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Abstract: Short-circuit fault detection and classification in high-voltage direct-current (HVDC) 

electric power transmission lines are necessary for rapid location and removal of faults, as well as 

for recovering all or part of the power transmission capacity. In this study, a new and efficient 

technique is designed for protecting current-source converter-based HVDC (CSC-HVDC) lines. 

In this proposed method, new features considering the moving average and maximum coordinate 

difference criteria are extracted from local voltage and current signals measured with a relatively 

low sampling rate at the rectifier side. These extracted features provide excellent recognition to 

distinguish the external and internal short-circuit faults. The multiclass support vector machine 

model is also used to detect and classify different short-circuit faults in real-time operation. The 

comprehensive tests on a CSC-HVDC system verify the suggested protection strategy’s high 

accuracy and dependability even under the circumstances not considered in the initial preparing 

and training stage. These results also authenticate the designed scheme’s stability against external 
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faults and lightning strikes, low sensitivity to measurement noises, and excellent performance in 

detecting and classifying high-resistance internal faults. 

 

Keywords: Current-source converter; HVDC power system; Machine learning; Maximum 

coordinate difference; Moving average; Transmission line protection. 

 

Abbreviations 

high-voltage direct-current HVDC 

high-voltage alternating-current HVAC 

current-source converter CSC 

voltage-source converter VSC 

CSC-based HVDC CSC-HVDC 

support vector machine SVM 

fuzzy inference system FIS 

smoothing reactor SR 

dc filter DCF 

error-correcting output codes ECOC 

positive-pole-to-ground p-g 

negative-pole-to-ground n-g 

positive-pole-to-negative-pole-to-ground p-n-g 

positive-pole-to-negative-pole p-n 

fault detection time delay FDTD 

signal-to-noise ratio SNR 

 

Symbols 

positive pole voltage signal in front of SR Vp 

negative pole voltage signal in front of SR Vn 
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positive pole DCF current signal 𝐼𝑝
𝐷𝐶𝐹 

negative pole DCF current signal 𝐼𝑛
𝐷𝐶𝐹 

time t 

number of samples in a time window N 

length of time window τ 

rated voltage VRated 

rated current IRated 

first input feature extracted using (1) fe1 

second input feature extracted using (2) fe2 

third input feature extracted using (3) fe3 

fourth input feature extracted using (4) fe4 

number of classes in a multiclass classification problem M 

first class in a binary classification problem m1 

second class in a binary classification problem m2 

weight vector W 

soft margin coefficient or box constraint C 

number of training patterns S 

slack variable related to jth training pattern j 

binary class label related to jth training pattern dj 

jth training pattern xj 

bias of decision surface/dividing hyperplane B 

Lagrange function L(.) 

Lagrange coefficient of constraint related to jth training pattern j 

mapping function 𝜑(. ) 

kernel function 𝐾(. , . ) 

Gaussian kernel scale parameter  

number of folds in a cross-validation process k 
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1. Introduction 

High-voltage direct-current (HVDC) transmission lines may be constructed for various purposes, 

including bulk power transmission over long distances, power transmission from remote 

renewable resources (e.g., offshore wind farms), or connection of asynchronous high-voltage 

alternating-current (HVAC) networks. Two types of converters are generally used for HVDC 

systems [1]: 

■ Current-source converter (CSC) 

■ Voltage-source converter (VSC) 

Although special attention has recently been paid to the use of VSCs however, most of the existing 

HVDC systems are founded on CSCs. CSC-based HVDC (CSC-HVDC) systems may have a 

monopolar or bipolar structure. The bipolar structure usually provides higher reliability and better 

fault management than the monopolar structure [1]. Fault detection, classification, and 

identification are vital for accurate location and removal of faults to restore all or part of the power 

transmission capacity in bipolar CSC-HVDC systems. 

Inherent selectivity and sensitivity shortcomings of the traditional protections developed based on 

the under-voltage, voltage derivative, and current derivative schemes for CSC-HVDC 

transmission lines [2-5] have motivated new studies in these recent years. 

In [5-9], differential protection techniques have been presented and evaluated. The authors in [5] 

have compensated the capacitive currents distributed along HVDC lines to improve the differential 

protection’s performance during post-fault transients. In [6], the authors have tried to improve the 

differential protection’s operation speed and fault detection accuracy by considering the 

differential current’s polarity in the algorithm. The authors in [7] have eliminated the effect of 

distributed capacitive currents and improved the differential protection’s operation speed by 
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utilizing the exact line model in the time domain. In [8], the frequency-dependent line model has 

been used to calculate the transient quantities and improve the differential protection’s speed, 

sensitivity, and selectivity. In [9], the differential protection’s performance has been improved by 

using the distributed line model and eliminating the effect of distributed capacitive currents. Some 

researchers have also designed pilot plans to protect CSC-HVDC systems’ transmission lines [2, 

10-14]. In [2], the protection algorithm has been founded on the ratio of transient current and 

voltage at both line-ends. In [10], the authors have considered the specific frequency current of the 

filters installed at both line-ends to detect internal faults. The authors in [11] have suggested a 

directional pilot scheme based on the transient current comparison. In [12], the voltage polarities 

of the reactors installed at both line-ends have been used to design a pilot protection plan. In [13], 

the authors have examined the similarity measure of the line and filter current derivatives at both 

line-ends to identify internal line faults. The authors in [14] have designed a traveling-wave-based 

pilot protection plan based on the electronic instruments’ differential voltage and current signals. 

