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Multi-objective optimization to improve energy, economic, and environmental life cycle 25 
assessment in waste-to-energy plant  26 

Abstract 27 
This paper presents a multi-objective optimization (MOO) of waste-to-energy (WtE) to 28 
investigate optimized solutions for thermal, economic, and environmental objectives. These 29 
objectives are represented by net efficiency, total cost in treating waste, and environmental 30 
impact.  Integration of the environmental objective is conducted using life cycle assessment 31 
(LCA) with endpoint single score method covering direct combustion, reagent production and 32 
infrastructure, ash management, and energy recovery. Initial net efficiency of the plant was 33 
16.27% whereas the cost and environmental impacts were 75.63 €/ton-waste and -1.21x108 34 
Pt/ton-waste, respectively. A non-dominated sorting genetic algorithm (NSGA-II) is applied to 35 
maximize efficiency, minimize cost, and minimize environmental impact . Highest 36 
improvement for single objective is about 13.4%, 10.3%, and 14.8% for thermal, economic, 37 
and environmental, respectively. These improvements cannot be made at once since the 38 
objectives are conflicting. These findings highlight the significance role of decision makers in 39 
assigning weight to each objective function to obtain the optimal solution. The study also 40 
reveals different influence among decision variable, waste input, and marginal energy sources. 41 
Finally, this paper underlines the versatility of using MOO to improve WtE performance 42 
regarding the thermal, economic, and environmental aspects without requiring additional 43 
investment. 44 
Keywords: multi-objective optimization, life cycle assessment, life cycle costing, energy 45 
efficiency, waste-to-energy, elitist non-dominated sorting genetic algorithm  46 
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Nomenclature 47 
APC air pollution control 48 
𝐶𝑒𝑙 electricity price (€/MWh) 49 
𝐶𝑝 cost of treating the waste (€/ton-waste) 50 
𝐶𝑙𝑎𝑏𝑜𝑟  total annual salaries (€/year) 51 
DFCI Direct fixed-capital investment  52 
FCI  Fixed-capital investment  53 
FEP Fossil energy provision 54 
FU functional unit  55 
ℎ enthalpy (kJ/kg) 56 
HPT high pressure turbine  57 
IFCI Indirect fixed-capital investment  58 
LCA life cycle assessment 59 
LCI life cycle inventory 60 
LCIA life cycle impact assessment 61 
LHV lower heating value (kJ/kg) 62 
LPT low pressure turbine 63 
ṁ mass flow rate (kg/s) 64 
MNG maximum number generation 65 
MOO multi-objective optimization 66 
nGD normalized generational distance 67 
nSP normalized spread 68 
NSGA-II non-dominated sorting genetic algorithm  69 
PEC  purchased-equipment cost    70 
𝑄̇ heat (kW) 71 



4  

r interest rate 72 
SEP Sustainable energy provision 73 
SNCR selective non-catalytic reduction 74 
SSDTC steady-state detection 75 
SSI single score impact (Pt/ton-waste) 76 
𝑡𝑎 annual plant operation (hours) 77 
𝑊̇ power (kW) 78 
WPD weighted percentage deviation factor 79 
WtE waste-to-energy 80 
y discount period (years) 81 
Greek 82 
𝜀𝑒𝑙 electric efficiency 83 
𝜂𝑝𝑏  boiler pump isentropic efficiency 84 
𝜂𝑝𝑐  condenser pump isentropic efficiency  85 
𝜂𝑇,𝑠 turbine isentropic efficiency 86 
χ vapor quality 87 
Subscripts 88 
i inlet 89 
o outlet  90 
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1. Introduction 91 
Unsustainable production and consumption drive an increase in waste generation. Currently, 92 
waste-to-energy (WtE) is the most common technology to deal with a variety of municipal 93 
waste as well as part of industrial solid waste (Arena and Di Gregorio, 2013; Lausselet et al., 94 
2016). In 2018, Europe treated approximately 70 million ton of municipal solid waste in WtE, 95 
showing a 117% increase compared to 1995, and this trend is predicted to rise  (Birgen et al., 96 
2021; Eurostat, 2019; Scarlat et al., 2019). Incineration technology in the WtE plant not only is 97 
robust, but also can significantly reduce the waste volume that goes to landfill and generate heat 98 
and electricity (Arena, 2012; Fruergaard and Astrup, 2011). However, WtE is regarded 99 
expensive since the payback period can take about 10-30 years, and the cost in treating waste 100 
per ton can range from 53-150 €  (Assamoi and Lawryshyn, 2012; Fernández-González et al., 101 
2017; Zabaniotou and Giannoulidis, 2002).  102 
To ensure the benefit from WtE, its operation must be optimized to increase energy efficiency 103 
so that the electricity or heat obtained from the process can be maximized. In the optimization 104 
of thermal power generation, the thermo-economic objectives are combined to maximize 105 
energy efficiency and minimize the cost by applying multi-objective optimization (MOO). 106 
MOO, which can utilize different algorithms, becomes the main solution to optimize the power 107 
generation system. NSGA-II was commonly used to maximize thermal efficiency and minimize 108 
the cost of steam cycle, organic Rankine cycle,  Kalina cycle in cogeneration plant , and WtE 109 
(Behzadi et al., 2018; Hajabdollahi et al., 2012; Hajabdollahi and Fu, 2017; Özahi and Tozlu, 110 
2020). The results showed an increase in thermal efficiency and decrease in the cost rate. 111 
Optimization using other types of algorithms, such as genetic diversity evaluation method or 112 
modified differential evolution, also showed improvement of thermal efficiency and cost for 113 
different types of power generation (Baghernejad and Yaghoubi, 2011; Naserabad et al., 2018; 114 
Wang et al., 2014). 115 
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However, with growing concern about sustainability, there is still a lack of integration of 116 
environmental impact in the optimization problem of power generation. Some of existing 117 
studies integrated environmental objective into MOO on power generation as total damage cost 118 
(Mahmoodabadi et al., 2015; Sayyaadi, 2009) or  CO2 emission  (Ahmadi et al., 2011; Javadi 119 
et al., 2019).  Few studies applied comprehensive approach by integrating environmental 120 
objective through life cycle assessment (LCA). Gerber et al. (2010) and Nguyen et al. (2014) 121 
integrated the environmental objective to optimize biomass power generation as well as oil and 122 
gas platforms using LCA. Hence, their included a broad range of emissions and impact 123 
categories from the product’s life cycle to produce comprehensive assessment, prevent burden-124 
shifting, and identify activities that cause the highest impact.  125 
Currently, to the authors’ knowledge, there seems to have been no study regarding the 126 
integration of the environmental objective using LCA and MOO in the WtE system to evaluate 127 
energy, cost, and environmental impact. This creates a gap concerning assessment of the 128 
environmental performance of an improved WtE plant. Therefore, this paper presents the study 129 
of WtE optimization that considers energy efficiency, cost, and environmental life cycle 130 
assessment. The aim is achieved by focusing on several objectives, such as i) assessing the cost, 131 
environmental impact, and energy efficiency of the system, ii) applying NSGA-II to improve 132 
WtE performance taking environmental, thermal, and economic aspects as objective functions, 133 
iii) applying scenario and sensitivity analysis to evaluate the behavior of the model and the 134 
influence of each decision variable in the steam cycle operation.   135 
2. Material and methods 136 
2.1 System description 137 
This illustrative case was a scenario built on an actual incinerator with electricity recovery. The 138 
information concerning the WtE specification and its operating condition were obtained from 139 
a company which operates a small-scale incinerator, then supplemented by Ecoinvent database. 140 
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[Fig. 1 is here] 141 
Fig. 1. displays a scheme of the WtE with annual throughput of 36208 ton-waste. Bottom ash 142 
and fly ash are transported to the landfill and hazardous landfill, respectively, without any 143 
material recovery. The plant recovers energy in the form of electricity for self-consumption and 144 
sale, and heat for self-consumption. Energy recovery that is shown in dashed boxes can avoid 145 
conventional production of electricity and heat. The cycle in the center of Fig. 1. are the 146 
simplified version of steam cycle consisting of boiler, turbine, feed pump, and condenser. Heat 147 
from combusting waste is used by boiler to convert water into steam. Thermal energy in the 148 
steam is extracted by turbine to rotate generator and produce electricity. The steam outflow 149 
from turbine is then transformed back into water by the condenser and being cycled back to the 150 
boiler by using feed pump. More detail process in steam cycle is shown by Fig. 2. 151 

