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1 INTRODUCTION  

Cancer is a dreadful disease that is capable of causing significant devastation in the 
life of individuals diagnosed with it. Cancer patients and their families are gripped 
by traumatic and emotionally overwhelming experiences due to the influence of 
this serious disease. In addition, the fact that it is the second leading cause of death 
globally makes it a source of great concern to the patients and their respective 
families. Globally, every sixth death was reported to be due to various forms of 
cancer (Roser & Ritchie, 2019). In 2018, an estimated of 9.6 million people were 
reported to have died from cancer worldwide (World Health Organization, 2018).  

Cancer is characterized by abnormal cellular growth where normal cells disregard 
the regular pattern of tissue growth and differentiation, which is important for 
maintaining tissue physiology, function, and homeostasis (Jaiswal, 2018). In other 
words, these cancerous cells make more copies of themselves (Weinberg, 2014). 
Several terms have been used to depict this condition. These include malignant 
tumors and neoplasms (World Health Organization, 2018). However, the term 
cancer appeared as the most widely used. 

This abnormal cellular growth can affect any part of the body (World Health 
Organization, 2018). These include lung, breast, colorectal, skin, and head and 
neck cancer to mention a few. Head and neck cancer are further categorized in 
accordance with the area of the head or neck where the cancerous growth begins. 
These can be the oral cavity, pharynx, larynx, paranasal sinuses and nasal cavity, 
or salivary glands as shown in Figure 1 (National Cancer Institute, 2017).  

 

Figure 1. The head and neck cancer region (The Anatomy of the pharynx. 
National Cancer Institute, 2017, Credit: Terese Winslow). 



2     Acta Wasaensia 

The oral cavity represents the most common subtype of head and neck cancer. 
Globally, it is the eighth most common cancer (Ng et al., 2017) with a <60% chance 
of surviving above 5 years (Amit et al., 2013; R. Siegel et al., 2014). Thus, it 
represents a major threat to patients’ health. Of note, oral tongue cancer 
constitutes the majority of cancers of the oral cavity (Almangush, 2015). 
Interestingly, it also has the worst prognosis (Listl et al., 2013). As shown in Figure 
1, the anterior two-thirds of the tongue is a subsite that belongs to the oral cavity. 
This part can also be referred to as the oral tongue or mobile tongue. Similarly, the 
posterior third, also known as the base of the tongue is a subsite that belongs to 
the oropharynx (Almangush, 2015).  

The oral tongue squamous cell carcinoma (OTSCC) has been reported to have a 
worse prognosis than squamous cell carcinomas arising from other subsites of the 
oral cavity (Rusthoven et al., 2008). Therefore, it is important to properly stratify 
cancer patients into risk groups for effective management and to alleviate the 
psychological, social, and economic burden caused by oral tongue cancer (Jaiswal, 
2018). 

Substantial progress has been made in terms of understanding the causes of oral 
cancer, prevention mechanisms, and treatment strategies. However, the main 
concern is in the effective and accurate stratification of the patients into risk 
groups. These stratifications can be in the form of prediction of locoregional 
recurrences, disease-specific survival, or overall survival of oral cancer patients. 
To this end, several approaches such as the use of the staging system of the 
American Joint Committee on Cancer (AJCC) Tumor-Nodal-Metastasis (TNM) 
(Low et al., 2015), molecular markers (Almangush, 2015), and nomograms (Li et 
al., 2017) have been used in the risk stratification in oral cancer.  

However, several shortcomings have been reported in the afore-mentioned 
approaches for the prognostication of oral tongue cancer. For example, the staging 
system of the American Joint Committee on Cancer (AJCC) Tumor-Nodal-
Metastasis (cTNM) has been shown to be an objective and accurate tool for 
predicting the prognosis for an entire population of cancer patients. Thereby 
making the cTNM risk stratification approach widely considered in the treatment 
planning for oral tongue cancer patients (American Joint Committee on Cancer, 
2002; Low et al., 2015; Li et al., 2017).  

In spite of this, it has been reported that the cTNM staging system showed limited 
prognostic ability for individual patients due to its inability to consider tumor- and 
patient-related risk factors (S. G. Patel & Lydiatt, 2008; Sobin, 2003).  In addition, 
for early-stage oral cancer, the cTNM staging system has not shown convincing 
prognostic capabilities as it cannot properly access the biologic behavior of the 
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tumor (Piazza et al., 2014; Po Wing Yuen et al., 2002). Likewise, for molecular 
markers, lack of repeated validation for most of these markers have not provided 
reliability for their use in clinical practice (Søland & Brusevold, 2013). To this end, 
a tool that considers different prognostic factors together (i.e. staging system and 
clinicopathologic parameters) to accurately predict patients’ outcomes would be 
pertinent for effective cancer management – prevention of ineffective treatment 
and avoidance of unnecessary overtreatment (Almangush, 2015; Li et al., 2017). 

The goal of this thesis is to apply machine-learning techniques that consider the 
aforementioned shortcomings of the TNM staging to estimate and predict tongue 
cancer patients’ outcomes such as locoregional recurrences and overall survival. 
Furthermore, this thesis is also aimed at developing a web-based prognostic tool 
for the stratification of tongue cancer patients into a low- or high-risk of 
locoregional recurrence. This is an important step towards personalized medicine. 
Additionally, this thesis is further aimed at comparing the performance of machine 
learning techniques to nomograms in the prognostication of outcomes for oral 
tongue cancer patients. 

The prediction of oral cancer survival outcomes is of utmost interest to both 
clinicians and patients. This is because determining cancer outcomes may crucially 
contribute to personalized treatment planning, avoid unnecessary therapies, and 
offer effective management decision-making (Kudo, 2019). Also, early prediction 
of the possibility of cancer recurrence has been reported to decrease the mortality 
rates (Safi et al., 2017; Vázquez-Mahía et al., 2012). Therefore, with accurate risk 
stratification of oral cancer patients, realistic counselling can be offered to the 
patients while the clinicians are well posited to make informed decisions. 
Consequently, the overall survival rates of oral cancer patients may be improved. 

A wide variety of machine learning techniques that involve supervised learning 
methods and algorithms were used to develop prognostic models for oral tongue 
cancer. These predictive models are expected to become important for the 
emerging concepts of personalized medicine and precision oncology. The 
prognostication of oral tongue cancer using machine learning as presented in this 
thesis was based on two different datasets. The first dataset contained 
clinicopathologic characteristics of early-stage oral tongue cancer patients treated 
at teaching hospitals between 1979 and 2009. These hospitals were University 
Hospitals of Helsinki, Oulu, Turku, Tampere, and Kuopio (all in Finland) and at 
the A.C. Camargo Cancer Center in Sao Paulo, Brazil. The second dataset was 
obtained from the National Cancer Institute (NCI) through the Surveillance, 
Epidemiology, and End Results (SEER) Program of the National Institutes of 
Health (NIH). 
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2 REVIEW OF THE LITERATURE 

2.1 Oral tongue squamous cell carcinoma 

Oral cancer begins in the oral cavity (mouth) which includes the lips (upper, inside 
lining, and lower), buccal mucosa (cheeks), gums, retromolar trigone, frontal two-
thirds part of the tongue, the floor of the mouth (below the tongue), and the hard 
palate (bony roof of the mouth) (American Cancer Society, 2018; Chang, 2013) as 
shown in Figure 2.  

 

Figure 2. The oral cavity and oropharynx (American Cancer Society, 2018). 

 

In the oral cavity, more than 90% of cancers are squamous cell carcinomas while 
less than 5% are verrucous carcinoma (American Cancer Society, 2018). As the oral 
tongue is the most common subsite in the oral cavity, oral tongue squamous cell 
carcinoma (OTSCC) arises from the anterior two-thirds part of the tongue. 
Globally, there were 354,864 new cases of oral cavity cancer with the inclusion of 
lip cancer diagnosed in 2018 (World Cancer Research Fund, 2018).  In the United 
States, it has been estimated that 53,260 people will get oral cavity or 
oropharyngeal cancer with an estimated 10,750 death from this cancer in 2020 
(American Cancer Society, 2020). Likewise, for oral tongue cancer, it has been 
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estimated that there were 17,060 new cases and 3,02o death in the United States 
in 2019 (Siegel et al., 2020). The high mortality rate is due to late diagnosis (Chang, 
2013). 

The most significant risk factors for OTSCC include alcohol, use of tobacco, and 
areca nut (betel quid) (Agnihotri & Gaur, 2014; Al-Amad et al., 2014; Scully, 2011). 
Other potential risk factors reported include potentially malignant lesions 
(Casparis et al., 2015; L. Sun et al., 2013), infection with oncogenic viruses such as 
human papilloma virus (Jalouli et al., 2012; Y. Zheng et al., 2010), dietary factors 
such as low consumption of vegetables and fruits (Meurman, 2010), poor oral 
hygiene (Oji & Chukwuneke, 2012), and genetic susceptibility (Hillbertz et al., 
2012). Other possible risk factors include dental trauma that may be caused by 
several factors such as the sharp edge of a broken tooth (Bektas-Kayhan et al., 
2014; Manoharan et al., 2014), allergies to dental restorations (Weber et al., 2012) 
and periodontal disease (Yao et al., 2014). 

2.2 Diagnosis of oral tongue squamous cell carcinoma 

The diagnosis of OTSCC is based on histology (Kudo, 2019). To determine the 
histology of OTSCC cancer, tissues are obtained from patients with excision or 
biopsy, cytological smears, and fine-needle aspiration (Kudo, 2019). This is most 
effective for lesions where malignancy is already suspected (Brinkmann et al., 
2011). To this end, pathologists shoulder an immense responsibility to accurately 
diagnose OTSCC based on histology.  

Biopsy is still considered as the gold standard for the diagnosis of OTSCC. 
Similarly, it has been reported that timely intervention in the carcinogenetic 
process and a quick response between the appearance of symptoms, small size of 
the tissue, and positive histological confirmation of OTSCC is capable of reducing 
cancer-specific mortality (Almangush, 2015; van der Waal et al., 2011). Thus, the 
early-diagnosis of OTSCC becomes important, as most cases of OTSCC are 
asymptomatic at the initial stage. Therefore, it is important to provide education 
aimed at self-examination and identification of oral lesions (Sarode et al., 2012). 
The possibility of self-identification is reasonable, as the subsite (tongue) is easily 
accessible for examination. 

