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Do Uncertainties Affect Biofuel Prices? 
Abstract 

We investigate the impact of geopolitical risk, U.S. economic policy uncertainty, 
financial stress, and market volatility on prices of U.S. and Brazilian ethanol and Malaysian 
palm oil. We use quantile autoregressive and quantile causality methods and  provide evidence 
of ethanol and palm oil prices being asymmetrically influenced in the downside and upside by 
each of the uncertainty measures considered. Malaysian palm oil prices are more attuned to 
increases in uncertainty measures. Increases rather than decreases in uncertainty more strongly 
impact ethanol and palm oil prices. Uncertainty causes large negative price fluctuations in the 
biofuel commodities, while moderate uncertainty changes only moderately influence prices. 
Large uncertainty increases cause large or extreme positive changes in ethanol and palm oil 
prices. Implications of the results are discussed.  
 
Keywords: Biofuels; Uncertainty; Quantile Causality; Geopolitical Risk; Economic Policy 
Uncertainty; Financial stress. 
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1 Introduction 

Biobased energy is becoming a central issue of consideration for actors in the global 
energy market, for example the energy sector and policy makers of developed and emerging 
economies. This is mainly due to rising energy demand, the emergence of new sources of 
renewable energy, and the increasing volatility in energy prices that followed the introduction 
of alternative energy markets. For instance, the rise of fossil fuel substitutes such as shale gas, 
ethanol fuel and palm oil (among others) have opened new possibilities and pose new 
challenges to government agents who play a role in determining a country’s energy mix. 
Biofuels broaden the energy spectrum for diversification in economies that for decades have 
relied largely on traditional fossil fuel or on a small number of energy sources. Further, biofuels 
can be used to manage and mitigate the adverse effect the price volatility of crude oil has on 
energy and non-energy portfolios, and to make the issue of energy security less uncertain in 
countries not endowed with natural resources for energy generation. Lastly, fossil fuel 
substitutes, such as those considered in our study, and their price dynamics do provide greater 
flexibility in energy policy implementation and help counter energy market monopolization [1-
9]. As biomass markets are less developed than traditional fossil fuel markets, being smaller 
and having lower market liquidity than the traditional crude oil market for instance, they can be 
more susceptible to downward trends in the traditional and long-established energy markets. 
And as a consequence,  making them a less competitive and attractive alternative for new energy 
investment in an increasing global energy market [10]. 

The subject of price uncertainty in energy markets (biofuel: ethanol and palm oil 
markets in our study) is linked to the price of corn and palm tree stock, thus positively or 
negatively impacts producers and consumers (supply-demand) of those agricultural goods and 
the sector economies they create. These financial and economic issues are particularly 
important to countries and corresponding markets with the greatest output such as the U.S. and 
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Brazil, the world’s ethanol production leaders, and Indonesia and Malaysia, the largest 
producers of palm oil in the world. 

Insert Figure 1 
Insert Figure 2 

Fig. 1 and Fig. 2 depict the production levels of ethanol and biodiesel for the U.S., 
Brazilian and Malaysian markets. It is evident from these diagrams that there is a steady upward 
shift (trend) in production levels of those biofuel markets. Current estimates suggest that 
worldwide production of ethanol has shifted from 13,123 to 25,583 million gallons in the last 
decade. Such significant growth could be due to the concerns about increasing oil prices, energy 
security and climate change. The development has been considerable, specifically, as of 2016 
the U.S. and Brazil controlled 58% and 27% of global ethanol production, respectively. The 
U.S. alone extracted 15,379 billion gallons of ethanol in 2016 [11] and by January 2020 it 
amounted to17.3 billion gallons per year [12]. Towards the end of 2017, Indonesia and Malaysia 
largely dominated the palm oil industry accounting for 54% and 32% of global palm oil 
production, respectively [13]. Earlier studies argue that biofuels as substitutes for fossil fuels 
have received considerable attention for reducing carbon emission volumes and to lessen the 
adverse impact of crude oil market volatility [2, 14]. 

Moreover, Fig. 1 and Fig. 2 demonstrate that the U.S. has emerged as the leading 
producer of biofuels. Approximately 40% of the U.S. corn is currently used for the production 
of biofuel. Doubtlessly promoting the use of biofuels limits the dependence on fossil fuel usage. 
Brazil, for instance, has already replaced 42% of its fuel (gasoline) with ethanol produced from 
sugarcane. This has led gasoline to be the alternative fuel in Brazil [14]. Moreover, a recent 
report, published by the U.S. department of Agriculture, indicates that corn ethanol relative to 
conventional gasoline currently decreases greenhouse emissions by as much as 43 percent, and 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 



 

5 

would further reduce greenhouse gas emissions by 50 percent by 2022. It is foreseen that corn 
ethanol has the potential to reduce emissions by as much as 76 percent in the following decades 
[15-18]. These statistics suggest that the biofuel markets will witness a huge growth in coming 
years.  

Hence, it is in the context of the aforementioned opportunities and challenges the ethanol 
and palm oil industries pose to corn and palm tree growers, biofuel producers, energy portfolio 
investors, and energy policy makers that an investigation of the impact uncertainties such as 
market volatility (VIX), U.S. economic policy uncertainty (EPU), global geopolitical risk 
(GPR), and financial stress (FSI) have on the price of ethanol and palm oil is worth undertaking. 
For this purpose, we implemented quantile autoregression and quantile causality methods on 
monthly observations of those uncertainty factors and of U.S. and Brazilian ethanol prices (US-
EP and BR-EP), as well as Malaysian Palm Oil prices (MA-PP). While previous studies have 
mainly focused on the impact traditional crude oil, renewable and some biofuel markets have 
on the prices of ethanol and plam oil prices [19-23] little or no attention has been paid on the 
effect economic policy uncertainty, geopolitical risk and state fragility have on the price of 
biofuel commodities. Our study fills this gap. 

Our results suggest that variables of political and global character such EPU, GPR and 
FSI should also be taken into consideration, and be monitored, by energy market participants, 
portfolio investors, ethanol and palm oil producers, corn and palm growers, and policy makers 
before and during the process of rebalancing portfolios, deciding production output, and 
developing appropriate policy guidelines related to subsidizing and energy sector investment. 
The asymmetric relationship between the measures of uncertainty and bioenergy prices  implies 
that biofuels tend to display stronger positive price chocks when global geopolitical risk is high, 
when the economic outlook in the U.S. economy is ambiguous, and when the vulnerability in 
the most troubled countries around the world increases [10]. 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 



 

6 

The remainder of the paper is structured as follows. Section 2 reviews the relevant 
literature in the field and acknowledges the research gap that we fill. Section 3 describes and 
justifies the variables selected and provides the descriptive statistics of the sampled series of 
observations. Section 4 explains the choice of methodology and the motivation for 
implementing the selected methodology. Section 5 presents the empirical results. Section 6 
concludes. 

2  Literature Review 

Previous studies have examined the relationship between energy market prices 
and those of financial and agricultural commodities. For instance, [24] used vector error 
correction (MVEC), multivariate generalized autoregressive conditional heteroskedasticity 
(MGARCH), and cointegration models to analyze interdependencies across prices of gasoline, 
ethanol and oil. Their results indicate a direct link between the prices of gasoline and those of 
ethanol and oil. Besides, their findings discard long-term price effects between the energy 
commodities considered. [25] used cointegration techniques to examine the short-run and long-
run effects that biofuels such as ethanol, gasoline and crude oil have on agricultural 
commodities such as corn, soybeans, and sugar. Their results indicate the absence of long-term 
influence between the agricultural and energy commodities considered, however short-term 
effects do arise, with ethanol prices exerting the strongest influence.  