[Fig. 2. is here] 152 
Apparatus 1 and 2 are high-pressure turbine (HPT) and low-pressure turbine (LPT), 153 
respectively. Both will extract energy out of steam generated by boiler. However, HPT works 154 
for higher pressure steam and LPT is designed to recover exhaust energy from lower pressure 155 
steam that comes out of HPT. The symbol ‘G’ next to HPT and LPT are generators that convert 156 
rotary motion into electricity. Apparatus 3 and 8 are principally heat exchanger. The former is 157 
a steam condenser that recirculates water (from source 10 to sink 11) to condense the steam 158 
into water, and the latter utilizes steam to preheat the air that is used in the combustion process 159 
(apparatus 14 and 15 represent source of air and heated air, respectively).  Steam (line 7), water 160 
(line 12 and 19), and make-up water (line 20) flow to the deaerator (apparatus 5). Deaerator 161 
removes dissolve gases from water to prevent corrosion in the system. The steam (line 7) will 162 
heat up the water so that the dissolved gases are released and can be vented out.  Excess water 163 
is drained to sink 12, while the feedwater is being pumped and recirculated to boiler. Line 3, a 164 
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steam bleed from HPT, has zero flow presently. It is illustrated in Fig. 2. because the WtE 165 
operator considers a possibility to reuse the steam. (e.g., supplying to other company).   166 
2.2 Energy assessment 167 
For the energy assessment, mass and energy balance are utilized to model the mass flow rate 168 
and energy transfer rate among unit operations using the assumption that there is no loss during 169 
the operation. The performance indicator for energy assessment is electric efficiency delivered 170 
to the grid (𝜀𝑒𝑙) derived from the total electricity recovered from the combusted waste 171 
subtracted by the amount for self-consumption. The formula to calculate mass and energy 172 
balance are expressed by equation (1) and (2):  173 

∑ ṁ𝒊 = ∑ ṁ𝒐    (1) 
 𝑸̇ − 𝑾̇  = ∑ ṁ𝒐𝒉𝒐 − ∑ ṁ𝒊𝒉𝒊    (2) 

where ṁ is the mass flow rate (kg/s), subscripts i and o indicate the incoming and outgoing 174 
stream, respectively, 𝑄̇, 𝑊̇, ℎ are heat (kW), power (kW), and enthalpy (kJ/kg), respectively.  175 
 176 
The net energy efficiency is calculated using equation (3):  177 

𝜀𝑒𝑙 =  
𝑊̇𝑛𝑒𝑡

𝑚̇𝑤𝑎𝑠𝑡𝑒 . 𝐿𝐻𝑉𝑤𝑎𝑠𝑡𝑒
 (3) 

 178 
where 𝑚̇𝑤𝑎𝑠𝑡𝑒 , 𝐿𝐻𝑉𝑤𝑎𝑠𝑡𝑒 , and  𝑊̇𝑛𝑒𝑡  are waste mass flow rate (kg/s), waste lower heating value 179 
(kJ/kg), and net power (kW), respectively. The net power is determined by using equation (4):  180 
 181 

  𝑊̇𝑛𝑒𝑡  = (𝑊̇𝐻𝑃𝑇 +  𝑊̇𝐿𝑃𝑇) − (𝑊̇𝑝𝑢𝑚𝑝 4 +  𝑊̇𝑝𝑢𝑚𝑝 6) −  𝑊̇𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛   (4) 

where 𝑊̇𝐻𝑃𝑇  and 𝑊̇𝐿𝑃𝑇  are power generated (kW) by HPT and LPT, respectively, 𝑊̇𝑝𝑢𝑚𝑝 4 and 182 
𝑊̇𝑝𝑢𝑚𝑝 6, are power consumed (kW) by pump 4 and pump 6, respectively, and 183 
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𝑊̇𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  is the amount of electricity consumed by the plant (kW) that is generated by 184 
the plant. Thermal modeling is initially simulated using Cycle Tempo software which is later 185 
compared to the actual system to ensure it is correct. The model is then reconstructed using 186 
thermotables, a Ms. Excel thermodynamics add-in (University of Alabama, 2011) since the 187 
optimization was performed using an Excel-based MOO program (Sharma et al., 2012; Wong 188 
et al., 2016).   189 
2.3 Economic assessment 190 
The economic assessment determines the associated cost of treating the waste, 𝐶𝑝 (€/ton-waste). 191 
The cost was calculated as the sum of annualized fixed-capital investment (FCI), insurance and 192 
maintenance, labor cost, cost of flue gas cleaning and ash disposal, and revenue from electricity 193 
sale, as shown in equation (5). 194 