Despite the made valuable improvements, the differential and pilot protection plans are more 

suitable for backup protection since they may not have excellent sensitivity and stability due to the 

shunt capacitance distributed along long lines. Also, they require the measured signals or 

computation outputs at both line terminals. These plans often experience operational delays due to 

the need for transmission of the terminal information. Moreover, their authenticity and correct 

operation depend on the communication infrastructure’s trustworthiness and performance [15]. 

Some other protection plans have also been designed based on local measurements at one of the 

HVDC line terminals. In [16], the authors have presented a single-ended protection plan for CSC-

HVDC lines considering the quantitative measurement of velocity differences for traveling-waves 

generated by external and internal faults. The authors in [17] have used the difference of backward 
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traveling-wave in the event of external and internal faults to detect the faulty section and the 

voltage fault component’s polarity characteristic to determine the faulted line. In [18], the authors 

have also proposed a single-ended plan established on the traveling-wave theory for protecting 

two-circuit CSC-HVDC lines. Although these single-ended protection plans [16-18] are promising 

steps towards increasing the reliability of protection systems and their independence from 

telecommunication links and related errors, they still have shortcomings that need to be addressed. 

For example, the authors in [19] have shown that single-ended traveling-wave-based protection 

plans have lower performance than double-ended ones, especially in dealing with measurement 

noises. Detection of high-resistance faults is also a common challenge for single-ended traveling-

wave-based plans. Moreover, the reviewed single-ended plans [16-18] require a signal sampling 

frequency of 10 kHz, and their performance is usually highly dependent on this level of sampling 

frequency. Although this sampling rate may not be too high, compatibility with a lower sampling 

rate is advantageous for the protection algorithms executed in real-time to monitor the system 

status continuously. A lower sampling rate will provide more time to perform calculations between 

two successive samples, facilitating the practical implementation. 

In some recent studies, attempts have been made to address some of the shortcomings and design 

more efficient single-ended protection plans for CSC-HVDC lines with a sampling frequency 

requirement in the range of 1-2 kHz, relying on the intrinsic capabilities of artificial intelligence. 

In [20], the authors have proposed a plan for protecting CSC-HVDC lines using the voltage and 

current samples measured on the rectifier station’s ac and dc sides and employing the support 

vector machine (SVM) classifiers and estimators. However, they have not considered the 

discrimination ability between external and internal faults in this plan [20]. The authors in [21] 

have employed the fuzzy inference system (FIS) classifiers to detect and classify faults based on 
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the current signals measured on the rectifier station’s dc side. Although this plan has shown good 

performance in the conducted tests [21], the regulation of FIS classifiers’ parameters and rules is 

one of its main difficulties. In [22], the author has designed a plan to detect and classify faults in 

CSC-HVDC lines in one step by employing the k-means clustering algorithm. This plan is also 

based on single-end data. However, it requires a telecommunication link due to data measured on 

the inverter station’s dc side and the necessity to send the fault detection and classification results 

to the rectifier station [22]. 

In this article, a new method is designed to protect bipolar CSC-HVDC lines, relying on artificial 

intelligence’s intrinsic competencies. To this end, it is focused on the extraction of more valuable 

features and the employment of an appropriate learning model with straightforward training and 

regulation procedures. The proposed protection plan only requires signals sampled on the rectifier 

station’s dc side at a low frequency of 2 kHz. While the designed method does not need the data 

transmission link, it has good immunity to measurement disturbances and a promising ability to 

discriminate between external and internal faults. It also has good generalizability in detecting and 

classifying internal line faults in one step under the circumstances not seen in the training stage, 

even high-resistance ones. 

In Section 2 of this article, the extracted input features and the employed learning model are 

introduced. Then, in Section 3, the designed protection plan is presented. The protection plan 

implementation results on a test HVDC system are provided and discussed in Section 4. This article 

is eventually concluded in Section 5. 
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2. Input Features and Learning Model 

Any intelligent plan has two fundamental elements: input feature vector and learning model. Here, 

these elements are introduced for intelligently protecting bipolar CSC-HVDC lines. 

 

2.1. Measurements and Extraction of Useful Features 

The structure of a typical bipolar CSC-HVDC transmission system and the designated positions 

for measuring instruments relative to the smoothing reactor (SR) and dc filter (DCF) of both poles 

are indicated in Fig. 1. As shown in this figure, only local measurements on the rectifier station’s 

dc side are considered to avoid any need for a telecommunication link in the protection plan. 

Suppose it is possible to change the current flow direction and displace the converters’ operational 

roles. In that case, the protection plan should be implemented separately on both converter stations. 

However, only the protection of the rectifier side will always be active. According to Fig. 1, the 

measurements designated for the protection plan are as follows: 

- Positive pole voltage signal in front of SR, Vp 

- Negative pole voltage signal in front of SR, Vn 

- Positive pole DCF current signal, 𝐼𝑝
𝐷𝐶𝐹 

- Negative pole DCF current signal, 𝐼𝑛
𝐷𝐶𝐹 
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Fig. 1 Typical bipolar CSC-HVDC transmission system and positions of measuring instruments 

 

Four input features for the protection plan at time t are calculated based on 10-ms moving time 

windows containing N samples from the abovementioned measurements: 

𝑓𝑒1[𝑡] =
1

𝑁 × |𝑉𝑅𝑎𝑡𝑒𝑑|
∑ 𝑉𝑝 [𝑡 − 𝑗

𝜏

𝑁
]

𝑁−1

𝑗=0

                                                                                                   (1) 

𝑓𝑒2[𝑡] =
1

𝑁 × |𝑉𝑅𝑎𝑡𝑒𝑑|
∑ 𝑉𝑛 [𝑡 − 𝑗

𝜏

𝑁
]

