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Intelligent Protection of CSC-HVDC Lines Based on Moving

Average and Maximum Coordinate Difference Criteria

Mohammad Farshad™, Mazaher Karimi’
"Department of Electrical Engineering, Faculty of Basic Sciences and Engineering, Gonbad Kavous

University, Gonbad Kavous, Iran.

Abstract: Short-circuit fault detection and classification in high-voltage direct-current (HVDC)
electric power transmission lines are necessary for rapid location and removal of faults, as well as
for recovering all or part of the power transmission capacity. In this study, a new and efficient
technique is designed for protecting current-source converter-based HVDC (CSC-HVDC) lines.
In this proposed method, new features considering the moving average and maximum coordinate
difference criteria are extracted from local voltage and current signals measured with a relatively
low sampling rate at the rectifier side. These extracted features provide excellent recognition to
distinguish the external and internal short-circuit faults. The multiclass support vector machine
model is also used to detect and classify different short-circuit faults in real-time operation. The
comprehensive tests on a CSC-HVDC system verify the suggested protection strategy’s high
accuracy and dependability even under the circumstances not considered in the initial preparing

and training stage. These results also authenticate the designed scheme’s stability against external
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faults and lightning strikes, low sensitivity to measurement noises, and excellent performance in

detecting and classifying high-resistance internal faults.

Keywords: Current-source converter; HVDC power system; Machine learning; Maximum

coordinate difference; Moving average; Transmission line protection.

Abbreviations

HVDC high-voltage direct-current

HVAC high-voltage alternating-current

CSC current-source converter

VSC voltage-source converter

CSC-HVDC  CSC-based HVDC

SVM support vector machine

FIS fuzzy inference system

SR smoothing reactor

DCF dc filter

ECOC error-correcting output codes

p-g positive-pole-to-ground

n-g negative-pole-to-ground

p-n-g positive-pole-to-negative-pole-to-ground
p-n positive-pole-to-negative-pole

FDTD fault detection time delay

SNR signal-to-noise ratio

Symbols

Vy positive pole voltage signal in front of SR
Va negative pole voltage signal in front of SR
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positive pole DCF current signal

negative pole DCF current signal

time

number of samples in a time window

length of time window

rated voltage

rated current

first input feature extracted using (1)

second input feature extracted using (2)

third input feature extracted using (3)

fourth input feature extracted using (4)

number of classes in a multiclass classification problem
first class in a binary classification problem
second class in a binary classification problem
weight vector

soft margin coefficient or box constraint
number of training patterns

slack variable related to /" training pattern
binary class label related to /" training pattern
j training pattern

bias of decision surface/dividing hyperplane

Lagrange function

Lagrange coefficient of constraint related to j training pattern

mapping function
kernel function
Gaussian kernel scale parameter

number of folds in a cross-validation process




1. Introduction

High-voltage direct-current (HVDC) transmission lines may be constructed for various purposes,
including bulk power transmission over long distances, power transmission from remote
renewable resources (e.g., offshore wind farms), or connection of asynchronous high-voltage
alternating-current (HVAC) networks. Two types of converters are generally used for HVDC
systems [1]:

m Current-source converter (CSC)

m Voltage-source converter (VSC)

Although special attention has recently been paid to the use of VSCs however, most of the existing
HVDC systems are founded on CSCs. CSC-based HVDC (CSC-HVDC) systems may have a
monopolar or bipolar structure. The bipolar structure usually provides higher reliability and better
fault management than the monopolar structure [1]. Fault detection, classification, and
identification are vital for accurate location and removal of faults to restore all or part of the power
transmission capacity in bipolar CSC-HVDC systems.

Inherent selectivity and sensitivity shortcomings of the traditional protections developed based on
the under-voltage, voltage derivative, and current derivative schemes for CSC-HVDC
transmission lines [2-5] have motivated new studies in these recent years.

In [5-9], differential protection techniques have been presented and evaluated. The authors in [5]
have compensated the capacitive currents distributed along HVDC lines to improve the differential
protection’s performance during post-fault transients. In [6], the authors have tried to improve the
differential protection’s operation speed and fault detection accuracy by considering the
differential current’s polarity in the algorithm. The authors in [7] have eliminated the effect of

distributed capacitive currents and improved the differential protection’s operation speed by



utilizing the exact line model in the time domain. In [8], the frequency-dependent line model has
been used to calculate the transient quantities and improve the differential protection’s speed,
sensitivity, and selectivity. In [9], the differential protection’s performance has been improved by
using the distributed line model and eliminating the effect of distributed capacitive currents. Some
researchers have also designed pilot plans to protect CSC-HVDC systems’ transmission lines [2,
10-14]. In [2], the protection algorithm has been founded on the ratio of transient current and
voltage at both line-ends. In [10], the authors have considered the specific frequency current of the
filters installed at both line-ends to detect internal faults. The authors in [11] have suggested a
directional pilot scheme based on the transient current comparison. In [12], the voltage polarities
of the reactors installed at both line-ends have been used to design a pilot protection plan. In [13],
the authors have examined the similarity measure of the line and filter current derivatives at both
line-ends to identify internal line faults. The authors in [14] have designed a traveling-wave-based
pilot protection plan based on the electronic instruments’ differential voltage and current signals.
Despite the made valuable improvements, the differential and pilot protection plans are more
suitable for backup protection since they may not have excellent sensitivity and stability due to the
shunt capacitance distributed along long lines. Also, they require the measured signals or
computation outputs at both line terminals. These plans often experience operational delays due to
the need for transmission of the terminal information. Moreover, their authenticity and correct
operation depend on the communication infrastructure’s trustworthiness and performance [15].