𝐶𝑝 = ∑  
𝑟/(1−(1+𝑟)−𝑦).𝐹𝐶𝐼+𝐶𝐼𝑀+𝐶𝑙𝑎𝑏𝑜𝑟+𝐶𝐹𝐺𝐴−(𝜀𝑒𝑙 .𝐶𝑒𝑙.𝑡𝑎 .𝑚̇𝑤𝑎𝑠𝑡𝑒 .𝐿𝐻𝑉𝑤𝑎𝑠𝑡𝑒)

𝑃𝑙𝑎𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
   

𝑦

𝑡=1
  (5) 

  195 
where 𝑟 and 𝑦 correspond to interest rate and discount period, respectively.  𝐶𝐼𝑀 indicates the 196 
cost of insurance and maintenance, 𝐶𝑙𝑎𝑏𝑜𝑟  implies the total annual salaries of the personnel 197 
(€/year), whereas 𝐶𝐹𝐺𝐴 refers to the cost of flue gas cleaning and ash management. The revenue 198 
is associated with net efficiency (𝜀𝑒𝑙), the price of selling electricity (𝐶𝑒𝑙), annual operating 199 
hours (𝑡𝑎), waste flowrate (𝑚̇𝑤𝑎𝑠𝑡𝑒), and lower heating value of the waste (𝐿𝐻𝑉𝑤𝑎𝑠𝑡𝑒 ).  200 
FCI consists of different cost items, including purchased-equipment cost (PEC).  PEC was 201 
calculated as a function of thermodynamics, where the results will be used to estimate total 202 
investment cost.  To perform the calculation of PEC, the cost coefficient was adjusted to the 203 
year 2018 using the chemical engineering plant cost index (CEPCI, 2018). A percentage of PEC 204 
was used to estimate the total investment as a sum of various cost items, such as equipment 205 
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installation, piping, instrumentation, legal cost, etc. Information concerning parameters and 206 
equation used to calculate the cost is given in the Supplementary material (see Tables 2-4).   207 
2.4 Environmental assessment 208 
Environmental assessment was carried out using life cycle assessment (LCA). LCA is 209 
commonly used for the environmental accounting of a system or comparing the performance 210 
of two or more systems. The methodology in this study follows the procedure provided by the 211 
ISO (ISO, 2006a, 2006b). The LCA in this study is used to assess the environmental 212 
performance of WtE within the Finnish context. The functional unit (FU) is 1 ton of incoming 213 
waste treated in the WtE plant. System boundaries cover direct emission resulted from waste 214 
combustion and indirect emission from upstream and downstream activities concerning waste 215 
treatment in the WtE. Upstream activities include reagent production and WtE infrastructure, 216 
whereas downstream activities comprise ash management and electricity recovery. Other than 217 
treating waste, WtE provides a function as electricity and heat producer. This multifunctionality 218 
issue was resolved by applying system expansion, where the conventional electricity and heat 219 
production system was considered. The electricity from WtE was assumed to substitute the 220 
average electricity consumption mix whilst the heat will supersede the average heat 221 
consumption by the plant.  222 
A WtE plant recovers energy in the form of electricity for self-consumption and sale, heat for 223 
self-consumption, while bottom ash is sent to landfill, and the APC residue is assumed to be 224 
sent to hazardous waste landfill. The waste composition for municipal solid waste in Finland 225 
was modified from Liikanen et al. (Liikanen et al., 2016) since there is a difference in waste 226 
categorization between their study and the present one. The waste composition consists of 227 
45.9% organic waste, 16.8% plastics, 8.8% cardboard, 8% paper, 5.5% textiles, 5.4% composite 228 
waste, 3% sanitary textiles, 2% non-combustible (e.g., ceramics), 1.95% metals, 1.55% glass, 229 
0.9% combustible (e.g., wood), and 0.2% hazardous waste.    230 



11  

WtE specification and waste composition were used as inputs for the analysis, and it resulted 231 
life cycle inventory (LCI). LCI was quantified using the waste incineration life cycle inventory 232 
(WILCI), a tool developed based on the incineration sector in France (Beylot et al., 2018, 2017). 233 
This tool was used because it provided a seamless way to define the input, output, as well as 234 
the management options for air pollution and ash. Moreover, the results of LCI from WILCI 235 
can be modified as an input to perform life cycle impact assessment (LCIA) in OpenLCA 236 
software. WILCI also provides results on flue gas volume, which is used to estimate the cost of 237 
APC unit.   238 
LCIA was conducted using ReCiPe methodology for the midpoint and endpoint single score 239 
result, taking a hierarchist perspective (RIVM, 2016). Hierarchist (H) is rooted from the most 240 
common policy approach that uses medium time horizon of 100 years. In this study, the single 241 
score impact (SSI) is the indicator of environmental performance that is utilized as the 242 
environmental objective in the MOO. The optimized system has to minimize the environmental 243 
impact, or in the other words, the system needs to maximize the environmental benefit. To 244 
avoid confusion, environmental benefit here refers to the environmental impacts avoided from 245 
conventional electricity and heat production, and it was later indicated by a minus sign. Primary 246 
data from the plant was used in combination with Ecoinvent database. The temporal scope was 247 
2018-2038, and the geographical scope was Finland.   248 
2.5 Multi-objective optimization 249 
This section describes the methodology for multi-objective optimization, which consists of the 250 
objective functions, decision variables, and non-dominated sorting genetic algorithm (NSGA-251 
II).     252 
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2.5.1 Formulation of the objective functions  253 
Three objective functions in the WtE system were considered as the optimization problem. They 254 
covered the energy, environment, and economic aspects represented by energy efficiency, LCA 255 
single score impact (SSI), and cost, respectively.  256 
 The objective function of the energy aspect represented by net efficiency (%) is displayed by 257 
equation (6):  258 

𝑀𝑎𝑥 𝜀𝑒𝑙 =  
𝑊̇𝑛𝑒𝑡

𝑚̇𝑤𝑎𝑠𝑡𝑒 . 𝐿𝐻𝑉𝑤𝑎𝑠𝑡𝑒
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 = 0.9 𝑎𝑛𝑑  𝜂𝑇,𝑠 ≤ 0.9 ; 