A delay in diagnosis and management of OTSCC may lead to poor management 
strategies, increased comorbidity, and reduced quality of health and chance of 
survival. For patients with oral lesions, the examination should include a clinical 
inspection. Likewise, in the case of patients with an established diagnosis of 
OTSCC, imaging techniques should be used to confirm the presence or absence of 
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metastasis. To this end, the presence or absence of metastases is used in the 
prediction of the biologic behavior of cancer (Kudo, 2019). Consequently, this 
forms the basis for determining the treatment plan and decision making regarding 
the patients. However, metastases are usually not accurately determined without 
the need for surgical exploration of neck lymph nodes. Hence, the need for 
predicting patients’ outcomes becomes imperative. 

2.3 Prediction of outcomes 

In the medical parlance, the identification of a disease based on its signs and 
symptoms is known as diagnosis (Chang, 2013). Similarly, the prediction of the 
outcome of a disease and status of the patients such as overall survival, disease-
specific survival, and locoregional recurrences is known as prognosis (Chang, 
2013). The survival of patients from cancer is the most important outcome of 
interest to clinicians, oncologists, nurses, patients, and their families (Kudo, 2019). 
This is because it can significantly assist the patients in planning for their lives, 
and their families may be well-positioned on how best to take care of them. 
Similarly, the clinicians may also benefit from the accurate prediction of outcomes 
by making informed-decisions on the treatment strategies for the patients. In 
addition, the recurrence of cancer, which is the return of cancer after treatment as 
a result of incomplete resection of the tumor (Almangush, 2015) has also been 
touted as an important outcome of interest in the quest to properly manage cancer. 
It can be either local, regional, or the combination of both (locoregional) 
recurrences and has the unpleasant consequence of being the main cause of 
treatment failure and poor prognosis of oral tongue cancer (Peng et al., 2014; 
Yanamoto et al., 2013).  

The accurate estimation of recurrences may guide daily clinical practice. With the 
proper prediction of recurrences in cancer patients, patients can be advised with 
realistic expectations. Also, the clinicians may be well equipped to make informed 
decisions about the patients through proper planning and offer personalized 
treatment and follow-up strategies such as postoperative adjuvant therapy. In this 
thesis, locoregional recurrences and overall survival were the outcomes of interest 
examined by machine learning techniques.  

2.4 Approaches to predict outcomes in TSCC cancer 

The early prediction of recurrences in tongue cancer patients can be beneficial for 
the identification of high-risk patients. Thus, corresponding multimodality 
treatment strategies can be planned for them. Admittedly, cancer diagnostics and 
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management have witnessed significant advancements in recent years. However, 
the 5-year relative overall survival (OS) for patients was reported to be 61% for 
patients treated with curative intent (Mroueh et al., 2017). With the advancement 
in technology, improved mathematical and statistical computations and analyses, 
and processing capacity of computer software, several technology-based advances 
such as graphical tools like nomograms and disruptive technologies like machine 
learning techniques have emerged. These technology-based tools have been touted 
for accurate diagnosis and prognosis prediction of cancer in patients. Such 
approaches ensure that the patients are treated on a case-by-case basis. Thus, this 
further supports the concept of personalized medicine, improved quality of care, 
and increased overall survival. 

The basic goal of personalized medicine is to accurately identify individualized 
treatment therapies that maximize effectiveness aimed at improving the quality of 
care offered and increasing the chance of survival for the patient. Additionally, it 
ensures that unnecessary therapies for patients are avoided and suffering 
associated with the cancer is controlled. Furthermore, it provides a useful insight 
into effective management decision-making. 

2.4.1 Nomograms 

A nomogram can be said to be a graphical prognostic model where complex 
mathematical and statistical formulas are used to transform certain variables such 
as demographics, clinical, or treatment variables into an estimated outcome of a 
cancer patient (Balachandran et al., 2015; Grimes, 2008). The examples of 
estimated outcomes may include clinical events such as occult nodal metastases, 
recurrences, disease-specific survival, or overall survival for a given patient 
(Balachandran et al., 2015). Several articles have been reported that used 
nomograms in predicting survival in breast cancer (W. Sun et al., 2016), gastric 
cancer (J. Liu et al., 2016), and head and neck cancer (Gross et al., 2008; Li et al., 
2017; Montero et al., 2014).  

2.4.2 Machine learning techniques (MLT) 

The application of machine learning techniques (MLT) in cancer research has been 
touted to facilitate the early diagnosis and prognosis of cancer to ensure proper 
management of patients (Kourou et al., 2015). Our medical hospitals and centers 
are reservoirs for large amounts of cancer data. These can be socio-demographic, 
clinical, pathologic, or genomic/microarray data. Recently, several studies have 
combined these data for diagnosis and prognosis purposes (Chang, 2013). 
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Clinical data consist of signs and symptoms such as the size of the primary lesion, 
clinical neck node, and other symptoms observed directly by the clinicians or 
physicians (Chang, 2013). Similarly, pathological data are obtained from 
laboratory examinations of the patient (Chang, 2013). Examples of pathological 
data include the number of neck nodes, tumor thickness and size, and other post-
surgical pathological parameters. The clinical and pathological data may be 
combined to form clinicopathologic data (Chang, 2013). Considering the 
advancements in digitalization and data analysis, information regarding genomic 
markers of patients are now stored in the hospital databases (electronic health 
records). 

Similarly, with the advancements in the internet of things (IoT), viz-a-viz in 
eHealth and mHealth, more medical-related data have become available. 
Interestingly, these data contain vital information that can assist in the proper 
management of cancer. Therefore, new technologies that are able to extract this 
information become imperative. 

Machine learning, a subfield of artificial intelligence (AI), is a methodology that 
has become popular in medical research in recent years due to its ability to discover 
and identify patterns and complex relationships contained in these data (Kourou 
et al., 2015). These relationships were learned by MLT to be able to effectively 
estimate the possible future outcomes of cancer. Notably, the introduction of MLT 
to cancer diagnosis and prognosis significantly improved the accuracy of outcome 
prediction by 15% - 20% (Kourou et al., 2015).  

In this thesis, machine learning techniques are applied to clinicopathologic data. 
However, the limited amount of sample size is one of the main challenges with 
medical datasets (Chang, 2013). In addition, the extraction of the medical dataset 
is time-consuming. Also, the extracted sample cohorts usually need preprocessing 
to handle the inconsistencies, missing, and incomplete data (Chang, 2013). 
Despite these challenges, with preprocessed data of reasonable size, high-
performance machine learning models with accurate and reliable risk estimation 
can be developed for prognostication in cancer. 

MLT learn from the data samples with the aim of making informed and accurate 
deductions and inferences from these data. The learning process involves two 
distinct phases. Firstly, complex known and unknown relationships and 
dependencies between the variables contained in the datasets are estimated and 
established (Bishop, 2006; Kourou et al., 2015). Secondly, these estimated 
dependencies are consequently used to predict the outcomes of new cases, given 
that the new cases have the same parameters or variables for which the initial 
training was done (Bishop, 2006; Mitchell, 2006; Witten et al., 2011). The 
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schematic flow usually involves the extraction of data and their corresponding 
attributes from the database, training with machine learning, evaluation of the 
results obtained from the training, and decision-making based on the presented 
result (Figure 3).  

 

Figure 3. Schematic summary of machine learning techniques for decision-
making (Elmusrati, 2020). 

Interestingly, the learning process takes place automatically without the need for 
explicit programming (Expert System, 2020). The trained model can be re-trained 
with more data so that it can learn and improve from experience (Expert System, 
2020). Hence, they are sometimes called data-driven systems (Elmusrati, 2020).  

Despite the improved performances offered by the machine learning techniques in 
cancer diagnosis and prognosis, it is important to mention that the machine 
learning technique is not able to perfectly extract all the information contained in 
the data. This is due to noise, distortion, and possible corruption of some aspects 
of the data used to train the model (Elmusrati, 2020). In spite of this, the machine 
learning is usually capable of extracting reasonable amounts of information that 
are sufficient to understand the relationships between the variables and 
parameters contained in the date (descriptive) in order to provide valuable 
estimates or predictions of the outcomes of the patients (predictive) with a 
reasonable confidence level. However, to enhance better machine learning models, 
it is important to preprocess the data to remove missing and distorted data points 
(Elmusrati, 2020).  

Several machine learning algorithms have been developed and used in the training 
phase (Bishop, 2006; Mitchell, 2006; Witten et al., 2011). The machine learning 
methodologies have been broadly divided into supervised and unsupervised 
learning methods (Kourou et al., 2015). In some other reports, machine learning 
methods have been divided into supervised, unsupervised, and reinforcement 
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(Expert System, 2020) while it includes semi-supervised in other reports 
(Elmusrati, 2020) as shown in Figure 4. 

 

Figure 4. An overview of machine learning methodologies (Elmusrati, 2020) 

 

In a supervised machine learning method, known training data are used to map 
the input data and the corresponding variables to the desired output (Kourou et 
al., 2015). In this case, the output produced after the thorough and sufficient 
training of the input training data is known as the predicted output while the 
expected or initially known output from the original data is called the target or 
desired output. Thus, the difference between the desired output and predicted 
output is known as the prediction error (Expert System, 2020). The prediction 
error usually informs the decision to further modify the model to increase the 
performance and accuracy accordingly. However, in some case, where not all the 
input data are labelled or only the statistical properties of the data are known 
without labels, then this type of machine learning technique is known as semi-
supervised learning methodology (Elmusrati, 2020).  

In contrast, the unsupervised learning method is a machine learning methodology 
where the input data to be used in the training phase are neither classified nor 
labelled and there is no notion of the output during the training or learning phase 
(Kourou et al., 2015). The idea is to classify or group the input data into clusters of 
similar attributes. Thus, the model does not figure out an output, rather the model 
explores the training data for relationships and patterns and forms clusters of 
similar attributes based on these patterns (Kourou et al., 2015). 
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The reinforcement machine learning methodology involves the possibility to 
interact and learn online from the environment by taking actions and discovering 
errors and rewards. These actions can be labelled as either right or wrong based 
on the response from the environment (Elmusrati, 2020; Expert System, 2020). 
Thus, trial and error become an integral part of reinforcement learning (Expert 
System, 2020). In this methodology, the model is given the liberty to automatically 
determine the ideal behavior that maximizes its performance within a given 
context. Usually, the reinforcement signal is required as reward feedback for the 
model to learn which action is best for its performance. 

2.4.3 Tasks of machine learning  

Based on the aforementioned definitions of machine learning methodologies, 
three common tasks can be inferred. These are classification, regression, and 
clustering (Figure 4). It is important that enough data are available to properly 
train and tune the model for better performance. This ensures the generalization 
of the model. However, it would be erroneous to have the notion that the more data 
that is available for training, the better the corresponding machine learning model 
generated will  be (Elmusrati, 2020). The data available should be carefully divided 
to have enough for training, that is, the generalization of the model and not a 
memorization effect as shown in Figure 5.  