𝑁−1

𝑗=0

                                                                                                   (2) 

𝑓𝑒3[𝑡] =
1

|𝐼𝑅𝑎𝑡𝑒𝑑|
max

𝑗
|𝐼𝑝

𝐷𝐶𝐹 [𝑡 − 𝑗
𝜏

𝑁
]| , 𝑗 = 0,1, … , 𝑁 − 1                                                                 (3) 

𝑓𝑒4[𝑡] =
1

|𝐼𝑅𝑎𝑡𝑒𝑑|
max

𝑗
|𝐼𝑛

𝐷𝐶𝐹 [𝑡 − 𝑗
𝜏

𝑁
]| , 𝑗 = 0,1, … , 𝑁 − 1                                                                 (4) 

where VRated and IRated indicate the rated voltage and current of the HVDC system, respectively. 

Also, τ is the length of time windows (i.e., τ = 10 ms). Based on (1) and (2), it is clear that the first 

two features (i.e., fe1 and fe2) are the moving average [23] of the windowed per-unit voltage signal 

for the positive and negative poles, respectively. A closer look at (3) and (4) also shows that the 
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next two features (i.e., fe3 and fe4) are equal to the maximum sample value of the windowed per-

unit DCF current signal, or in other words, the maximum coordinate difference [24] between the 

windowed per-unit current signals before and after DCF, for the positive and negative poles, 

respectively. These four features have been selected after comprehensively inspecting and 

examining many possible combinations of input features extractable from voltage and current 

signals sampled with a low rate of 2 kHz at the rectifier station. Indeed, after these inspections and 

examinations, it was found that with such a low sampling frequency, this proposed set of features 

is one of the best possible combinations to discriminate between external and internal faults and 

to detect and classify internal ones in bipolar CSC-HVDC transmission lines. Consider a bipolar 

CSC-HVDC system with the structure of Fig. 1, a 1000-km long line, and specifications adapted 

from the CIGRE benchmark system [25]. Fig. 2 exhibits the changes in the proposed input features 

for internal positive-pole-to-ground (p-g), negative-pole-to-ground (n-g), and positive-pole-to-

negative-pole-to-ground (p-n-g) line faults simulated at 1 s with a fault resistance of 25  at a 

point 335 km away from the rectifier end. Fig. 3 also demonstrates the changes in the proposed 

input features for external single-phase-to-ground faults simulated at 1 s with a fault resistance of 

25  on the ac side of the rectifier and inverter stations. 
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(a) 

 

(b) 

 

(c) 

Fig. 2 Changes in the proposed input features for internal line faults simulated at 1 s with a fault resistance of 25  

at a point 335 km away from the rectifier end: a) p-g fault, b) n-g fault, c) p-n-g fault 
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(a) 

 

(b) 

Fig. 3 Changes in the proposed input features for external single-phase-to-ground faults simulated at 1 s with a fault 

resistance of 25 : a) on the ac side of the rectifier station, b) on the ac side of the inverter station 

 

By investigating Figs. 2(a) to 2(c), it can be comprehended that the moving averages of positive 

and negative voltage signals (i.e., fe1 and fe2) provide an excellent distinguishing power to detect 

and classify different types of internal line faults. On the other hand, by comparing Fig. 2(c) with 

Figs. 3(a) and 3(b), it can be seen that these two first features may not be able to correctly 

discriminate between internal double-pole faults and external ac-side faults, especially in the early 

post-fault moments. However, according to these figures, the next two features based on the 

maximum sample value of DCF current signal or the maximum coordinate difference between 
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current signals before and after DCF (i.e., fe3 and fe4) compensate for this shortcoming and provide 

adequate distinguishing power for these conditions. 

 

2.2. Machine-Learning Model 

Employing an appropriate machine-learning model is of great importance in the methods based on 

artificial intelligence. One of the most effective learning models for classification problems is the 

SVM model. This learning model is rooted in the statistical learning theory and founded on the 

structural risk minimization principle [26]. The SVM learning model provides a balance between 

accuracy and generalizability by dividing patterns of different classes with the least possible error 

and the maximum confidence margin. 

The SVM learning model was first developed for binary classification problems and then extended 

for multiclass ones. In this article, the multiclass version of SVM is employed for intelligently 

protecting bipolar CSC-HVDC lines. In this multiclass version, if there are M classes in the set of 

training patterns, M(M-1)/2 binary SVM classifiers are formed using the patterns of each different 

pair of classes, i.e., with the one-against-one coding design. When a new unseen pattern is 

presented to this multiclass classifier, a class is selected as the output that minimizes the 

aggregation of binary losses for the constituent binary classifiers, i.e., based on the error-correcting 

output codes (ECOC) model [27]. 

The learning process of each binary SVM classifier involves solving the following convex 

optimization problem to reach the decision surface/dividing hyperplane of training patterns with 

two classes, m1 and m2 [28]: 

min
𝑊,𝜀𝑗

1

2
‖𝑊‖2 + 𝐶 ∑ 𝜀𝑗

𝑆

𝑗=1

                                                                                                                       (5 − 𝑎) 
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Subject to: 

𝑑𝑗 × (𝑊𝑇 × 𝑥𝑗 + 𝐵) ≥ 1 − 𝜀𝑗 , 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑆                                                                 (5 − 𝑏) 

