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H I G H L I G H T S  

• A scheme for effective monitoring and controlling of carbon emissions is proposed. 
• The scheme is optimized for detecting increasing shifts in carbon emissions. 
• Effectiveness of the proposed scheme is investigated under different scenarios. 
• Continuous monitoring of carbon emission reduces the related costs significantly. 
• Valuable insights are provided for designing the proposed monitoring scheme.  
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A B S T R A C T   

The industrial sector is considered one of the fastest-growing sources of greenhouse gases, due to the excessive 
consumption of energy required to cope with the growing production of energy exhaustive products. The sta
tistical process monitoring (SPM) can be an effective tool for monitoring and controlling carbon emissions from 
industries. This article presents an economic-statistical design of the combined Shewhart X and exponentially 
weighted moving average (EWMA) scheme (X&EWMA scheme) for monitoring carbon emissions from industries 
to allow prompt action for controlling excessive emissions. The parameters of the proposed SPM scheme have 
been optimized for minimizing the expected total cost, including cost from carbon emissions and operational 
costs of the SPM scheme. The design of the X&EWMA scheme has been optimized considering a wide range of 
shifts in the mean of the emission process, and ensuring that the constraints on inspection rate, sample size, and 
false alarm rate are all satisfied. Comparative studies showed that the optimal X&EWMA scheme reduced the 
expected total cost by about 40%, 77%, and 28% compared with the basic X, EWMA, and X&EWMA schemes, 
respectively. The impact of the design parameters on the effectiveness of the proposed SPM scheme has also been 
investigated by sensitivity analysis. Finally, the application of the proposed SPM scheme is demonstrated by 
using real data for carbon emissions from different industrial facilities. This study is expected to considerably 
reduce the cost owing to excessive carbon emissions from industries and widen the literature on the utilization of 
SPM tools in managing the quality of the environment.   
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1. Introduction 

Environmental degradation is considered as one of the most critical 
issues by today’s researchers, professionals, and policymakers. Human 
activities increase the emission of heat-trapping gases, known as 
greenhouse gases (GHGs) that cause global warming and ecological 
imbalances [1,2]. Uprety et al. [3] reported that the concentration of 
GHGs in the Earth’s atmosphere has significantly increased since the 
pre-industrial era of 1850. This increase of GHGs emissions is changing 
the Earth’s climate, leading to various catastrophic events such as 
floods, earthquakes, droughts, and the deterioration of the polar regions 
[1]. According to the Kyoto Protocol, carbon dioxide (CO2) is one of the 
six major GHGs that potentially influence the climate [4]. 

Since 1990, the industrial sector has grown by 174% and is consid
ered the fastest-growing sources of GHGs [5]. Carbon emissions from 
different industrial sectors are characterized by a wide range of emission 
quantities, depending on the type of industrial sector, the type of tech
nology used, and the energy source. Although energy consumed by 
different industrial sectors has decreased in recent years, the total en
ergy use has still increased due to production growth and the increase of 
energy exhaustive industrial products [6]. The International Energy 
Agency (IEA) presumes that industrial energy use will continue to in
crease until it approximately doubles in 2050, as compared to the con
sumption levels in 2009. As a result, the industrial CO2 emissions are 
expected to increase by 45–65% [6]. Chontanawat [7] investigated the 
dynamic relationship between energy consumption and carbon emis
sions using co-integration and causality models, and concluded that 
energy consumption causes carbon emissions, implying their increases 
are directly proportional to each other. Thus, monitoring carbon emis
sions is the key towards encouraging households, businesses, and in
dustries to use energy-efficient products as well as clean energy. 

Many industrialized countries have imposed environmental legisla
tions or carbon taxes and/or implemented the cap-and-trade system to 
control fossil fuel emissions and promote cleaner energy [8–10]. The 
carbon tax is a surcharge applied on GHGs emissions, mainly from 
burning fossil fuels. For instance, Sweden has imposed a carbon tax since 
1991 to minimize GHGs emissions, and the federal government of 
Canada has been enforcing rules and regulations nationwide to ensure 
all provinces have a carbon fee in place. On the contrary, in a cap-and- 
trade system, governments put a threshold or cap on the average amount 
of carbon emissions from an industry. The United States and the Euro
pean Union have been successfully implementing the cap-and-trade 
system to meet the commitments toward controlling GHGs emissions 
[11,12]. 

However, researchers are continuously exploring varying techniques 
to find the most effective way to control carbon emissions. Chen et al. 
[13] proposed an inexact multi-criteria decision-making model for 
ensuring the optimal lifecycle economics and GHGs emissions under 
uncertainty. To promote sustainable development of human society, the 
transition of the global energy system from high-carbon to low-carbon 
energy resources, such as shale gas, is essential. Chen et al. [14] 
developed a multi-level programing model for lifecycle assessment of 
GHGs emissions and water-energy optimization for a shale gas supply 
chain. Similarly, He et al. [15] evaluated shale gas resources and their 
corresponding environmental implications under uncertainty. Abey
deera et al. [16] emphasized on monitoring and documenting the 
amount of carbon emissions at various levels (product, organization, 
city, and country) with the objective of formulating the necessary stra
tegies to manage the quality of the environment. Likewise, [17] and [18] 
developed systems for monitoring and assessing the environmental 
performance of the real estate sector in Sweden via environmental in
dicators. They concluded that the energy and emissions of buildings can 
be estimated using time series models. According to [19], analyzing the 
patterns of the recently monitored data of carbon emissions can be very 
beneficial to efficiently assess current and future carbon emission trends. 
Thereafter, many studies have been directed to evaluate the emission 

rates from different industries, such as manufacturing [20] and energy 
[21]. In addition, statistical process monitoring (SPM) schemes can be 
used successfully to continuously monitor the emissions data and 
identify unusual changes in a timely fashion [22–24]. 

The continuous monitoring of carbon emissions from industries 
using SPM schemes can provide several benefits. At the industrial level, 
it can help in identifying excessive emissions at an early stage, and thus 
ensure that appropriate action can be taken in advance to control them, 
which in turn can minimize the expected total cost including emission- 
related and operational costs of the SPM scheme. For policymakers, it 
can assist in (i) evaluating whether the emissions are within the regu
latory limit (e.g., carbon-cap as specified by the government) or at a high 
risk of non-compliance, (ii) adjusting the control parameters in a sys
tematic way to avoid non-compliance, (iii) monitoring and measuring 
the impact and related costs of emissions on the environment, (iv) 
establishing guidelines for evaluating real-time emissions against the 
targeted emissions and regulatory requirements, and (v) deciding which 
facility needs more frequent inspection, based on the frequency of the 
signal produced by the SPM schemes. Most importantly, SPM schemes 
can help decision-makers set an appropriate amount of emission fee (i.e., 
carbon tax). 

The remainder of the paper is organized as follows. Section 2 reviews 
the relevant articles, identifies the research gaps, and highlights the 
contribution of the paper. Section 3 develops the model for the opti
mization design of the proposed SPM scheme. Section 4 discusses the 
results of numerical studies conducted to evaluate the performance of 
the proposed SPM scheme under different operational scenarios. Section 
5 illustrates the design and application of the proposed SPM scheme 
through a case study. Finally, the conclusions and future research di
rections are discussed in Section 6. 