[26] implemented autoregression methods to understand how crude oil prices 
affect U.S. ethanol, corn and gasoline. They identified a strong link between ethanol prices and 
those of corn and oil. Moreover, ethanol prices were found to positively correlate with corn and 
gasoline, with the latter having the strongest influence [27]. Trujillo-Barrera et al. [28] used 
Granger causality, vector error correction and the cointegration tests of Johansen [29] and found  
that spillovers of crude oil on corn and ethanol are similar in timing, however stronger on 
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ethanol markets. Oil was observed to cause ethanol and corn prices more strongly during the 
2008 financial crisis. By fitting weekly and monthly minimal spanning and hierarchical trees 
on price series of biodiesel, ethanol and agricultural commodities Kristoufek et al. [30] 
identified weak short-term co-dependence between biodiesel and ethanol. However, biofuels in 
the medium term did become an influential factor on ethanol prices. Using the inference and 
cointegration methods of Johansen [32, 33], Natanelov et al. [31] acknowledge a strong 
influence of crude oil on corn and ethanol prices. They also documented that increasing corn 
market volatility resulting from increasing production of ethanol, and the U.S. government fuel 
policy is indicated to influence the relationship of corn and ethanol. Gardebroek and Hernandez 
[22] analyzed volatility transmission between oil, corn and ethanol prices in the U.S. using 
multivariate GARCH methods. Their results showed stronger volatility transmission between 
corn and ethanol markets post 2006. It is from this year on that ethanol becomes the only 
alternative to gasoline. They also found that crude oil volatility did not significantly impact 
corn and identified spillover volatility from corn to ethanol. Zafeiriou et al. [34] used monthly 
frequency data of ethanol, volume of gas emissions, gasoline and crude oil, along with Johansen 
cointegration techniques and showed that each pair of variables they model influences others. 
They also showed that increases in gas emissions and in gasoline prices are associated with 
increases in ethanol prices. 

Bentivoglio et al. [35] in the context of Brazilian markets, and through the use of 
vector error correction and forecast error variance decomposition, indicate that the prices of 
fuel and sugar influence those of ethanol. Chiu et al.’s [2] study of interdependence between 
the prices of corn, ethanol and crude oil found evidence of mutual effects between those 
commodities. Accordingly, the price of corn drives that of ethanol, and crude oil displays a 
unidirectional relationship of causality with ethanol prices. Kristoufek et al. [36] employed a 
wavelet coherence methodology to analyze the comovements between the returns of Brazilian 
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and U.S. ethanol and its feedstock, namely, corn and sugar, across frequencies and time scales. 
They found ethanol prices to positively correlate with those of corn and sugar in the long-term 
only. Moreover, the feedstock prices are said to lead those of ethanol. Dutta’s [14] examination 
of nonlinear asymmetric and symmetric interdependence between the prices of Brazilian corn, 
ethanol and crude oil indicate that the international price of oil and sugar are important factors 
in determining the price of ethanol in the long run. The study also identified a short-term 
unidirectional relationship from sugar to the ethanol market. In the same year Dutta et al. [11] 
using a GARCH-jump model identified a positive and asymmetric response of U.S. ethanol to 
corn market volatility shocks. They observed that the asymmetric effect becomes more evident 
during extreme tail market downturns and upturns. 

When it comes to the use of nonlinear analysis using the Granger noncausality in 
quantiles approach there is a study by Jiang, Zhou and Liu [37] where they investigated how 
uncertainty (GPU) affects carbon emissions. In their analysis, they found no statistically 
significant result at the median. Instead, they found a clear outstanding pattern in the lower and 
higher tails of the distribution, where the uncertainty effects were concentrated in the lower tails 
of the distribution. Another study by Wadström, Wittberg, Uddin and Jayasekera [38] analysed 
the asymmetric pattern of renewable energy in relation to Canadian industrial output using the 
GCQ approach. In their paper, they use GCQ in combination with quantile regression and the 
findings indicated clear tail patterns and weak median significance. 

Our study employs measures of economic policy uncertainty, geopolitical risk, 
and financial stress which have not been studied before in a modeling framework that we use 
to understand their impact on ethanol and palm oil prices. Furthermore, the nonlinear aspects 
of the distribution in the data calls for a nonlinear analysis that can provide a deeper 
understanding of uncertainty and price mechanisms. Our study takes a novel approach and 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 



 

9 

diverts considerably from traditional correlation studies in order to describe biofuel market 
dynamics. 

3 Data and descriptive statistics 

This paper analyzes the causal relationship between uncertainty and ethanol and palm 
oil returns. The uncertainty indicators used are Market Volatility Index (VIX), U.S. Economic 
Policy Uncertainty Index (EPU), Geopolitical Risk Index (GPR) and the St. Louis Fed Financial 
Stress Index (FSI). The ethanol and biofuel series considered are the U.S. ethanol prices (US-
EP), the Brazilian ethanol prices (BR-EP) and the Malaysian Palm Oil prices (MA-PP). Our 
time series consist of 139 monthly observations, ranging from January 2006 to December 2017. 
BR-EP have been retrieved from the Centre for Advanced Studies on Applied Economics, and 
the US-EP and MA-PP data have been collected from DataStream International. The selected 
VIX is based on the implied volatilities of the S&P500 index options and accounts for market 
expectations of a 30-day time horizon. The EPU is based on three components. The first 
component measures newspaper coverage of uncertainty in U.S. economic policy. The second 
component refers to the quantity of future tax code provisions that are to expire. The third 
component examines and measures economic forecast disagreements. The GPR index is based 
on counting of the number of times words related to geopolitical tensions appear in international 
newspapers. This index would therefore be expected to increase in value during times of 
regional and global political tension [39].  The FSI measures the degree of financial stress in 
markets and consists of 18 weekly data series constructed by principal component analysis1 The 
indices included in the FSI are seven interest rate series, six yield spreads and five other 
financial series [40]. 

                                                  
1  St. Louis Fed Financial Stress Index (STLFSI) is now discontinued and has been replaced with STLFSI2. 
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Table 1 displays the time series descriptive statistics in log level, except for FSI which 
is in level due to negative values in original form. The Jarque-Bera test shows that the VIX and 
FSI are not normally distributed at the 1 percent level of significance, and GPR at the 5 percent 
significance level. This fact could be an indication of non-linearity in our data, making linear 
models unsuitable. In order to further test for non-linearity in the data, we fitted a BDS 
independence test [41]. The BDS test evaluates non-linear aspects in our data by seeking 
evidence for a normal distribution i.e., independent and identically distributed variables (iid). 
Table 4 displays the results, which indicate strong nonlinearity in our data, making nonlinear 
analysis relevant for investigating the relationship between biofuel and uncertainty indicators. 

Insert Table 1 
Insert Table 2 

Table 2 presents the correlation between the time series. It is observed that the biofuels 
have a positive correlation amongst each other, and that the US-EP has a negative correlation 
with all variables except with VIX. The BR-EP also has a negative correlation with all variables 
except with EPU. The MA-PP has a negative correlation with GPR and FSI.   