𝜀𝑗 ≥ 0, 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑆                                                                                                             (5 − 𝑐) 

where W is the weight vector, C indicates the soft margin coefficient or box constraint, S stands 

for the number of training patterns, j is the slack variable related to the jth training pattern (for 

controlling noisy or linearly non-separable data), dj is the binary class label related to the jth training 

pattern (equal to 1 for m1 and -1 for m2), xj stands for the jth training pattern, and B represents the 

bias of decision surface/dividing hyperplane. The dual of the optimization problem (5) based on 

the Lagrange function L(α) and Karush-Kuhn-Tucker conditions are as follows [28]: 

max
𝛼

𝐿(𝛼) = ∑ 𝛼𝑗

𝑆

𝑗=1

−
1

2
∑ 𝛼𝑗 × 𝛼ℎ × 𝑑𝑗 × 𝑑ℎ × 𝑥𝑗

𝑇 × 𝑥ℎ

𝑆

𝑗,ℎ=1

                                                       (6 − 𝑎) 

Subject to: 

0 ≤ 𝛼𝑗 ≤ 𝐶, 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑆                                                                                                   (6 − 𝑏) 

∑ 𝑑𝑗 × 𝛼𝑗 = 0

𝑆

𝑗=1

                                                                                                                                     (6 − 𝑐) 

where j is the Lagrange coefficient of the constraint related to the jth training pattern. The optimal 

solution to the optimization problem (5) can be achieved by solving this dual problem. However, 

the decision surface/dividing hyperplane obtainable from the abovementioned formulations is 

linear. Hence, a kernel function is usually used to achieve a nonlinear decision surface/dividing 

hyperplane. The dual optimization problem (6) can be rewritten as follows, based on the mapping 

𝑥𝑗 → 𝜑(𝑥𝑗) and the kernel function 𝐾(𝑥𝑗 , 𝑥ℎ) = 𝜑𝑇(𝑥𝑗) × 𝜑(𝑥ℎ) [28]: 

max
𝛼

𝐿(𝛼) = ∑ 𝛼𝑗

𝑆

𝑗=1

−
1

2
∑ 𝛼𝑗 × 𝛼ℎ × 𝑑𝑗 × 𝑑ℎ × 𝐾(𝑥𝑗 , 𝑥ℎ)

𝑆

𝑗,ℎ=1

                                                    (7 − 𝑎) 
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Subject to: 

0 ≤ 𝛼𝑗 ≤ 𝐶, 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑆                                                                                                   (7 − 𝑏) 

∑ 𝑑𝑗 × 𝛼𝑗 = 0

𝑆

𝑗=1

                                                                                                                                     (7 − 𝑐) 

One of the most widely used and efficient kernel functions is the Gaussian kernel. This kernel can 

be defined as follows: 

𝐾(𝑥𝑗 , 𝑥ℎ) = exp (−
‖𝑥𝑗 − 𝑥ℎ‖

2

2
)                                                                                                            (8) 

where  indicates the Gaussian kernel scale parameter. 

 

3. Designed Protection Plan 

In the protection plan of this article, at any moment, the four features introduced in Section 2.1 are 

extracted from 10-ms moving time frames of the measured voltage and DCF current samples and 

formed as the input pattern. Then, this input pattern is presented to the multiclass SVM classifier 

with the Gaussian kernel function described in Section 2.2. The corresponding class is determined 

based on the set of binary SVM classifiers and the ECOC model. According to Section 2.2, for 

four possible output classes, six binary SVM classifiers are required in the one-against-one coding 

design of the multiclass SVM classifier. Fig. 4 provides an outline of the proposed protection plan 

in real-time operation. 
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Fig. 4 Outline of the proposed real-time protection plan 

 

At any moment, one of the following four possible classes can be selected as the output class of 

the proposed protection plan: 

- Normal condition or external fault, ‘Norm. or Ext.’ 

- Internal p-g fault, ‘p-g’ 

- Internal n-g fault, ‘n-g’ 

- Internal positive-pole-to-negative-pole (p-n) or p-n-g fault, ‘p-n or p-n-g’ 

Whenever the protection algorithm detects one type of internal fault, the protection output remains 

unchanged until it is reset. 
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The SVM classifier in the proposed plan should first be prepared and trained through an offline 

process before being used in real-time. The offline preparing and training process includes the 

following main steps: 

1) A set of training patterns is produced by precisely simulating the HVDC system under different 

fault and normal conditions. In fault conditions, each training pattern includes the introduced 

input features extracted from 10-ms data frames of the post-fault voltage and DCF current 

samples. In normal conditions without faults, the patterns’ features can be extracted from any 

10-ms data frames of the voltage and DCF current samples. In the phase of generating the 

training pattern set, any issue which is a concern can be included in the conditions. 

2) The SVM hyperparameters (i.e., C and ) are adjusted via a k-fold cross-validation process and 

based on the Bayesian optimization, minimizing the cross-validation loss. 

3) Finally, the SVM classifier is trained using all the training patterns and the selected values for 

the SVM hyperparameters. This classifier is ready to be used in the protection plan in real-time. 

Proper implementation of the above preparation and training steps will lead to the desired 

performance of the proposed protection plan. In contrast, improper execution of the above offline 

steps will degrade the performance. For example, selecting inappropriate values for the SVM 

hyperparameters will reduce the internal fault detection accuracy, reduce the stability against 

external faults, and increase the response time due to the increased validation loss and decreased 

generalization power. 

 

4. Results and Discussion 

In this section, for assessing the designed protection plan’s performance, the test transmission 

system of Fig. 1 is modeled in PSCAD/EMTDC [29] with specifications adapted from the CIGRE 
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benchmark system [25]. The modeled test system has a nominal voltage of ±500 kV and a nominal 

transmission capacity of 2000 MW. This bipolar system’s overhead line is 1000 km long, modeled 

with the frequency-dependent parameters based on the arrangement shown in Fig. 5 [30]. The 

voltage and current signals’ sampling rate in the simulated system is 2 kHz. The proposed 

protection plan is realized in MATLAB [31] and examined with the signals acquired from the 

simulation. 