 

 

Figure 5. Memorization effect of ML training (Elmusrati, 2020) 

By memorization effect, it means that the training process fails to capture the 
input/output relations between the available data. Instead, the model matches the 
available inputs with the output data (Elmusrati, 2020). As shown in Figure 5, the 
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model 1 appeared to have properly captured the relationships between the input 
data. However, it failed to learn the complex relationships between the input 
variables (Figure 5). Instead, it memorized and mapped the input variables. This 
is the reason why the shape of the model is different from the exact model as shown 
in Figure 5. Considering the model 2, it is evident that it does not just map the 
input data; rather, it learned the complex relationships and patterns between the 
input variables. Hence, model 2 follows the same pattern and resemblance as the 
exact model and avoids the memorization of the relationships between the training 
data.    

2.4.3.1 Classification 

The most common machine learning task are classification tasks aimed at 
categorizing the data into a set of finite classes. The output variables are used to 
classify the input variables into one of the possible output classes. Hence, 
supervised and reinforcement machine learning methodologies can be thought of 
as a classification or regression problem (Figure 4). For instance, the prediction of  
whether a tumor is malignant or benign (Ayer et al., 2010) and stratification of the 
patients into finite classes of either low- or high-risk of recurrence (W. Kim et al., 
2012) are all examples of classification problems. Likewise, classification of 
patients into positive (cN+) or negative (cN-) lymph nodes in the neck (Bur et al., 
2019) and survival status as either dead or alive (Karadaghy et al., 2019) can be 
thought of as classification tasks.  

 

 

Figure 6. Class boundaries for classification classifiers (a) easy distinction (b) 
moderately distinguishable (c) extremely difficult to distinguish. 

A linear classifier as shown in Figure 6a can easily distinguish the classes. 
Similarly, it can be a moderately distinguishable (Figure 6b) or extremely complex 
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to distinguish the classes (Figure 6c). Therefore, due to noise, corruption, and bias 
in the data, it becomes an important challenge to find an accurate boundary of the 
classifiers. In the process of developing a predictive model to classify the data into 
predefined classes, two errors may emerge. These are training and generalization 
errors (Kourou et al., 2015). The training error refers to the misclassification of the 
training data, while the misclassification of the testing data is known as the 
generalization error (Kourou et al., 2015). 

2.4.3.2 Regression 

The objective of the regression task is to learn the observed input-output relations 
to find an accurate model. That is, the training data are used to fine-tune the model 
for prediction. The resultant learned model after the training process can be used 
to test data that was not part of the training data (interpolation) or external data 
(extrapolation) as shown in Figure 7. This gives the actual performance and 
generalizability of the model. As shown in Figure 7, the best line could be used to 
fit the model.  

 

Figure 7. The concept of interpolation and extrapolation in regression 
(Elmusrati, 2020). 

A good way to evaluate the regression model is to divide the available data into 
training and testing sets, i.e., one of the sets is used for training, while the other 
set is used for testing. The prediction of real-value variables, such as the prediction 
of survival time in cancer patients can be considered as an example of regression 
tasks (Bartholomai & Frieboes, 2018). Furthermore, semi-supervised machine 
learning methodology can also be thought of as a regression task (Figure 4).  



14     Acta Wasaensia 

2.4.3.3 Clustering 

In clustering, input data are classified by finding the hidden patterns (Bishop, 
2006; Kourou et al., 2015). It is one of the most common unsupervised machine 
learning methodologies (Bishop, 2006). In terms of similarity, it follows the same 
approach as the classification technique except that there is no label (target 
output) from which the model can learn. That is, there is no teacher for the model 
(Elmusrati, 2020). In clustering problems, the training of the model is aimed at 
finding clusters to describe the relationship between the data items. After the 
training, new samples can be assigned to any of the identified clusters. Thus, 
unsupervised and semi-supervised machine learning methodologies are used for 
clustering tasks (Figure 4) (Elmusrati, 2020).  

Irrespective of the type of machine learning methodology used or the tasks 
(regression, classification, or clustering) to be performed, mathematical tools are 
critical for the design, analyses, and evaluation of the machine learning algorithms. 
Linear algebra, optimization theory, and probability and stochastic processes 
formed the foundation for a successful machine learning algorithm. Over the years, 
several machine learning algorithms have been developed. In this thesis, only the 
machine learning algorithms examined in the published articles of the author are 
discussed (Section 2.4.4). 

2.4.4 Machine learning algorithms 

The machine learning algorithm is a mathematical-based model that automatically 
learns from data without the need to explicitly program the algorithm (Koza et al., 
1996). In order to learn hidden relationships in supervised learning, the available 
data are divided into training and testing data. The algorithms learn the 
relationships between the variables using the training data to make predictions 
(Koza et al., 1996). Likewise, the testing data are used to evaluate the performance 
and validity of the trained model.  

Therefore, when applying machine learning algorithms, the data are positioned as 
the basic components (Kourou et al., 2015). These data are described by several 
features, with each feature consisting of different types of values. As such, it is 
important that the data are preprocessed to handle possible noise, outliers, 
missing, and duplicate values to improve the quality of the data (Kourou et al., 
2015). Similarly, understanding the dependencies and relationships between the 
features could also assist to select the best features during the machine learning 
training process (Kourou et al., 2015).  
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Several techniques have been used for data processing to improve the quality of 
the data. These include dimensionality reduction, feature selection, and feature 
extraction. Dimensionality reduction is specifically important when the number of 
features contained in the dataset is very large. With lower dimensionality, the ML 
algorithms are poised to show improved performance (Tan et al., 2006). This is 
because it eliminates possible noise and irrelevant features in the data (Kourou et 
al., 2015; Tan et al., 2006). In the quest to improve the quality of the data, new 
features that are a subset of the old features can be selected. This process is known 
as feature selection. Conversely, it is possible to create a new set of features from 
the initial set that captures all the important details in the dataset. This process is 
known as feature extraction. It is aimed at manifesting the benefits of 
dimensionality reduction. 

Once the data have been pre-processed, the type of task determined, inputs, and 
output feature defined, the next step is to determine the type of machine learning 
algorithm. Several machine learning algorithms have been reported in the 
literature. However, for this thesis, only the machine learning algorithms used in 
the published articles (I-III) have been highlighted in section 2.4.4.1 

2.4.4.1 Logistic regression 

Logistic regression is one of the machine learning algorithms that has been widely 
used in statistics. It is an extension of the linear regression algorithm due to 
inaccuracies of linear regression for classification problems. It derives its name 
from the function used at the core of the algorithm called the logistic function, also 
known as the sigmoid function (Swaminathan, 2018). 

(1) 
1( ) ( )

1 tsig t a
e

σ −≡ =
+

 

Logistic regression is used for classification problems with two possible outcomes, 
hence it is sometimes known as two-class logistic regression. Thus, the logistic 
function is used to compress the output of a linear equation between 0 to 1, instead 

of fitting a straight line or hyperplane as with the linear regression. 
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Figure 8. The logistic function for the logistic regression algorithm 
(Swaminathan, 2018). 

The process of transformation of linear regression to logistic regression is 
straightforward. With the linear equation, the relationship between features and 
outcome is represented by: 

(2) ( ) ( ) ( )
0 1 1ˆ ...i i i

p py x xβ β β= + + +  

Considering a two-class outcome of high-risk of recurrence (denoted as 1) or low-
risk of recurrence (denoted as 0) with input features (𝑥𝑥1

(𝑖𝑖) … . . 𝑥𝑥𝑝𝑝
(𝑖𝑖)) and 

corresponding slopes and shift as (𝛽𝛽1 … … .𝛽𝛽𝑝𝑝 ) and (𝛽𝛽0). As the aim of the logistic 
regression is to squeeze the output between 0 to 1  for classification tasks, the 
right-hand side of the Equation (2) into logistic function presented in Equation 
(3). Therefore, Equation (2) is modified to Equation (3). 

(3) ( )( ) ( )
0 1 1

( )
( ... )

1( 1)
1

i i
p p

i
x x

P y
e β β β− + + +

= =
+

 

Equation (3) ensures that the output assumes only values between 0 and 1.  In 

cancer management, logistic regression can be used to predict the outcome of a 

patient as having either a benign or a malignant tumor. In training, the algorithm 

with a dataset that contains features such as tumor size, the expected outcome can 

be either of the two classes, as shown in Figure 8. The threshold is usually set to

0.5,  thus, the inclusion of additional points does not affect the estimated curve 

shown in Figure 9. 
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Figure 9. The use of logistic regression for classification problems  
(Swaminathan, 2018). 

In logistic regression, the weights do not influence linearly. Rather, the weighted 
sum is changed to a probability using the logistic function. In this case, equation 3 
is modified so that the linear term is on the right-hand side of the formula as shown 
in equation 4. 

(4) 0 1 1
( 1) ( 1)log log ...

1 ( 1) ( 0) p p
P y P y x x

P y P y
β β β

   = =
= = + + +   − = =   

 

The term in the log()  function is called the odds, that is, the probability of an event 

divided by the probability of no event. From Equation (4), it can be said that the 
logistic regression gives a linear model for the log odds. However, when one of the 
features jx changes by 1 unit, the prediction changes. This change can be 

accommodated by taking the exponential function of the equation 4. The new 
equation is: 

(5) 0 1 1( ... )( 1)
1 ( 1)

p px xP y odds e
P y

β β β+ + +=
= =

− =
 

Equation (5) can simply be used to examine the effect of increasing one of the 
feature values by 1. Increasing one of the feature values by 1 is best described by 
the ratio of the odds. This is given by Equation (6) 
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(6) 
0 1 1

0 1 1

( ... ( 1) ... )
1

( ... ... )
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j
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x x x
x

x x x

odds e
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+ + + + + +
+

+ + + + +=  

Then, applying the exponential rule: 
( )

( )
( ) ,
a

a b
b

e e
e

−= Equation (6) is further modified 

to Equation (7). 