Insert Table 3 
In Table 3 we show the results from the unit root tests fitted to verify the integration 

order of the series modeled. It can be observed that the US-EP, BR-EP, MA-PP, VIX and FS 
series are integrated of order I(1), while the EPU and GPR are integrated for order I(0). For the 
analysis, all series will be differentiated in order for the quantile autoregression tests to be valid. 
Figure 3 illustrates the graphs of level and log level for the biofuel and uncertainty time series. 
Several brakes characterize the biofuel series with notable negative large shifts around the 
financial crisis in 2008 and around 2014. These are time periods in which crude oil prices 
underwent sharp trends of decline. Among the uncertainty indicators, VIX, EPU and FSI have 
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the most distinctive shifts in increasing uncertainty levels around the financial crisis of 2008. 
Figure 4 indicates the first difference of the time series corresponding to the uncertainty 
indicators VIX, EPU and GPR. It can be seen that the Brazilian ethanol prices are the most 
volatile between 2006 and 2010. The U.S. ethanol prices are impacted the least during the 2008 
global financial crisis, while the Malaysian palm oil prices are the most strongly affected. The 
largest and most constant positive returns occur on the U.S. and Brazilian returns. The FSI 
records its highest values throughout 2009, while remaining constant and close to zero 
throughout the sample period. The market volatility and economic policy uncertainty indices 
also record some of their highest values during the global financial crisis.  

Insert Figure 3 
Insert Figure 4 

Table 4 displays the results corresponding to the implemented BDS independence test. 
This test seeks for evidence of non-linear aspects in our model. Before testing, the linear 
structure in the time series is removed by detrending according to first-difference AR(1) and 
GARCH (0,1). The results show a strong indication of non-normality at the 1 percent level of 
significance for the US-EP and FSI time series. There is also a strong indication at the 5 percent 
significance level that the MA-PP and GPR time series are non-linearly behaved. The results 
justify the use of non-linear methods for investigating the relationship between biofuel and 
uncertainty indicators. 

Insert Table 4 

4 Quantile autoregressive and quantile causality models 

As the most established application of Granger-causality is defined in relation to 
the conditional distribution (using the conditional mean), these models cannot evaluate or assess 
causal relations in the extremes of the distribution or in nonlinear circumstances. Troster [42, 
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43] shows that while a mean-causality relationship must impact at least a significant number of 
quantiles in order to indicate causality; a tail (extreme event) causal relation does not necessarily 
imply a causality in the mean. Given the absence of normal (Gaussian) distribution in the time 
series under examination, nonlinear models such as quantile autoregression and quantile 
causality are preferable to adequately account for the asymmetric impact of uncertainty on the 
ethanol and palm oil markets studied [44]. And so, rather than only testing for the basic 
necessary conditions for Granger-causality, we analyze the full continuous space of conditional 
quantile functions in the distribution. In this way this study provides a much more detailed and 
richer analysis of the entire conditional distribution, compared to the conditional mean. We will 
show that uncertainty (VIX, EPU, GPR, FSI) in fact are nonlinearly related with the different 
ethanol and palm oil prices. And we will also see that only studying the conditional mean will 
fail to capture the whole picture, gravely neglecting important information. Our nonlinear 
model is able to capture large or extreme changes in uncertainty that represent significant real-
world events in the real-economy, finance and in energy markets that can be particularly 
important. A weakness with the quantile Granger-causality test lies in its inability to inform 
about the magnitude of the strength of association. 

The interpretation of the quantile causality test resembles that of the ordinary linear 
causality test and as such provides information about the predictive power of a certain variable 
on others at a specific quantile (τ). Compared to correlation studies, the causality method 
applied in this paper focuses on the predictive power, and not the comovements, of an 
explanatory variable on a dependent variable. As defined by Troster (2018) let {𝑌𝑡, 𝑍𝑡}𝑡𝜖ℤ be a 
strictly stationary and ergodic time series where 𝑌𝑡 𝜖 ℝ is the dependent variable and there is an 
explanatory variable 𝐼𝑡 ≡  (𝐼𝑡

𝑌′, 𝐼𝑡
𝑍′) ∈  ℝ𝑑 , 𝑑 =  𝑠 + 𝑞, where 𝐼𝑡

𝑌: = (𝑌𝑡−1, . . . 𝑌𝑡−𝑠)′ ∈  ℝ𝑠 and 
𝐼𝑡

𝑍: = (𝑍𝑡−1, . . . 𝑍𝑡−𝑠)′ ) ∈  ℝ𝑞 for 𝐴′ denoting the transpose matrix of 𝐴. Then let 𝐹𝑦(𝑦|𝐼𝑡
𝑌, 𝐼𝑡

𝑍) 
and 𝐹𝑦(𝑦|𝐼𝑡

𝑌) be the conditional distribution functions of 𝑌𝑡 given (𝐼𝑡
𝑌, 𝐼𝑡

𝑍) and 𝐼𝑡
𝑌. Then a series 
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of 𝑍𝑡 does not Granger-cause another series 𝑌𝑡 if previous 𝑍𝑡 does not increase the predictive 
value of 𝑌𝑡 given previous 𝑌𝑡. The theoretical null-hypothesis is thus: 

𝐻0
𝑍↛𝑌: Fy (y|𝐼𝑡

𝑌, 𝐼𝑡
𝑍) =  𝐹𝑦 (𝑦|𝐼𝑡

𝑌), for all 𝑦 𝜖 ℝ. (eq1) 
Equation 1 is denoted as Granger-causality in distribution. However, the null-

hypothesis in equation 1 indicates non-causality in mean and 𝑍𝑡 does not Granger-cause 𝑌𝑡 in 
mean if: 

𝐸(𝑌𝑡|𝐼𝑡
𝑌, 𝐼𝑡

𝑍) = 𝐸(𝑌𝑡|𝐼𝑡
𝑌) a.s., (eq2) 

Where 𝐸(𝑌𝑡|𝐼𝑡
𝑌, 𝐼𝑡

𝑍) and 𝐸(𝑌𝑡|𝐼𝑡
𝑌) denote the mean of 𝐹𝑦(∙ |𝐼𝑡

𝑌, 𝐼𝑡
𝑍) and 𝐹𝑦(⋅ |𝐼𝑡

𝑌) 
respectively. In this regard, Granger-noncausality can be extended to higher orders even if this 
form of Granger-causality in mean overlooks conditional tail dependencies in the distribution. 
Thus, we continue with the proposed testing of Granger-noncausality in conditional quantiles 
of the distribution. Which allows for determining the causality pattern and fulfills the conditions 
for testing for causality in distribution. And so, let 𝑄𝜏

𝑌,𝑍(∙ |𝐼𝑡
𝑌, 𝐼𝑡

𝑍) and 𝑄𝜏
𝑌,𝑍(∙ |𝐼𝑡

𝑌) denote the 
𝜏 −quantiles of 𝐹𝑦(∙ |𝐼𝑡

𝑌, 𝐼𝑡
𝑍) and 𝐹𝑦(⋅ |𝐼𝑡

𝑌). Then we reformulate equation 1 as: 
𝐻0

𝑄𝐶:𝑍↛𝑌: 𝑄𝜏
𝑌,𝑍 (Y|𝐼𝑡

𝑌, 𝐼𝑡
𝑍) =  𝑄𝜏

𝑌 (𝑌|𝐼𝑡
𝑌), 𝑎. 𝑠. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 𝜖 𝒯, (𝑒𝑞 3) 

where 𝒯 is a compact set in such way that 𝒯 ⊂  [0,1] and where the conditional 
𝜏 −quantiles satisfies the restrictions given in the works of Troster [42]2. From these definitions 
we can fit our model for analyzing biofuel prices and uncertainty as defined in equation 4. The 
Granger noncausality in quantiles test also includes lags of the dependent variable to control 

                                                  
2 For more details see eq 4 and 5 in the method development in Troster (2018) 
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for spurious relationships. In testing granger causality for quantiles, we perform the following 
tests:3 