 

  

Fig. 5 Arrangement of the transmission line modeled in PSCAD/EMTDC 

 

 

4.1. Preparing and Training 

For preparing the protection plan, a set of training patterns should first be generated by simulating 

the test CSC-HVDC system under different conditions. These conditions are provided in Table 1. 

Each training pattern includes the four features described in Section 2.1 (i.e., fe1, fe2, fe3, and fe4), 

extracted from 10-ms data frames of the measured voltage and DCF current samples. In the fault 
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conditions, the starting point of these data windows is the moment of fault signature appearance at 

the terminal. However, there is no specific requirement for the starting point of these data windows 

in the normal conditions without faults. 

 

Table 1 Conditions for generating the set of training patterns 

Number 

of 

patterns 

Fault 

inception 

angle  

Load 

current  

Fault resistance Fault location Fault type Condition 

1260 Not 

applicable 

500 A, 

1200 A, 

1900 A 

0.01 , 50 , 100 , 

150 , 200 , 300 

, 500  

From 1% to 99% of 

the line length with a 

step of 7% 

p-g, n-g, p-n, p-n-g Internal 

dc faults 

6600 45o, 135o, 

225o, 315o 

500 A, 

1200 A, 

1900 A 

0.01 , 50 , 100 , 

200 , 300  

F1, F2, F3, F4, F5, 

F6, F7, F8, F9, F10 

(according to Fig. 1) 

11 ac fault types involving 

the ground and the phases 

a, b, and c 

External 

ac faults 

3 Not 

applicable 

500 A, 

1200 A, 

1900 A 

Not applicable Not applicable Not applicable Normal 

conditions 

 

According to the conditions of Table 1, a total of 7863 training patterns are formed, each labeled 

as one of the four possible classes mentioned in Section 3. These training patterns should be used 

to train the multiclass SVM classifier and regulate its hyperparameters. The box constraint C and 

the Gaussian kernel scale  are adjusted via a 5-fold cross-validation process and based on the 

Bayesian optimization, minimizing the cross-validation loss. Fig. 6 shows the loss changes during 

the optimization process in terms of the SVM hyperparameters. Based on the model obtained for 

the objective function, the best estimations for C and   are 35.45 and 0.4, respectively. The 

multiclass SVM classifier is eventually trained using the complete training pattern set and 

considering these hyperparameters values. 
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Fig. 6 Cross-validation loss in terms of the SVM hyperparameters 

 

 

4.2. Performance for Internal Faults 

Here, the test CSC-HVDC system is simulated under various internal fault conditions, as different 

as possible from the conditions of training patterns. These test conditions are as follows: 

- Fault type: p-g, p-n, and p-n-g 

- Fault location: at random distances including 1.2%, 7.1%, 13.7%, 20.3%, 26.9%, 33.5%, 40.1%, 

46.7%, 53.3%, 59.9%, 66.5%, 73.1%, 79.7%, 86.3%, 92.9%, and 99.5% of the line length from 

the rectifier station 

- Fault resistance: 5 , 25 , 75 , 125 , 175 , 250 , 350 , 400 , and 450  

- Load current: 700 A, 1000 A,  1400 A, and 1700 A 

According to the above conditions, the suggested protection plan is tested for the combinations of 

3 fault types, 16 fault locations, 9 fault resistances, and 4 load currents, i.e., for a total of 1728 
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unseen internal fault cases. Tables 2 and 3 present the test results regarding the various fault 

resistances for the p-g and double-pole (i.e., p-n and p-n-g) faults, respectively. In these tables, the 

fault detection time delay (FDTD) has been calculated from the moment of fault signature 

appearance at the terminal. 

 

Table 2 Results in terms of various fault resistances for internal p-g faults 

Average 

FDTD (ms) 

Maximum 

FDTD (ms) 

Minimum 

FDTD (ms) 

Percentage of correct 

detection and classification 

Number of test 

cases 

Fault 

resistance 

4.4 9 3 100% 64 5  

4.6 11.5 3 100% 64 25  

4.4 8.5 3 100% 64 75  

4.3 7.5 3 100% 64 125  

4.3 8.5 2.5 100% 64 175  

4.3 9.5 2.5 100% 64 250  

5.1 21.2 2.5 100% 64 350  

6.1 42.7 2.8 100% 64 400  

7.8 47.9 3 100% 64 450  

5.0 47.9 2.5 100% 576 Total 
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Table 3 Results in terms of various fault resistances for internal double-pole (i.e., p-n and p-n-g) faults 

Average 

FDTD (ms) 

Maximum 

FDTD (ms) 

Minimum 

FDTD (ms) 

Percentage of correct 

detection and classification 

Number of test 

cases 

Fault 

resistance 

6.3 21.0 3.5 100% 128 5  

5.7 12.0 3.0 100% 128 25  

5.0 8.5 3.0 100% 128 75  

4.6 8.0 3.0 100% 128 125  

4.3 7.0 3.2 100% 128 175  

4.1 6.1 3.2 100% 128 250  

4.6 6.5 3.3 100% 128 350  

5.0 7.5 3.5 100% 128 400  

5.5 8.5 3.5 100% 128 450  

5.0 21.0 3.0 100% 1152 Total 

 

As can be comprehended from Tables 2 and 3, in all the 1728 unseen internal fault cases, the 

presented protection plan has quickly detected and correctly classified the solid and high-resistance 

line faults. According to the results provided for the single-pole faults in Table 2, the average 

FDTD is less than 6.5 ms for the fault resistances up to 400 . However, it slightly increases to 

7.8 ms at the fault resistance of 450 . On the other hand, the results provided for the double-pole 

faults in Table 3 reveal that the average FDTD is below 6.5 ms for all the fault resistances. It is 

worth noting that the presented protection plan has not malfunctioned during the pre-fault moments 

of these test cases. 