(6) 

where 𝑥 and 𝜂𝑇,𝑠 are steam quality in pipe 8 and isentropic efficiency for both turbines (see 259 
Fig. 2). The annualized cost, 𝐶𝑝, in treating incoming waste (€/ton-waste) is the economic 260 
objective, as shown by equation (7): 261 

𝑀𝑖𝑛 𝐶𝑝 = 𝐹𝐶𝐼 +  𝐶𝐼𝑀 + 𝐶𝑙𝑎𝑏𝑜𝑟 + 𝐶𝐹𝐺𝐴 −  𝐶𝑠𝑎𝑙𝑒   (7) 
in which 𝐹𝐶𝐼 is the fixed-capital investment, 𝐶𝐼𝑀 the cost of insurance and maintenance, 𝐶𝑙𝑎𝑏𝑜𝑟  262 
the labor cost; 𝐶𝐹𝐺𝐴 refers to cost of flue gas cleaning and ash management, 𝑎𝑛𝑑 𝐶𝑠𝑎𝑙𝑒  represents 263 
revenue from the sale of electricity. For the environmental aspect, SSI is the objective to 264 
minimize, as displayed by equation (8):   265 

𝑀𝑖𝑛 𝑆𝑆𝐼 =  ∑ 𝐷𝐸𝑛 + 𝐴𝑀𝑛+ 𝑅𝑁𝑛 − 𝐸𝑅𝑛 

𝑛

𝑛=1

 (8) 

Where 𝑆𝑆𝐼 is the total environmental impact and subscript 𝑛 indicates each of the impact 266 
categories, whilst 𝐷𝐸𝑛 , 𝐴𝑀𝑛 , 𝑅𝑁𝑛 , 𝐸𝑅𝑛 represent the environmental impacts of direct emission, 267 
ash management, reagent, and infrastructure, as well as energy recovery, respectively. 268 
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2.5.2 Decision variables 269 
Six decision variables were selected, namely high-pressure turbine (HPT) inlet temperature, 270 
HPT inlet pressure, HPT outlet temperature, low-pressure turbine (LPT) outlet pressure, and 271 
pump isentropic efficiency. To ensure that the optimization results did not exceed a reasonable 272 
range of the typical specification of the equipment and standard steam cycle operation, a range 273 
of variables and constraints were introduced. 274 
The actual value of the decision variables that were obtained from the WtE operator, as well as 275 
the range of design parameters used in the optimization are shown in Table 1.  The numbers of 276 
the pipes and equipment in the table refer to Fig. 2. Non-dominated sorting genetic algorithm 277 
(NSGA-II) 278 

[Table 1 is here] 279 
NSGA-II is one of metaheuristic genetic algorithms inspired by natural selection that is used to 280 
generate solutions in the optimization problem. It employs a generating technique whereby a 281 
sequence of searching for many Pareto-optimal solutions and deciding the appropriate trade-282 
off to select one of them is carried out (Sharma et al., 2012).  NSGA-II is used because i) a 283 
crowding distance method results in diversity in the solutions, ii) a non-dominating sorting 284 
method can generate solutions that are close to pareto-optimal, iii) an elitist method preserves 285 
the best solution in the next generation (Deb et al., 2002; Subashini and Bhuvaneswari, 2012; 286 
Yusoff et al., 2011). The optimization problem was solved using an Excel-based MOO (EMOO) 287 
program following the principle of NSGA-II developed by Sharma et al. (2012) and Wong et 288 
al. (2016).  289 
Maximum number of generations (MNG) is a common termination criterion used in MOO. The 290 
iteration has to be large enough to ensure the solutions are converged, but at the same time it 291 
should not be too large so that it will cause an excessive number of computations (Wong et al., 292 
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2016).  This study used steady-state detection (SSDTC) as the termination criterion. This 293 
criterion determines convergence based on steady state detection, where it performs precisely 294 
with computational efficiency for single-objective optimization (SOO) (Rhinehart, 2014). 295 
Wong et al. (2016) developed SSDTC for MOO, which terminates reliably and produces non-296 
dominated solutions close to MNG with quicker computational time.  The crossover probability 297 
and mutation probability were set at 0.9 and 0.1, respectively, along with population size of 298 
100. 299 
2.6 Sensitivity analysis  300 
Sensitivity analysis was used to investigate how results differ as an effect of a change in input.  301 
We applied perturbation analysis, which was implemented by increasing and decreasing each 302 
decision variable by 5% of its value while keeping all other variables at their baseline value. 303 
The results from perturbation analysis allows the calculation of ratio change between the initial 304 
results and perturbation results.   305 
2.7 Scenario analysis 306 
Scenario analysis was used to assess the model’s robustness based on the change related to 307 
waste management and WtE. Three changes were applied to perform scenario analysis: i) waste 308 
composition, ii) sustainable energy provision (SEP), iii) fossil energy provision (FEP). In the 309 
first scenario, the change was applied only to organic and plastic waste since these two types 310 
of waste are typically significant in the waste composition (Martinez-Sanchez et al., 2016). The 311 
organic and plastic waste content in the baseline scenario are 45.95% and 16.8%, respectively, 312 
while in the scenario analysis they are 30.9% and 31.8%, respectively. For the two scenarios in 313 
energy provision, the change was made in the source of marginal energy. Energy source in SEP 314 
consisted of wood, wind, and nuclear whereas FEP consisted of nuclear, natural gas, and hard 315 
coal. Information about scenario analysis input is given in Supplementary material Table 5-6.  316 
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3. Results  317 
3.1 Energy analysis  318 
The total energy input from the waste was 12.71 MJ/kg-waste. The enthalpy of boiler, HPT, 319 
and LPT were -13763.11 kW, 1790.86 kW, and 2085.09 kW, respectively (see Supplementary 320 
material Table 7). Waste flow rate per hour was 4.6 ton, resulting total electricity of 3245.72 321 
kW, at which 649 kW was for self-consumption. These results corresponded to 16.27% net 322 
efficiency of the system. Studies on the efficiency of WtE with electricity recovery ranging 323 
about 14-28% (Beylot et al., 2018; Martinez-Sanchez et al., 2016). The low efficiency of WtE 324 
with electricity recovery is caused by energy wasted from electricity generation through heat 325 
discharge that is not recaptured for further utilization as in a cogeneration plant (Verbruggen, 326 
2008). The energy wasted is particularly pronounced in between source and sink 10-11 when 327 
the steam is being cooled.   328 
3.2  Economic analysis 329 
The economic analysis showed the average cost of treating waste per ton. It considered the 330 
fixed cost, which consists of fixed-cost investment, insurance and maintenance, labor cost, as 331 
well as cost of flue gas cleaning, ash disposal, and revenue from the sale of electricity. The 332 
remaining cost is expected to be covered by a gate fee. Table 2 shows the results of cost items 333 
in treating the waste per ton in WtE plant. The total average cost was 75 €/ton-waste, where the 334 
major contribution was fixed cost and electricity sale. For the total fixed cost, the contribution 335 
from fixed cost equipment, insurance and maintenance, and labor cost contributed about 65.8%, 336 
22.96%, and 11.25%, respectively to the total value of 83.63 €/ton. A similar value was reported 337 
by Martinez-Sanchez et al. (2016), where the total fixed cost for WtE with electricity recovery 338 
was 83 €/ton-waste. However, the total average cost was different due to system efficiency that 339 
caused different values in electricity generation. In this study, one ton of waste generated around 340 
705.47 kW of electricity.  341 
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[Table 2 is here] 342 
The difference between our results compared with other studies can be affected by different 343 
calculation methods, cost items, and assumptions used in estimating fixed cost. Investment cost 344 
can be calculated based on capacity using a formula devised by Waste to Energy International 345 
(Waste to Energy International, 2015) or using information of the known cost and capacity of 346 
other plants, and adjusting the value based on the desired capacity. In this case, we calculated 347 
the purchased equipment cost (PEC), which consists of steam cycle and air pollution control, 348 
then we used ratio of PEC adopted from Lemmens (2016) to calculate in the rest of the cost 349 
components in the FCI. Overall, the cost of this study was congruous with WtE plants that have 350 
similar capacity, as shown by ENEA  (ENEA, 2007).     351 
3.3  Environmental analysis 352 
3.3.1 Total impact 353 
On the midpoint level, the global warming potential from direct emission and total emission 354 
per ton waste input were 510 kg CO2-eq and 175 kg CO2-eq, respectively. Lower total value 355 
compared with direct emission were the results of the benefit from energy recovery. The 356 
midpoint results were converted into normalized endpoint and weighted score so that SSI can 357 
be calculated. For the endpoint, the highest impact was from global warming regarding 358 
human health with the value of 1.13x10-3 Pt/ton-waste, whereas the highest benefit was fossil 359 
resource scarcity at -1.20x108 Pt/ton-waste. The SSI showed net benefit of -1.21x108 Pt/ton-360 
waste. The total impact of treating waste in WtE plant shows a negative environmental 361 
impact, or in other words, it provides an environmental benefit from avoided process. Hence, 362 
the benefit depends on the amount and the source of electricity being substituted.  Information 363 
regarding life cycle inventory, midpoint impact, and endpoint impact is given in the 364 
Supplementary material Table 8-10.     365 
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3.3.2  Contribution analysis 366 
Contribution of different activities to the environmental impact is shown in Fig. 3. Across all 367 
impact categories, energy recovery provided benefits (shown by negative impact), ranging from 368 
27% up to 99% of the total benefits and impacts of the WtE in absolute value. This value means 369 
a proportion of energy recovery in its absolute value relative to the sum of impacts from direct 370 
emission, ash management, energy recovery (absolute value), as well as infrastructure and 371 
reagent. In 10 out of 22 impact categories, energy recovery made the highest contribution to the 372 
total impact and benefit. These impact categories were fine particulate matter formation, 373 
mineral resource scarcity, freshwater eutrophication, ionizing radiation, fossil resource scarcity, 374 
terrestrial acidification, human carcinogenic toxicity, terrestrial ecotoxicity, land use, and 375 
freshwater ecotoxicity. 376 