(7) 
1 ( ( 1)  ) ( )j j j j j jx x xodds

e e
odds

β β β+ + −= =  

An increase in the value of feature jx  by one unit means that the estimated odd 

change by a factor of ( ).je β  For a binary classification problem, changing the 
feature jx from one category (usually the reference category) to another category 

changes the estimated odds by a factor of ( ).je β  For a categorical feature with more 
than two categories; each category is expected to have its own column (one-hot-
encoding). To avoid over-parameterization in the case of more than two categories, 

1M −  columns are used for features with M categories. In this case, the -thM
category is considered as the reference category. It is important to mention that 
when all numerical features are zero and the categorical feature are at the reference 
category, then the estimated odds are 0 .eβ   

To determine the parameters of the logistic regression, maximum likelihood 
estimation can be used. To achieve this, the derivative of logistic regression may 
be used which may be expressed conveniently considering the sigmoid function as 
shown below: 

(8) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜎𝜎(1 − 𝜎𝜎) 

For a given dataset �𝜙𝜙𝑡𝑡,𝑧𝑧𝑡𝑡�, where 𝑧𝑧𝑡𝑡  ∈  {0,1} = output parameter and 𝜙𝜙𝑡𝑡  =  𝜙𝜙(𝑥𝑥𝑡𝑡). 
Also, t ranges as t = 1, . . . . . . .𝑇𝑇 with likelihood of the observation is given as 

1
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=
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Thus, the likelihood function can therefore be written as: 

(9) { }
1

1

( ) 1
t
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= −∏   

From Equation (9), 𝑧𝑧 =  �𝑧𝑧1,...……….,𝑧𝑧𝑇𝑇�
𝑇𝑇

 and𝑦𝑦𝑡𝑡  =  𝑝𝑝(𝐶𝐶1 𝜙𝜙𝑡𝑡).Therefore, taking the 
negative logarithm of the likelihood equation given in Equation (9) gives the cross-
entropy function. The cross-entropy function is given as (Bishop, 2006): 
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(10) 
1

( ) ln ( | ) ln (1 ) ln 1
T

ntropy t t t t
t

E w p z w z y z y
=

  
= − = − + − −  

  
∑  

From Equation (10), ( )t ty aσ=  and T
t ta w φ= . Taking the gradient of the cross-

entropy error function with respect to w gives Equation (11) where Equation (8) 
was used.  From Equation (11), the factor that involved the derivative of the logistic 
sigmoid function has cancelled out. This leads to a simplified version for the 
gradient of the logarithm likelihood as depicted in Equation (11).  

(11) 
1

( ) ( )
T

ntropy t t t
t

E w y z φ
=

∇ = −∑  

Of note, the contribution to the gradient from the dataset point of view is expressed 
by (𝑦𝑦𝑡𝑡  −  𝑧𝑧𝑡𝑡) which is the error between the target value and the predicted value of 
the model multiplied by the basis function vector 𝜙𝜙𝑡𝑡 . Interestingly, Equation (11) 
takes precisely the same form as the gradient of the sum-of-squares error function 
for the linear regression model (Bishop, 2006). 

There are specific concerns with the maximum likelihood used in the logistic 
regression. Notably, it can exhibit significant overfitting, especially with the 
dataset that is linearly separable. The reason is that the solution for maximum 
likelihood occurs when the hyperplane (𝜎𝜎 = 0.5) separates two classes and the 
magnitude of w tends to infinity. Additionally, the logistic sigmoid function 
increases infinitely into the feature space so that each class m is assigned a 
posterior probability 𝑝𝑝(𝐶𝐶𝑚𝑚|x) =  1 . Furthermore, choosing another separating 
hyperplane would give rise to the same posterior probabilities (Bishop, 2006). 
Therefore, the maximum likelihood does not provide a clear means of favoring one 
solution over the other. Also, the solution that is found depends on several factors 
such as parameter initialization and choice of optimization algorithm. Irrespective 
of the size of the data, the problem exists as long as the data is linearly separable. 
This singularity problem can be addressed by the inclusion of a prior and finding 
a maximum posterior (MAP) solution for w. Alternatively, adding a regularization 
term to the cross-entropy error function may be posed as an intuitive solution. In 
summary, logistic regression (for classification problems) as well as its counterpart 
linear regression (for regression problems) consist of fixed basis functions. This 
makes them useful in analytical and computational related tasks. However, their 
practical application is limited due to dimensionality issues. This is because their 
application to large data involves the adaptation of the basis functions to the data. 

To address this problem, it is important to define all the basis functions that are 
directed at the training data points and subset of these functions during training. 
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The artificial neural network and support vector machine are examples of 
algorithms that can use these techniques to address the singularity problems 
encountered by the logistic regression. Therefore, these two algorithms are 
discussed in detail in sub-sections 2.4.4.2 and 2.4.4.3, respectively. 

The artificial neural network fixes the number of basis functions in advance while 
allowing these functions to be adaptive. That is, parametric forms for the basis 
function are used where the parameter values are adapted in the training phase. 
The most common type of artificial neural network used for this purpose is called 
the feedforward neural network, also termed the multilayer perceptron (Bishop, 
2006). The details of the artificial neural network are presented in sub-section 
2.4.4.2. 

2.4.4.2 Artificial neural network 

The artificial neural network  is a subfield of artificial intelligence that works in a 
way that is inspired by the human brain (A. Biglarian et al., 2011; Akbar Biglarian 
et al., 2010; M.-H. Zheng et al., 2013). It is an adapted general model or mapping 
that is capable of learning the relationships between input and output variables 
which can be used in the prognostication of various cancers (A. Biglarian et al., 
2011; Akbar Biglarian et al., 2010; Lisboa, 2002; J. Patel & Goyal, 2007; M.-H. 
Zheng et al., 2013). Thus, it has found applications in several cancer types (Keogan 
et al., 2002; Selaru et al., 2002; Spelt et al., 2013). Structurally, it is composed of 
the input, hidden, and output layers (Figure 10). 
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Figure 10. The structure of an artificial neural network with an interconnected 
group of nodes (Kourou et al., 2015). 

It is a non-linear algorithm that achieves better generalization than the 
conventional linear/nonlinear regression algorithms. In terms of the application 
of ANN, it can be a feedforward neural network (Figure 10) or a backward 
propagation algorithm.  

 

Figure 11. Feedforward neural network. 
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The feedforward neural network is also called the multilayer perceptron (Bishop, 
2006). Of note, the term multilayer perceptron can be misleading because in this 
case the multilayer perceptron consists of multilayers of logistic regression with 
continuous nonlinearities (Bishop, 2006). Therefore, it is not a case of multiple 
perceptrons, as suggested by its name. The feedforward neural network 
(multilayer perceptron) results in a model that is more compact and faster to 
evaluate. However, the trade-off is that the likelihood function, which formed the 
basis function for the network during the training, is no longer a convex function 
of the model parameters. In addition, the compactness requires a significant 
amount of computational resources during the training. 

The general mathematical models for regression as well as classification is given 
as: 

(12) 
1

( , ) ( )
M

j j
j

y x w f w xφ
=

 
=  

 
∑  

 

It is based on linear combinations of fixed linear or nonlinear basis functions 𝜙𝜙𝑗𝑗(𝑥𝑥) 

as shown in Equation 12. From Equation (12), the function f (.) can be a linear or 
nonlinear activation function for regression/classification problems. Extending 
Equation (12) ensures that the basis function (𝜙𝜙𝑗𝑗(𝑥𝑥)) depends on parameters that 
is adjustable along with the coefficient �𝑤𝑤𝑗𝑗�  in the training phase. The neural 

network itself uses parametric nonlinear basis functions. Therefore, it follows the 
same form as Equation (12). That is, each basis function is a nonlinear function 
that consist of combinations of inputs linearly with adaptive coefficient 
parameters.  

The basic neural network model is derived from a series of functional 
transformations. Considering M linear combinations of input variables that 
ranged between 𝑥𝑥1, . . . . , 𝑥𝑥𝑇𝑇 , the activations are given as Equation (13): 

(13) (1) (1)
0

1

T

j ji i j
i

a w x w
=

= +∑  

From equation (13),  j ranged between 1,……,M while the superscript (1) means that 
the parameters are in the first layer of the neural network. Also, 𝑤𝑤𝑗𝑗𝑗𝑗

(1) represents 

the weights while 𝑤𝑤𝑗𝑗0
(1) indicates the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Each parameter from Equation (13) is 

transformed using an activation function, ℎ(. ) that is differentiable and nonlinear 
as shown in Equation (14). 
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(14) 𝑍𝑍𝑗𝑗  =  ℎ�𝑎𝑎𝑗𝑗� 

These quantities that are given in Equation (14) correspond to the output of the 
basis function given in equation (12). However, in the context of neural networks, 
these are known as the hidden units. Of note, sigmoid functions such as the logistic 
sigmoid or tanh are usually selected as the nonlinear functions ℎ(. ).  Linearly 
combining these values gives the output unit activation given in equation 15. 

(15) (2) (2)
0

1

M

k kj j k
j

a w z w
=

= +∑  

From equation (15), K represents the total number of outputs, and k is between 
1,……..,K. The equation (15) above corresponds to the second layer of the network 
where the bias parameter is represented by 𝑤𝑤𝑘𝑘0

(2). To get a set of network outputs 
(𝑌𝑌𝑘𝑘), an appropriate activation function is used to transform all the output unit 
activation functions. It is essential to mention that the choice of activation function 
to be selected for this purpose depends mostly on the nature of the data and also 
the magnitude distribution of the target variables. As a rule of thumb, for a 
standard regression problem, the activation function is aimed at having 𝑌𝑌𝑘𝑘  =  𝑎𝑎𝑘𝑘. 
Similarly, the logistic sigmoid function has been the widely used activation 
function for a two-class (binary) classification problem to transform each output 
unit activation. Hence for classification, it is given as: 

(16) ( )k ky aσ=  

Where:  ( )

1( )
1 aa

e
σ −=

+
 

However, for a multi-class classification problem, the softmax activation function 
is the preferred choice (Bishop, 2006). Therefore, combining the derivations to 
give the overall network function for a sigmoidal output unit activation function as 
shown in Equation (17). The set of all weights and biases have been combined 
together into vector w. 
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Thus, it can be deduced from the above that the neural network model is basically 
a nonlinear function that is made up of a set of input variables {𝑥𝑥𝑖𝑖} controlled by 
an adjustable vector parameter w, to form a set of output variables {𝑌𝑌𝑘𝑘}. 

The bias parameter present in equation (13) can be absorbed by defining an 
additional input variable 𝑥𝑥0  =  1.  It is absorbed into a set of weight parameters. 
Thus, Equation (13) can be rewritten as: 
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Similarly, the second-layer bias can be absorbed into second-layer weights. As a 
result, the overall network function is given as Equation (19). 
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As seen from the derivation stages of Equation (19), the neural network consists of 
stages of processing, hence, the name multilayer perceptron (MLP). Of note, the 
multilayer perceptron of the neural network differs as the hidden units of the 
neural network uses the continuous sigmoidal nonlinearities unlike the ordinary 
perceptron that uses the step-function nonlinearities (Bishop, 2006). For the 
neural network, it implies that it is differentiable with respect to the network 
parameters. The differentiability characteristic is essential for backpropagation 
network training. 