Some other protection plans have also been designed based on local measurements at one of the
HVDOC line terminals. In [16], the authors have presented a single-ended protection plan for CSC-
HVDC lines considering the quantitative measurement of velocity differences for traveling-waves

generated by external and internal faults. The authors in [17] have used the difference of backward



traveling-wave in the event of external and internal faults to detect the faulty section and the
voltage fault component’s polarity characteristic to determine the faulted line. In [18], the authors
have also proposed a single-ended plan established on the traveling-wave theory for protecting
two-circuit CSC-HVDC lines. Although these single-ended protection plans [16-18] are promising
steps towards increasing the reliability of protection systems and their independence from
telecommunication links and related errors, they still have shortcomings that need to be addressed.
For example, the authors in [19] have shown that single-ended traveling-wave-based protection
plans have lower performance than double-ended ones, especially in dealing with measurement
noises. Detection of high-resistance faults is also a common challenge for single-ended traveling-
wave-based plans. Moreover, the reviewed single-ended plans [16-18] require a signal sampling
frequency of 10 kHz, and their performance is usually highly dependent on this level of sampling
frequency. Although this sampling rate may not be too high, compatibility with a lower sampling
rate is advantageous for the protection algorithms executed in real-time to monitor the system
status continuously. A lower sampling rate will provide more time to perform calculations between
two successive samples, facilitating the practical implementation.

In some recent studies, attempts have been made to address some of the shortcomings and design
more efficient single-ended protection plans for CSC-HVDC lines with a sampling frequency
requirement in the range of 1-2 kHz, relying on the intrinsic capabilities of artificial intelligence.
In [20], the authors have proposed a plan for protecting CSC-HVDC lines using the voltage and
current samples measured on the rectifier station’s ac and dc sides and employing the support
vector machine (SVM) classifiers and estimators. However, they have not considered the
discrimination ability between external and internal faults in this plan [20]. The authors in [21]

have employed the fuzzy inference system (FIS) classifiers to detect and classify faults based on



the current signals measured on the rectifier station’s dc side. Although this plan has shown good
performance in the conducted tests [21], the regulation of FIS classifiers’ parameters and rules is
one of its main difficulties. In [22], the author has designed a plan to detect and classify faults in
CSC-HVDC lines in one step by employing the k-means clustering algorithm. This plan is also
based on single-end data. However, it requires a telecommunication link due to data measured on
the inverter station’s dc side and the necessity to send the fault detection and classification results
to the rectifier station [22].

In this article, a new method is designed to protect bipolar CSC-HVDC lines, relying on artificial
intelligence’s intrinsic competencies. To this end, it is focused on the extraction of more valuable
features and the employment of an appropriate learning model with straightforward training and
regulation procedures. The proposed protection plan only requires signals sampled on the rectifier
station’s dc side at a low frequency of 2 kHz. While the designed method does not need the data
transmission link, it has good immunity to measurement disturbances and a promising ability to
discriminate between external and internal faults. It also has good generalizability in detecting and
classifying internal line faults in one step under the circumstances not seen in the training stage,
even high-resistance ones.

In Section 2 of this article, the extracted input features and the employed learning model are
introduced. Then, in Section 3, the designed protection plan is presented. The protection plan
implementation results on a test HVDC system are provided and discussed in Section 4. This article

is eventually concluded in Section 5.



2. Input Features and Learning Model
Any intelligent plan has two fundamental elements: input feature vector and learning model. Here,

these elements are introduced for intelligently protecting bipolar CSC-HVDC lines.