𝐻0
△Ui↛△𝑅𝐸: 𝐸 {1 [△ Bio𝑡  ≤ 𝑚 (𝐼𝑡

△Bio, 𝜃0(𝜏))] 𝐼𝑡
△Bio, 𝐼𝑡

△Ui} =  𝜏 , 𝑎. 𝑠. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝒯 (eq 4) 
versus: 

𝐻𝐴
△Ui↛△Bio: 𝐸 {1 [△ Bio𝑡  ≤ 𝑚 (𝐼𝑡

△Bio, 𝜃0(𝜏))] 𝐼𝑡
△Bio, 𝐼𝑡

△Ui} ≠  𝜏 , 𝑎. 𝑠. 𝑓𝑜𝑟 some 𝜏 ∈ 𝒯 (eq 5) 

where 𝑚 (𝐼𝑡
△Ui, 𝜃0(𝜏)) specifies the conditional 𝑄𝜏

𝑌(⋅ │𝐼𝑡
𝑌), for all 𝜏 ∈ 𝒯. The 

linear Granger causality null-hypothesis is tested against the nonlinear Granger causality 
alternative hypothesis. The innovative application of this test is applied in energy economics 
(Troster et al., 2018). In accordance with the model specification introduced by Troster et al. 
(2018), we will apply the following test statistics: 

𝑆𝑇 ∶=  ∫
𝜏
∫

𝑤
|𝑣𝑡(𝝎, 𝜏)|2𝑑𝐹𝜔(𝜔)𝑑𝐹𝜏(𝜏) (eq 6) 

Where 𝐹𝜔(⋅) stands for a conditional distribution function of a d-variate standard 
normal vector, 𝐹𝜏(⋅) is ruled by a uniform discrete distribution over a grid of 𝒯 for n equally 
spaced points, 

 Τ𝑛 =  {𝜏𝑗}
𝑗=1

𝑛 , and the weight vector 𝝎 ∈  ℝ𝑑 which follows a standard normal 
distribution. The statistic for the test of Equation 6 is calculated according its sample analog. 
Let ψ be a T x n matrix that consists of elements 𝜓𝑖,𝑗 =  Ψ𝜏𝑗(𝑌𝑖 − 𝑚 (𝐼𝑖

𝑌, 𝜃𝑇(𝜏𝑗))) and Ψ𝜏𝑗(⋅) 
is the function Ψ𝜏𝑗(𝜀) ∶=  1(𝜀 ≤ 0) − 𝜏𝑗. Then the following test statistic is applied: 

𝑆𝑇 =  
1

𝑇𝑛
∑ |𝜓 ∙ 𝑗𝑾𝜓 ∙ 𝑗́ |𝑛

𝑗=1  (eq 7) 

                                                  
3 The notation (Ui) represents all uncertainty indicators VIX, EPU, GPR and FSI and Bio represents all biofuels U.S. ethanol, Brazilian ethanol and Malaysian palm oil. 
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Where W is defined as a T x T matrix that has components 𝒘𝑡,𝑠 =

exp [−0,5(𝐼𝑡 − 𝐼𝑠)2, and 𝜓 ∙ 𝑗 designates a j-th column of ψ parameters. This methodology is 
adequate to account for nonlinearities and extreme quantile observations, an aspect that is of 
our concern in trying to identify those uncertainty factors that most strongly influence ethanol 
and palm oil prices as uncertainty increases or decreases.  

The limitations of the applied methodology, besides not providing a parametric 
magnitude of the causality, lies in its explanatory properties. Apart from displaying the 
predictive power, no other information is provided by the model. This is why we include several 
uncertainty measurements as explanatory variables. The selected uncertainty measures are 
composed of individual components, enabling a more detailed investigation of uncertainty 
impacts. Furthermore, in order to handle any spurious causality relations, we will mainly 
consider results at the 1 % significance level in our analysis, however, results at the 5% 
significance level will also be noted. It is also noteworthy that we have not corrected for the 
presence of structural breaks in the time series. Given that structural breaks are usually detected 
in commodity markets, affecting statistical inference, traditional approaches can sometimes 
lead to unreliable results. However, the Granger noncausality in quantiles methodology is not 
as sensitive to this problem as other statistical or econometric methods. In fact, uncertainty can 
be one of the causes of structural shifts, and thus, making our approach suitable. 

The practical work of applying Granger noncausality in quantiles was performed 
in MATLAB Simulink programing software, where the equations were translated into coded 
scripts (see Appendix A). 

5 Results 

Table 5 displays the p-values of the Granger-causality in quantiles test for U.S. 
ethanol price returns and the uncertainty indices. Considering all the quantiles, τ = (0.05 – 0.95), 
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there is causality running from uncertainty indicators to the U.S. ethanol return in 8 out of 10 
model specifications at the 1% level of significance. This information implies that uncertainty 
impacts U.S. ethanol prices in both market downturns (lower quantiles) and market upturns 
(larger quantiles). It can also be observed that the impact of uncertainty is asymmetric in both 
tails positive and negative, as the strength of association between uncertainty measures and 
ethanol logarithmic differences that is significant is more evident in the lower and larger 
quantiles. The significance of the influence uncertainty has is more predominant in the highest 
quantiles, meaning causing higher prices when economic policy is more ambiguous, and when 
geopolitical risk and financial stress increase. Looking at the lower quantiles (0.05-0.35) there 
is causality running from VIX, EPU, GPR and FSI to ethanol price return at τ = (0,15) at the 
1% and 5% significance levels in model specifications 1 to 3. For FSI there is also causality at 
τ = (0,10) at the 1% and 5% significance levels in model specifications 1 to 3. These results 
indicate that uncertainty impacts lead to large negative price returns for U.S. ethanol, possibly 
as a consequence of diminishing demand. Considering substitution effects, decreases in U.S. 
ethanol that in turn could affect gasoline prices negatively [45]. 

Insert Table 5 
Considering the middle quantiles (0.40-0.60) there is causality running from VIX, 

EPU, GPR and FSI to ethanol price return at τ = (0,45) for 10% and 5% significance levels, 
however the causality is not constant across all three model specifications. Note that causality 
at the mean is located in the middle section of the quantile distribution. And as there is little or 
no indication of causality in the middle quantiles in Table 5, only performing a mean causality 
test would have missed the causality pattern in the tails. And therefore, we cannot really 
conclude with full certainty the presence of causality in the middle quantiles. This indicates that 
uncertainty does not Granger-cause moderate changes in U.S. ethanol return. A possible 
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explanation for this is that the U.S. ethanol market is a relatively stable market compared to the 
Brazilian. 

Considering the upper quantiles (0.65-0.95) there is causality at τ = (0.70) at the 1% 
significance level for EPU in all model specifications. There is also causality at quantiles τ = 

(0.75 – 0,85) for all uncertainty indicators, but the significance levels vary between 1% and 
10% in the three model specifications. Indicating that some uncertainty events lead to large 
positive changes in U.S. ethanol price return. Overall, uncertainty impacts U.S. ethanol prices 
in the lower extreme tail of the distribution (meaning the most adverse price events) and also 
the upper parts of the distribution, however not the most extreme tail events. The implications 
of asymmetric impact of uncertainty on U.S. ethanol prices shows that uncertainty can 
potentially lead to higher demand for oil-based fuels at moderate positive price changes and 
lower demand in the extreme negative price changes. The shocks to energy prices may in turn 
cause price shocks in the agricultural and commodity markets. 