[Fig. 3. is here] 377 
Direct emission contributed around 0-72% of the total impact and benefit across the impact 378 
categories. It represented the highest contributor for 9 out of 22 impact categories, namely 379 
stratospheric ozone depletion, marine ecotoxicity, human non-carcinogenic toxicity, global 380 
warming on terrestrial ecosystem, global warming on freshwater ecosystem, ozone formation 381 
on human health, marine eutrophication, ozone formation on terrestrial ecosystem, and global 382 
warming on human health. The contribution of reagent and infrastructure ranged around 0-65% 383 
across all the impact categories. The highest contribution was found in the impact of water 384 
consumption on human health, aquatic ecosystem, and terrestrial ecosystem. Lastly, the 385 
management of bottom ash and fly ash only contributed about 0-11% across all impact 386 
categories.   387 
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3.4  Multi-objective optimization 388 
The MOO was solved ten times using EMOO followed by computation of the true Pareto-389 
optimal front as the outcomes is displayed by Fig. 4. On average, steady state detection 390 
(SSDTC) terminated the calculation in generation 141, with 29 as the standard deviation.  391 
Maximum improvement for single objective were 13.4%, 10.3%, and 14.8% for thermal, 392 
economic, and environmental, respectively. However, these improvements cannot be achieved 393 
altogether due to conflicting objectives. Higher efficiency results an increase in cost 394 
exponentially, whilst linear correlation is found between environmental impact and efficiency. 395 
Therefore weighted percentage deviation factor (WPD) was applied to determine the optimal 396 
solution as shown by equation (9) (Inghels et al., 2019).  397 

𝑊𝑃𝐷 = ∑ 𝑊𝑗

𝑗

𝑗=1

. [
|𝑓𝑗,𝑠 −  𝑓𝑗,𝑜|

𝑓𝑗,𝑜

] 
(9) 

where j and 𝑊𝑗 indicate objective function and the weight assigned, respectively. The value of 398 
jth objective function obtained from true Pareto optimal front and best value of each objective 399 
are represented by 𝑓𝑗,𝑠 and 𝑓𝑗,𝑜, respectively. The lowest 𝑊𝑃𝐷𝑠 is the selected solution due to 400 
its closeness to the best value for all objectives. 401 