2. Literature review 

The SPM tools have been mainly applied for measuring and con
trolling the quality of products in manufacturing industries for over 50 
years, where the SPM chart is commonly used for monitoring a 
manufacturing process behavior over time to identify any unusual 
changes or trends, which ultimately helps in reducing the waste and 
improving the quality of the product [25]. The widespread application 
of SPM charts in manufacturing is mainly due to the fact that the quality 
characteristics (e.g., dimensions of a product) in a manufacturing setting 
can easily be defined and measured. Moreover, the flow of the products 
throughout most of the manufacturing processes can easily be tracked 
and controlled. On the other hand, the application of SPM tools in non- 
manufacturing sectors is really challenging because of the invisible work 
processes, lack of data, and difficulties in standardizing and measuring 
the quality characteristics. Although the application of SPM charts is 
comparatively less in non-manufacturing sectors, its adoption is growing 
rapidly because of the significant improvement in data acquisition and 
powerful computing systems in the recent years. One such sector is the 
environmental quality management (EQM). The quality of environment 
(e.g., quality of ambient air) can be affected by different sources, 
including carbon emissions from industrial facilities. Few researchers 
have proposed the application of SPM charts for controlling and man
aging the quality of environmental processes through the effective 
monitoring of environmental characteristics, such as pollutants dis
charged from different industries into the environment (for instance, see 
[26,27]). Madu [26] explained how SPM schemes can be used for 
environmental monitoring, while [22] designed a traditional cumulative 
sum (CUSUM) chart for monitoring the nitrate concentration blank 
measurement data. Furthermore, they used the process capability 
indices to evaluate the environmental performance of the nitrate blank 
process to avoid associated risks. Pan and Chen [23] designed an eco
nomic CUSUM scheme based on Duncan’s model and compared its 
performance with that of the X scheme for monitoring liquid (zinc) 

M. Shamsuzzaman et al.                                                                                                                                                                                                                      



Applied Energy 300 (2021) 117352

3

waste and industrial pollutants discharged into a river. Leiva et al. [28] 
designed an attribute control chart for monitoring environmental risks 
due to dangerous pollutants present in the air, and the performance of 
the proposed methodology was investigated via simulation study. 
Similar to [28], Marchant et al. [29] proposed a methodology for 
monitoring particulate matter pollutants present in the environment 
using bivariate SPM charts. Capezza et al. [30] discussed traditional 
multivariate techniques for monitoring the total CO2 emissions from a 
cruise ship, on different voyages, to detect anomalous occurrences. 

The abovementioned SPM schemes are designed for monitoring 
either a single value or a few specific values of process shift. However, in 
almost all real applications, predicting the process shift is extremely 
cumbersome because the size δ of a shift in the process mean is a random 
variable that varies from time to time [31]. Consequently, an SPM 
scheme established considering a single value or a few specific values of 
δ may not satisfactorily capture the real characteristics of the process 
effectively. On the contrary, if data on δ are collected, the distribution of 
δ can be estimated and an optimal SPM scheme can be designed so that 
its effectiveness can be enhanced over a wide range of δ rather than a 
specific shift point. In addition, most of the abovementioned models 
assume that the quality characteristics x to be monitored are normally 
distributed, which is not always the case in environmental pollution 
processes. In most of the real applications, the environmental data is 
non-normal, and thus the traditional SPM schemes cannot be used 
directly for monitoring them. Liu and Xue [24] proposed a cost-based 
exponentially weighted moving average (EWMA) scheme (known as 
ML-EWMA chart) for monitoring the non-normal environmental data, 
assuming a random shift δ in the environmental pollution process. The 
proposed model minimizes only the quality loss experienced by an 
environmental pollution process based on Taguchi’s loss function. 
However, the primary goal of implementing an economic SPM scheme is 
to minimize the expected total cost, including the cost due to quality loss 
and operational costs of the SPM scheme. Several extensions to the 
pioneering economic design of X scheme, developed by [32], have been 
proposed (for instance, see [33–37]). Although the economic design of 
an SPM scheme is popular, it suffers from poor statistical properties (e. 
g., high false alarm rate). Therefore, several scholars have developed 
economic-statistical designs of an SPM scheme to reduce the false alarm 
rate (for instance, see [36,38–40]). 

It is well-known that the traditional X scheme is a better choice for 
detecting large process shifts, whereas the EWMA and CUSUM schemes 
are mainly used for detecting small process shifts [25]. The effectiveness 
of the EWMA scheme is comparable to that of the CUSUM scheme; 
however, the former is easier to design and operate [25]. An SPM 
scheme combining both X and EWMA charts can enhance the perfor
mance of the monitoring scheme for detecting both small and large shifts 
in the environmental pollution processes. This study presents an opti
mization model for the economic-statistical design of the combined X& 
EWMA scheme for monitoring carbon emissions from industrial sectors, 
considering random shifts in the emission process. The contribution of 
the proposed study is summarized as follows: (i) the proposed model 
optimizes the charting parameters including the sample size, sampling 
interval, weighting parameter, and control limits of the combined X& 
EWMA scheme, and, in the meantime, ensures that no extra resources 
for operating the SPM scheme will be necessary. (ii) The proposed SPM 
scheme minimizes the expected total cost including the cost due to 
quality loss in the emission process and the operational cost of the SPM 
scheme. (iii) The performance of the proposed X&EWMA scheme is 
compared to basic X, EWMA and X&EWMA schemes. The study shows 
that the proposed combined X&EWMA scheme is significantly superior 
to its competitors for monitoring an environmental process. (iv) The 
performance of the proposed X&EWMA scheme is investigated exten
sively under different operational scenarios to help practitioners identify 
the optimal charting parameters using a computer program, available 
upon request. (v) The design and application of the proposed SPM 

scheme are illustrated by a real case study to promote its practical use. 

3. Model development 

3.1. Assumptions 

Formulating the model proposed in this article involves the following 
assumptions:  

(1) The emission process begins from an in-control (IC) condition. 
The carbon emission variable x is independent and has normal 
distribution, with IC mean μ0 and standard deviation (SD) σ0. An 
assignable cause will alter the IC mean μ0 to out-of-control (OOC) 
mean μ1: 

μ1 = μ0 + δσ0 (1)  

where δ is the size of the shift in the mean value of the carbon emission 
process, experienced by an assignable cause, if the emission process is in 
the IC state, δ = 0. To simplify the process of designing the model, the 
shift in the SD of the emission process is not considered in this study (i.e., 
σ ≡ σ0).  

(2) The shift of size δ in the mean value of the carbon emission 
process is characterized by a Rayleigh distribution. This distri
bution is well-accepted in the SPM research community as a 
realistic representative of the distribution of the process shift 
[41–43].  

(3) The OOC state occurs owing to a single assignable cause in the 
emission process. The incidence of the assignable cause is 
assumed to follow a homogenous Poisson process, with mean λa 
(i.e., the length of the IC state of the emission process follows an 
exponential distribution with a mean of 1/λa). This is a critical 
assumption, however, such assumption substantially simplifies 
the process of designing the economic model [25].  

(4) The carbon emission process continues during identifying and 
fixing the assignable cause. 

3.2. Notations 

The notations used in this study and their definitions are presented in 

Table 1 
Notations used in designing the optimization model.  

λ The EWMA weighting factor. 

n Sample size 
h Sampling interval 
UCL Upper control limit of the X chart.  
H Upper control limit of the EWMA chart. 
µ0 Mean amount of carbon emissions during the IC state of the emission process. 
σ0 Standard deviation of the amount of carbon emissions during the IC state of 

the emission process. 
USL Upper specification limit of the amount of carbon emissions. 
Q Amount of carbon emissions per unit time. 
λa Incidence rate of the assignable cause. 
O Maximum number of carbon emission data inspected per unit time (i.e., 

maximum permissible inspection rate). 
μδ Mean of the δ values in the carbon emission process. 
g Time required to estimate and test an observed data of a sample of carbon 

emission. 
t4 Time length from an OOC state to the identification and fixation of the 

assignable cause. 
ζ Minimum allowable IC ATS0. 
a1 Fixed part of the sampling cost. 
a2 Variable part of the sampling cost. 
a3 Cost of detecting and dissecting an assignable cause. 
a4 Cost of investigating a false alarm. 
CK The average penalty cost for an out-of-specification amount of carbon 

emissions.  
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Table 1. 
Most of the parameters listed in Table 1 can be estimated based on 