Insert Table 6 
Table 6 displays the p-values of the Granger-causality in quantiles test for Brazilian 

ethanol returns. Considering all the quantiles, τ = (0.05 – 0.95), there is causality in the direction 
running from all uncertainty indicators to Brazilian ethanol price at the 1% significance level 
in all autoregressive model specifications. In the lower and upper quantiles, there is similarities 
between the Brazil ethanol market and the U.S. ethanol market, although not entirely displaying 
the same pattern. A striking feature is the significance of the impact in the middle quantiles for 
Brazilian ethanol, that is more dominant something also found in other research [46]. A broad 
comparison between the Granger-causality for U.S. ethanol prices and Brazilian ethanol prices 
indicates that the uncertainty measures VIX, EPU, GPR and FSI more noticeable influences the 
U.S. ethanol prices in the higher quantiles, making the U.S. ethanol market more responsive to 
increases in U.S. economic policy uncertainty and geopolitical risk, for instance. 
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Looking at the lower quantiles of the distribution for Brazilian ethanol prices, there 
is causality at τ = (0.10) and at τ = (0.25) at the 1% significance level for all uncertainty 
indicators and the results are robust for model specifications 1 to 3 of the auto-regressive model. 
For VIX, EPU and GPR there is also causality at τ = (0.15) at 1% and 5% significance level. 
This indicates that uncertainty lead to large negative changes in Brazilian ethanol prices, with 
a potential increase of demand that in turn has spillover effects on related Brazilian agricultural, 
commodity and energy markets [47]. 

Considering the middle quantiles in table 6, there is causality at τ = (0.45) at the 1% 
level of significance and τ = (0.60) at the 1% and 10% level of significance for all indices. 
While there are some indications that uncertainty causes moderate changes in ethanol prices in 
some quantiles, the overall assessment is that uncertainty at least has some impact on the middle 
quantiles. 

In the upper quantiles in table 6, there is causality at τ = (0.65 – 0,70) at the 1% level 
of significance for all uncertainty indicators and model specifications, indicating that some 
uncertain situations lead to large positive changes in Brazilian ethanol prices. The overall 
assessment of our results is that uncertainty have a broader impact on the Brazilian ethanol 
prices, making the Brazilian ethanol market less stable compared to the U.S. market. However, 
as in the case of U.S. ethanol prices, uncertainty can be transmitted through the market and 
potentially leading to increasing demand for fuel types other than biofuel with positive impact 
on short run fuel prices. 

Insert Table 7 
Table 7 presents the p-values of the Granger-causality in quantiles test for the 

Malaysian palm oil returns. Considering all the quantiles, τ = (0.05 – 0.95), there is causality in 
the direction running from all uncertainty indicators to Malaysian palm oil prices and returns at 
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the 1% level of significance in all models of the autoregressive models. This feature is also 
found in the Brazilian ethanol returns and may indicate an uncertainty or price linkage between 
ethanol and palm oil prices [48]. A comparison of the Granger-causality for U.S. and Brazilian 
ethanol and Malaysian palm oil prices indicates that the causality for the latter is more 
pronounced and consistent in the highest quantiles (0.75-0.95), making Malaysian palm oil 
prices the most responsive to market volatility, U.S. economic policy uncertainty, geopolitical 
risk and financial stress. In the lower distribution quantiles causality is observed at τ = (0.20) at 
the 1% level of significance and the results are also robust for model specification 1 to 3. There 
is also causality at τ = (0.35 – 0.40) at the 1% and 5% level of significance for all uncertainty 
indicators. This indicates that uncertainty leads to large negative or extreme negative changes 
in Malaysian palm oil returns. Hence, decreasing uncertainty can potentially increase demand 
for palm oil in biodiesel production, which in turn can cause an expansion of palm oil 
production and raise ethical issues concerning sustainability, deforestation and environmental 
damages [49]. 

Considering the middle quantiles there is causality at τ = (0.40) at the 1% and 5% 
significance levels and at τ = (0.50) at the 1% and 10% significance levels for all indices. 
Results from U.S. and Brazil indicate that uncertainty might lead to moderate changes in ethanol 
prices. However, the overall assessment is that uncertainty has a limited effect in the middle 
quantiles for Malaysian palm oil returns (prices). 

In the upper quantiles there is causality at τ = (0.80 – 0,90) and at the 1% significance 
level for all uncertainty indicators and model specifications. There is also causality at τ = (0.75) 
at 1% and 5% significance level for all indicators and at τ = (0,95) at 1% and 10% significance 
levels, indicating that large or extreme increases in uncertainty lead to large or extreme positive 
changes in Malaysian palm oil returns and prices. The higher Granger causality values on the 
lower and upper quantiles for Malaysian palm oil prices shows that U.S. economic policy 
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uncertainty, geopolitical risk and state fragility impact palm oil prices asymmetrically. This 
implies that large or extreme price increases (decreases) in uncertainty would impact palm oil 
prices more severely affecting palm oil production, the price of substitute biofuels, and energy 
policy making in Malaysia [49]. 

6 Discussion and Conclusion  

Overall, our results suggest that the global biofuel markets are sensitive to shocks 
stemming from different financial and economic uncertainty indicators, namely, EPU, VIX, 
FSI and GPR. More importantly, we find an asymmetric linkage between uncertainty indexes 
and biofuel markets, and a similar association is observed for Malaysian palm oil prices. The 
presence of asymmetric relationship among the variables under study has significant 
implications. For example, the existence of a symmetric linkage would enable the biofuel 
producers to properly measure the influence of global economic shocks, while dealing with 
such a risk could be challenging when the impact of economic or financial shocks are 
asymmetric. As increases and decreases in economic indicators might cause cyclical 
fluctuations in investments, exploring the asymmetric connection between the uncertainty 
indexes and biofuel markets is of paramount importance to investors and policymakers. 

The reason behind these results could be recognized from the relationship between 
traditional fossil-based energy carriers and renewable energy carriers [50]. Increasing 
economic, financial and geopolitical risk and uncertainty can severely impact and deteriorate 
the business environment and in turn diminish their demands for oil [51-53]. In line with this 
reasoning, an increase in global or regional uncertainty in crude oil producing countries would 
limit oil supply as well. Hence, economic or financial shocks could influence oil price volatility 
via the supply and demand channels [54, 55]. Accordingly, when international crude oil markets 
become highly volatile as a consequence of rising uncertainties, there could be a shift towards 
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alternative energy markets, thereby influencing the prices of renewable energy carriers. 
Furthermore, markets actors anticipations of market behavior can impact trust in biofuel 
markets, and further influence their investment decisions [50]. Hence, variations in uncertainty 
exert significant influence of clean energy prices through market participants and investor 
sentiment.  

Moreover, geopolitical risk has an important role to play in determining biofuel prices. 
Given that some of the major oil-exporting countries often experience substantial geopolitical 
conflicts, a diversified energy consumption structure may moderate the supply risks of oil 
importers [56]. In addition to this, the increase in geopolitical risk concerning climate change, 
the oil-exporting countries may also seek to diversify energy exports [57]. Therefore, 
geopolitical risk would encourage policy makers to promote the progress of energy transition, 
which may have a positive impact on the price levels of renewable fuels. 

