. 𝜒2  (p-value) corresponds to the Wald test for 𝛼 = 0 and 𝛽1 = 1 and indicates its p-value in paren-
theses. 

The results in Tables 2, 3 and 4 are in line with the previous findings of Christensen and 

Prabhala (1998), Jian and Tian (2005), Corrado and Miller (2005), and others as the VIX 

seems to be a biased estimate of future volatility but still provides more accurate fore-

cast than historical volatility. More specifically, the coefficients for implied volatility and 

values of 𝑅2 with both full and non-overlapping sample are similar to those obtained by 

Corrado and Miller (2005). In order to examine whether the forecasting performance of 

VIX differs from other volatility indices, corresponding OLS regressions are performed 

with the DAX and VDAX. The results appear to be analogous besides the significantly 
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positive but low log-transformed lagged DAX, implying no substantial differences be-

tween the indices regarding their forecasting accuracy (Appendix 2 and 3). According to 

these results, 𝐻1 is accepted and 𝐻2 is rejected. 

5.2 Forecasting performance in different quantiles 

Table 5. Quantile regression estimates. 

 Quantile (𝜏) 

 0.1 0.25 0.5 0.75 0.9 

𝛼 0.347 -0.214 1.589 -0.095 -1.020 

 (0.989) (0.688) (1.178) (1.888) (4.721) 

𝑉𝐼𝑋m−1 0.485*** 0.566*** 0.494*** 0.642*** 1.257** 

 (0.084) (0.094) (0.110) (0.231) (0.496) 

�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,m−1 -0.000 0.014 0.148 0.248 -0.225 

 (0.108) (0.123) (0.133) (0.178) (0.388) 

Pseudo 𝑅2 0.321 0.348 0.379 0.404 0.418 

Quantile slope equality test    

 𝑄0.1 = 𝑄0.5 𝑄0.9 = 𝑄0.5 𝑄0.1 = 𝑄0.9 𝑄0.1 = 𝑄0.25 = 𝑄0.75 = 𝑄0.9 

𝜒2 0.01 2.55 2.55 3.95 

p-value 0.93 0.11 0.28 0.41 

The quantile regression estimates according to the model defined by Equation (31). The bootstrapped 
standard errors are reported in parentheses. *** and ** denotes significance at the 1% and 5% levels, 
respectively. 

The quantile regression results are presented in Table 5. The results demonstrate that 

the VIX has a considerable forecasting power regardless of the volatility level as the VIX 

coefficients appear significantly positive in every quantile. Furthermore, the pseudo 𝑅2 

values indicate the ability of VIX to explain some variability in the realised volatility. How-

ever, the coefficients, as well as the 𝑅2 values, seem to vary among the quantiles. More 

specifically, the estimates are higher (lower) in the upper (lower) quantiles, implying an 
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increasing pattern of the forecasting performance (Appendix 4). The increasing forecast-

ing accuracy of implied volatility during periods of high market uncertainty is docu-

mented in the recent study of Plíhal and Lyócsa (2021) as well. 

To further examine whether the forecasting performance of implied volatility depends 

on the market volatility level, the equality of coefficients is tested. Table 5 presents the 

results for the slope equality test for multiple quantile pairs and show that none of the 

tested quantiles are significantly unequal. Moreover, the joint test with all the observed 

quantiles does not reject the null hypothesis of equal coefficient estimates. The largest 

chi-square statistic is obtained for the test between 𝑄0.9 and 𝑄0.5, but it still does not 

indicate a significant difference. However, these results are highly dependent on the 

standard errors, and for instance, the ordinary (IID) covariances instead of the bootstrap 

resampling leads to the rejection of equal coefficients. 

5.3 The impact of volatility on the forecasting accuracy 

Table 6 presents the results for the OLS regression defined by Equation (33). The depend-

ent variable is the absolute percentage deviation between the lagged VIX and realised 

volatility. The regression is performed with the monthly non-overlapping sample to avoid 

serial correlation occurring. Consequently, as the Durbin-Watson statistic shows no evi-

dence of autocorrelation, the White (1980) heteroscedasticity-consistent standard er-

rors are used.  

Table 6 reports a positive coefficient for the VVIX at the 5% level in the simple regression, 

and 1% level after the dummy variable is included in the model. Hence, the absolute 

percentage difference is expected to increase by 0.415 or 0.551 percentage points if the 

VVIX value increases by one. This relation implies that the expected volatility of the VIX 

has a negative impact on the forecasting accuracy of VIX. In other words, an increase 
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(decrease) in the VVIX decreases (increases) the accuracy of the VIX forecast for the fol-

lowing 30-day volatility of the S&P 500 index. 

In addition, the effect of the high market volatility on the forecasting accuracy is reported 

in Table 6. The significantly negative coefficient for 𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ indicates that the abso-

lute percentage deviation between the 21-day realised volatility and one-month lagged 

VIX is -18.82 percentage points lower during the periods of high volatility. Therefore, the 

forecasting performance of implied volatility seems to be more accurate when the mar-

ket is highly volatile. These results lead to the rejection of 𝐻3 and 𝐻4. However, the low 

𝑅2 values in Table 6 indicate that further research is required. 