the historical records of the company or factory. The charting parame
ters (λ, n, h, H, UCL) can be obtained from the optimization algorithm 
proposed in this research. The process parameters (μ0, σ0) can be esti
mated from the data observed in the pilot runs or process capability 
studies. The value of the USL can be decided based on the permissible 
amount of carbon emissions or carbon-cap; the amount of carbon 
emissions is supposed to not exceed the USL. The value of Q may be 
estimated from the company’s historical records of energy consumption 
per unit time. The value of the rate of occurrence of assignable cause λa 
can be estimated based on the historical records of OOC cases. The 
presence of the assignable cause incurs an excessive amount of carbon 
emissions. An important reason behind the sudden increase in the 
amount of carbon emissions may be the deterioration of the equipment’s 
efficiency (or operators’ negligence) that leads to unnecessary energy 
consumptions. The root causes of this deterioration may include, but are 
not limited to, leakages, broken equipment, or worn bearings. The in
spection rate O is the time that the company dedicates to running SPM 
activities—it can be estimated based on the total time that an operator is 
engaged with the quality of inspection. The value of μδ can be estimated 
based on the sample values of mean shift δ obtained during OOC cases of 
the emission process [42]. The values of the time components g and t4 
can be easily estimated from a field test. The specification ζ can be 
decided based on the trade-off between the false alarm rate and the 
detection power. The value of a1 can be approximated by considering 
the cost of the emission metering system (e.g., sensors or other devices) 
for measuring the amount of energy consumption per unit time. The 
value of a2 can be approximated by considering the operational and 
maintenance costs of the emission metering system and inspectors’ 
salaries. The value of a3 can be approximated by considering the cost of 
the equipment used, experts’ salaries, and transportation costs. 
Approximating the cost parameter a4 is quite similar to a3, however, a4 is 
generally more costly than a3, as investigating a false alarm is usually 
longer and needs more sophisticated equipment than detecting and 
fixing an assignable cause. Finally, the value of CK can be decided based 
on the carbon tax. 

3.3. Design model 

3.3.1. Optimization model 
The variables zi and xi are the two monitoring statistics for the ith 

sample to be plotted on the combined X&EWMA scheme, where xi is the 
mean value of ith sample of carbon emission data collected from 
different industrial facilities, and zi is the monitoring statistic of the 
EWMA scheme that can be calculated as follows: 

zi = λxi +(1 − λ)zi− 1 (2)  

where λ (0 < λ < 1) is the weighting parameter of the EWMA scheme. 
The initial value of zi (i.e., at i = 0) is the IC mean value of the amount of 
carbon emissions (i.e., z0 = μ0). The combined X&EWMA scheme will 
signal an OOC state if the variable zi falls above the H of the EWMA 
scheme, and/or the present value of xi exceeds the UCL of the X scheme. 
The OOC state indicates an unusual increase in the amount of carbon 
emissions owing to an assignable cause, and thus suggests that an 
initiative must be taken to detect and fix the root causes of that increase. 
If the plotted points fall below both the UCL and H of the corresponding 
SPM scheme, the carbon emission process is assumed to be in the IC 
state, and thus no action is needed. 

The optimization model of the X&EWMA scheme is as follows: 

Minimize : expected total cost (ETC). (3)  

Subject to : ATS0 ≥ ζ. (4)  

o ≤ O, n ≤ nmax. (5) 

Design parameters: λ, n, h, UCL, H. 
Here, o represents the resultant inspection rate, and nmax is the 

maximum allowable sample size that the designer wishes to consider. 
ATS0 is the maximum allowable in-control average time to signal (or, the 
false alarm rate) of the SPM scheme. Because the amount of carbon 
emissions should not exceed the USL, the proposed X&EWMA scheme is 
optimized for identifying the increasing shifts in the emission process. 
Consequently, an upper-sided EWMA scheme and an upper-sided X 
scheme have been combined. The aforementioned model optimizes λ, n, 
h, UCL, and H to minimize ETC—that is, the expected total cost per unit 
time owing to carbon emissions during an operational cycle—and, in the 
meantime, ensures that the constraints on o, n, and ATS0 are all satisfied. 

Amongst all design variables (λ, n, h, UCL, and H), only n and λ are 
independent. The value of h is determined such that the constraint on o is 
satisfied: 

h = n/O. (6) 

UCL and H are determined such that the constraint on IC ATS0 
(constraint (4)) is satisfied. The objective function ETC is calculated as 
follows: 

ETC =

∫∞

0

[TC(δ)⋅fδ(δ)]dδ (7)  

where TC(δ) is the total cost incurred owing to carbon emissions per unit 
time of an operational cycle for a given shift of size δ in the carbon 
emission process. The calculations of TC(δ) are explained in the 
following sections. The probability density function f(δ) in Eq. (7) is 
obtained from Rayleigh distribution, as expressed below: 

fδ(δ) =
πδ
2μ2

δ
exp(−

πδ2

4μ2
δ
) (8) 

It is clear that the probability density function f(δ) of the Rayleigh 
distribution is modeled by a single variable—the mean value μδ of δ. It 
can be noted that the data on δ can be obtained through a three-phase 
statistical process control (SPC) scenario, as suggested by [42]. 

3.3.2. Estimation of the total cost, TC(δ) 
For any given shift of size δ in the emission process, the total cost per 

unit time of an operational cycle, TC(δ), is calculated from the ratio of 
expected cost, EC(δ), to the expected length, EL(δ), of the operational 
cycle. 

3.3.2.1. Estimation of the expected length EL(δ) of an operational cycle. 
The time length L of an operational cycle is the time period from the 
beginning (or restoration) of the emission process to the identification 
and fixation of an assignable cause. This L comprises four time compo
nents: the IC time period (t1), the OOC time period (t2), the amount of 
time spent in taking a sample (size n) of carbon emission data and 
analyzing it (t3), and the time length from an OOC state to the identi
fication and fixation of an assignable cause (t4). These four time com
ponents are random variables and only their expected values can be 
obtained. 

As indicated earlier, the time between incidences of the assignable 
causes is assumed to be an exponential distribution with incidence rate 
λa; therefore, the mean time between incidences of the assignable causes 
(i.e., mean time length of an IC state) is as follows: 

t1 = 1/λa (9) 

If an assignable cause occurs between two consecutive samples, then 
the time component t2 can be estimated as follows [25,32]: 
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t2 = ATS1(δ) − τ = ATS1(δ) −
(

h
2
−

λah2

12

)

(10)  

where τ is the expected time of incidence of the process shift (of size δ) 
between the jth and (j + 1)th sample, given that the shift occurs during 
this interval. The expected value of the time period t3 can be estimated in 
a straightforward manner, based on n and g. 

t3 = g⋅n (11) 

Finally, the time period from an OOC state (owing to a process shift 
of size δ) to the identification and fixation of an assignable cause t4 can 
be approximated, based on the historical records of OOC cases. 

The expected time length, EL(δ), can now be calculated based on the 
time components t1, t2, t3, and t4. 

EL(δ) = t1 + t2 + t3 + t4 =
1
λa

+ATS1(δ) −
(

h
2
−

λah2

12

)

+ gn+ t4 (12)  

3.3.2.2. Estimation of the expected cost EC(δ) of an operational cycle. The 
primary goal of employing SPM tools is to optimize (i.e., minimize) the 
ETC that includes the quality cost (i.e., cost incurred owing to carbon 
emissions) and the operational cost of the SPM scheme. The quality cost 
in an operational cycle (C1) can be estimated by utilizing the quadratic 
loss function [44]. The operational cost of the SPM scheme, such as the 
cost of sampling and estimating carbon emission data (C2), cost of 
examining a false alarm (C3), and cost of detecting and dissecting an 
assignable cause (a3) in an operational cycle, can be estimated on the 
basis of the cost parameters, specified in the model developed by [32]. 

The quality cost C1, defined as the cost incurred owing to a shift of 
size δ in the carbon emission process, can be estimated on the basis of 
Taguchi’s loss function concept [44]. 