2.1. Measurements and Extraction of Useful Features

The structure of a typical bipolar CSC-HVDC transmission system and the designated positions
for measuring instruments relative to the smoothing reactor (SR) and dc filter (DCF) of both poles
are indicated in Fig. 1. As shown in this figure, only local measurements on the rectifier station’s
dc side are considered to avoid any need for a telecommunication link in the protection plan.
Suppose it is possible to change the current flow direction and displace the converters’ operational
roles. In that case, the protection plan should be implemented separately on both converter stations.
However, only the protection of the rectifier side will always be active. According to Fig. 1, the
measurements designated for the protection plan are as follows:

- Positive pole voltage signal in front of SR, V),

- Negative pole voltage signal in front of SR, V,

- Positive pole DCF current signal, I;)F

- Negative pole DCF current signal, I5¢F
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Fig. 1 Typical bipolar CSC-HVDC transmission system and positions of measuring instruments

Four input features for the protection plan at time ¢ are calculated based on 10-ms moving time

windows containing N samples from the abovementioned measurements:
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where Vraea and Iraeq indicate the rated voltage and current of the HVDC system, respectively.
Also, 7 is the length of time windows (i.e., = 10 ms). Based on (1) and (2), it is clear that the first
two features (i.e., fe1 and fe>) are the moving average [23] of the windowed per-unit voltage signal

for the positive and negative poles, respectively. A closer look at (3) and (4) also shows that the



next two features (i.e., fez and fes) are equal to the maximum sample value of the windowed per-
unit DCF current signal, or in other words, the maximum coordinate difference [24] between the
windowed per-unit current signals before and after DCF, for the positive and negative poles,
respectively. These four features have been selected after comprehensively inspecting and
examining many possible combinations of input features extractable from voltage and current
signals sampled with a low rate of 2 kHz at the rectifier station. Indeed, after these inspections and
examinations, it was found that with such a low sampling frequency, this proposed set of features
is one of the best possible combinations to discriminate between external and internal faults and
to detect and classify internal ones in bipolar CSC-HVDC transmission lines. Consider a bipolar
CSC-HVDC system with the structure of Fig. 1, a 1000-km long line, and specifications adapted
from the CIGRE benchmark system [25]. Fig. 2 exhibits the changes in the proposed input features
for internal positive-pole-to-ground (p-g), negative-pole-to-ground (n-g), and positive-pole-to-
negative-pole-to-ground (p-n-g) line faults simulated at 1 s with a fault resistance of 25 Q at a
point 335 km away from the rectifier end. Fig. 3 also demonstrates the changes in the proposed
input features for external single-phase-to-ground faults simulated at 1 s with a fault resistance of

25 Q on the ac side of the rectifier and inverter stations.
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Fig. 2 Changes in the proposed input features for internal line faults simulated at 1 s with a fault resistance of 25 Q

at a point 335 km away from the rectifier end: a) p-g fault, b) n-g fault, ¢) p-n-g fault
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Fig. 3 Changes in the proposed input features for external single-phase-to-ground faults simulated at 1 s with a fault

resistance of 25 Q: a) on the ac side of the rectifier station, b) on the ac side of the inverter station

By investigating Figs. 2(a) to 2(c), it can be comprehended that the moving averages of positive
and negative voltage signals (i.e., fe1 and fez) provide an excellent distinguishing power to detect
and classify different types of internal line faults. On the other hand, by comparing Fig. 2(c) with
Figs. 3(a) and 3(b), it can be seen that these two first features may not be able to correctly
discriminate between internal double-pole faults and external ac-side faults, especially in the early
post-fault moments. However, according to these figures, the next two features based on the

maximum sample value of DCF current signal or the maximum coordinate difference between



current signals before and after DCF (i.e., fez and fe4) compensate for this shortcoming and provide

adequate distinguishing power for these conditions.

2.2. Machine-Learning Model

Employing an appropriate machine-learning model is of great importance in the methods based on
artificial intelligence. One of the most effective learning models for classification problems is the
SVM model. This learning model is rooted in the statistical learning theory and founded on the
structural risk minimization principle [26]. The SVM learning model provides a balance between
accuracy and generalizability by dividing patterns of different classes with the least possible error
and the maximum confidence margin.

The SVM learning model was first developed for binary classification problems and then extended
for multiclass ones. In this article, the multiclass version of SVM is employed for intelligently
protecting bipolar CSC-HVDC lines. In this multiclass version, if there are M classes in the set of
training patterns, Mx(M-1)/2 binary SVM classifiers are formed using the patterns of each different
pair of classes, i.e., with the one-against-one coding design. When a new unseen pattern is
presented to this multiclass classifier, a class is selected as the output that minimizes the
aggregation of binary losses for the constituent binary classifiers, i.e., based on the error-correcting
output codes (ECOC) model [27].

The learning process of each binary SVM classifier involves solving the following convex
optimization problem to reach the decision surface/dividing hyperplane of training patterns with
two classes, m1 and m> [28]:

S

1

min IWIE +C ) & G- a)
j=1
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Subject to:

dix(W'xxj+B)=1-¢, forj=12,..,8 (5-b)
g =0, forj=12,..,8 (5—-10)
where W is the weight vector, C indicates the soft margin coefficient or box constraint, S stands
for the number of training patterns, & is the slack variable related to the /™ training pattern (for
controlling noisy or linearly non-separable data), d; is the binary class label related to the j training
pattern (equal to 1 for m; and -1 for m>), x; stands for the /" training pattern, and B represents the

bias of decision surface/dividing hyperplane. The dual of the optimization problem (5) based on

the Lagrange function L(a) and Karush-Kuhn-Tucker conditions are as follows [28]:

s
1
maxL(a =Za] Ez aj X ap X d; thXx X Xp, (6—a)
]:1 h:

Subject to:
0<a;<C  forj=12,..,S (6 —b)
5
Y dixa;=0 6-c)
j=1

where ¢ is the Lagrange coefficient of the constraint related to the j™ training pattern. The optimal
solution to the optimization problem (5) can be achieved by solving this dual problem. However,
the decision surface/dividing hyperplane obtainable from the abovementioned formulations is
linear. Hence, a kernel function is usually used to achieve a nonlinear decision surface/dividing
hyperplane. The dual optimization problem (6) can be rewritten as follows, based on the mapping

Xj = <p(xj) and the kernel function K(xj,xh) = q)T(xj) X @(xp) [28]:
s 1 s
mozl;\xL(a) z j—zz ahxdjxdth(xj,xh) (7—a)
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Subject to:

0<aq; <C, forj=12,..,8 (7—=0b)
s
Zdjxa]=0 (7—C)
j=1

One of the most widely used and efficient kernel functions is the Gaussian kernel. This kernel can

be defined as follows:

K(xj, xp) = exp <— @) (8

where o indicates the Gaussian kernel scale parameter.

3. Designed Protection Plan

In the protection plan of this article, at any moment, the four features introduced in Section 2.1 are
extracted from 10-ms moving time frames of the measured voltage and DCF current samples and
formed as the input pattern. Then, this input pattern is presented to the multiclass SVM classifier
with the Gaussian kernel function described in Section 2.2. The corresponding class is determined
based on the set of binary SVM classifiers and the ECOC model. According to Section 2.2, for
four possible output classes, six binary SVM classifiers are required in the one-against-one coding
design of the multiclass SVM classifier. Fig. 4 provides an outline of the proposed protection plan

in real-time operation.
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Fig. 4 Outline of the proposed real-time protection plan

At any moment, one of the following four possible classes can be selected as the output class of
the proposed protection plan:

- Normal condition or external fault, ‘Norm. or Ext.’

- Internal p-g fault, ‘p-g’

- Internal n-g fault, ‘n-g’

- Internal positive-pole-to-negative-pole (p-n) or p-n-g fault, ‘p-n or p-n-g’

Whenever the protection algorithm detects one type of internal fault, the protection output remains

unchanged until it is reset.
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The SVM classifier in the proposed plan should first be prepared and trained through an offline
process before being used in real-time. The offline preparing and training process includes the
following main steps:

1) A set of training patterns is produced by precisely simulating the HVDC system under different
fault and normal conditions. In fault conditions, each training pattern includes the introduced
input features extracted from 10-ms data frames of the post-fault voltage and DCF current
samples. In normal conditions without faults, the patterns’ features can be extracted from any
10-ms data frames of the voltage and DCF current samples. In the phase of generating the
training pattern set, any issue which is a concern can be included in the conditions.

2) The SVM hyperparameters (i.e., C and o) are adjusted via a k-fold cross-validation process and
based on the Bayesian optimization, minimizing the cross-validation loss.

3) Finally, the SVM classifier is trained using all the training patterns and the selected values for
the SVM hyperparameters. This classifier is ready to be used in the protection plan in real-time.

Proper implementation of the above preparation and training steps will lead to the desired

performance of the proposed protection plan. In contrast, improper execution of the above offline

steps will degrade the performance. For example, selecting inappropriate values for the SVM
hyperparameters will reduce the internal fault detection accuracy, reduce the stability against
external faults, and increase the response time due to the increased validation loss and decreased

generalization power.

4. Results and Discussion
In this section, for assessing the designed protection plan’s performance, the test transmission

system of Fig. 1 is modeled in PSCAD/EMTDC [29] with specifications adapted from the CIGRE

17



benchmark system [25]. The modeled test system has a nominal voltage of £500 kV and a nominal
transmission capacity of 2000 MW. This bipolar system’s overhead line is 1000 km long, modeled
with the frequency-dependent parameters based on the arrangement shown in Fig. 5 [30]. The
voltage and current signals’ sampling rate in the simulated system is 2 kHz. The proposed
protection plan is realized in MATLAB [31] and examined with the signals acquired from the

simulation.

Ground wire

~

13.2 [m]

Conductor 1 Conductor 2

0.4572 [rp]/ 15.4 [m]

e

Tower: DC
29

Conductors: chukar
Ground_Wires: 1/2"HighStrengthSteel
0 [m]
>

Ground Resistivity: 100.0 [ohm*m]
Relative Ground Permeability: 1.0
Earth Return Formula: Analytical Approximation

Fig. 5 Arrangement of the transmission line modeled in PSCAD/EMTDC

4.1. Preparing and Training

For preparing the protection plan, a set of training patterns should first be generated by simulating
the test CSC-HVDC system under different conditions. These conditions are provided in Table 1.
Each training pattern includes the four features described in Section 2.1 (i.e., fei, fe2, fes, and fes),

extracted from 10-ms data frames of the measured voltage and DCF current samples. In the fault

18



conditions, the starting point of these data windows is the moment of fault signature appearance at

the terminal. However, there is no specific requirement for the starting point of these data windows

in the normal conditions without faults.