Table 6. The effect of volatility on forecasting performance. 

 Dependent variable: 𝐷𝑚 = 100 ∗ |
𝑉𝐼𝑋𝑚−1 − �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚

�̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚
| 

𝛼  16.032  7.182  

  (15.70)  (15.32)  

𝑉𝑉𝐼𝑋𝑚−1  0.415**  0.551***  

  (0.180)  (0.178)  

𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ    -18.823***  

    (5.678)  

Adjusted 𝑅2  0.026  0.061  

DW  1.90  1.91  

Number of observations  178  178  

The results for the OLS regression defined by Equation (33). White (1980) heteroscedasticity-consistent 
standard errors are reported in parentheses. DW corresponds to the Durbin-Watson statistic for meas-
uring autocorrelation. *** and ** denotes significance at the 1% and 5% levels, respectively. 

Figure 3 illustrates the forecasting accuracy of VIX measured by the percentage deviation 

between the one-month lagged VIX and realised volatility of the S&P 500 index. The de-

viation shows considerable variation over time, ranging from -50.10% to 190.66%. Most 

of the time, the deviation is positive, implying that the VIX regularly over-forecasts future 
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volatility. The highlighted periods represent high market volatility defined by the lagged 

VIX and realised volatility, as explained in Section 4. The mean of highlighted values 

(33.59%) is closer to zero than the mean of non-highlighted values (51.35%), implying 

growing forecast accuracy during high market volatility. 

 

Figure 3. Percentage deviation between the lagged VIX and realised volatility. 

5.4 Robustness check 

The robustness of the findings is investigated by repeating the analysis after replacing 

the range volatility estimator with the sample standard deviation. Following Figlewski 

(1997), Corrado and Miller (2005) and others, the 21-day realised volatility of the S&P 

500 index is calculated for each day as 
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, (34) 

where 𝑅𝑡+1−𝑖  represents an index return on day 𝑡 + 1 − 𝑖 , and 𝑛 = 21 , which corre-

sponds to the number of trading days in a month. Monthly realised volatility �̂�𝑅𝑉,𝑚 is 

obtained by including only non-overlapping observations in the equation. 

As shown In Table 7, the results do not change remarkably with the alternative volatility 

estimator. The lagged VVIX is significantly positive in both models, although the magni-

tude of impact is marginally smaller than the corresponding values in Table 6. Similarly, 

the dummy variable remains statistically significant and negative. These results support 

the findings of time-varying forecasting ability. 

Table 7. Results of the robustness test. 

 Dependent variable: 𝐷𝑚 = 100 ∗ |
𝑉𝐼𝑋𝑚−1 − �̂�𝑅𝑉,𝑚

�̂�𝑅𝑉,𝑚
| 

𝛼  11.746  2.298  

  (10.94)  (10.95)  

𝑉𝑉𝐼𝑋𝑚−1  0.269**  0.409***  

  (0.124)  (0.130)  

𝐷𝑢𝑚𝑚𝑦𝐻𝑖𝑔ℎ    -19.928***  

    (4.566)  

Adjusted 𝑅2  0.011  0.056  

DW  2.11  2.17  

Number of observations  178  178  

The results for the OLS regression defined by Equation (33).  The dependent variable 𝐷𝑚 is calculated 
from the �̂�𝑅𝑉,𝑚 realised volatilities defined by Equation (34). White (1980) heteroscedasticity-consistent 
standard errors are reported in parentheses. DW corresponds to the Durbin-Watson statistic for meas-
uring autocorrelation. *** and ** denotes significance at the 1% and 5% levels, respectively. 
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6 Conclusions 

This thesis examines the forecasting accuracy of implied volatility. For this purpose, the 

performance of the VIX index to predict the one-month future realised volatility of the 

S&P 500 index is analysed. In contrast to the majority of previous studies, the realised 

volatility is estimated using the range-based volatility. Furthermore, the effect of market 

volatility level and VVIX index on the forecasting accuracy is investigated. The quantile 

regression approach is applied to examine the forecasting power on different volatility 

levels. 

Consistent with prior empirical results, implied volatility is found to forecast future real-

ised volatility over a one-month forecasting horizon but not to pass the unbiased test. 

The conclusion remains the same regardless of whether overlapping, non-overlapping 

data or log-transformed variables are used. However, a notable serial correlation occurs 

with the overlapping sample, which may invalidate the test statistic despite the het-

eroskedasticity and autocorrelation consistent standard errors. 

As a contribution to the research of volatility forecasting, some evidence of the time-

varying forecasting performance of implied volatility is found. The level of market vola-

tility appears to affect the forecast accuracy as the absolute percentage deviation be-

tween one-month lagged VIX and S&P 500 realised volatility decreases during periods of 

high market volatility. Hence, the VIX index seems to forecast future volatility more ac-

curately when the market volatility is high. However, the quantile slope equality test in-

dicates that the forecasting accuracy does not vary within the level of realised volatility. 