C1 =

[

EL(δ) −
1
λa

]

⋅Q⋅K⋅
(
σ2

0 + δ2σ2
0

)

K =
CK

(USL − μ0)
2

(13) 

Here, 1/λa is the time length of the IC period, [EL(δ) − 1/λa)] is the 
time length of the OOC period owing to a shift of size δ, and K is the cost 
coefficient, estimated based on the cost component CK associated with 
the USL (carbon-cap). 

The expected cost of sampling and estimating the carbon emission 
data, C2, can be estimated based on the fixed (a1) and variable (a2) 
sampling cost components. 

C2 =
(a1 + a2n)⋅EL(δ)

h
(14) 

The expected cost of investigating a false alarm in an operational 
cycle, C3, can be determined based on the time length of the IC period 1/ 
λa, the IC ATS0, and the cost of examining a false alarm, a4. 

C3 =
a4

λa⋅ATS0
(15) 

Thus, the expected cost incurred owing to a shift of size δ in the 
emission process in an operation cycle, EC(δ), can be obtained by adding 
all the cost components, C1, C2, C3, and a3. 

EC(δ) = C1 +C2 +C3 + a3

=

[

EL(δ) −
1
λa

]

⋅Q⋅K⋅
(
σ2

0 + δ2σ2
0

)
+
(a1 + a2n)⋅EL(δ)

h
+

a4

λa⋅ATS0
+ a3

(16) 

Finally, the total cost incurred owing to carbon emissions, per unit 
time of an operational cycle, for any given value of δ, TC(δ), can be found 
as follows: 

TC(δ) =
EC(δ)
EL(δ)

(17) 

In summary, for any given set of values of the process parameters (λa, 
O, µδ, g, t4, ζ, USL, Q, µ0, and σ0), cost parameters (a1, a2, a3, a4, and CK), 
and design parameters (λ, n, h, UCL, and H), the TC(δ) can be calculated 
as follows:  

(1) Estimate the expected length of an operational cycle.  
1.1. Calculate t1 using Eq. (9).  
1.2. Calculate t2 using Eq. (10), in which ATS1 for any given 

value of shift of size δ in the carbon emission process is 
calculated by a Markov chain approach [45].  

1.3. Calculate t3 using Eq. (11).  
1.4. Calculate EL(δ) using Eq. (12).  

(2) Estimate the expected cost of an operational cycle.  
2.1. For a given value of δ, calculate C1 using Eq. (13).  
2.2. Calculate C2 using Eq. (14).  
2.3. Calculate C3 using Eq. (15), in which ATS0 is calculated (δ =

0) by a Markov chain approach [45].  
2.4. Calculate EC(δ) using Eq. (16).  

(3) Calculate TC(δ) using Eq. (17). 

3.3.3. Optimization process 
Fig. 1 illustrates the process of optimization design of the proposed 

economic-statistical X&EWMA scheme. 
The optimization process is terminated if no further improvement in 

the ETC value is found. At the end of optimization process, the combi
nation of the optimal design parameters (λ, n, h, UCL, and H) that en
sures the minimum ETC and satisfies the constraints (o ≤ O), (n ≤ nmax), 
and (ATS0 ≥ τ), is identified. Because the design is optimized under the 
standard condition (μ0 = 0, σ0 = 1), the actual control limits are 
calculated using the actual values of μ0 and σ0. 

UCLactual = μ0 + σ0⋅UCL
Hactual = μ0 + σ0⋅H (18) 

A computer program using C language was developed to automate 
the design process of the optimal economic-statistical X&EWMA 
scheme. The program is available upon request. 

4. Numerical studies 

4.1. Comparison study 

The effectiveness of four SPM schemes is compared in this section:  

(1) The basic economic-statistical X scheme: This is a conventional 
economic-statistical X scheme that uses a sample size of five (n =
5). An X scheme is usually designed by considering a constant 
sample size of five [25].  

(2) The basic economic-statistical EWMA scheme: This EWMA 
scheme is designed by assuming a constant weighting parameter, 
λ, of 0.1 and a constant sample size, n, of 1. The value of 
parameter λ is subjectively selected from the widely used values 
of 0.05, 0.1, or 0.20 [25], and an EWMA scheme with n = 1 is 
known to be successful from an overall perspective [31].  

(3) The basic economic-statistical X&EWMA scheme: Similar to the 
basic economic-statistical EWMA scheme, this X&EWMA combi
nation uses λ value of 0.1 and n value of 1. Following [46], the 
value of UCL of the X scheme is set at 4.25, while the parameter H 
of the EWMA scheme is decided to ensure that the constraint of 
(ATS0 ≥ ζ) is satisfied.  

(4) The optimal economic-statistical X&EWMA scheme: The values 
of the design parameters (n, h, λ, UCL, and H) of this scheme are 
optimized by following the algorithm illustrated in Fig. 1. 
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To facilitate the comparison, a normalized ETCnormal value for each 
SPM scheme is calculated as follows: 

ETCnormal =
ETC

ETCopt
(19)  

where ETC and ETCopt are the expected total costs of a specific SPM 
scheme and the optimal X&EWMA scheme, respectively. An ETCnormal 
value greater than 1 of a scheme indicates that its effectiveness is poorer 
than that of the optimal economic-statistical X&EWMA scheme, and vice 
versa. The four SPM schemes are designed under the standard condition 
(μ0 = 0, σ0 = 1), and nmax is assumed to be fixed at 15 in this study, as 
handling a large sample size is not preferable in practice. 

Because of the large number of input variables (eight process pa
rameters [λa, O, µδ, g, t4, ζ, USL, and Q] and five cost parameters [a1, a2, 
a3, a4, and CK]), the effectiveness of the four SPM schemes is investi
gated using a 213− 8

IV fractional factorial design [25]. The 13 input vari
ables are considered as the factors, and ETCnormal (Eq. (19)) is considered 
the response. Each of the 13 factors vary at two levels, as displayed in 
Table 2. 

For each of the 32 runs resulting from the 213− 8
IV factorial design, the 

four SPM schemes are designed in such a way that each of them ensures 
the satisfaction of all constraints. The resultant ETCnormal values (see 
Table 3) showed that the developed optimal economic-statistical X& 
EWMA scheme consistently outperformed the other schemes throughout 
the 32 runs. 

The average of the ETCnormal values, ETCnormal, over the 32 runs for 
each scheme, was also calculated. The values of ETCnormal showed that 
from a general viewpoint (over different combinations of λa, O, µδ, g, t4, 
ζ, USL, Q, a1, a2, a3, a4, and CK), the optimal economic-statistical X& 
EWMA scheme outperformed (in terms of ETC) the basic economic- 
statistical X, basic economic-statistical EWMA, and basic economic- 
statistical X&EWMA schemes by about 40%, 77%, and 28%, respec
tively. The improvement in the effectiveness of the optimal economic- 
statistical X&EWMA scheme compared with that of the other three 

schemes was further investigated using paired t-tests [25] (see bottom 
row of Table 3). The results showed that the improvements in the 
effectiveness of the optimal economic-statistical X&EWMA scheme 
compared with the basic economic-statistical X scheme (p-value =
0.004), basic economic-statistical EWMA scheme (p-value = 0.010), and 
basic economic-statistical X&EWMA scheme (p-value = 0.012) were all 
statistically significant, using a significance level of 5%. 

4.2. Sensitivity analysis 

The impacts of the 13 input variables (λa, O, µδ, g, t4, ζ, USL, Q, a1, a2, 
a3, a4, and CK) on the response parameter (ETC) of the optimal 

Fig. 1. Optimization algorithm of the proposed economic-statistical X&EWMA scheme.  

Table 2 
Factors levels.  