In the training of the network, for example, in a classification task with a target 
variable tagged as t in such a way that it has two-classes denoted as C1 where 𝑡𝑡 = 1 
and C2 where 𝑡𝑡 = 2  and a logistic sigmoid activation function shown in Equation 
(16) given that 0 ≤ 𝑦𝑦(𝑥𝑥,𝑤𝑤) ≤ 1.   From this, 𝑦𝑦(𝑥𝑥,𝑤𝑤)  represents conditional 
probability 𝑝𝑝(𝐶𝐶1|𝑥𝑥) while 1 − 𝑦𝑦(𝑥𝑥,𝑤𝑤) gives the probability 𝑝𝑝(𝐶𝐶2|𝑥𝑥). 
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Therefore, the conditional distribution of the target variable is given by a Bernouli 
distribution as given in Equation 17. 

(21) ( ){ }1
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Assuming that the variables contained in the training dataset are independent to 
avoid collinearity issues, then the error function is given by the cross-entropy 
function already presented in Equation (10).  

(Recall: 10):  
1

( ) ln ( | ) ln (1 ) ln 1
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ntropy t t t t
t

E w p z w z y z y
=

  
= − = − + − −  
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Where 𝑦𝑦𝑡𝑡  denotes 𝑦𝑦(𝑥𝑥𝑛𝑛 , w). Of note, cross-entropy is preferred instead of sum-
squares to achieve faster training and generalization of the model (Simard et al., 
2003). 

Therefore, in more complex problems that consider K separate binary 
classification tasks, the network, in this case, has K outputs, each with a logistic 
sigmoid activation function. Each of these outputs has a target label denoted as 
𝑡𝑡𝑘𝑘 ∈ {0,1}, where the value of 𝑘𝑘 = 1, … ,𝐾𝐾.  Considering the independence of the 
training variables as well as the class labels, then, the conditional distribution of 
the target variable is given as: 

(22) ( ) ( )
1

1
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tK
t

k k
k
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−

=

= −  ∏  

Hence, taking the negative logarithm of the likelihood function (Equation 10) gives 
the error function given in Equation 23. 

(23) ( )
1 1

( ) ln 1 ln 1
N K

nk nk nk nk
n k

E w t y t y
= =

  
= − + − −  

  
∑∑  

Similarly, 𝑦𝑦𝑛𝑛𝑛𝑛 denotes 𝑦𝑦𝑘𝑘 (𝑥𝑥𝑛𝑛, 𝑤𝑤). 

For multi-class target variables, meaning, each input is assigned to one of the 
possible K classes that are mutually exclusive, the error function follows the same 
principles as given by the binary. The error function for a multiclass is given by: 

(24) 
1 1

( ) ln ( , )
N K

kn k n
n k

E w t y x w
= =

= −∑∑  

To improve the speed of solving the problem by finding the location of the 
minimum point of the error function, it is crucial to evaluate the gradient of an 
error function. This can be achieved using the backpropagation procedure. The 
gradient descent optimization algorithm is one of the most widely used. Given the 
weight update in Equation (25) 
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(25) 𝑊𝑊(𝜏𝜏+1) = 𝑊𝑊(𝜏𝜏) +  ∆ 𝑊𝑊(𝜏𝜏) 

Choose the weight update presented in Equation (25) to comprise a small step in 
the direction of the negative gradient as shown in Equation (26) 

(26) 𝑊𝑊(𝜏𝜏+1) = 𝑊𝑊(𝜏𝜏) − 𝜂𝜂 ∇ 𝐸𝐸(𝑊𝑊(𝜏𝜏)) 

Here 1 > 𝜂𝜂 > 0 is the adaptation rate, and setting its value correctly is essential to 
avoid the weight’s divergence. After every update, the gradient is re-evaluated for 
the new weight vector and the process is repeated.  To evaluate ∇𝐸𝐸, the entire 
training set is processed. This technique (that requires the entire training set) is 
known as the batch training technique. Notably in the batch training technique, at 
each step, the weight vector is moved in the direction of the greatest rate of 
decrease in the error function. Hence, it is called steepest descent or gradient 
descent. Unfortunately, this algorithm does not perform reasonably well using this 
technique even though it seems intuitive (Bishop & Nabney, 2008). Therefore, for 
the batch technique, there are other methods that have been reported to be more 
efficient, robust, and faster (Nocedal & Wright, 1999). Examples of such methods 
include the conjugate gradient and quasi-Newton (Bishop, 2006; Nocedal & 
Wright, 1999). These algorithms performed better than the gradient descent 
algorithm because their error functions decrease at every iteration unless the 
weight vector has arrived at a local or global minimum. 

Despite this, the gradient descent is one of the widely used algorithms. The 
problem mentioned previously is usually addressed by running a gradient descent 
algorithm multiple times. At each run, a different initial weight vector is chosen 
randomly. The resulting performance is compared with a validation set in order to 
determine the best performing run. In addition, there is an on-line version of the 
gradient descent algorithm that has been reported to be vibrant and showed good 
performance on large datasets. The on-line gradient descent algorithm is known 
as stochastic gradient descent or sequential gradient descent. 

In the on-line gradient descent, the error functions based on the maximum 
likelihood for the input variables that are independent are given in Equation (27). 
It consists of a sum of terms, one for each data point. 

(27) 
1

( ) ( )
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n
n

E w E w
=

=∑  

It is called the stochastic gradient descent because it updates the weight vector 
based on a single data point at a time as given in Equation (28). The update is done 
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repeatedly in cycling through the data sequentially or using a random selection of 
points with replacement. 

(28) 𝑊𝑊(𝜏𝜏+1) = 𝑊𝑊(𝜏𝜏) − 𝜂𝜂 ∇ 𝐸𝐸𝑛𝑛(𝑊𝑊(𝜏𝜏)) 

A significant advantage of on-line gradient descent is that it handles redundancy 
in data more effectively and efficiently than the ordinary or traditional gradient 
descent. Also, the computational intensiveness in the case of an online-gradient 
descent is reasonably low. Moreover, the on-line gradient descent is capable of 
escaping from the local minima. 

It should be noted that the term backpropagation has been used to mean a variety 
of concepts in neural network analyses. For instance, the multilayer perceptron is 
otherwise known as a backpropagation network. Similarly, where the training of a 
multilayer perceptron is done using a gradient descent algorithm that is applied to 
a sum-of-squares function, it is called backpropagation. Hence, it is important to 
summarize the training process of a neural network to ensure that the meaning of 
backpropagation is not confused.  

In general, for any type of neural network, the training algorithms minimize the 
error function through an iterative process. Secondly, the weights are adjusted in 
a sequence of steps. In minimizing the error function (the gradient of the error 
function with respect to the network weights is evaluated). It can be shown that 
the weights adaptation depends on the error at the neuron output. Although it is 
straightforward to compute the errors in the output layer as the difference between 
the actual output and the desired output, it is not the case for the hidden layers. 
The desired values of the outputs of the neurons in the hidden layers are unknown. 
Hence, the backpropagation algorithm provide a simple method to compute the 
errors in the hidden layers by propagating and projecting of the output errors 
backward. This process involves two distinct steps. In the first step, the errors are 
propagated backward through the network in order to evaluate the derivatives. 
This step is peculiar to any other network (not limited only to the multilayer 
perceptron). 

In the case of a feedforward neural network, the inputs go after weighting and 
processing in a layer by layer till the output. It is essential to have the input and 
output layer with any desirable number of hidden layers (between the input and 
output). To produce a neural network with a good performance, the weights of each 
neuron should be adjusted to minimize the local error at the output of each neuron. 
This essential process is achieved by computing the error at the output layer by 
evaluating the difference between the actual output and the desired output. The 
error could be reduced by repeatedly adjusting the connection weights of all 
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neurons in all layers. The gradient descent may be used to achieve this adaption. 
This error could be propagated backward in order to compute the local error at all 
neuron’s outputs. The backpropagation algorithm is one of the most widely used 
supervised algorithms. The number of layers or neurons should be carefully 
selected to avoid overfitting or underfitting the network.  

The learning concept is based on adapting weights to minimize some cost functions 
that are related to the average error. Therefore, the goal in the learning process is 
to minimize the average error between the target output and the predicted outputs 
considering all available learning samples. This is usually achieved using the 
stochastic gradient algorithm. By removing the expectation from the cost function, 
this algorithm can be modified and hence is called the steepest descent algorithm. 
As shown in the equation, the step size is vital for the convergence speed as well as 
the stability of the algorithm. With a small step size, the stability of the algorithm 
could be guaranteed. However, this makes the algorithm very slow to converge. 
Conversely, a large step sizes might enhance the convergence speed but higher risk 
of divergence and instability. To address this problem, several adaptive algorithms 
have been developed that self-adapt to the appropriate value of the step size. 
Adaptive and optimized step-size algorithms are used in almost all 
implementations of backpropagation algorithms in computer packages. However, 
the discussion is beyond the scope of this thesis. As a rule of thumb, the step size 
must be less than 1.   

 

Figure 12. A single neuron neural network 

To evaluate the error function derivatives of a feedforward topology with 
differentiable nonlinear functions that use a layer of sigmoidal hidden units with 
sum-of-squares error, the error function was given in equation (27). 
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(Recall. 27) 
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( ) ( )
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n
n

E w E w
=

=∑  

Considering a linear combination of input variables (𝑥𝑥𝑖𝑖)  with outputs  𝑦𝑦𝑘𝑘 , the 
output in this case is given by Equation (29).  

(29) k ki i
i

y w x=∑  

While the error function for an input pattern 𝑛𝑛 takes the form: 

(30) ( )1
2n nk nk

k
E y t= −∑  

Where: 𝑦𝑦𝑛𝑛𝑛𝑛 = 𝑦𝑦𝑘𝑘  (𝑥𝑥𝑛𝑛,𝑤𝑤). With respect to the weight 𝑤𝑤𝑗𝑗𝑗𝑗, the gradient of the error 

function is then given as: 

(31) ( )n
nj nj ni
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E y t x
w
∂
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It is the product of the error parameter (𝑦𝑦𝑛𝑛𝑛𝑛 −  𝑡𝑡𝑛𝑛𝑛𝑛) and the variable 𝑥𝑥𝑛𝑛𝑛𝑛. 