Table 1 Conditions for generating the set of training patterns

Condition Fault type Fault location Fault resistance Load Fault Number
current inception of
angle patterns
Internal p-g, n-g, p-n, p-n-g From 1% to 99% of  0.01 2,50 Q, 100 Q, 500 A, Not 1260
dc faults the line length witha 150 Q, 200 Q, 300 1200 A, applicable
step of 7% Q, 500 Q 1900 A
External 11 ac fault types involving F1, F2, F3, F4, F5, 0.01 2,500,100, 500 A, 45°135°, 6600
ac faults  the ground and the phases F6, F7, F8, F9,F10 200 Q, 300 Q 1200 A, 225°,315°
a,b,and c (according to Fig. 1) 1900 A
Normal  Not applicable Not applicable Not applicable 500 A, Not 3
conditions 1200 A, applicable
1900 A

According to the conditions of Table 1, a total of 7863 training patterns are formed, each labeled

as one of the four possible classes mentioned in Section 3. These training patterns should be used

to train the multiclass SVM classifier and regulate its hyperparameters. The box constraint C and

the Gaussian kernel scale o are adjusted via a 5-fold cross-validation process and based on the

Bayesian optimization, minimizing the cross-validation loss. Fig. 6 shows the loss changes during

the optimization process in terms of the SVM hyperparameters. Based on the model obtained for

the objective function, the best estimations for C and o are 35.45 and 0.4, respectively. The

multiclass SVM classifier is eventually trained using the complete training pattern set and

considering these hyperparameters values.
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Fig. 6 Cross-validation loss in terms of the SVM hyperparameters

4.2. Performance for Internal Faults
Here, the test CSC-HVDC system is simulated under various internal fault conditions, as different
as possible from the conditions of training patterns. These test conditions are as follows:

- Fault type: p-g, p-n, and p-n-g
- Fault location: at random distances including 1.2%, 7.1%, 13.7%, 20.3%, 26.9%, 33.5%, 40.1%,

46.7%, 53.3%, 59.9%, 66.5%, 73.1%, 79.7%, 86.3%, 92.9%, and 99.5% of the line length from

- Fault resistance: 5 Q, 25 Q, 75 Q, 125 Q, 175 Q, 250 Q3, 350 Q2, 400 QQ, and 450 Q
- Load current: 700 A, 1000 A, 1400 A, and 1700 A
According to the above conditions, the suggested protection plan is tested for the combinations of

3 fault types, 16 fault locations, 9 fault resistances, and 4 load currents, i.e., for a total of 1728

20



unseen internal fault cases. Tables 2 and 3 present the test results regarding the various fault
resistances for the p-g and double-pole (i.e., p-n and p-n-g) faults, respectively. In these tables, the
fault detection time delay (FDTD) has been calculated from the moment of fault signature

appearance at the terminal.

Table 2 Results in terms of various fault resistances for internal p-g faults

Fault Number of test Percentage of correct Minimum Maximum Average
resistance cases detection and classification FDTD (ms) FDTD (ms) FDTD (ms)
5Q 64 100% 3 9 4.4

25Q 64 100% 3 11.5 4.6

75 Q 64 100% 3 8.5 4.4
125Q 64 100% 3 7.5 4.3

175 Q 64 100% 2.5 8.5 4.3

250 Q 64 100% 2.5 9.5 4.3

350 Q 64 100% 2.5 21.2 5.1

400 Q 64 100% 2.8 42.7 6.1

450 Q 64 100% 3 47.9 7.8
Total 576 100% 2.5 47.9 5.0
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Table 3 Results in terms of various fault resistances for internal double-pole (i.e., p-n and p-n-g) faults

Fault Number of test Percentage of correct Minimum Maximum Average
resistance cases detection and classification FDTD (ms) FDTD (ms) FDTD (ms)
50 128 100% 3.5 21.0 6.3
25Q 128 100% 3.0 12.0 5.7

75 Q 128 100% 3.0 8.5 5.0

125 Q 128 100% 3.0 8.0 4.6

175 Q 128 100% 3.2 7.0 43

250 Q 128 100% 3.2 6.1 4.1

350 Q 128 100% 33 6.5 4.6

400 Q 128 100% 35 7.5 5.0

450 Q 128 100% 35 8.5 5.5
Total 1152 100% 3.0 21.0 5.0

As can be comprehended from Tables 2 and 3, in all the 1728 unseen internal fault cases, the
presented protection plan has quickly detected and correctly classified the solid and high-resistance
line faults. According to the results provided for the single-pole faults in Table 2, the average
FDTD is less than 6.5 ms for the fault resistances up to 400 Q. However, it slightly increases to
7.8 ms at the fault resistance of 450 Q. On the other hand, the results provided for the double-pole
faults in Table 3 reveal that the average FDTD is below 6.5 ms for all the fault resistances. It is
worth noting that the presented protection plan has not malfunctioned during the pre-fault moments
of these test cases.