Input factor Low level High level 

λa: Rate of occurrence of the assignable cause 
(occurrences per month) 

0.5 1.0 

O: Maximum allowable inspection rate (number of data 
inspected per month) 

2 5 

μδ: Mean of the mean shifts δ in the amount of carbon 
emission process 

0.5 3.5 

g: Time to estimate and test an observed data of a 
sample of carbon emission (month) 

0.001388 0.006944 

t4: Time period from the detection of the lack of control 
to the location and removable of the assignable cause 
(month) 

0.034 0.10 

ζ: Minimum allowable in-control ATS0 (month) 300 800 
USL: Upper specification limit (i.e. carbon-cap) of the 

amount of carbon emission (tons per month) 
3σ0 6σ0 

Q: Amount of carbon emission (tons per month) 5,000,000 70,000,000 
a1: Fixed component of sampling cost ($) 200 500 
a2: Variable component of sampling cost ($) 20 50 
a3: Cost of finding and fixing an assignable cause ($) 500 1000 
a4: Cost of examining a false alarm ($) 1000 2000 
CK: Average penalty cost for an out-of-specification 

amount of carbon emission ($ per ton) 
100 200  
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Table 3 
Comparison of the four schemes in the 213− 8

IV experiment.  

Run Values of the input factors ETCnormal 

λa O µd g t4 ζ USL Q a1 a2 a3 a4 CK Basic economic X scheme  Basic economic EWMA scheme Basic economic X&EWMA scheme  

1 1.0 2 0.5 0.001388 0.034 800 3 70,000,000 200 50 1000 2000 200 1.044183 1.012824 1.018393 
2 1.0 5 3.5 0.006944 0.1 800 6 70,000,000 500 50 1000 2000 200 1.281763 1.944134 1.271647 
3 1.0 5 3.5 0.006944 0.034 300 3 70,000,000 200 20 500 2000 100 1.590400 2.526476 1.489510 
4 0.5 2 0.5 0.006944 0.1 800 6 5,000,000 200 20 1000 2000 100 1.108547 1.048648 1.060258 
5 1.0 2 0.5 0.001388 0.1 300 6 70,000,000 500 20 500 2000 100 1.041737 1.019280 1.023371 
6 0.5 5 3.5 0.006944 0.034 800 3 5,000,000 200 50 1000 1000 200 1.230401 2.919129 1.609679 
7 0.5 5 0.5 0.006944 0.1 800 3 70,000,000 200 50 500 2000 100 1.253467 1.098450 1.133177 
8 1.0 5 0.5 0.001388 0.1 300 3 5,000,000 500 50 1000 2000 100 1.142403 1.070108 1.084509 
9 0.5 2 3.5 0.006944 0.034 800 6 70,000,000 200 20 500 1000 200 1.889407 3.095460 1.680539 
10 1.0 2 3.5 0.006944 0.1 800 3 5,000,000 500 20 500 2000 200 1.929168 1.982431 1.250452 
11 1.0 2 0.5 0.006944 0.034 800 3 70,000,000 500 20 1000 1000 100 1.043687 1.012236 1.017800 
12 0.5 2 3.5 0.001388 0.034 800 6 70,000,000 500 50 500 2000 100 1.874926 3.269105 1.758212 
13 0.5 2 3.5 0.001388 0.1 300 3 70,000,000 200 20 1000 2000 200 1.716298 2.402608 1.528584 
14 1.0 5 0.5 0.006944 0.034 800 6 5,000,000 500 50 500 1000 100 1.132989 1.049958 1.067793 
15 0.5 2 3.5 0.006944 0.1 300 3 70,000,000 500 50 1000 1000 100 1.734309 2.309441 1.479258 
16 1.0 5 0.5 0.001388 0.034 800 6 5,000,000 200 20 500 2000 200 1.138132 1.054799 1.072739 
17 1.0 5 3.5 0.001388 0.1 800 6 70,000,000 200 20 1000 1000 100 1.223968 2.037341 1.319367 
18 0.5 5 0.5 0.006944 0.034 300 6 70,000,000 500 20 1000 2000 200 1.280794 1.137664 1.167537 
19 0.5 2 0.5 0.001388 0.034 300 3 5,000,000 200 20 500 1000 100 1.113493 1.070860 1.079974 
20 1.0 2 3.5 0.001388 0.034 300 6 5,000,000 500 20 1000 1000 200 2.537016 2.323587 1.396564 
21 0.5 2 0.5 0.001388 0.1 800 6 5,000,000 500 50 1000 1000 200 1.110599 1.050772 1.062411 
22 1.0 5 0.5 0.006944 0.1 300 3 5,000,000 200 20 1000 1000 200 1.135590 1.063194 1.077486 
23 1.0 2 0.5 0.006944 0.1 300 6 70,000,000 200 50 500 1000 200 1.041106 1.018390 1.022477 
24 0.5 2 0.5 0.006944 0.034 300 3 5,000,000 500 50 500 2000 200 1.110701 1.067715 1.076799 
25 1.0 2 3.5 0.001388 0.1 800 3 5,000,000 200 50 500 1000 100 1.947692 2.042654 1.278868 
26 1.0 5 3.5 0.001388 0.034 300 3 70,000,000 500 50 500 1000 200 1.514647 2.780972 1.611236 
27 1.0 2 3.5 0.006944 0.034 300 6 5,000,000 200 50 1000 2000 100 2.539370 2.275298 1.381982 
28 0.5 5 3.5 0.006944 0.1 300 6 5,000,000 500 20 500 1000 100 1.161919 2.032520 1.353036 
29 0.5 5 0.5 0.001388 0.034 300 6 70,000,000 200 50 1000 1000 100 1.293614 1.149750 1.179980 
30 0.5 5 3.5 0.001388 0.034 800 3 5,000,000 500 20 1000 2000 100 1.160881 3.377457 1.834085 
31 0.5 5 3.5 0.001388 0.1 300 6 5,000,000 200 50 500 2000 200 1.113594 2.214082 1.460564 
32 0.5 5 0.5 0.001388 0.1 800 3 70,000,000 500 20 500 1000 200 1.261915 1.106091 1.141100 
ETCnormal  1.4011871 1.7889465 1.285428613 

Δa p-value +2106914660.004 +4555877360.010 +1590885800.012 
aΔ = ETC of a chart over 32 runs - ETC of the optimal X&EWMA scheme over 32 runs. Positive values indicate superiority of optimal X&EWMA scheme to other schemes.   
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economic-statistical X&EWMA scheme were also investigated using the 
213− 8

IV factorial design indicated in Table 2. Because the replication size 
was 1, the higher order (higher than or equal to the third order) inter
action effects were combined to estimate the sum of squares of the error. 
The significant main and two-factor interaction effects were identified 
by an analysis of variance (ANOVA). Before performing the ANOVA test, 
a normality test of the ETC data was performed to check the model 
adequacy. The data on ETC were initially not normal; therefore, Johnson 
transformation was conducted before performing the ANOVA test (see 
Fig. 2). 

The results of the ANOVA test, as shown in Table 4, confirm that only 
four main factor effects (bold text) were statistically significant. 

As shown in Table 4, the ETC of the optimal economic-statistical X& 
EWMA scheme is positively affected by μδ (p-value = 0.028), Q (p-value 
= 0.001), and CK (p-value = 0.010). This implies that a larger μδ (or Q or 
CK) value can result in a larger ETC, and vice versa. Conversely, the ETC 
is negatively affected by USL (p-value = 0.002). This means a tighter USL 
(carbon-cap) can result in a larger ETC, and vice versa. This is justifiable 
as a smaller USL needs to utilize more resources and more investigations. 

5. Case study 

The design and application of the optimal economic-statistical X& 
EWMA scheme are demonstrated based on real data on the amount of 
carbon emissions from factories in the United States and are explained in 
the following steps. 