Thus, the role of biofuels, such as ethanol and palm oil, in a country’s energy mix are 
important from the perspectives of energy diversification, energy security, carbon emissions, 
and energy policy making. Price fluctuations in those biofuel assets in specific serve for the 
determination of investment and subsidies in the sector and in related energy sectors. They also 
help growers of the feedstock (corn and palm trees) used for the production of those biofuels to 
determine quantities on the supply side and to assess more accurately medium- and long-term 
accounting liabilities. The present study examined the characteristics of interdependence 
between U.S. and Brazilian ethanol, Malaysian palm oil, and measures of global uncertainty 
such market volatility, U.S. economic policy uncertainty, geopolitical risk and financial stress. 
The main research questions of our study were: i) Does any of the measures of uncertainty 
considered significantly impact the price of ethanol and palm oil? ii) Does any of the uncertainty 
measures impact the price of ethanol and palm oil asymmetrically? 
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The empirical results obtained through the implemented quantile autoregression and 
quantile causality methods indicate that all U.S., Brazil and Malaysia ethanol and palm oil 
prices are subject to and influenced by changes (increases and decreases) in market volatility, 
U.S. economic policy uncertainty, global geopolitical risk, and by changes in the degree of 
financial stress. The influence of the uncertainty measures on ethanol and palm oil prices is 
observed to be asymmetric in the downside and upside, with uncertainty increases most strongly 
impacting biofuel prices. Malaysian palm oil prices are the most responsive to increases in VIX, 
GRP, EPU and FSI. Comparing the causality impacts in the U.S.. and Brazilian ethanol markets, 
we find both differences and similarities. For example, we observe that, uncertainty triggers 
either moderate to large positive changes in U.S. ethanol prices or extreme negative price 
changes. Moreover, the impact pattern displays a clear skew towards moderate positive price 
changes. This indicate a market volatility mechanism caused by uncertainty, that in turn have 
the potential to impact market demand and the utilization of energy [53]. 

The Individual downside and upside price change asymmetric characteristics are 
identified in all three biofuel markets, where changes in uncertainty levels (i.e., changes in VIX, 
EPU, GPR, FSI) influences more strongly positive prices changes rather than negative price 
changes. This means that uncertainty mainly moderately increases the price of biofuels, 
following previous research in uncertainty and energy prices [52, 58], and in contrast with, for 
example stock prices that reacts negatively to uncertainty changes [59, 60]. The pattern of 
increasing energy prices is also in line with previous research [51, 61, 62], and will have to be 
considered as price changes will impact different actors in different ways [54]. However, our 
results also indicate that uncertainty cause severe or extreme negative price shocks in biofuel 
markets. 

The implications of the results suggest that variables of political and global character 
such EPU, GPR and FSI should also be taken into consideration, and be monitored, by energy 
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market participants, investors, ethanol and palm oil producers, corn and palm growers, and 
policy makers before and during the process of rebalancing portfolios, deciding production 
output, and developing appropriate policy guidelines related to subsidizing and energy market 
actors. 

The asymmetric relationship between the measures of uncertainty and the U.S., 
Brazilian and Malaysian ethanol and palm oil markets implies that the prices of those biofuels 
tend to display stronger negative trends when global geopolitical risk is higher; when the 
outlook of U.S. economic policy uncertainty is ambiguous, and when the vulnerability in the 
most troubled countries around the world increases. Given that fluctuations in uncertainty lead 
to changes in the ethanol and palm oil prices, policymakers should adopt effective measures to 
manage the price volatility on these markets. One such strategy could be the improvement of 
market monitoring systems by upgrading the futures market for biofuels and edible oils. A 
developed and improved futures market could then reduce the influence of different uncertainty 
measures on the global ethanol and palm oil markets efficiently, which in turn make these 
industries more secure. Additionally, governments should also adopt appropriate measure with 
a view to stabilizing the feedstock prices. For instance, lifting the levels of biodiesel feedstock 
reserves could result in lower edible oil prices amid the periods of high uncertainty. Otherwise, 
future volatilities of feedstock prices could be affected by supply shortages because of the 
growing demand for alternative fuels [63]. Subsidies granted from public institutions should be 
considered as well, because subsidies could minimize the feedstock price volatility (and hence 
the biofuel price uncertainty) if the increased demand cannot be met by the supply [63, 64]. 
Thus, to deal with such risks, the importance of optimal storage along with the long-term 
feedstock supply contracts will likely increase for alternative energy sectors. Overall, it is 
important for policymakers and developers to react effectively to global uncertainty shocks and 
moderate the price volatility of biofuel and its allied markets. 
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The results have implications for biofuel researchers as well. For instance, the existence 
of asymmetric linkages between the uncertainty measures and biofuel markets should shift the 
investigators from applying linear models to the application of nonlinear approaches while 
analyzing the market dependencies. Besides, the nature of the relationship between variables 
studied may differ depending on the market conditions. In particular, the association among 
uncertainty indices and renewable fuels could behave differently during periods of high market 
stress and extreme market conditions, suggesting the need for exploring the connection between 
the examined variables via the use of advanced modeling techniques such as for example 
copulas. 
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Figure 1 Ethanol Production 
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Notes: International Energy Statistics–EIA. Thousands of metric tons of produced ethanol fuel in Brazil and the U.S.  
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Figure 2 Biodiesel Production 
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Notes: International Energy Statistics–EIA. Thousands of metric tons of produced ethanol fuel in Brazil, Malaysia and the U.S. 
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Figure 3: Time series in level 
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Notes: Graphs of biofuels and uncertainty indicators normalized and in level and log level (Log = ln(Pt ) - ln(Pt-1)) may indicate that some of the series are stationary in level. 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 



 

31 

Figure 4: Time series in first difference (return series) 
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Notes: Graphs of biofuels and uncertainty indicators normalized and in first-difference indicates that some of the series are stationary in level DLog = ln(Pt ) - ln(Pt-1). 
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Table 1: Descriptive statistics 
 US-EP BR-EP MA-PP VIX EPU GPR FSI Mean 0.73 -0.62 6.67 2.89 4.77 4.39 -0.44 Median 0.76 -0.58 6.68 2.83 4.80 4.30 -0.79 Maximum 1.61 -0.14 7.15 4.14 5.65 5.51 4.62 Minimum 0.31 -1.17 6.06 2.32 3.91 3.71 -1.57 Std. Dev. 0.24 0.24 0.24 0.38 0.37 0.40 1.17 Skewness 0.44 -0.29 -0.09 0.96 -0.14 0.57 2.07 Kurtosis 3.10 2.41 2.48 3.88 2.93 2.79 7.68 Jarque-Bera 4.61 3.94 1.77 25.99 0.47 7.68 225.79 Probability 0.10* 0.14 0.41 0.00*** 0.79 0.02** 0.00*** Observations 139 139 139 139 139 139 139 Notes: All log level except FSI which is in level.  

Table 2: Correlation matrix 
 US-EP BR-EP MA-PP VIX EPU GPR FSI US-EP 1       
BR-EP 0.369 1      
MA-PP 0.474 0.597 1     
VIX 0.020 -0.152 0.052 1    
EPU -0.302 0.345 0.099 0.156 1   
GPR -0.339 -0.071 -0.393 -0.509 0.059 1  
FSI -0.039 -0.458 -0.152 0.823 -0.095 -0.382 1 
Notes: Note: All log level except FSI which is in level. 
 