[Fig. 4. is here] 402 
The outcome of single optimal solution depends on the weight assigned to each objective 403 
function by the decision makers. Different set of weight was applied to the environmental 404 
objective (𝑊𝑒𝑛), economic objective (𝑊𝑒𝑐), and thermal objective (𝑊𝑡ℎ) to show the effect of 405 
weight factor to the optimal solution. The set of weight including situation i) S1 that assigns 406 
equal weight to all objectives, ii) S2 with 𝑊𝑡ℎ= 𝑊𝑒𝑛 = 0.3, 𝑎𝑛𝑑 𝑊𝑒𝑐= 0.4, iii)  S3 which 407 
assumes 𝑊𝑡ℎ= 𝑊𝑒𝑛 = 0.2, 𝑎𝑛𝑑 𝑊𝑒𝑐= 0.6, and iv)  S4 with 𝑊𝑡ℎ= 𝑊𝑒𝑛 = 0.15, 𝑎𝑛𝑑 𝑊𝑒𝑐 = 0.7. 408 
Table 3 summarizes the operation configuration for different weight.    409 
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[Table 3 is here] 410 
3.5 Sensitivity analysis  411 
Sensitivity analysis is used to investigate the varied results due to change in the input variables. 412 
This analysis can identify the decision variables that have a significance influence on each 413 
objective.  Perturbation analysis, where change applied to one variable while holding the rest 414 
to the initial value, is conducted by changing six decision variables by +5% and -5%, followed 415 
by a calculation of the ratio of change. Relationship of the ratio of change and decision variables 416 
is shown by Fig. 5.  417 

[Fig.5. is here] 418 
Similar results were found for the thermal and environmental objectives, where they are most 419 
sensitive with T1. The rest of the decision variables affected the thermal and environmental 420 
objectives by less than 1%. These similarities are expected since the MOO shows positive linear 421 
correlation between the environmental and thermal objective. Environmental benefit depends 422 
on the amount of energy recovery which is the direct definition of efficiency. However, there 423 
is a slight difference in the actual value: for example, with a reduction of 5% in T1, efficiency 424 
and environmental benefit show a change of about -6% and -6.79%, respectively. For the 425 
economic objective, the cost results are most sensitive to T2. When the variable T2 was 426 
increased and decreased by 5%, the change in cost results were about 63% and 20%, 427 
respectively. Unlike the thermal and environmental objectives, where one decision variable has 428 
a much more significant effect on the results, in the economic objective, all variables affect the 429 
cost by changing the results by at least 13.5%.   430 



20  

3.6 Scenario analysis  431 
3.6.1 Modification of waste composition 432 
A change in waste composition resulted in different outcomes compared with the baseline. The 433 
change occurred in thermal, economic, and environmental assessment. The energy balance 434 
provided higher results due to the change of waste input. Waste input in a WM scenario has 435 
higher LHV at 16.94 MJ/kg, and the system is assumed to have the same efficiency, hence the 436 
power output increased as well. The enthalpy of boiler, HPT, and LPT were -18621.85 kW, 437 
2949.84 kW, and 2652.47 kW, respectively. The highest difference compared with baseline 438 
scenario occurred in gross energy output of the HPT, at 65%.   439 
The overall cost in treating one ton of waste was 85.61 €, showing an increase of about 13% 440 
compared to the baseline. Higher fixed cost and higher revenue were obtained when waste input 441 
has higher LHV, with a slight decrease in the cost of flue gas cleaning and ash disposal. The 442 
SSI of waste modification scenario was -1.63x108 Pt/ton-waste, showing that modified waste 443 
provided higher benefit to the environment for about 35%. This is caused by the higher power 444 
output so that more electricity production can be avoided and substituted by WtE production. 445 
See Supplementary material for complete results in WM scenario (Table 11-13). 446 
The WM model was then solved ten times using EMOO for a comparison with the baseline 447 
scenario. On average, the calculation terminated at generation 134 with a standard deviation of 448 
32.  A similar improvement can be found in baseline and WM scenarios as a result of the MOO. 449 
The maximum improvements in energy efficiency in the baseline and WM scenario were about 450 
13% and 15%, respectively.  The economic objective could be improved by around 11.5% and 451 
12.6% at the highest in the baseline and WM, respectively. Meanwhile, the environmental 452 
objective had the highest improvement of about 13% and 14% for baseline and WM scenario, 453 
respectively.  454 
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Performance metrics (PM) were calculated to compare the performance of MOO in finding the 455 
non-dominated solutions (Sharma et al., 2017). PM are useful in measuring the performance of 456 
MOO algorithm so that they were utilized to evaluate the model when modification was made 457 
(Wong et al., 2016).  Normalized spread (nSP) and generational distance (nGD) are used as 458 
performance metrics in this study. The objectives are normalized using extreme value to avoid 459 
bias (Sharma et al., 2017).  The first metric, nSP, is used to identify the scope of computed 460 
Pareto-optimal fronts so that the larger value is the better one (Audet et al., 2020), whereas nGD 461 
measures the convergence performance at which the lower value indicates the closest  solutions 462 
to true Pareto-optimal front (Sharma and Rangaiah, 2013). 463 
The value of nGD for baseline and WM scenario were similar at about 0.000234 and 0.000227, 464 
respectively. Both models provide non-dominated solutions that are equally close to the value 465 
of true Pareto-optimal. For spread, the nSP results were 0.5297 and 0.4916 for baseline and 466 
WM, respectively. This shows that the baseline scenario has a wider extent of spread in a 467 
Pareto-optimal front.    468 
3.6.2 Modification of electricity mix  469 
The second type of scenario applied change in the source of the marginal energy mix. SEP 470 
comprised of greener energy sources compared to baseline, whereas FEP consisted of an energy 471 
mix that was less green compared with the baseline. The calculation assumed that the electricity 472 
price remained the same regardless of the source of the energy. Hence, the change in outcome 473 
was only found in the environmental benefit derived from avoided electricity production. The 474 
environmental benefit in the SEP and FEP scenario were -2.49x107 Pt/ton-waste and -3.43x108 475 
Pt/ton-waste, respectively. SEP and FEP scenario differed by about -93% and 183% from the 476 
baseline scenario, respectively (see supplementary material Table 14).   477 
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SEP and FEP scenarios were optimized to evaluate how the model would behave with a 478 
modification. The average termination for SEP and FEP were generations 98 and 129, 479 
respectively, whereas the standard deviations were 27 and 29, respectively. The results of 480 
performance metrics nGD for baseline, SEP, and FEP were 0.000234, 0.000575, and 0.000266, 481 
respectively. FEP showed similar nGD with the baseline, which implied that the non-dominated 482 
solutions were close to the true Pareto-optimal front. Meanwhile, the value of nGD for SEP was 483 
two times higher than the baseline and FEP, indicating that the non-dominated solutions were 484 
less converged. For spread, nSP results for baseline, SEP, and FEP were 0.5297, 0.5517, and 485 
0.7037. For these metrics, similarity was found in the baseline and SEP, where the spread of 486 
non-dominated solutions was less extensive than FEP. In both PMs, FEP scenario showed better 487 
performance.  488 
4. Discussions 489 
4.1 Importance of waste composition 490 
Waste compositions affect the results of thermal, economic, and environmental assessments. It 491 
determines the LHV and chemical contents that will affect the combustion process, emission 492 
type and quantity, and the operating cost. Therefore, difference can be found in different studies 493 
regarding LCA of WtE although comparable pattern exists across different studies. Midpoint 494 
climate change (CC) impact of this study as a result of a direct emission in every ton of waste 495 
is 510 kg CO2-eq. Similar findings were found in Beylot et al. (2018) where the value was 496 
around 400 kg CO2-eq. Comparable results were found in studies by Astrup et al. (2009) and 497 
Damgaard et al. (2010) where direct CC impact were 347-371 kg CO2-eq and 300 kg CO2-eq, 498 
respectively. Within Norway context, Lausselet et al.  (2016) reported the CC impact in 499 
different scenarios ranging from 265 to 637 kg CO2-eq.   500 