5.1. Data collection 

In 2017, the estimated GHGs emissions from the industrial sector 
represented 22.2% of the total emissions of GHGs in the United States 
[47]. Manufacturing and industrial processes together produce large 
amounts of GHGs, specifically CO2. The State Department of 

Environmental Conservation (DEC) of New York, as part of its mission to 
conserve natural resources and protect the environment, keeps records 
of different sources of pollution, including industrial facilities that emit 
or have the potential to emit air pollutants, requiring these facilities to 

Fig. 2. Normality check of the ETC data of the optimal economic-statistical X&EWMA scheme.  

Table 4 
Factor effects in the ANOVA test.  

Input factors Effects on the ETC of the optimal X&EWMA scheme  

Effect p-value 

λa 0.2006 0.134 
O − 0.2463 0.087 
µd 0.3916 0.028 
g − 0.1746 0.174 
t4 0.1384 0.254 
ζ − 0.1001 0.383 
USL ¡0.9402 0.002 
Q 1.5091 0.001 
a1 − 0.0577 0.598 
a2 − 0.0410 0.705 
a3 0.0704 0.526 
a4 0.0933 0.413 
CK 0.5796 0.010 
λa*R 0.0162 0.880 
λa*µd 0.1033 0.370 
λa*g 0.0737 0.508 
λa*t4 − 0.0220 0.837 
λa*z 0.1556 0.211 
λa*USL 0.0480 0.659 
λa*Q − 0.1500 0.224 
λa*a1 0.0516 0.636 
λa*a2 0.0129 0.904 
λa*a3 − 0.0208 0.846 
λa*a4 0.0189 0.860 
λa*CK − 0.0370 0.731 
R*g 0.0379 0.725 
R*a4 − 0.0599 0.585 
R*CK − 0.0609 0.579  

M. Shamsuzzaman et al.                                                                                                                                                                                                                      



Applied Energy 300 (2021) 117352

9

report their emissions of pollutants. These reports are public information 
and can be obtained from the permitting authority [48]. The DEC 
monitors these industrial facilities to ensure that the source complies 
with the emission limit, or other pollution control requirements. The 
SPM charts would be appropriate to achieve this objective. 

A dataset of the annual CO2 emissions measured in tons for 306 fa
cilities at 53 different counties in the New York State in 2011 [49], 
collected by the State DEC, has been utilized in this study. Based on the 
annual data obtained, the monthly CO2 emissions data have been 
calculated and used for illustrating the concept of SPM schemes for 
monitoring carbon emissions and controlling air quality. 

5.2. Model adequacy test 

In designing an SPM scheme for variable-type quality characteristics, 
the quality characteristic x (data on the amount of carbon emissions in 
this study) is presumed to be normally and independently distributed. A 
slight or moderate degree of violation of the normality assumption may 
not affect the effectiveness of an SPM scheme. However, a slight de
pendency (autocorrelation) among the data significantly affects the 
effectiveness of an SPM scheme, and thus the dependency of the data 
should be checked before designing. To verify the assumption of 

independency, a time series plot was used to represent the carbon 
emissions data as in Fig. 3(a), which does not show any evidence of 
seasonality in the data. In addition, autocorrelation function (ACF) and 
partial ACF (PACF) were also drawn to explore how the data points are 
related to each other (see Fig. 3(b-c)). Fig. 3(a-c) confirms that the 
emission data are independent. However, according to the normal 
probability plot shown in Fig. 4(a), the data are not normally distributed 
(p-value < 0.01). Thus, a transformation technique is required to 
transform the non-normally distributed data into normally distributed 
data [50]. The ordered quantile (ORQ) normalization technique was 
used for this purpose, achieved using the package “bestNormalize” 
(version 1.4.2) available in R programming language (version 3.6.2). 
The transformed data satisfied the normality assumption (p-value >
0.15), as illustrated in Fig. 4(b). Finally, the concept of SPM schemes for 
monitoring carbon emissions was demonstrated based on the trans
formed data that satisfied both the normality and independency 
assumptions. 

5.3. Design and application of the proposed SPM scheme 

The design of an SPM scheme is accomplished in two phases: Phase I 
and Phase II operations. In Phase I operation, at least 25–30 samples, 

Fig. 3. Independency check of the carbon emission data.  
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each of size five, are usually recommended in designing a classical X 
scheme [25]. The objective of collecting samples in Phase I is to estimate 
the IC values of µ0 and σ0 for designing the SPM scheme. In Phase II, the 
SPM scheme designed at the end of Phase I is utilized for monitoring the 
process in the future. 

5.3.1. Phase I operation 
After the initial screening, 295 observations (59 samples with sample 

size of five) of carbon emissions data were used in Phase I for designing 
the basic X&R scheme. Fig. 5 shows phase I SPM scheme. Designing both 
the X scheme (for monitoring the process mean) and R scheme (for 

monitoring the process dispersion) is recommended in Phase I to ensure 
that no assignable cause is presented in the process (i.e., the process is in 
the IC state), and that the estimated µ0 and σ0 that will be used in Phase II 
are consistent [25]. 

Fig. 5 shows that all the 59 sample points are plotted within the 
control limits (X scheme: UCL = 1.357, CL = 0.015, LCL = − 1.327; R 
scheme: UCL = 4.918, CL = 2.326, LCL = 0) of the X&R scheme, indi
cating that the carbon emission process is in IC state (µ0 = 0.015 and σ0 
= 0.9995). 

5.3.2. Phase II operation 
The process parameters in the IC state (µ0 = 0.015, σ0 = 0.9995), 

Fig. 4. Normality check of the carbon emission data.  

Fig. 5. X&R scheme for carbon emission data in Phase I.  
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estimated in Phase I, were used in this phase to design a basic economic- 
statistical X scheme, a basic economic-statistical EWMA scheme, a basic 
economic-statistical X&EWMA scheme, and an optimal economic- 
statistical X&EWMA scheme for monitoring the forthcoming data on 
the amount of carbon emissions. To design and demonstrate the effec
tiveness of the proposed SPM schemes, the other required design 
parameter values assumed are as follows:  

• λa (occurrence rate of the assignable cause, occurrences per month) 
= 0.01  

• (maximum allowable inspection rate (per month)) = 5  
• μδ (mean of the δ values in the emission process) = 0.75  
• g (time to estimate and test the observed data of a sample of carbon 

emissions, month) = 0.00035 
• t4 (time period from the detection of an OOC state to the identifi

cation and fixation of the assignable cause, month) = 0.1  
• ζ (minimum allowable IC ATS0, month) = 400  
• USL (upper specification limit (carbon-cap) of the amount of carbon 

emissions, tons per month) = 4σ0  
• Q (average amount of carbon emissions from an industry, tons per 

month) = 12500  
• a1 (fixed part of the sampling cost, $) = 0.5  
• a2 (variable part of the sampling cost, $) = 0.1  
• a3 (cost of identifying and fixing an assignable cause, $) = 100  
• a4 (cost of investigating a false alarm, $) = 200  
• CK (average penalty cost for an out-of-specification [out-of-carbon 

cap] amount of carbon emissions, $ per ton of CO2 emissions) = 150 

The abovementioned hypothetical data have been used in this study 
to illustrate the effectiveness of the proposed SPM schemes. However, 
the value of the penalty cost CK was set at $150/ton, according to the 
current carbon tax in Sweden [51]. In addition, real data for other pa
rameters can be used when the data are publicly accessible. In this 
example, the maximum allowable sample size nmax is considered 10. The 
developed computer program used to design the four SPM schemes and 
the parameter values of each scheme are listed below. Note that the 
designs of all SPM schemes ensure that all constraints (4) and (5) in 
Section 3 are satisfied.  