 

In general, for a feed-forward neural network, each unit calculates the weighted 
sum of the input using the formula, where 𝑧𝑧𝑖𝑖 correspond to the input (or activation 
of a unit) which connects to unit 𝑗𝑗 with an associated weight of 𝑤𝑤𝑗𝑗𝑗𝑗 . 

(32) j ji i
i

a w z=∑  

The above equation can be transformed by using a nonlinear activation function 
ℎ(. ) to obtain an activation in the form of equation (14) 

(Recall: equation 14)  𝑍𝑍𝑗𝑗 = ℎ�𝑎𝑎𝑗𝑗�. 

Therefore, for a neural network, all the inputs or the inputs of interest are supplied 
to the network, and the activation of all the hidden and output units in the network 
are calculated using Equations (14) and (27). This process is known as forward 
propagation (forward flow of information through the network). 

Conversely, for error backpropagation, the process involves applying an input 
vector 𝑥𝑥𝑛𝑛 to the network and forward propagation using the derivatives presented 
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in Equations (14) and (27). Therefore, the output units are evaluated in such a way 
that: 

(33) 𝛿𝛿𝑘𝑘 =  𝑦𝑦𝑘𝑘 −  𝑡𝑡𝑘𝑘 

This is followed by the backpropagation of each hidden units in the network using: 

(34) ( )'j j kj k
k

h a wδ δ= ∑  

Thereafter, the required derivatives are evaluated using: 

(35) n
j i

ji

E z
w

δ∂
=

∂
 

The process is similar in the case of the batch training method. However, the 
derivative of the total error is given in Equation (36) by summing over all the 
training errors: 

(36) n

nji ji

EE
w w

∂∂
=

∂ ∂∑  

The above Equation (36) works with the assumption that each hidden or output 
unit in the network in the case of batch training has the same activation function. 

The weight updating algorithm for the multi-neurons and multi-outputs neural 
network is similar to that of a single neuron, as discussed earlier. In some 
instances, a more complicated structure can be designed where the output of the 
first neuron is connected as the input for the second neuron. This type of design is 
known as a recurrent neural network. As expected, the weight adapting algorithm 
would be different from the conventional backpropagation algorithms (Figure 12). 
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Figure 13. A multi-neurons and multi-outputs neural network 

Of note, the weight adaptation is the same as the single neuron neural network. 
The difference is mainly with each neuron to update its weight. Conversely, a 
multilayer neural network is a powerful neural network construction that is able 
to learn complex relationships between inputs and outputs. The weight adaptation 
is usually performed with the backpropagation algorithm. Figure 13 shows a 
simple sketch for multiple layer neural network.  

 

Figure 14. The multilayers neural network 

Given the multi-layered neural network (Figure 14) with L number of layers, the 
output layer as the layer number ,L each layer k  has kM neurons and N inputs to 
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the first layer. In this case, the number of outputs in each layer is the same number 
of neurons. This is because each neuron has only one output. At each layer ,k

there is a matrix of weights with dimension 1k kM M− × where ijkW is the weight at 

layer number k connecting the thi  input (which is the output of the thi neuron at 

layer 1k −  except for the input layer) to the thj neuron at layer .k  The main goal is 

to update the weight of all layers to minimize the overall average error between the 
actual output and the predicted output. The weight of the layers may be updated 
with the steepest descent algorithm. However, with the hidden layer, it presents a 
great challenge to update the weights as the desired output of the neurons is 
unknown. To address this, it is crucial to backpropagate the error of the output 
layer to the hidden layers. Although, backpropagation showed improved 
performance, there are certain problems with backpropagation neural networks. 

For the layer recurrent neural network (LRNN), the output will be a recursive 
function in its input. Figure 15b showed a single neuron with recursive output. The 
weights can be updated by different methods such as unfolding the process in time 
and applying the stochastic gradient. This is similar to the backpropagation 
algorithm, but with a little modification by unfolding the LRNN in time. However, 
in backpropagation, we have the problem of gradient vanishing. The LRNN is 
effective only for short time sequence memory systems. 

 

 

Figure 15. Layer recurrent neural network 

The LRNN captures the time series properties in many applications such as the 
stock market, climate predictions, or any applications where the desired output 
depends not only on the current input but also on the previous history. 

For the long-short time memory system (LSTM), it has been specifically designed 
to handle the problem of vanishing gradients that affect the backpropagated 
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network. That is, it allows the network to retain information for longer periods 
compared to the traditional LRNN.  

 

Figure 16. The structure of the long-short time memory system (LSTM) 

Of note, the LSTMs can maintain a constant error (Figure 16). This allows the 
LSTMs to continue learning over numerous time-steps and backpropagate 
through time and layers. The idea is based on adding a memory cell for the hidden 
neurons in the LRNN. Each memory cell is connected to three gates: forget, input, 
and output gates. The input gate basically adds information to the cells. The forget 
gate, as the name implies, deletes information that is no longer necessary. The 
output gate selects and outputs the necessary information. 

In recent years, modifications have been made to the traditional artificial neural 
network. These modifications gave rise to the concept of deep learning algorithms. 
Interestingly, the multilayer neural networks with many hidden layers are a 
practical example of the models with deep architectures. Considering the 
backpropagation learning algorithm, it works exceedingly well for multi-layer 
neural networks with only a few hidden layers. Likewise, it is a gradient descent 
based algorithm and thus, it has the challenge that it may be trapped in poor local 
minima. This becomes more evident, and the severity increases significantly as the 
number of hidden layers increases. The closer to the local minimum, the absolute 
value of the weights using gradient descent becomes much smaller than one, and 
with successive multiplications, the value can almost be zero. Thus, the proper 
adaptation of the weight ceases.  

Alternatively, the learning algorithm for the multi-hidden layers neural network is 
called the deep belief networks (DBNs). It provides a faster and more effective 
algorithm for neural networks with many hidden layers. It overcomes several 
limitations posed by the standard backpropagation learning algorithms. In this 
case, the learning is performed layer by layer. It offers one smart way of initializing 
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the network weights instead of starting with completely random weights. It is most 
appropriate for many inputs such as the case of image recognition and huge data 
applications.  

Similarly, the rectifier linear unit (ReLu) has received special attention in deep 
learning and large sized neural networks. The rectifier linear unit is presented in 
Equation (37). It is linear for positive x and zeroes for negatives; that is, it 
introduces some nonlinearities. 

(37) 
  0

( )
0    0
ax x

f x
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The ReLu algorithm is useful for applications require some nonlinearity. 
Convolution neural networks (CNN) are very important in the applications of deep 
learning in image recognition and classifications. The convolution is the 
mathematical process to compute the output of a linear systems represented by its 
impulse response as shown in Figure 17.  

 

Figure 17. Schematic of convolution  

Assume that, a signal ( )x t is applied as an input to a linear system with an impulse 
response given as ( )h t , and output ( )y t is the convolution between ( )x t and ( )h t . 

Mathematically this is given as:  

(38) ( ) ( ) ( ) ( ) ( )y t x h t d x t h dλ λ λ λ λ λ
∞ ∞

−∞ −∞

= − = −∫ ∫  

From Equation (38), it is evident that the convolution is the mathematical title of 
the filtering process in the time-domain. In discrete time, the same concept of 
convolution can be expressed as: 

(39) ˆ ˆˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
m m

y k h m x k m h k m x m
∞ ∞

=−∞ =−∞

= − = −∑ ∑   

The Equation (39) clearly defines the convolution for a one dimensional signal. 
The same concept is applied for two dimensional signals like images. For discrete 
convolution, it is  given as: 
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The output depends on the elements of the ĥ matrix. Notably, the convolutional 
neural networks make the feature extraction part of the learning process of the 
algorithm. The feature extraction is done by the linear filtering process which is 
performed by the convolution. Each layer of the neural network extracts certain 
features which are done automatically to achieve the required performance in the 
learning phase. Therefore, a deep neural network which involves deep learning, 
implies that enough features must have been extracted and highly sophisticated 
learning is achieved for an image recognition system. 

Despite the fact that the artificial neural network has performed reasonably well 
in several classification problems (Ayer et al., 2010), it suffers from certain 
criticisms. An example of such a criticism is that the structured nature of artificial 
neural network could be time-consuming during training and lead to poor 
performance. Also, the black-box nature of the algorithm is another concern. By 
black-box, it means the lack of details of the exact functions that achieved the 
learning and mapping between the inputs and outputs. 

2.4.4.3 Support vector machine 

The support vector machine (SVM) is one of the robust algorithms in machine 
learning. It is highly preferred as it produces reasonable accuracy with less 
computational power (Gandhi, 2018). It is used for both regression and 
classification problems, but mostly for classification problems (Witten et al., 2011). 
The SVMs seek to address the dimensionality challenge in the shallow neural 
network. Therefore, the SVM uses basic functions that are directed at the training 
dataset. Subsequently, a subset from these training datasets would be selected. Of 
note, the training process using SVM involves nonlinear optimization. However, 
the objective function is convex, thus, any local solution is also considered as a 
global optimum (Bishop, 2006).  

Therefore, the SVMs map the input vector into a feature space, that is, N-
dimensional space (where N – number features) of higher dimensionality and 
identify the hyperplane that distinguishes the data points into two classes 
distinctly as shown in Figure 18 (Gandhi, 2018; Kourou et al., 2015). Interestingly, 
the SVM does not provide posterior probabilities. However, it uses an extensive 
concept of Lagrange multipliers. 
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Figure 18. The support vector machine showing possible hyperplanes. 

As shown in Figure 18, it is possible that more than one hyperplane separates the 
two classes. The most important concern in the case of more than one possible 
hyperplane is to find a plane that has the maximum margin (Gandhi, 2018). The 
maximum margin is the maximum distance between the data points of the classes 
(Figure 18). This ensures that the best hyperplane is chosen that classify the classes 
with more confidence (Gandhi, 2018). 

The data points that fall on either side of the hyperplane are thought of as different 
classes. The nature of the hyperplane in terms of the dimension depends on the 
number of feature variables. A straight-line hyperplane is obtained if the number 
of features is two (Figure 18), and showed a two-dimensional plane if the feature 
is three. For more than 3 features, it becomes difficult to visualize the separating 
hyperplane (Gandhi, 2018). The SVMs have been used extensively in the 
prognostication of cancer. As shown in Figure 19 where it is important to classify 
cancer tumor size according to the age of the patient. 

 

Figure 19. A simple illustration of linear SVM with two input features to 
classify cancer according to tumor size (Adam, 2012; Kourou et al., 
2015). 
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As shown in Figure 19, the hyperplane classifies cancer according to tumor size as 
benign (green) and malignant (red) based on their size and patients’ age. The 
hyperplane is the decision boundary between the classes of cancer according to the 
tumor size. As shown in Figure 19, based on the hyperplane that formed at the 
boundary, some of these classes (benign or malignant) can be said to be 
misclassified. Of note, the SVMs can also give probabilistic outputs (Platt et al., 
1999). 