Fig. 7 represents the average FDTD regarding the various fault locations for the p-g and double-
pole (i.e., p-n and p-n-g) faults. As can be understood from this figure, the average FDTD has
slightly increased for the single-pole faults near the remote line terminal and reached 10.7 ms at a

distance of 99.5% of the line length from the rectifier station.
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As examples of the correct operation in real-time, Fig. 8 exhibits the changes in the input features
and output class of the protection algorithm for p-g and p-n-g faults simulated at 1 s with a

resistance of 450 Q and a pre-fault current of 1700 A at a point 863 km away from the rectifier

end.
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s with a resistance of 450 Q and a pre-fault current of 1700 A at a point 863 km away from the rectifier end: a) p-g

fault, b) p-n-g fault

4.3. Performance for External Faults in HVAC Systems

In this section, the test system is simulated under various external faults in the connected HVAC
systems, with conditions as different as possible from those considered for generating the training
patterns. These test conditions are as follows:

- Fault type: 11 ac fault types involving the ground and phases a, b, and ¢

- Fault location: F1 and F6 (according to Fig. 1)
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- Fault resistance: 5 Q, 25 QQ, 75 Q, 150 Q3, and 250 Q

- Load current: 700 A, 1000 A, 1400 A, and 1700 A

- Fault inception angle: 0°, 90°, 180°, and 270°

According to the above conditions, the proposed plan is evaluated for the combinations of 11 fault
types, 2 fault locations, 5 fault resistances, 4 load currents, and 4 fault inception angles, i.e., for a
total of 1760 unseen external fault cases. The performance evaluation results for the various types
of external faults in the connected HVAC systems are presented in Table 4. Based on these results,
the protection plan has been stable against 99.375% of the 1760 unseen external fault cases. It has
malfunctioned only in few phase-to-phase faults in the HVAC system connected to the rectifier
station. Indeed, the SVM classifier has misclassified only 11 out of 480 external phase-to-phase
fault cases as ‘p-n or p-n-g’ due to the real-time position of the feature vector relative to the SVM’s
decision surface/dividing hyperplane, while it has remained entirely stable against other external
fault types. This little accuracy sacrifice in the case of external faults is acceptable given the fact
that the relevant test conditions were not considered in the training stage (i.e., unseen test
conditions), confirming the plan’s good generalizability. It is worth noting that in these results, the
same probability of occurrence has been considered for different types of ac faults, while double-

phase faults are less likely to occur than single-phase faults.

25



Table 4 Results for various types of external faults in the connected HVAC systems

Fault Fault Number of Percentage of correct detection and Percentage of incorrect detection and

location type test cases classification as ‘Norm. or Ext.’ classification as an internal dc fault
F1 a-g 80 100% 0%
b-g 80 100% 0%
c-g 80 100% 0%
a-b-g 80 100% 0%
a-c-g 80 100% 0%
b-c-g 80 100% 0%
a-b-c-g 80 100% 0%
a-b 80 95% 5%
a-c 80 96.25% 3.75%
b-c 80 95% 5%
a-b-c 80 100% 0%
Feé a-g 80 100% 0%
b-g 80 100% 0%
c-g 80 100% 0%
a-b-g 80 100% 0%
a-c-g 80 100% 0%
b-c-g 80 100% 0%
a-b-c-g 80 100% 0%
a-b 80 100% 0%
a-c 80 100% 0%
b-c 80 100% 0%
a-b-c 80 100% 0%
Total 1760 99.375% 0.625%
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4.4. Performance under Measurement Noises

There are several technologies for measuring voltage and current signals in HVDC systems [32].
The proposed protection plan is not limited to a specific measuring technology. However, different
measuring technologies may have different accuracy and performance. Hence, to ensure the
applicability of the proposed protection plan with various measuring technologies, its performance
is investigated under different levels of measurement non-ideality. In this regard, the white
Gaussian noise is added to the voltage and DCF current signals acquired under test conditions. The
input features are extracted and presented to the same previously trained SVM classifier. Table 5
presents the performance test results regarding the various signal-to-noise ratios (SNRs) for the
internal fault cases of Section 4.2 and the external fault cases of Section 4.3. According to these
results, the fault detection and classification accuracy has been satisfactory under reasonable noise
levels, even with an SNR of 20 dB. However, for a higher noise level with an SNR of 15 dB, the
proposed plan’s stability against the external faults has decreased significantly. These results

should be taken into account when selecting and designing the measurement chains.