• Basic economic-statistical X scheme: 

n = 5, h = 1.0, UCL = 1.2697, ETC = 20817.98, ETCnormal = 2.607  

• Basic economic-statistical EWMA scheme: 

n = 1, h = 0.20, λ = 0.10, H = 0.7539, ETC = 12862.38, ETCnormal =

1.610  

• Basic economic-statistical X&EWMA scheme: 

n = 1, h = 2.0, λ = 0.10, UCL = 4.2629, H = 0.7552, ETC = 12919.80, 
ETCnormal = 1.618  

• Optimal economic-statistical X&EWMA scheme: 

n = 10, h = 2.0, λ = 0.17, UCL = 1.1725, H = 0.2559, ETC = 7986.75, 
ETCnormal = 1.000 

Because of the unavailability of the real data on OOC states, the 
effectiveness of the four designed SPM schemes for detecting an OOC 
signal was investigated via simulation study, in which 20 sample data on 
the amount of carbon emissions were generated. The first 10 sample 
data were simulated under the IC condition, and the other 10 consid
ering a 1.0σ shift in the mean of the carbon emission process (i.e., under 
the OOC condition). It is a common practice in the literature to use 
simulation to study the effectiveness of a proposed model when real data 

are unavailable (for instance, see [28,29,52]. All the 20 simulated data 
are plotted on the four SPM schemes, as shown in Fig. 6. 

As shown in Fig. 6(a-d), all three basic SPM schemes (X, EWMA, and 
X&EWMA schemes) were unable to identify the OOC condition of the 
process. However, the proposed optimal X&EWMA scheme identified 
the OOC condition by the 13th sample, evidently demonstrating its su
premacy over the basic SPM counterparts. The improvement in the 
detection effectiveness results in overall cost savings (in terms of ETC) 
was about 160%, 61%, and 62%, compared to the basic X, basic EWMA, 
and basic X&EWMA schemes, respectively, in this study. 

6. Conclusions 

The reduction of GHGs emissions is considered as a major issue 
within the global community. Amongst all the GHGs, CO2 is considered 
as the most significant contributor to the changes in global climatic 
conditions. Hence, researchers and professionals have intensely focused 
on finding suitable methods for monitoring and controlling CO2 emis
sions. The industrial sector is one of the fastest-growing sources of GHGs, 
due to the excessive consumption of energy required to cope with the 
growing production of energy exhaustive products. The continuous 
monitoring of CO2 emissions from different industrial facilities can be an 
important step in reducing carbon emissions and encouraging them to 
use cleaner energy. This article presents an optimal economic-statistical 
design of the combined X&EWMA scheme for efficient monitoring of the 
carbon emissions from industrial facilities. The design of the proposed 
SPM scheme is based on emissions data collected from different indus
trial facilities. However, the data can also be collected from only one 
location, if the focus is to monitor and control a single facility. The 
effectiveness of the proposed optimal SPM scheme was compared with 
that of other monitoring schemes, namely the basic X, basic EWMA, and 
basic X&EWMA schemes. The comparison study showed that the pro
posed optimal X&EWMA scheme reduced the expected total cost 
incurred owing to carbon emissions and operation of the SPM scheme by 
about 40%, 79%, and 29%, compared with the basic X, basic EWMA, and 
basic X&EWMA schemes, respectively. Finally, the design and applica
tion of the proposed SPM scheme are illustrated based on real data 
carbon emissions collected from different industrial facilities. The same 
SPM scheme can also be used for monitoring the emissions from other 
facilities in other sectors, such as transportation, building and con
struction, and agriculture. 

In this study, the random shift in the carbon emission process is 
modeled by a Rayleigh distribution. In future study, the effectiveness of 
the proposed SPM scheme can be investigated over other distributions of 
the shift, such as uniform or beta distribution. Other SPM scheme such as 
dual-EWMA or X&CUSUM scheme can also be designed for monitoring 
the emission process, and the performance of these schemes can be 
compared with that of the optimal X&EWMA scheme proposed in this 
study. 

CRediT authorship contribution statement 

Mohammad Shamsuzzaman: Conceptualization, Methodology, 
Software, Writing – original draft, Funding acquisition. Ahm Sham
suzzoha: Visualization, Validation, Writing – review & editing. Ahmed 
Maged: Visualization, Writing – review & editing. Salah Haridy: 
Methodology, Software, Writing – original draft. Hamdi Bashir: 
Investigation, Validation, Writing – review & editing. Azharul Karim: 
Validation, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

M. Shamsuzzaman et al.                                                                                                                                                                                                                      



Applied Energy 300 (2021) 117352

12

the work reported in this paper. 

Acknowledgements 

This article is a part of an ongoing research project titled “statistical 
monitoring of carbon emissions in industry using the Shewhart-EWMA 
scheme,” conducted by the Sustainable Engineering Asset Manage
ment research group at the University of Sharjah, UAE. 

Funding 

This work is supported by the University of Sharjah Competitive 
Research Grant (Project No. 200204051161). 

References 

[1] Cheng L, Abraham J, Hausfather Z, Trenberth KE. How fast are the oceans 
warming? Science 2019;363(6423):128–9. 

[2] Liu D, Guo X, Xiao B. What causes growth of global greenhouse gas emissions? 
Evidence from 40 countries. Sci Total Environ 2019;661:750–66. 

[3] Uprety DC, Reddy VR, Mura JD. Greenhouse gases: A historical perspective. In: 
Uprety DC, Reddy VR, Mura JD, editors. Climate change and agriculture: A 
historical analysis. Springer: Singapore; 2019. p. 31–41. 

[4] Zhang YJ, Da YB. The decomposition of energy-related carbon emission and its 
decoupling with economic growth in China. Renew Sustain Energy Rev 2015;41: 
1255–66. 

[5] Ge M, Friedrich J. 4 charts explain greenhouse gas emissions by countries and 
sectors, world resources institute. https://www.wri.org/blog/2020/02/greenh 
ouse-gas-emissions-by-countrysector#:~:text=Since%201990%2C%20three% 
20sectors%20stand,of%20energy)%20by%2055%25; 2020. [Accessed 20 
September 2020]. 

[6] Edelenbosch OY, Kermeli K, Crijns-Graus W, Worrell E, Bibas R, Fais B, et al. 
Comparing projections of industrial energy demand and greenhouse gas emissions 
in long-term energy models. Energy 2017;122:701–10. 

[7] Chontanawat J. Relationship between energy consumption, CO2 emission and 
economic growth in ASEAN: Cointegration and casuality model. Energy Rep 2020; 
6:660–5. 

[8] Ben-Salem A, Gharbi A, Hajji A. Production and uncertain green subcontracting 
control for an unreliable manufacturing system facing emissions. Int J Adv Manuf 
Tech 2016;83(9–12):1787–99. 

[9] Rocco MV, Golinucci N, Ronco SM, Colombo E. Fighting carbon leakage through 
consumption-based carbon emission policies: empirical analysis based on the world 
trade model with bilateral trades. Appl Energy 2020;274:115301. 

[10] Zhang X, Loschel A, Lewis J, Zhang D, Yan J. Emissions trading systems for global 
low carbon energy and economic transformation. Appl Energy 2020;279:115858. 

[11] Parker L. Climate Change: The European Union’s Emissions Trading System (EU- 
ETS). Congressional Research Service, The Library of Congress; 2006. 

[12] Grubb M. Emissions trading: cap and trade finds new energy. Nature 2012;491: 
666–7. 

[13] Chen Y, He L, Jing Li J, Zhang S. Multi-criteria design of shale-gas-water supply 
chains and production systems towards optimal life cycle economics and 
greenhouse gas emissions under uncertainty. Comput Chem Eng 2018;109:216–35. 

Fig. 6. Four SPM schemes in the case study.  