Consider a two-class classification problem that follows a linear model given by: 

(41) 𝑦𝑦(𝑥𝑥) = 𝑊𝑊𝑇𝑇  ∅ (𝑥𝑥) + 𝑏𝑏 

In the above Equation (41), ∅ (𝑥𝑥)  corresponds to a fixed space transformation 
while 𝑏𝑏 denotes the bias parameter. The training data consist of N input vectors 
that vary as 𝑥𝑥1, … . , 𝑥𝑥𝑁𝑁 , and corresponding targets as 𝑡𝑡1, … … , 𝑡𝑡𝑁𝑁 where 𝑡𝑡𝑛𝑛  ∈  {−1, 1}. 
Similarly, the training dataset were assumed to be linearly separable in feature 
space so that Equation (41) can conveniently hold true as: 

(42) 𝑦𝑦 (𝑥𝑥𝑛𝑛)  > 0;𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑛𝑛 =  +1  And  𝑦𝑦 (𝑥𝑥𝑛𝑛)  < 0; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑛𝑛 =  −1 

Unlike the neural network that depends on initial values (arbitrary) for the weight 
and bias, the SVM uses the concept of margin (Figure 18). The margin is said to be 
the smallest distance between the decision boundary and any of the input features 
(samples) as shown in Figure 18. Therefore, to ensure distinct classification, the 
decision boundary is chosen to maximize the margin. An example of an intuitive 
approach to maximize the margin is the statistical learning theory (computational 
learning theory). The maximum margin solution can be derived using: 

 

(43) ( )
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φ
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Of note, the above equation (43) appears complex to solve. Thus, the equation is 
further optimized as: 

(44) 
2

,

1arg min
2w b

w  

The above Equation (44) is positioned as an example of quadratic programming. 
Interestingly, the bias parameter is not present in Equation (44) as seen in 
Equation (43). This constrained optimization problem is addressed with Lagrange 
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multipliers 𝑎𝑎𝑛𝑛  ≥ 0;  with a single multiplier denoted as 𝑎𝑎𝑛𝑛. The Lagrangian 
function is thus given below where a =(𝑎𝑎1, … .𝑎𝑎𝑁𝑁)𝑇𝑇: 

(45)  { }2
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1( , , ) ( ( ) ) 1
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n n n
n

L w b a w a t w x bφ
=

= − + −∑  

The negative (minus) that precedes the Lagrange multiplier term is due to the 
minimizing with respect to weight and bias and maximizing the term a. 

2.4.4.4 Naïve Bayes 

This classifier is based on Bayes theorem (Bishop, 2006) and is one of the widely 
known and efficient probabilistic algorithms. It has been prefixed with naive as the 
algorithm naively assumes that the predictors are conditionally independent, 
although this assumption is not obeyed in practice. In summary, this classifier 
applies density estimation to the data and approximates the optimal Bayesian 
average (theoretical) of the generalization performance by choosing one average 
classifier (Bishop, 2014). Hence, the name Bayes Point Machine (Microsoft Azure 
Machine Learning Studio, 2018). The Naïve Bayes classifier has the advantage that 
it is not prone to overfitting to the training data, and it is robust to class density 
estimates that are biased (Hastie et al., 2009). The algorithm works by estimating 
the densities of the predictors within each class. Using Equation (12), the algorithm 
models posterior probabilities. Finally, it classifies an estimation by estimating the 
posterior probability for each class. This is followed by the assignment of the 
observation to the class yielding the maximum posterior probability (maximum a 
posteriori decision rule) (Manning et al., 2008). 

Assume N possible classes for M available features or attributes, then the 
probability of being in a certain class given certain specified attribute is given as: 

(46) 1 2( ,..., ),  1,...i M iP C x x x N∀ =  

This gives the probability of being in class .i  Using Bayesian theorem and 
assuming discrete-value attributes, then: 

(47) 1 2
1 2

1 2

( , ,... ) ( )
( | , ,... ) , 1,...
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Where: 
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The Equation (47) is usually challenging to compute because of the unknown 
interrelationships between attributes or features. To address this concern, it is 
important to assume that the attributes are independent of each other. Thus, the 
equation (47) can be simplified as: 

(48) 1 2
1 2

1 2

( , ,... ) ( )
( | , ,... ) , 1,...
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M i i

i M i
M

P x x x C P C
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With this simplification, the probabilities could be easily computed. However, due 
to the assumption of independence between attributes, it is termed naïve Bayesian 
as previously mentioned. However, this assumption has been reported to work 
well in various machine learning applications. 

2.4.4.5 Decision trees 

The decision tree is one of the earliest and widely used algorithms for classification 
problems. It follows a true-structured classification that is made up of nodes and 
leaves. The general structure of the decision tree is given in Figure 20. The internal 
decision nodes correspond to the input feature (X, Y, Z in Figure 20), branches 
(X<T1; X>=T2; X<T2; X>=T2; Z<T3; Z>=T3) and the terminal leaves (Class A, 
Class B in Figure 20) represent the outcomes. Therefore, it is easy to understand 
and interpret decision tree architecture. 

 

Figure 20. The structure of a decision tree 
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Each internal decision node m implements a test function ( )mf x with discrete 

outcomes labelling the branches. Practically, a test is applied to the input node, 
and one of the branches is taken depending on the outcome. Usually, the process 
starts at the root and continues repeatedly and recursively until a leaf node is hit. 
At this point, the output is written to the leaf. The decision tree has the advantage 
of fast localization and interpretability (Alpaydin, 2014). The decision tree may be 
thought of as a nonparametric model in the sense that there is no assumption for 
the parametric form for the class densities. Additionally, the tree structure is not 
fixed a priori. Rather, the tree grows and leaves are added during the learning 
process depending on the complexity of the problem and also the nature of the 
data. 

In the classification tree, the effectiveness of a split from the root is quantified by 
an impurity measure. 

A split can either be a pure or impure split. A split is considered pure if after the 
split, all the instances that chose a branch belong to the same class. For instance, 

taking mN  to be the number of training instances that reached node m  and the 

root node is N . In this case,  of  belongs to class Ci
m m iN N , with i

m m
i

N N=∑ . 

The estimate for the probability of class is given as: 

(49) ˆ( | , )
i

i m
i m

m

NP C x m p
N

= =  

Given that an instance reaches node .m  In terms of purity, the node m  is 

considered pure if i
mp for all the values of i  are either 0 or 1. Simply put, it is 1 if all 

such instances are of class iC , and 0 when none of the instances that reaches node

m are of class iC . In the case of a pure split, there is no need to split any further. 

A good function to measure impurity is entropy, which is given as: 

(50)  2
1

log ( )
K

i i
m m m

i
I p p

=

= −∑  

It is a measure that specifies the minimum number of bits needed to encode the 
class code of an instance. An impure node implies that a further split is needed to 
decrease the impurity. In all, it is important to calculate impurity and chose the 
one that has the minimum entropy. For branches that are impure, the tree 
construction continues recursively and repeatedly in parallel until the branches are 
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pure. This forms the foundation for the classification and regression trees (CART) 
algorithm. Based on this foundation, decision trees have evolved over the years. 

In recent years, the decision tree algorithm has evolved to boosting and bagging 
decision tree algorithms. The basic idea is to iteratively apply simple decision tree 
algorithms and combine their predictive performances to obtain a better model 
with improved prediction ability (Freund, 1995; Schapire, 1990; Schapire & 
Freund, 2012). Therefore, the boosting was aimed at transforming the weak 
algorithm to a better algorithm through combination with stronger algorithms. In 
this way, a weak base-learner can be improved to become strong learning. This 
improvement is known as boosting. Boosting is achieved by allowing the algorithm 
to develop new strategies needed to handle problematic observations while 
rewarding the base-learner in the final aggregation. The concept of boosting is not 
about the combination with stronger algorithms but manipulation of the training 
data by re-weighting the observations iteratively. As such, the base learner b will 

find a new solution [ ]ˆ (.)bh  from the available data.  

By the repeated application of the weak base-algorithm on observations that are 
weighted based on the base-learner’s success in the previous rounds, the algorithm 
focusses on objects that are difficult to classify by assigning higher weights to them. 

In each iteration, [ ] [ ] [ ]
11,......, ,  the weight vector ( ,..., )b b b

stop nb b w w w= = contains the 

individual weights of all observations. In the iteration cycle, the attention is 
directed towards observations that happened to be misclassified up to the current 
iteration .b   

In the final step, the previous results of the base-learner are combined into a more 
accurate prediction. Using an iteration-specific coefficient, there is an increase to 
the weight of better performing solutions of the base-learner. 

The early boosting algorithm developed (Freund, 1995; Schapire, 1990) gave rise 
to  a more concrete algorithm called adaptive boosting, also known as Adaboost 
(Freund & Schapire, 1996). It is called the adaptive boosting algorithm as it 
automatically adjusts its parameters to the data. It is usually used with simple 
classification trees as base-learners and has been found to show significant 
improvement in performance (Bauer & Kohavi, 2003; Meir & Rätsch, 2003; 
Ridgeway, 1999). The overview of the boosting algorithm is given below: 

(a) Initialization: The iteration counter is initialized  

0;b =  iw for individual weights; observations given as [0] 11,....,  to ii n w
n

= =   
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(b) Base-learner: compute the base-learner for the weighted data set 

Set  : 1b b +  

 [ 1] [ 1] [ ]
1

ˆThen, re-weight with ,..., (.)base learnerb b b
nw w h−− − →   

(c) Update the weights by computing the error rate and update the iteration-

specific coefficient bα  

(d) Iterate steps (b) and (c) until stopb b=  

(e) The final aggregation for new observation newy is computed. It is given as: 

(51) 
[ ]

( )
1

ˆ ˆ( ) ( )
stopb

b
boosting adabost new b new

b
f y sign h yα

=

 
=  

 
∑  

The performance of the boosting algorithm has been compared to another 
approach known as the bagging algorithm (Breiman, 1996). In bagging, there is no 
need to rely on the misclassification rate of earlier iterations as seen in the boosting 
algorithm, rather, bootstrap generated samples are used to modify the training 
data (Breiman, 1998). It was concluded that boosting is poised to outperform the 
bagging approach due to the ability of the boosting approach to have a reduced 
bias-variance (Breiman, 1998). 