Fig. 7 represents the average FDTD regarding the various fault locations for the p-g and double-

pole (i.e., p-n and p-n-g) faults. As can be understood from this figure, the average FDTD has 

slightly increased for the single-pole faults near the remote line terminal and reached 10.7 ms at a 

distance of 99.5% of the line length from the rectifier station. 
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Fig. 7 Average FDTD in terms of various locations for internal line faults 

 

As examples of the correct operation in real-time, Fig. 8 exhibits the changes in the input features 

and output class of the protection algorithm for p-g and p-n-g faults simulated at 1 s with a 

resistance of 450  and a pre-fault current of 1700 A at a point 863 km away from the rectifier 

end. 
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(a) 

 

(b) 

Fig. 8 Changes in the input features and output class of the proposed algorithm for internal line faults simulated at 1 

s with a resistance of 450  and a pre-fault current of 1700 A at a point 863 km away from the rectifier end: a) p-g 

fault, b) p-n-g fault 

 

 

4.3. Performance for External Faults in HVAC Systems 

In this section, the test system is simulated under various external faults in the connected HVAC 

systems, with conditions as different as possible from those considered for generating the training 

patterns. These test conditions are as follows: 

- Fault type: 11 ac fault types involving the ground and phases a, b, and c 

- Fault location: F1 and F6 (according to Fig. 1) 
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- Fault resistance: 5 , 25 , 75 , 150 , and 250  

- Load current: 700 A, 1000 A,  1400 A, and 1700 A  

- Fault inception angle: 0o, 90o, 180o, and 270o 

According to the above conditions, the proposed plan is evaluated for the combinations of 11 fault 

types, 2 fault locations, 5 fault resistances, 4 load currents, and 4 fault inception angles, i.e., for a 

total of 1760 unseen external fault cases. The performance evaluation results for the various types 

of external faults in the connected HVAC systems are presented in Table 4. Based on these results, 

the protection plan has been stable against 99.375% of the 1760 unseen external fault cases. It has 

malfunctioned only in few phase-to-phase faults in the HVAC system connected to the rectifier 

station. Indeed, the SVM classifier has misclassified only 11 out of 480 external phase-to-phase 

fault cases as ‘p-n or p-n-g’ due to the real-time position of the feature vector relative to the SVM’s 

decision surface/dividing hyperplane, while it has remained entirely stable against other external 

fault types. This little accuracy sacrifice in the case of external faults is acceptable given the fact 

that the relevant test conditions were not considered in the training stage (i.e., unseen test 

conditions), confirming the plan’s good generalizability. It is worth noting that in these results, the 

same probability of occurrence has been considered for different types of ac faults, while double-

phase faults are less likely to occur than single-phase faults. 
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Table 4 Results for various types of external faults in the connected HVAC systems 

Percentage of incorrect detection and 

classification as an internal dc fault 

Percentage of correct detection and 

classification as ‘Norm. or Ext.’ 

Number of 

test cases 

Fault 

type 

Fault 

location 

0% 100% 80 a-g F1 

0% 100% 80 b-g 

0% 100% 80 c-g 

0% 100% 80 a-b-g 

0% 100% 80 a-c-g 

0% 100% 80 b-c-g 

0% 100% 80 a-b-c-g 

5% 95% 80 a-b 

3.75% 96.25% 80 a-c 

5% 95% 80 b-c 

0% 100% 80 a-b-c 

0% 100% 80 a-g F6 

0% 100% 80 b-g 

0% 100% 80 c-g 

0% 100% 80 a-b-g 

0% 100% 80 a-c-g 

0% 100% 80 b-c-g 

0% 100% 80 a-b-c-g 

0% 100% 80 a-b 

0% 100% 80 a-c 

0% 100% 80 b-c 

0% 100% 80 a-b-c 

0.625% 99.375% 1760 Total 
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4.4. Performance under Measurement Noises 

There are several technologies for measuring voltage and current signals in HVDC systems [32]. 

The proposed protection plan is not limited to a specific measuring technology. However, different 

measuring technologies may have different accuracy and performance. Hence, to ensure the 

applicability of the proposed protection plan with various measuring technologies, its performance 

is investigated under different levels of measurement non-ideality. In this regard, the white 

Gaussian noise is added to the voltage and DCF current signals acquired under test conditions. The 

input features are extracted and presented to the same previously trained SVM classifier. Table 5 

presents the performance test results regarding the various signal-to-noise ratios (SNRs) for the 

internal fault cases of Section 4.2 and the external fault cases of Section 4.3. According to these 

results, the fault detection and classification accuracy has been satisfactory under reasonable noise 

levels, even with an SNR of 20 dB. However, for a higher noise level with an SNR of 15 dB, the 

proposed plan’s stability against the external faults has decreased significantly. These results 

should be taken into account when selecting and designing the measurement chains. 

 

Table 5 Results in terms of various noise levels for internal and external faults 

External faults in the 

HVAC systems 

Internal double-pole (i.e., p-n 

and p-n-g) faults 

Internal p-g faults  

Percentage of 

correct detection 

and classification 

as ‘Norm. or Ext.’ 