M. Shamsuzzaman et al.                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0306-2619(21)00759-5/h0005
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0005
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0010
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0010
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0015
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0015
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0015
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0020
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0020
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0020
https://www.wri.org/blog/2020/02/greenhouse-gas-emissions-by-countrysector%23%3a%7e%3atext%3dSince%25201990%252C%2520three%2520sectors%2520stand%2cof%2520energy)%2520by%252055%2525
https://www.wri.org/blog/2020/02/greenhouse-gas-emissions-by-countrysector%23%3a%7e%3atext%3dSince%25201990%252C%2520three%2520sectors%2520stand%2cof%2520energy)%2520by%252055%2525
https://www.wri.org/blog/2020/02/greenhouse-gas-emissions-by-countrysector%23%3a%7e%3atext%3dSince%25201990%252C%2520three%2520sectors%2520stand%2cof%2520energy)%2520by%252055%2525
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0030
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0030
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0030
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0035
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0035
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0035
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0040
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0040
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0040
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0045
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0045
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0045
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0050
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0050
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0060
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0060
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0065
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0065
http://refhub.elsevier.com/S0306-2619(21)00759-5/h0065


Applied Energy 300 (2021) 117352

13

[14] Chen Y, He L, Guan Y, Lu H, Li J. Life cycle assessment of greenhouse gas emissions 
and water-energy optimization for shale gas supply chain planning based on multi- 
level approach: case study in Barnett, Marcellus, Fayetteville, and Haynesville 
shales. Energy Convers Manag 2017;134:382–98. 

[15] He L, Chen Y, Zhao H, Tian P, Xue Y, Chen L. Game-based analysis of energy-water 
nexus for identifying environmental impacts during shale gas operations under 
stochastic input. Sci Total Environ 2018;627:1585–601. 

[16] Abeydeera LHUW, Mesthrige JW, Samarasinghalage TI. Global research on carbon 
emissions: a scientometric review. Sustainability 2019;11(14):1–24. 

[17] Toller S, Carlsson A, Wadeskog A, Miliutenko S, Finnveden G. Indicators for 
environmental monitoring of the Swedish building and real estate management 
sector. Build Res Inf 2013;41(2):146–55. 

[18] Persson L, Arvidsson R, Berglund M, Cederberg C, Finnveden G, Palm V, et al. 
Indicators for national consumption-based accounting of chemicals. J Clean Prod 
2019;215:1–12. 

[19] Hammond GP, Norman JB. Decomposition analysis of energy-related carbon 
emissions from UK manufacturing. Energy 2012;41(1):220–7. 

[20] Ren S, Yin H, Chen X. Using lmdi to analyze the decoupling of carbon dioxide 
emissions by China’s manufacturing industry. Environ Dev 2014;9:61–75. 

[21] Ouyang X, Lin B. An analysis of the driving forces of energy-related carbon dioxide 
emissions in China’s industrial sector. Renew Sust Energ Rev 2015;45:838–49. 

[22] Corbett CJ, Pan JN. Evaluating environmental performance using statistical 
process control techniques. Eur J Oper Res 2002;139:68–83. 

[23] Pan JN, Chen ST. The economic design of cusum chart for monitoring 
environmental performance. Asia Pac Manag Rev 2005;10:155–61. 

[24] Liu YM, Xue L. The optimization design of EWMA charts for monitoring 
environmental performance. Ann Oper Res 2015;228:113–24. 

[25] Montgomery DC. Introduction to statistical quality control. Singapore: John Wiley 
& Sons; 2013. 

[26] Madu CN. Managing green technologies for global competitiveness. Westport, 
United States: Praeger Publishers Inc.; 1996. 

[27] Corbett CJ, Van Wassenhove LN. The green fee: internalizing and operationalizing 
environmental issues. Calif Manag Rev 1993;36(1):116–35. 

[28] Leiva V, Marchant C, Ruggeri F, Saulo H. A criterion for environmental assessment 
using Birnbaum-Saunders attribute control charts. Environmetrics 2015;26(7): 
463–76. 

[29] Marchant C, Leiva V, Christakos G, Cavieres MF. Monitoring urban environmental 
pollution by bivariate control charts: new methodology and case study in Santiago, 
Chile. Environmetrics 2019;30(5):e2551. 

[30] Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. Control charts for 
monitoring ship operating conditions and CO2 emissions based on scalar-on- 
function regression. Appl Stoch Models Bus Ind 2020;36(4):1–24. 

[31] Reynolds MR, Stoumbos ZG. Should observations be grouped for effective process 
monitoring? J Qual Technol 2004;36(4):343–66. 

[32] Duncan AJ. The economic design of X charts used to maintain current control of a 
process. J Am Stat Assoc 1956;51(274):228–42. 

[33] Chen YS, Yang YM. Economic design of -control charts with weibull in-control 
times when there are multiple assignable causes. Int J Prod Econ 2002;77(1): 
17–23. 

[34] Chung KJ. An algorithm for computing the economically optimal X-control chart 
for a process with multiple assignable causes. Eur J Oper Res 1994;72(2):350–63. 

[35] Lorenzen TJ, Vance LC. The economic design of control charts: a unified approach. 
Technometrics 1986;28(1):3–10. 

[36] Tolley GO, English JR. Economic designs of constrained EWMA and combined 
EWMA- control schemes. IIE Trans 2001;2001(33):429–36. 

[37] Safaei AS, Kazemzadeh RB, Niaki STA. Multi-objective economic statistical design 
of control chart considering Taguchi loss function. Int J Adv Manuf Tech 2012;59: 
1091–101. 

[38] Saniga EM. Economic statistical control-chart designs with an application to and R 
charts. Technometrics 1989;31(3):313–20. 

[39] Montgomery DC, Torng JCC, Cochran JK, Lawrence FP. Statistically constrained 
economic design of the EWMA control chart. J Qual Technol 1995;27(3):250–6. 

[40] Shamsuzzaman M, Haridy S, Alsyouf I, Rahim A. Design of economic chart for 
monitoring electric power loss through transmission and distribution system. Total 
Qual Manag Bus 2020;31(5–6):503–23. 

[41] Haridy S, Wu Z, Chen S, Knoth S. Binomial cusum chart with curtailment. Int J 
Prod Res 2014;52:4646–59. 

[42] Wu Z, Shamsuzzaman M, Pan ES. Optimization design of control charts based on 
Taguchi’s loss function and random process shifts. Int J Prod Res 2004;42(2): 
379–90. 

[43] Shamsuzzaman M, Wu Z. Design of EWMA control chart for minimizing the 
proportion of defective units. Int J Qual Reliab Manag 2012;29(8):953–69. 

[44] Ross PJ. Taguchi techniques for quality engineering, loss function, orthogonal 
experiments, parameter and tolerance design. New York: McGraw-Hill; 1989. 

[45] Shamsuzzaman M, Khoo MBC, Haridy S, Alsyouf I. An optimization design of the 
combined Shewhart-EWMA control chart. Int J Adv Manuf Tech 2016;86:1627–37. 

[46] Lucas JM, Saccucci MS. Exponentially weighted moving average control schemes: 
properties and enhancements. Technometrics 1990;32(1):1–12. 

[47] United States Environmental Protection Agency. Greenhouse gas emissions. 
https://Www.Epa.Gov/Ghgemissions/Inventory-Us-Greenhouse-Gas-Emissions-An 
d-Sinks; 2018. [Accessed 1 January 2020]. 

[48] Department of Environmental Conservation. Air facility permits and registration. 
https://www.dec.ny.gov/chemical/8569.html; 2000 [Accessed 1 January 2020]. 

[49] New York State. Title V emissions inventory: Beginning; 2010. https://Data.Ny.Go 
v/Energy-Environment/Title-V-Emissions-Inventory-Beginning-2010/4ry5-Tfinl; 
2011. [Accessed 1 January 2020]. 

[50] Peterson RA, Cavanaugh JE. Ordered quantile normalization: a semiparametric 
transformation built for the cross-validation era. J Appl Stat 2019;2019:1–16. 
https://doi.org/10.1080/02664763.2019.1630372. 

[51] Elias RS, Yuan M, Wahab MIM, Patel N. Quantifying saving and carbon emissions 
reduction by upgrading residential furnaces in Canada. J Clean Prod 2019;2019 
(211):1453–62. 
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