Table 5 Results in terms of various noise levels for internal and external faults

Internal p-g faults Internal double-pole (i.e., p-n External faults in the
and p-n-g) faults HVAC systems
SNR Number Percentage of Number Percentage of Number Percentage of
of test correct detection  of test correct detection of test correct detection
cases and classification cases and classification cases and classification
as ‘Norm. or Ext.’
oo dB (ideal) 576 100% 1152 100% 1760 99.375%
35dB 576 100% 1152 100% 1760 99.205%
30dB 576 100% 1152 100% 1760 99.091%
25dB 576 100% 1152 100% 1760 99.034%
20 dB 576 100% 1152 100% 1760 97.102%
15dB 576 82.292% 1152 85.330% 1760 29.375%
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4.5. Competence of the Selected Features

As stated in Section 2.1, the four features (i.e., fe1, fes, fes, and fes) are extracted to form the input
pattern in the proposed protection plan. The first two features (i.e., fe1 and fe») are extracted from
the measured voltage signals, and the next two features (i.e., fe; and fes) are extracted from the
measured DCF current signals. Here, all the steps of hyperparameter regulation, training, and
performance evaluation, similar to Sections 4.1 to 4.3, are repeated using only the voltage features
(i.e., fer and fey) and only the current features (i.e., fes and fes). Table 6 provides the performance
evaluation results in these cases compared to the recommended case using all four features. It
should be noted that the adjusted values for C and o in the case of using only the voltage features

are 1.62 and 0.04, respectively, and in the case of using only the current features are 312.19 and

0.04, respectively.
Table 6 Results considering different combinations of input features
Internal p-g faults Internal double-pole (i.e., p-n External faults in the HVAC
and p-n-g) faults systems
Input features Number Percentage of Number Percentage of Number Percentage of
of test  correct of test  correct detection of test correct detection
cases detection and cases and classification cases and classification
classification as ‘Norm. or Ext.’
fei, fe, fes, and fes 576 100% 1152 100% 1760 99.375%
fer and fe: 576 100% 1152 100% 1760 70.227%
fes and fey 576 68.750% 1152 98.351% 1760 95.568%

As comprehendible from Table 6, the use of only fei and fe> leads to a decrease in the protection
plan’s stability against the external ac faults compared to the recommended base case. Also, using

only fe; and fe4 significantly reduces the detection and classification accuracy for the internal
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single-pole faults. Indeed, these results confirm the analysis of Section 2.1 regarding the necessity

to use all the four recommended features in the input pattern.

4.6. Performance for Lightning Strikes

Here, to further investigate the proposed plan’s stability against the induced transients from other
external events, the lightning strike on the ground wire at a distance of 10 km from the rectifier
station at 0.8 s is simulated in PSCAD/EMTDC based on the guidelines provided in [33]. Three
towers with a 400-m span on each side of the lightning strike point are modeled with a surge
impedance of 150 Q and a foot resistance of 25 Q. The lightning current surge is generated with a
peak value of 200 kA, a front time of 10 ps, and a time to half-value of 350 us [34] (as shown in

Fig. 9).
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Fig. 9 The lightning current surge struck on the ground wire (200 kA and 10/350 ps)

Fig. 10 presents the changes in the input features and output class of the protection algorithm. As
can be comprehended from this figure, the features have not changed significantly, and
consequently, the proposed algorithm has remained stable during the transients induced due to the

lightning strike.
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Fig. 10 Changes in the input features and output class of the proposed algorithm in dealing with the transients

induced due to the lightning strike on the ground wire at 0.8 s

In some cases, a smaller lightning surge may escape the shelter provided by the ground wire and
directly strike on the pole conductor [33]. Hence, two lightning strikes on the positive and negative
pole conductors at a distance of 10 km from the rectifier station at 0.8 s are also simulated in the
test system, considering surge arresters installed in front of DCFs. The relevant lightning current

surge is generated with a peak value of 15 kA, a front time of 1.2 us, and a time to half-value of

50 ps [34] (as shown in Fig. 11).
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Fig. 11 The lightning current surge struck on the pole conductors (15 kA and 1.2/50 ps)
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Figs. 12 and 13 show the measured voltage and DCF current signals for the direct lightning strikes
on the positive and negative pole conductors. Fig. 14 also presents the changes in the input features
and output class of the protection algorithm in these cases. As shown in this figure, the features
extracted based on the average voltage (i.e., fer and fe») have not changed significantly, and

consequently, the proposed algorithm has not malfunctioned during the transients generated due

to the direct lightning strikes.
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Fig. 12 Measured signals for the lightning strike on the positive pole conductor at 0.8 s: a) voltage, b) DCF current
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4.7. Performance for Pole Conductor Interruptions

Here, to investigate the proposed plan’s performance in the case of conductor interruption, three
following interruption scenarios (as also illustrated in Fig. 15) are simulated for the positive pole
at a distance of 400 km from the rectifier station at 0.8 s:

1) Both sides contact the ground with high resistance of 500 Q2

2) Only the inverter side contacts the ground with high resistance of 500 Q

3) Only the rectifier side contacts the ground with high resistance of 500 Q
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Fig. 15 Three conductor interruption scenarios: a) both sides contact the ground, b) only the inverter side contacts

the ground, c) only the rectifier side contacts the ground

Fig. 16 displays the changes in the input features and output class of the protection algorithm in
these scenarios. As can be understood from this figure, the suggested plan has detected all the pole
interruption events. However, when the rectifier side has not contacted the ground (i.e., in Scenario

2), the positive pole interruption has been misclassified as a negative pole’s fault. The proposed
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plan’s performance in dealing with the pole interruption scenarios should be considered when

employing it.
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Fig. 16 Changes in the input features and output class of the proposed algorithm for the positive pole interruption at
a distance of 400 km at 0.8 s: a) in Scenario 1, b) in Scenario 2, ¢) in Scenario 3
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4.8. Effect of DCF Disconnection

If one or both DCFs are disconnected, the proposed plan cannot work correctly since the
disconnected DCF’s current and relevant feature will be permanently zero according to (3) and
(4). However, based on the results provided in Section 4.5 and Table 6, the proposed plan is also
applicable using only the voltage features (i.e., fe1 and fe>), sacrificing 30% stability against
external faults. Therefore, a backup plan with less stability can be prepared using only the voltage

features (i.e., fe1 and fez) and utilized in the case of DCF disconnection.

4.9. Applicability in Monopolar Mode

In the event of a permanent single-pole-to-ground fault, the bipolar HVDC system can be restarted

and operated through the healthy pole, i.e., in the monopolar mode with the ground return.

Whenever the HVDC system restarts in the monopolar mode, the applied plan needs to be modified

accordingly because measurable signals and output classes will differ from the bipolar mode.

A modified version of the proposed protection plan can be particularly prepared and trained for

the monopolar mode. The following modifications should be applied to achieve this, assuming that

the system structure in the monopolar mode includes the positive pole and the ground return path:

m A binary SVM classifier should be trained instead of the multiclass one since there will be only
two output classes in this operational mode, including normal condition or external fault (i.e.,
‘Norm. or Ext.”) and internal p-g fault (i.e., ‘p-g’).

m Instead of the four features introduced, only two features extracted from the positive pole voltage
and DCF current signals (i.e., fer and fes extracted using (1) and (3), respectively) should be

considered as inputs.
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As can be comprehendible from the above modifications, the protection plan particularly prepared
and trained for the monopolar mode will be much simpler than the one introduced in Section 3 for

the normal bipolar mode.

4.10. Comparison to Other Intelligent plans

Table 7 compares the proposed plan to other intelligent plans designed so far to protect CSC-
HVDC transmission systems. As can be understood from this table, although the proposed plan
has a slightly higher delay than the one presented in [20], it has a superior ability to discriminate
between external and internal faults. The proposed plan has less complexity compared to [20] and
[21] since it detects and classifies internal faults in one step. The proposed plan’s straightforward
training and hyperparameter regulation procedures are significant advantages that make it superior
to the plan designed in [21]. The proposed plan has a slightly lower delay than the plans presented
in [21] and [22]. Moreover, unlike the plan presented in [22], the proposed plan does not require
sending the fault detection and classification results to the rectifier station since it works based on
the local measurements at the same station. It can be comprehended that the proposed plan is an

effective step in improving intelligent protection strategies for CSC-HVDC transmission systems.

Table 7 Comparison with other intelligent protection plans designed for CSC-HVDC systems
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Designed Measuring No need for a Fault Discrimination Straightforward Average

plan end telecommunication detection and ability between training and FDTD

link classification external and hyperparameter (ms)

in one step internal faults regulation
procedures

[20] Rectifier v x x v 2.7%
[21] Rectifier v x v x 5.7*
[22] Inverter x 4 v v 10.1*
Proposed Rectifier v v v v 5

*Obtained by averaging the provided fault detection results in the reference

5. Conclusion

An efficient protection plan has been designed for bipolar CSC-HVDC transmission lines, using

four useful features extracted from the locally measured voltage and DCF current samples and

employing a multiclass SVM classifier. This plan has been evaluated in a typical 1000-km CSC-

HVDC transmission system under a wide variety of conditions not seen in the training stage. The

evaluation findings are as follows:

m The designed plan has quickly detected and correctly classified 100% of 1728 unseen solid and
high-resistance line faults with an average FDTD of 5 ms.

m The proposed plan has remained stable against 99.375% of 1760 unseen external faults in the
connected HVAC systems.

m The designed plan has performed satisfactorily under reasonable noise levels, even with an
SNR of 20 dB.

m The proposed plan has remained stable during lightning strikes on the ground wire and pole
conductors.

m The designed plan has performed satisfactorily in 2 out of 3 conductor interruption scenarios.
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Comparisons confirm that this research provides a significant advance in developing intelligent
protection strategies for CSC-HVDC systems. The proposed plan only requires single-end
measurements and does not need data transmission or synchronization. Moreover, it works with a
low signal sampling rate of 2 kHz, which is much lower than the required rates in the single-ended

traveling-wave-based plans.
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