In addition, prior work seems to not focus on the reasons for the VIX forecast bias be-

yond the explanation of market inefficiency. For extending the research further, the im-

pact of the VVIX index (i.e., implied volatility of VIX options) on the forecasting perfor-

mance of VIX is examined. The VVIX appears to have a negative influence on the VIX 
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forecasting power. In particular, an increase (decrease) in the expected volatility of VIX 

decreases (increases) the forecasting accuracy of VIX. 

Due to the nature of the VIX index, only a one-month forecasting horizon is investigated. 

Thus, additional research is needed for shorter and longer horizons. Furthermore, a 

more sophisticated research methodology and use of high-frequency data could improve 

the test results. As volatility is unobservable and inconstant, both the forecasted realised 

volatility and forecasting implied volatility are estimates of the actual volatilises. There-

fore, the effect of volatility behaviour on the forecasting accuracy in different market 

conditions could create possibilities for further research. Especially, a better understand-

ing of the volatility of volatility could improve volatility forecasting. 

Despite the limitations, these findings can be implemented by investors and financial 

practitioners. For instance, the implied volatilities of liquid and actively traded index op-

tions may provide valuable information for investors and risk management, especially 

during periods of high market volatility, as the VIX index seems to be a proper estimate 

of the 30-day future realised volatility. Furthermore, the time-varying forecasting accu-

racy implies that the markets are occasionally inefficient, which may benefit trading 

strategies that consider the time-varying forecasting performance of implied volatility. 
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Appendices 

Appendix 1. OLS Regressions with log-transformed non-overlapping data 

  𝑡  𝑡 

𝛼 -0.322  -0.226  

 (0.200)  (0.196)  

ln 𝑉𝐼𝑋𝑚−1 0.991*** -0.016 0.842*** -1.166 

 (0.071)  (0.135)  

ln �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚−1   0.131  

   (0.105)  

𝜒2 (p-value) 186.69  11.14  

 (0.000)  (0.004)  

Adjusted 𝑅2 0.595  0.597  

Number of observations  178  178  

The OLS regressions with the S&P 500 21-day realised volatility and lagged VIX for the non-overlapping 
sample. The data consist of the daily index values from June 2006 to April 2021. The dependent variable 
is ln �̂�𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑,𝑚. Newey-West (1987) standard errors are reported in parentheses. *** indicates signif-

icance at the 1% level. Column 𝑡 is the t-statistic on the null hypothesis of 𝛽1 = 1. 𝜒2  (p-value) corre-
sponds to the Wald test for 𝛼 = 0 and 𝛽1 = 1 and indicates its p-value in parentheses. 
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Appendix 2. OLS regressions with DAX and VDAX 

  𝑡  𝑡 

𝛼 1.152  1.537  

 (1.209)  (1.066)  

𝑉𝐷𝐴𝑋𝑡−21 0.788*** -3.487 0.655*** -2.910 

 (0.061)  (0.118)  

�̂�𝐷𝐴𝑋,𝑡−21   0.137  

   (0.129)  

𝜒2 (p-value) 54.58  8.92  

 (0.000)  (0.012)  

Adjusted 𝑅2 0.539  0.543  

Number of observations  3752  3752  

The OLS regressions with the DAX 21-day realised volatility and lagged VDAX. The data consist of the 
daily index values from June 2006 to April 2021. The dependent variable is �̂�𝐷𝐴𝑋,𝑡. Newey-West (1987) 
standard errors are reported in parentheses. *** indicates significance at the 1% level. Column 𝑡 reports 
the t-statistic on the null hypothesis of 𝛽1 = 1. 𝜒2  (p-value) corresponds to the Wald test for 𝛼 = 0 and 
𝛽1 = 1 and indicates its p-value in parentheses. 
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Appendix 3. OLS regressions with log-transformed DAX and VDAX 

  𝑡  𝑡 

𝛼 -0.003  0.121  

 (0.050)  (0.133)  

ln 𝑉𝐷𝐴𝑋𝑡−21 0.933*** -1.325 0.665*** -1.765 

 (0.051)  (0.092)  

ln �̂�𝐷𝐴𝑋,𝑡−21   0.243***  

   (0.088)  

𝜒2 (p-value) 108.35  13.78  

 (0.000)  (0.001)  

Adjusted 𝑅2 0.572  0.584  

Number of observations  3752  3752  

The OLS regressions with the log-transformed DAX 21-day realised volatility and lagged VDAX. The data 
consist of the daily index values from June 2006 to April 2021. The dependent variable is ln �̂�𝐷𝐴𝑋,𝑡. 
Newey-West (1987) standard errors are reported in parentheses. *** indicates significance at the 1% 
level. Column 𝑡 reports the t-statistic on the null hypothesis of 𝛽1 = 1. 𝜒2  (p-value) corresponds to the 
Wald test for 𝛼 = 0 and 𝛽1 = 1 and indicates its p-value in parentheses. 
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Appendix 4. VIX coefficient in different quantiles 
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