Table 3: Stationarity test 
  A

DF (φ) Lags A
DF(ψ) Lags P

P level (φ) BW P
P (ψ) BW LUS-EP -2.36 4 -6.92*** 3 -4.74*** 7 -12.82*** 0 

LBR-EP -2.97 1 -9.18*** 1 -2.79 2 -10.56*** 4 
LMA-PP -2.96 1 -5.90*** 5 -3.10 5 -9.14*** 4 
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LVIX -3.28* 1 -9.84*** 1 -3.08 2 -12.05*** 9 
LEPU -4.34*** 0 -9.59*** 2 -4.22*** 2 -16.73*** 17 LGPR -6.00*** 0 -9.36*** 3 -5.82*** 2 -52.74*** 136 F

SI† -2.63 1 -9.82*** 0 -2.51 4 -9.83*** 1 
Notes: Methods used in this test is Augmented Dickey-Fuller  test (ADF) and the Philips-Perron test (PP). φ 

indicates test with intercept and trend in level. Ψ test with intercept and trend in first difference. †Only first difference. The notations *. ** and *** indicate the rejection of the null-hypothesis at 10%. 5% and 1% significance level. For ADF and PP the null-hypothesis is unit root process. ADF: Max lag 20 and AIC. PP: Bandwidth: (Newey-West automatic) using Bartlett kernel. 
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Table 4: BDS independence test 
  Fist-difference detrending AR(1) GARCH-Process 
 m ε = .5 ε = .7 ε = .9 ε = .5 ε = .7 ε = .9 ε = .5 ε = .7 ε = .9 
US-EP 

2 0,01191 0,026624*** 0,018964*** 0,013947* 0,026775*** 0,018465*** 0,01191 0,026624*** 0,018964*** 
3 0,017838* 0,052331*** 0,050734*** 0,018546* 0,052525*** 0,050443*** 0,017838* 0,052331*** 0,050734*** 
4 0,015356* 0,065012*** 0,080285*** 0,015852* 0,065734*** 0,079555*** 0,015356* 0,065012*** 0,080285*** 

BR-EP 
2 0,012988 0,007795 -0,001414 0,009767 0,00193 -0,003669 0,012988 0,007795 -0,001414 
3 0,019083* 0,01504 -0,002886 0,015845 0,001213 -0,00648 0,019083* 0,01504 -0,002886 
4 0,018641* 0,020316 -0,006239 0,015277* 0,005699 -0,011103 0,018641* 0,020316 -0,006239 

MA-PP 
2 0,013831* 0,017320* 0,006979 0,018341** 0,018238** 0,001765 0,013831* 0,017320** 0,006979 
3 0,014908* 0,029911** 0,018732* 0,019077** 0,032711** 0,008153 0,014908* 0,029911** 0,018732* 
4 0,014089* 0,034855** 0,027682* 0,013531* 0,037298** 0,014068 0,014089* 0,034855** 0,027682* 

VIX 
2 0,011162 0,008183 0,002256 0,012020* 0,009016 0,002409 0,011162 0,008183 0,002256 
3 0,019907** 0,018622 0,005877 0,020724** 0,019815 0,00635 0,019907** 0,018622 0,005877 
4 0,024186*** 0,030337* 0,007014 0,024355*** 0,030908* 0,008098 0,024186*** 0,030337* 0,007014 

EPU 
2 0,011055* 0,005478 -0,002554 0,009017 0,005522 -0,002442 0,011055* 0,005478 -0,002554 
3 0,010768 0,013703 0,00175 0,008407 0,013075 0,002319 0,010768 0,013703 0,00175 
4 0,009721 0,019524 0,010013 0,005542 0,017356 0,010752 0,009721 0,019524 0,010013 

GPR 
2 0,008477 0,014882* 0,004167 0,011808** 0,013163* 0,00568 0,008477 0,014882** 0,004167 
3 0,013154* 0,027452** 0,013503 0,014568** 0,023346** 0,012774 0,013154* 0,027452** 0,013503 
4 0,011485* 0,032259** 0,023384* 0,012147* 0,027532** 0,020205* 0,011485* 0,032259** 0,023384* 

FSI 
2 0,058822*** 0,062066*** 0,018915** 0,046573*** 0,047961*** 0,024216*** 0,058822*** 0,062066*** 0,018915** 
3 0,093407*** 0,138751** 0,040639*** 0,077613*** 0,120123*** 0,058842*** 0,093407*** 0,138751*** 0,040639*** 
4 0,092118*** 0,187167*** 0,073702*** 0,076716*** 0,167638*** 0,096932*** 0,092118*** 0,187167*** 0,073702*** Notes: All series in log diff except FSI which is first-difference only. ε is the distance for testing proximity of the data points and is calculated as a fraction of pairs with three values 0.5, 0.7 and  0.9. m is the number of consecutive data points to include in the set. P-values are bootstrapped with 5000 iterations. Test includes detrending series using first-difference detrending, AR(1) and GARCH (0,1). Results show strong indication of non-normality at the 1 % level of significance for the US-EP and FSI. Also, a strong indication at the 5 % significance level that the MA-PP and GPR series have non-normality characteristics. The results show non-normality in all series except Brazilian ethanol prices (BR-EP) and economic policy uncertainty (EPU) and indications of non-normality at the 10 % significance level. 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 



 

35 

Table 5: Quantile causality U.S. ethanol price 
  ∆VIX to 

∆US-EP ∆EPU to 

∆US-EP ∆GPR to 

∆US-EP ∆FSI to 

∆US-EP 
τ I

∆US-Ep = 1 I
∆US-Ep = 2 I

∆US-Ep = 3 I
∆US-Ep = 1 I

∆US-Ep = 2 I
∆US-Ep = 3 I

∆US-Ep = 1 I
∆US-Ep = 2 I

∆US-Ep = 3 I
∆US-Ep = 1 I

∆US-Ep = 2 I
∆US-Ep = 3 0.05 0.88 0.96 0.89 0.84 0.90 0.90 0.68 0.84 0.83 0.63 0.89 0.92 0.10 0.01*** 0.01*** 0.11 0.01*** 0.01*** 0.07* 0.01*** 0.01*** 0.10* 0.01*** 0.01*** 0.02** 0.15 0.04** 0.05** 0.01*** 0.04** 0.05** 0.01*** 0.04** 0.05** 0.01*** 0.04** 0.05** 0.01*** 0.20 0.06* 0.27 0.19 0.04** 0.19 0.16 0.06* 0.26 0.16 0.09* 0.28 0.18 0.25 0.14 0.55 0.01*** 0.07* 0.55 0.01*** 0.02** 0.47 0.01*** 0.14 0.56 0.01*** 0.30 0.57 0.05** 0.12 0.57 0.04** 0.12 0.51 0.04** 0.14 0.66 0.08* 0.12 0.35 0.13 0.35 0.79 0.10* 0.27 0.59 0.15 0.25 0.62 0.18 0.25 0.51 0.40 0.11 0.68 0.80 0.11 0.68 0.71 0.12 0.52 0.74 0.11 0.36 0.66 0.45 0.07* 0.03** 0.40 0.08 0.03** 0.32 0.09* 0.03** 0.30 0.03** 0.03** 0.26 0.50 0.03** 0.14 0.81 0.03** 0.14 0.86 0.10* 0.17 0.83 0.03** 0.14 0.59 0.55 0.45 0.53 0.74 0.48 0.54 0.75 0.53 0.60 0.80 0.51 0.52 0.51 0.60 0.67 0.62 0.39 0.70 0.60 0.38 0.79 0.71 0.52 0.76 0.61 0.42 0.65 0.03** 0.27 0.01*** 0.03** 0.27 0.01*** 0.07* 0.46 0.01*** 0.09* 0.41 0.01*** 0.70 0.01*** 0.02** 0.01*** 0.01*** 0.01*** 0.01*** 0.04** 0.08* 0.01*** 0.12 0.01*** 0.01*** 0.75 0.01*** 0.06* 0.01*** 0.01*** 0.04** 0.01*** 0.01*** 0.06* 0.01*** 0.01*** 0.06* 0.01*** 0.80 0.05** 0.04** 0.01*** 0.05** 0.04** 0.01*** 0.05** 0.04** 0.01*** 0.05** 0.04** 0.01*** 0.85 0.01*** 0.08* 0.05** 0.01*** 0.08* 0.05** 0.01*** 0.08* 0.05** 0.01*** 0.08* 0.05** 0.90 0.11 0.09* 0.11 0.11 0.09* 0.11 0.11 0.07* 0.11 0.11 0.09* 0.11 0.95 0.40 0.35 0.52 0.40 0.35 0.56 0.40 0.35 0.23 0.40 0.35 0.60 