Number 

of test 

cases 

Percentage of 

correct detection 

and classification 

Number 

of test 

cases 

Percentage of 

correct detection 

and classification 

Number 

of test 

cases 

SNR 

 

99.375% 1760 100% 1152 100% 576  dB  (ideal) 

99.205% 1760 100% 1152 100% 576 35 dB 

99.091% 1760 100% 1152 100% 576 30 dB 

99.034% 1760 100% 1152 100% 576 25 dB 

97.102% 1760 100% 1152 100% 576 20 dB 

29.375% 1760 85.330% 1152 82.292% 576 15 dB 
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4.5. Competence of the Selected Features 

As stated in Section 2.1, the four features (i.e., fe1, fe2, fe3, and fe4) are extracted to form the input 

pattern in the proposed protection plan. The first two features (i.e., fe1 and fe2) are extracted from 

the measured voltage signals, and the next two features (i.e., fe3 and fe4) are extracted from the 

measured DCF current signals. Here, all the steps of hyperparameter regulation, training, and 

performance evaluation, similar to Sections 4.1 to 4.3, are repeated using only the voltage features 

(i.e., fe1 and fe2) and only the current features (i.e., fe3 and fe4). Table 6 provides the performance 

evaluation results in these cases compared to the recommended case using all four features. It 

should be noted that the adjusted values for C and    in the case of using only the voltage features 

are 1.62 and 0.04, respectively, and in the case of using only the current features are 312.19 and 

0.04, respectively. 

 

Table 6 Results considering different combinations of input features 

External faults in the HVAC 

systems 

Internal double-pole (i.e., p-n 

and p-n-g) faults 

Internal p-g faults  

Percentage of 

correct detection 

and classification 

as ‘Norm. or Ext.’ 

Number 

of test 

cases 

Percentage of 

correct detection 

and classification 

Number 

of test 

cases 

Percentage of 

correct 

detection and 

classification 

Number 

of test 

cases 

Input features 

99.375% 1760 100% 1152 100% 576 fe1, fe2, fe3, and fe4 

70.227% 1760 100% 1152 100% 576 fe1 and fe2 

95.568% 1760 98.351% 1152 68.750% 576 fe3 and fe4 

 

As comprehendible from Table 6, the use of only fe1 and fe2 leads to a decrease in the protection 

plan’s stability against the external ac faults compared to the recommended base case. Also, using 

only fe3 and fe4 significantly reduces the detection and classification accuracy for the internal 
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single-pole faults. Indeed, these results confirm the analysis of Section 2.1 regarding the necessity 

to use all the four recommended features in the input pattern. 

 

4.6. Performance for Lightning Strikes 

Here, to further investigate the proposed plan’s stability against the induced transients from other 

external events, the lightning strike on the ground wire at a distance of 10 km from the rectifier 

station at 0.8 s is simulated in PSCAD/EMTDC based on the guidelines provided in [33]. Three 

towers with a 400-m span on each side of the lightning strike point are modeled with a surge 

impedance of 150  and a foot resistance of 25 . The lightning current surge is generated with a 

peak value of 200 kA, a front time of 10 s, and a time to half-value of 350 s [34] (as shown in 

Fig. 9). 

 

 

Fig. 9 The lightning current surge struck on the ground wire (200 kA and 10/350 s) 

 

Fig. 10 presents the changes in the input features and output class of the protection algorithm. As 

can be comprehended from this figure, the features have not changed significantly, and 

consequently, the proposed algorithm has remained stable during the transients induced due to the 

lightning strike. 
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Fig. 10 Changes in the input features and output class of the proposed algorithm in dealing with the transients 

induced due to the lightning strike on the ground wire at 0.8 s 

 

In some cases, a smaller lightning surge may escape the shelter provided by the ground wire and 

directly strike on the pole conductor [33]. Hence, two lightning strikes on the positive and negative 

pole conductors at a distance of 10 km from the rectifier station at 0.8 s are also simulated in the 

test system, considering surge arresters installed in front of DCFs. The relevant lightning current 

surge is generated with a peak value of 15 kA, a front time of 1.2 s, and a time to half-value of 

50 s [34] (as shown in Fig. 11). 

 

 

Fig. 11 The lightning current surge struck on the pole conductors (15 kA and 1.2/50 s) 
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Figs. 12 and 13 show the measured voltage and DCF current signals for the direct lightning strikes 

on the positive and negative pole conductors. Fig. 14 also presents the changes in the input features 

and output class of the protection algorithm in these cases. As shown in this figure, the features 

extracted based on the average voltage (i.e., fe1 and fe2) have not changed significantly, and 

consequently, the proposed algorithm has not malfunctioned during the transients generated due 

to the direct lightning strikes. 

 

 

(a) 

 

(b) 

Fig. 12 Measured signals for the lightning strike on the positive pole conductor at 0.8 s: a) voltage, b) DCF current 
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(a) 

 

(b) 

Fig. 13 Measured signals for the lightning strike on the negative pole conductor at 0.8 s: a) voltage, b) DCF current 
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(a) 

 

(b) 

Fig. 14 Changes in the input features and output class of the proposed algorithm in dealing with the lightning strike 

at 0.8 s: a) on the positive pole, b) on the negative pole 

 

4.7. Performance for Pole Conductor Interruptions 

Here, to investigate the proposed plan’s performance in the case of conductor interruption, three 

following interruption scenarios (as also illustrated in Fig. 15) are simulated for the positive pole 

at a distance of 400 km from the rectifier station at 0.8 s: 