23  

Waste composition also affects the cost in treating per ton waste in WtE plant. The baseline of 501 
this study shows that the cost in treating incoming waste is 75.63 €/ton-waste. The result 502 
increases to 85.61 €/ton-waste in scenario analysis as the waste composition is modified. 503 
Martinez-Sanchez et al. (2016) confirmed the pattern when waste input has higher LHV. The 504 
cost increased with higher LHV due to lower mass flow rate treated in the plant.  505 
4.2 Importance of assumptions and assessment method 506 
The assumptions, system boundary, functional unit, and methods affect the results of LCA, 507 
thermal analysis, cost calculation, and optimization problem. The average condition, common 508 
method, and FU are used to accommodate the differences among all possible value and enable 509 
comparison across studies. For the LCA, there are various impact assessment methods that 510 
include different substances, classify impact categorization differently or present the results as 511 
midpoint or endpoint result. Midpoint results are commonly used in LCA study, hence it is used 512 
as well in this study for comparison purpose. However, for the MOO, the single score method 513 
was apply. Midpoint impact can have up to 18 impact categories that will become impractical 514 
if each of them used as separate objective function. Single score can simplify the calculation 515 
while containing all different impact categories at one. This simplification comes with caveat 516 
that some information may be condensed resulting higher uncertainty (Meijer, 2014). 517 
The choice of system boundary and economic assumption must be representative for the system 518 
being assessed and commonly used for comparison with other studies. This study covers the 519 
direct emission and indirect emission including system expansion method. This choice is made 520 
to avoid overlooking environmental benefit from energy recovery. System boundary can be 521 
defined iteratively along with inventory analysis to reassure the relevant boundaries are covered 522 
(Baumann and Tillman, 2004). Broad range of economic assumption such as discount period, 523 
discount rate, electricity price, and fixed-capital investment cost that is calculated using 524 
percentage of PEC influence the cost function. Gate fee is not included in this study as it should 525 
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be decided after the cost of treating waste is known. So that the economic assessment focus on 526 
the cost in treating waste instead of the revenue from selling electricity.  527 
The finding also highlights the role of decision makers in determining optimal solution through 528 
assigning weight to each objective function. The total of weight across different objective 529 
function must be 1, and the objective function that is considered relatively more important has 530 
to be assigned higher weight. Various factors such as stringency of environmental policy in 531 
certain region, labor wage and the price of consumables, thermodynamics characteristics of the 532 
equipment, and the sources of marginal energy may affect the way the decision makers 533 
prioritize the objective function.   534 
4.3 MOO parameters 535 
SSDTC terminates the computation for various scenario in generation 98-141. Other 536 
termination criteria is maximum number of generations (MNG) that is commonly used in MOO.  537 
MNG must be large enough to make sure the results are converged but not too large that it can 538 
cause unnecessary computation. It was reported by Roosen et al. (2003) that an increase in 539 
MNG from 150 to 730 resulted marginal improvement, and computation for more than 1000 540 
generations provided negligible improvements. MNG for NSGA-II for power generation study 541 
can range from 400 to 700 (Behzadi et al., 2018; Ghasemian and Ehyaei, 2018; Hajabdollahi et 542 
al., 2012). The use of alternative termination criteria other than MNG can save computational 543 
time.     544 
Crossover and mutation probability in NSGA can range around 0.7-0.9 and 0.01-0.2, 545 
respectively (Ghasemian and Ehyaei, 2018; Hajabdollahi et al., 2012; Mousavi-Avval et al., 546 
2017). There is no general value to use for crossover and mutation probability, and it can be 547 
problem specific (Hassanat et al., 2019). 548 
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4.4 Sensitivity and scenario analysis 549 
Perturbation analysis shows how sensitive the thermal and environmental model to T1, and the 550 
cost model to T2. The analysis is useful to assess the sensitivity of the model to the decisions 551 
variable so that the MOO can focus on fewer decision variables that are most sensitive with 552 
expectations of saving computational requirement for the optimization. The high sensitivity of 553 
these variables also shows that only small change is required to optimize the system without 554 
violating the range of equipment specifications shown by Table 1.   555 
Scenario analysis demonstrates the importance of waste composition as discussed in section 556 
4.1. The change in waste composition will shift the energy balance including the power output 557 
of the system, environmental impact, and cost function. Although it should be noted that 558 
differences on the outcomes are also affected by ash management, APC technology, impact 559 
assessment methods, energy recovery as well as underlying assumptions used in the study such 560 
as electricity source being substituted (Beylot et al., 2018; Fruergaard Astrup et al., 2015; 561 
Lausselet et al., 2016; Turconi et al., 2011). Attention is required as well to the background 562 
system as the modification of the energy mix shows significant change in LCA results. It 563 
implies that the more sustainable the sources of the marginal energy, the less environmental 564 
benefit is obtained. Whereas WtE provides more environmental benefits when marginal energy 565 
sources are less sustainable. It is possible that WtE provides no benefit to the environment if 566 
the marginal energy has exceptionally sustainable source.  567 
Scenario analysis can also be used to evaluate the EMOO by measuring nGD and nSP. The 568 
change in the foreground system, represented by waste modification, does not change the 569 
convergence of the solutions resulted by the EMOO as shown by comparable nGD, however 570 
an extent of spread for baseline is better than WM scenario. The change in the mixed of 571 
marginal energy source represents a shift in background system. SEP scenario performs worst 572 
in the convergence of non-dominated solutions while FEP performs best for the spread. The 573 
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variety resulted by scenario analysis indicates that this study is contextual so that careful 574 
consideration is needed when generalizing the results of this study.    575 
4.5 Implications and limitations 576 
The results demonstrate that an improvement in WtE plant is possible by applying small 577 
changes in the operation configuration without requiring new investment. The relationship 578 
between the three objective functions indicated the conflict between cost and efficiency, while 579 
positive linear correlation presents the environmental impact and efficiency because the benefit 580 
from WtE is derived from the amount energy being recovered. Nevertheless, a separate 581 
environmental objective is necessary to ensure that WtE still provides environmental benefit, 582 
otherwise waste diversion for different treatment may be required. The method of the study can 583 
be implemented not only for WtE plant that is in ongoing operation, but also in the design phase. 584 
In designing new WtE plant, the decision variables can be expanded by considering different 585 
types of APC technologies and ash management.      586 
The study covers a broad range of aspects that require large data input and various 587 
methodologies. Unavailable data were estimated, and this could lead to uncertainty. The choice 588 
of methodologies and formula affected the results of the study. Data and methodological issues 589 
are especially pronounced in economic and environmental assessment. To address this, the most 590 
common methodologies were chosen as well as the implementation of sensitivity analysis and 591 
scenario analysis to study how the model behaves and what parameters affect the model the 592 
most.  593 
MOO calculation provides different choices for termination criteria, mutation probability, and 594 
crossover. However, we applied only one type of these aforementioned categories based on a 595 
previous study of the use of EMOO program (Wong et al., 2016). The use of different values 596 
of crossover and mutation probability can provide different results since there is no global value 597 
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to use for these parameters. Our focus on using value and termination criteria that haves been 598 
tested limits the study on the effect of these parameters.  599 
5. Conclusion  600 
This paper has presented an MOO that integrates LCA to assess environmental objective. The 601 
integration of LCA and the use of single score endpoint allowing comprehensive assessment of 602 
the environmental objective that are commonly presented as damage cost or CO2 emission. The 603 
use of MOO can improve the performance of WtE plant although a conflict occurs between the 604 
economic and thermal objectives, while positive linear correlation is found between the thermal 605 
and environmental objective. Each objective shows maximum improvement for about 13.4%, 606 
10.3%, and 14.8% for thermal, economic, and environmental, respectively.  These findings 607 
present an important role of decision makers to weigh the priority of each objective and generate 608 
optimal solution. The study suggests incorporating MOO not only during operational phase of 609 
WtE, but also during the planning phase of building a WtE by including more decision variables 610 
such as different type of equipment or technology to improve its design. This will provide 611 
general information about how the WtE will perform during its operational time.   612 
 The paper also demonstrates that each decision variable affects the outcomes differently. By 613 
obtaining the information about the most influential variables with regards to the optimization 614 
results, modification to the optimization problem can be applied by reducing the number of 615 
decision variables to save computational time. Furthermore, applying MOO will help the plant 616 
to continuously evaluate the environmental benefit derived from WtE. As the marginal energy 617 
sources changes, the environmental benefit will change up to the point that WtE operation is 618 
not environmentally beneficial. Knowledge about this matter can help decision makers to 619 
formulate waste management policy regarding appropriate treatment or a decision in diverting 620 
waste stream. 621 
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Overall, WtE plant can be optimized by modifying operation configuration without making new 622 
investment. Careful consideration is required when generalizing this study because i) the WtE 623 
operation is specific for plant with a certain steam cycle structure, waste composition, energy 624 
recovery, APC technologies, and ash management, ii) the assessment was carried out using the 625 
Finnish or European context, iii) the impact assessment method for the environmental objective 626 
used ReCiPe (H), and iv) the cost function depends on equipment with specific thermodynamic 627 
properties.   628 
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 797 Fig. 1. System description of WtE plant. 798  799 
 800 
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 801  802 Fig. 2. Schematic of steam turbine cycle studied in this paper. The steam cycle consists of apparatus such as: high-803 pressure turbine (HPT) (1), low-pressure turbine (LPT) (2), steam condenser (3), condensate pump (4), deaerator 804 (5), feedwater pump (6), boiler (7), heat exchanger (8), source (10, 13, 14), sink (9, 11, 12, 15), and generator (G). 805  806 
Table 1 Decision variables and range of variation 807 