[All τ]  0.01*** 0.08* 0.01*** 0.01*** 0.07* 0.01*** 0.01*** 0.09* 0.01*** 0.01*** 0.08* 0.01*** Notes: This table presents the subsampling p-values of the ST - test in eq XX. I∆US-Ep = 1,2,3 represents the number of lags of the dependent variable under the null-hypothesis: No Granger causality in eq XX. The subsample size is b=36 for our sample of T=138 observations. The notations *, ** and *** indicate rejections of the null-hypothesis at 10%, 5% and 1% significance level. The US-EP, VIX, EPU and GPR series is in log and first difference. FSI is in first difference only due to negative values in standard form. 
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Table 6: Quantile causality Brazilian ethanol price 
  ∆VIX to 

∆BR-EP ∆EPU to 
∆BR-EP ∆GPR to 

∆BR-EP ∆FSI to 

∆BR-EP 
τ I

∆BR-EP = 1 I
∆BR-EP = 2 I

∆BR-EP = 3 I
∆BR-EP = 1 I

∆BR-EP = 2 I
∆BR-EP = 3 I

∆BR-EP = 1 I
∆BR-EP = 2 I

∆BR-EP = 3 I
∆BR-EP = 1 I

∆BR-EP = 2 I
∆BR-EP = 3 0.05 0.37 0.17 0.21 0.62 0.02** 0.06* 0.56 0.07* 0.11 0.28 0.02** 0.02** 0.10 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.15 0.02** 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.01*** 0.17 0.17 0.20 0.23 0.08* 0.01*** 0.23 0.08* 0.01*** 0.23 0.08* 0.01*** 0.23 0.02** 0.01*** 0.25 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.30 0.06* 0.30 0.25 0.06* 0.30 0.25 0.06* 0.30 0.25 0.06* 0.30 0.25 0.35 0.07* 0.34 0.20 0.07* 0.34 0.19 0.07* 0.33 0.19 0.09* 0.33 0.21 0.40 0.01*** 0.14 0.14 0.01*** 0.14 0.13 0.01*** 0.14 0.13 0

.04*’ 0.17 0.13 0.45 0.01*** 0.03** 0.01*** 0.01*** 0.03** 0.01*** 0.01*** 0.03** 0.01*** 0.01*** 0.04** 0.01*** 0.50 0.03** 0.53 0.61 0.03** 0.51 0.59 0.04** 0.57 0.66 0.04** 0.55 0.65 0.55 0.04** 0.29 0.30 0.02** 0.26 0.27 0.04** 0.32 0.30 0.04** 0.35 0.36 0.60 0.02** 0.06* 0.01*** 0.02** 0.06* 0.01*** 0.02** 0.06* 0.04** 0.02** 0.04** 0.01*** 0.65 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.70 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.75 0.01*** 0.11 0.07* 0.01*** 0.01*** 0.01*** 0.01*** 0.11 0.01*** 0.01*** 0.11 0.03** 0.80 0.14 0.09* 0.03** 0.14 0.09* 0.03** 0.14 0.09* 0.03** 0.14 0.09* 0.03** 0.85 0.01*** 0.01*** 0.28 0.01*** 0.01*** 0.28 0.01*** 0.01*** 0.30 0.01*** 0.01*** 0.28 0.90 0.14 0.45 0.43 0.16 0.39 0.37 0.14 0.60 0.55 0.12 0.42 0.38 0.95 0.49 0.27 0.27 0.50 0.24 0.27 0.74 0.25 0.28 0.49 0.24 0.27 [
All τ] 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** Notes: This table presents the subsampling p-values of the ST - test in eq XX. I∆US-Ep = 1,2,3 represents the number of lags of the dependent variable under the null-hypothesis: No Granger causality in eq XX. The subsample size is b=36 for our sample of T=138 observations. The notations *, ** and *** indicate rejections of the null-hypothesis at 10%, 5% and 1% significance level. The BR-EP, VIX, EPU and GPR series is in log and first difference. FSI is in first difference only due to negative values in standard form 
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Table 7: Quantile causality Malaysian palm oil price 
  ∆VIX to 

∆MA-PP ∆EPU to 

∆MA-PP ∆GPR to 

∆MA-PP ∆FSI to 

∆MA-PP 
τ I

∆MA-PP = 1 I
∆MA-PP = 2 I

∆MA-PP = 3 I
∆MA-PP = 1 I

∆MA-PP = 2 I
∆MA-PP = 3 I

∆MA-PP = 1 I
∆MA-PP = 2 I

∆MA-PP = 3 I
∆MA-PP = 1 I

∆MA-PP = 2 I
∆MA-PP = 3 0.05 0.10* 0,01*** 0,01*** 0,12 0,01*** 0,01*** 0,10* 0,01*** 0,01*** 0,35 0,01*** 0,01*** 0.10 0.36 0,33 0,32 0,36 0,33 0,32 0,36 0,33 0,32 0,36 0,33 0,31 0.15 0.11 0,18 0,15 0,11 0,18 0,15 0,11 0,18 0,15 0,11 0,18 0,15 0.20 0.01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0.25 0.01*** 0,06* 0,01*** 0,01*** 0,06* 0,01*** 0,01*** 0,06* 0,04** 0,01*** 0,06* 0,03** 0.30 0.05** 0,01*** 0,01*** 0,05** 0,01*** 0,01*** 0,05** 0,03** 0,02** 0,05** 0,08* 0,03** 0.35 0.01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,02** 0.40 0.03** 0,01*** 0,05** 0,03** 0,01*** 0,05** 0,03** 0,01*** 0,05** 0,03** 0,01*** 0,05** 0.45 0.15 0,15 0,13 0,15 0,15 0,13 0,20 0,24 0,17 0,11 0,17 0,12 0.50 0.01*** 0,08* 0,08* 0,01*** 0,08* 0,03** 0,05** 0,10* 0,09* 0,01*** 0,08* 0,03** 0.55 0.40 0,55 0,57 0,35 0,34 0,44 0,22 0,56 0,58 0,38 0,74 0,71 0.60 0.96 0,34 0,36 0,89 0,26 0,24 0,66 0,27 0,24 0,95 0,41 0,46 0.65 0.39 0,85 0,82 0,40 0,81 0,90 0,40 0,90 0,72 0,12 0,90 0,82 0.70 0.77 0,12 0,13 0,73 0,12 0,13 0,37 0,02** 0,03** 0,56 0,11 0,13 0.75 0.01*** 0,01*** 0,02** 0,01*** 0,01*** 0,02** 0,01*** 0,01*** 0,02** 0,01*** 0,01*** 0,02** 0.80 0.01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0.85 0.01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0.90 0.01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0.95 0.01*** 0,02** 0,07* 0,01*** 0,02** 0,07* 0,03** 0,02** 0,07* 0,01*** 0,02** 0,07* [

All τ] 0.01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** 0,01*** Notes: This table presents the subsampling p-values of the ST – test in eq XX. I∆US-Ep = 1,2,3 represents the number of lags of the dependent variable under the null-hypothesis: No Granger causality in eq XX. The subsample size is b=36 for our sample of T=138 observations. The notations *, ** and *** indicate rejections of the null-hypothesis at 10%, 5% and 1% significance level. The MA-PP, VIX, EPU and GPR series is in log and first difference. FSI is in first difference only due to negative values in standard form. 
 
 
 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 