1) Both sides contact the ground with high resistance of 500  

2) Only the inverter side contacts the ground with high resistance of 500  

3) Only the rectifier side contacts the ground with high resistance of 500  
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(a) 

 

(b) 

 

(c) 

Fig. 15 Three conductor interruption scenarios: a) both sides contact the ground, b) only the inverter side contacts 

the ground, c) only the rectifier side contacts the ground 

 

Fig. 16 displays the changes in the input features and output class of the protection algorithm in 

these scenarios. As can be understood from this figure, the suggested plan has detected all the pole 

interruption events. However, when the rectifier side has not contacted the ground (i.e., in Scenario 

2), the positive pole interruption has been misclassified as a negative pole’s fault. The proposed 

To rectifier station

To inverter station

To rectifier station

To inverter station

To rectifier station

To inverter station
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plan’s performance in dealing with the pole interruption scenarios should be considered when 

employing it. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 16 Changes in the input features and output class of the proposed algorithm for the positive pole interruption at 

a distance of 400 km at 0.8 s: a) in Scenario 1, b) in Scenario 2, c) in Scenario 3 
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4.8. Effect of DCF Disconnection 

If one or both DCFs are disconnected, the proposed plan cannot work correctly since the 

disconnected DCF’s current and relevant feature will be permanently zero according to (3) and 

(4). However, based on the results provided in Section 4.5 and Table 6, the proposed plan is also 

applicable using only the voltage features (i.e., fe1 and fe2), sacrificing 30% stability against 

external faults. Therefore, a backup plan with less stability can be prepared using only the voltage 

features (i.e., fe1 and fe2) and utilized in the case of DCF disconnection. 

 

4.9. Applicability in Monopolar Mode 

In the event of a permanent single-pole-to-ground fault, the bipolar HVDC system can be restarted 

and operated through the healthy pole, i.e., in the monopolar mode with the ground return. 

Whenever the HVDC system restarts in the monopolar mode, the applied plan needs to be modified 

accordingly because measurable signals and output classes will differ from the bipolar mode. 

A modified version of the proposed protection plan can be particularly prepared and trained for 

the monopolar mode. The following modifications should be applied to achieve this, assuming that 

the system structure in the monopolar mode includes the positive pole and the ground return path: 

■ A binary SVM classifier should be trained instead of the multiclass one since there will be only 

two output classes in this operational mode, including normal condition or external fault (i.e., 

‘Norm. or Ext.’) and internal p-g fault (i.e., ‘p-g’). 

■ Instead of the four features introduced, only two features extracted from the positive pole voltage 

and DCF current signals (i.e., fe1 and fe3 extracted using (1) and (3), respectively) should be 

considered as inputs. 
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As can be comprehendible from the above modifications, the protection plan particularly prepared 

and trained for the monopolar mode will be much simpler than the one introduced in Section 3 for 

the normal bipolar mode. 

 

4.10. Comparison to Other Intelligent plans 

Table 7 compares the proposed plan to other intelligent plans designed so far to protect CSC-

HVDC transmission systems. As can be understood from this table, although the proposed plan 

has a slightly higher delay than the one presented in [20], it has a superior ability to discriminate 

between external and internal faults. The proposed plan has less complexity compared to [20] and 

[21] since it detects and classifies internal faults in one step. The proposed plan’s straightforward 

training and hyperparameter regulation procedures are significant advantages that make it superior 

to the plan designed in [21]. The proposed plan has a slightly lower delay than the plans presented 

in [21] and [22]. Moreover, unlike the plan presented in [22], the proposed plan does not require 

sending the fault detection and classification results to the rectifier station since it works based on 

the local measurements at the same station. It can be comprehended that the proposed plan is an 

effective step in improving intelligent protection strategies for CSC-HVDC transmission systems. 

 

 

 

 

 

 

 

Table 7 Comparison with other intelligent protection plans designed for CSC-HVDC systems  



38 
 

Average

 FDTD 

(ms) 

Straightforward 

training and 

hyperparameter 

regulation 

procedures 

Discrimination 

ability between 

external and 

internal faults  

Fault 

detection and 

classification 

in one step 

No need for a 

telecommunication 

link 

Measuring 

end 

Designed 

plan 

2.7*     Rectifier [20] 

5.7*     Rectifier [21] 

10.1*     Inverter [22] 

5     Rectifier Proposed 

*Obtained by averaging the provided fault detection results in the reference 

 

 

5. Conclusion 

An efficient protection plan has been designed for bipolar CSC-HVDC transmission lines, using 

four useful features extracted from the locally measured voltage and DCF current samples and 

employing a multiclass SVM classifier. This plan has been evaluated in a typical 1000-km CSC-

HVDC transmission system under a wide variety of conditions not seen in the training stage. The 

evaluation findings are as follows: 

■ The designed plan has quickly detected and correctly classified 100% of 1728 unseen solid and 

high-resistance line faults with an average FDTD of 5 ms. 

■ The proposed plan has remained stable against 99.375% of 1760 unseen external faults in the 

connected HVAC systems. 

■ The designed plan has performed satisfactorily under reasonable noise levels, even with an 

SNR of 20 dB. 

■ The proposed plan has remained stable during lightning strikes on the ground wire and pole 

conductors. 

■ The designed plan has performed satisfactorily in 2 out of 3 conductor interruption scenarios. 
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Comparisons confirm that this research provides a significant advance in developing intelligent 

protection strategies for CSC-HVDC systems. The proposed plan only requires single-end 

measurements and does not need data transmission or synchronization. Moreover, it works with a 

low signal sampling rate of 2 kHz, which is much lower than the required rates in the single-ended 

traveling-wave-based plans. 
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