Operation configuration Description Actual value Range of optimization T1 (°C) Steam temperature (pipe 1) 400 380 – 500 P1 (kPa) Steam pressure (pipe 1) 4100  3800 – 4500 T2 (°C) Steam temperature (pipe 2, 3, 4, 5, 6, 7) 198 185-210 P7 (kPa) Steam pressure (pipe 8, 11) 23  20 - 25.5 
ηpc Pump isentropic efficiency (component 4) 0.75 0.75 - 0.85 
ηpb Pump isentropic efficiency (component 6) 0.75 0.75 - 0.85  808 

 809 
 810 
 811 
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Table 2 Economic analysis of treating waste in WtE 812 
Items Cost (€/ton-waste) Fixed cost 83.63 Fixed-capital investment (FCI) 55.02   Direct fixed-capital investment (DFCI)                                  45.26 - Purchased-equipment cost (PEC) 17.96 - Purchased-equipment installation 6.74 - Piping 4.49 - Instrumentation and controls 2.60 - Electrical equipment and material 2.02 - Architectural, civil, and structural work 6.06 - Service facility 5.39    Indirect fixed-capital investment (IFCI)                            9.76 - Engineering and supervision 1.64 - Construction and contractor 4.10 - Contingencies 3.30 - Legal cost 0.73 Insurance and maintenance 19.20 Labor cost 9.41 Flue gas cleaning and ash disposal 8.93 Electricity sale -16.9   Total average cost 75.63  813 

 814 
Fig. 3. Normalized endpoint impact of WtE.  815 
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 816 Fig. 4. True Pareto-optimal front of MOO with environmental, economic, and thermal objectives  817 
Table 3 Operation configuration for different weighting factors 818 

Operation configuration Actual value S1 S2 S3 S4 T1 (°C) 400 446.73 440.22 414.07 402.85  P1 (kPa) 4100 4356.80 4214.98 3803.71 3804.12 T2 (°C) 198 189.29 187.47 185.05 185.05 P7 (kPa) 23 20.71 20.71 20.71 20.71 
ηpc 0.75 0.75 0.77 0.79 0.77 
ηpb 0.75 0.75 0.75 0.75 0.75  819 
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 820 
Fig. 5. Sensitivity results of (a) efficiency, (b) cost, (c) environmental impact due to variations of the decision 821 
variables  822 
 823 