This accounts for why the boosting decision tree is still relevant in present-day 
application of machine learning to other fields such as medicine. Therefore, the 
boosted decision tree can be said to be a (Microsoft Azure Machine Learning 
Studio, 2018) machine learning method that is made up of trees where the second 
tree corrects the errors in the first tree. Similarly, the third tree corrects the errors 
in the second tree and the sequence goes on until the final tree is reached. All these 
trees are combined together to make the prediction. Hence, it is known as the 
ensemble machine learning method. 

Several modifications have been made to the basic decision tree algorithm. A 
modification to the boosted-decision tree algorithm gave rise to the decision forest 
algorithm. In decision forest, several decision trees are created to train the 
available dataset, but from different starting points. The process of creating many 
individualized classification trees is usually randomized. Each tree in the decision 
forest gives a frequency histogram of labels that is non-normalized as the outputs. 
These histograms are summed together and then normalizes to get the 
probabilities for each label (Criminisi & Shotton, 2013; Microsoft Azure Machine 
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Learning Studio, 2018). The trees with high prediction confidence are voted as the 
popular output class. It is another type of fast-supervised ensemble method that is 
used for large datasets.  

By extension of the decision forest algorithm, the decision jungle was developed. 
It is aimed at achieving better generalization performance than the traditional 
decision trees and decision forest (Microsoft Azure Machine Learning Studio, 
2018). It works in a similar way as to the decision forest, but with directed acyclic 
graphs (DAGs) (Criminisi & Shotton, 2013). Although, they are a non-parametric 
ensemble method, the longer training time is one of the major concerns about 
using this algorithm.  

In general, decision trees have become popular in the machine learning process, 
as they are fast with efficient computation and memory usage. Of note, they have 
the capacity to capture both linear and non-linear decision boundaries. Similarly, 
they appear as one of the widely preferred algorithms as feature selection is 
integrated into the training and classification process. Additionally, the trees can 
accommodate noisy data. Moreover, they are able to handle data with varied 
distributions, thus, they are non-parametric algorithms.  

2.4.5 Data division 

In supervised machine learning such as in regression and classification tasks, the 
data are usually divided into three types. These are training, validation, and 
testing sets. In some cases, the available data is divided into the training and 
testing sets, respectively. The training set is otherwise known as the learning set. 
This set of data is used as the observation data input/output that is mainly used 
for training. With the aid of the machine learning algorithm, the input relationship 
between the input parameters can be captured with acceptable accuracy. The 
learning process may be smooth and straightforward especially if the data have 
been preprocessed. However, with noisy, distorted, and biased data, the learning 
process may be challenging.  

The size of the data and the algorithm are critical factors that determine the speed 
of the learning process. The validation set are a part of the available data set that 
was not used during the training phase. This set of data is used to validate the 
trained model. The performance of the model after validation provides an insight 
into how the model is likely to perform in real-time. However, to have a more 
convincing insight into the actual performance of the model and also enhance the 
generalizability of the model, it is important to further evaluate the model with the 
test data which may be from the same source (externally validated with same 
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source), but used neither in the training nor validation phase. Likewise, the data 
may come from an entirely different source, in this case, this is known as external 
validation of the model (externally validated with different source). 

There are different ways to assign the percentage between the training and 
validation and how to select the data into these categories. Several studies have 
proposed 80% for training and 20% validation. Similarly, 70% training and 30% 
validation have been proposed in other studies. Likewise, 50% training and 50% 
validation is beginning to gain relevance in recent studies. The amount of available 
data, the nature of the data, the training algorithm, and types of machine learning 
tasks may be determining factors in selecting the appropriate data division ratio. 
Irrespective of the data division ratio, it is important to avoid overfitting or 
underfitting scenarios as these have detrimental effects on the model produced. To 
avoid these concerns, it is usually a good practice to start with 30% for the training 
and then check the performance of the model on the validation set. If the 
performance is not good, the division ratio may be increased until a model with 
reasonable performance metrics is obtained. It is important to mention that the 
quality of the data is extremely important. Low-quality data sets will lead to biased 
models. By low quality, it means that the data does not represent the real problem 
due to high biases, missing values, not a number (NaN), and missing important 
input parameters that contains vital information. Also, it is important to avoid 
input features that are highly linearly correlated as this may lead to erroneous 
conclusions. The training and validation should be selected carefully to span all the 
dimensions of the problem as shown in Figure 21. 

 

Figure 21. The training and validation phases against algorithm complexity 
(Elmusrati, 2020). 
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Due to the increasing application of machine learning techniques in various fields, 
new algorithms continue to emerge. Interestingly, the complexity of the algorithms 
increases reasonably. Therefore, as shown in Figure 21, it is important that the 
algorithm is trained with a reasonable amount of data to obtain an optimum 
model. The learning data should also be informative. Interestingly, even if the 
learning algorithm and the model complexity are both perfect to have an optimum 
model (Figure 21), this will not help if the algorithm was not exposed to enough 
information during the training process. 

2.4.5.1 Data division methods 

Based on the data division explanations presented in the aforementioned, (1) 
holdout, (ii) random sampling, (iii) cross-validation, and (iv) bootstrap 
methodologies emerged (Kourou et al., 2015). In the holdout method, the available 
data are divided broadly into training, validation, and testing sets. While the model 
is developed based on the training set, the performance of the model presented 
through the validation set, and the generalizability of the model with the aid of the 
test sets. However, this data division is done manually before the training process 
begins (Kourou et al., 2015). Although, the random sampling data division 
methodology follows an approach similar to the holdout method, the significant 
difference between the two is that the data division approach, in this case, is done 
randomly. That is, the holdout method is repeated several times the training and 
testing sets are randomly selected. Thus, this approach produces training and 
testing sets that are representative of the population and reduces the possibility of 
a biased dataset (Kourou et al., 2015). In cross-validation, each sample in the 
training set is used the same number of times during the training process and just 
once during the testing phase. This is to ensure that all the available data are 
covered in the machine learning training and testing process. For the bootstrap 
data division method, the data used for the training are returned back to the 
available dataset (Kourou et al., 2015). In this case, they may be re-used during the 
testing phase. In this type of approach, the performance produced by the model 
after the training and testing phases are less reliable. The model requires a 
significant amount of external validation for the model to be considered reliable. 

2.4.5.2 Machine learning performance metrics 

After a successful machine learning training process, the performance metrics 
produced by the learning algorithm varies, depending on the type of tasks. For 
classification problems, the performance metrics include log-loss, accuracy, area 
under receiving operating characteristics (ROC) curve (AUC), precision, recall, 
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and F1 score. The majority of these performance metrics have been defined with 
the aid of the confusion matrix.  

The confusion matrix is one of the most intuitive and self-explanatory approaches 
to understanding the performance matrix in classification problems. It is generally 
used for classification tasks where the expected outcomes can be two-class (two 
outputs) or multiclass (more than two outputs). Technically speaking, the 
confusion matrix may not be considered as a performance metric. However, it 
gives insightful information about four main threshold parameters of the 
performance of the model. These threshold parameters are true positives, true 
negatives, false positives, and false negatives as shown in Figure 22. 

 

Figure 22. Confusion matrix for machine learning classification problems. 

True positives (TP) refer to the cases when the actual class of the data was actually 
true and the machine learning model also predicted the cases as true. An example 
is when the patient actually had a locoregional recurrence and the machine 
learning correctly predicted the individual as having a locoregional recurrence. 

True negatives (TN) refer to the instances where the actual class of the data was 
false and the machine learning model also predicted the class as false. An example 
is when the actual outcome of the patient’s tumor is non-malignant and the 
machine learning model rightly predicted the tumor as such, that is, non-
malignant. 
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False positives (FP) implies the cases when the actual class of the data was false 
and the machine learning model incorrectly predicted the class as true. An instance 
is when the machine learning model predicted the case as having a locoregional 
recurrence of cancer whereas the patient actually had no locoregional recurrence 
of cancer. 

False negatives (FN) indicate the cases when the actual class of the data was true 
while the machine learning model incorrectly predicted the patient as false. For 
instance, when the machine learning model a patient to have 5-year survival 
whereas the patient actually died of cancer. 

These four basic threshold parameters have formed the basic parameters that 
define the performance metrics in classification problems. 

Accuracy in classification problems refers to the number of predictions that the 
machine learning model made correctly over all the possible predictions made by 
the model (Sunasra, 2017). Mathematically, it is given as: 

 

(52) Accuracy =  𝑇𝑇𝑇𝑇+  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 

 

Accuracy has shown to be a good performance metric when the target variable has 
classes that are nearly balanced. Thus, accuracy is not advisable in an imbalanced 
dataset where the target variable has classes with the majority of one class 
(Sunasra, 2017).  

On the other hand, precision is a measure that defines the proportion of the 
patients that had been classified as true (TP and FP) by the machine learning 
model, and actually were true based on the expected outcomes (TP) (Sunasra, 
2017). It is given as: 

 

(53) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = TP
TP + FP

 

 

Similarly, recall (sensitivity) is a measure that indicates the proportion of patients 
that was actually positive and was mainly identified by the algorithm as positive 
(Sunasra, 2017). It is presented as: 
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(54) Recall or sensitivity =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

 

It is essential to mention that recall gives information about the algorithm’s 
performance regarding how many cases were wrongly or incorrectly classified. 
Conversely, precision gives information about the algorithm’s performance 
regarding how many cases were correctly classified. As the name implies, it 
centered on being precise. 

Likewise, specificity is a measure that gives an account of the proportion of the 
patients that was not positive and were predicted by the machine learning model 
as non-positive (negative). Thus, it is the exact opposite of recall. Hence, specificity 
is given as: 

 

(55) Specificity =  TN
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

 

A very good performance measure that combines both precision and recall is the 
F1 score. It is the harmonic mean of precision and recall. 

 

(56) F1 score = 2 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

 

 

Therefore, the F1 score seeks to address some of the concerns with using precision 
and recall. It gives the model an appropriate score rather than just an arithmetic 
mean. However, for regression problems, the performance metrics are mean 
squared error (MSE), root-mean-squared error (RMAE), mean-absolute-error 
(MAE), R2 or coefficient of determination, and adjusted R2.  

Mean squared error (MSE): This is one of the most widely used metrics for 
regression tasks because it is differentiable and provide better optimization. It is 
the average of the squared difference between the target class and the predicted 
class by the regression model (Mishra, 2019). The MSE is given by: 
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(57) MSE =  1
𝑛𝑛

 Ʃ (y −  𝑦𝑦𝑖𝑖)P

2 

Where 𝑦𝑦 is the actual value; 𝑦𝑦𝑖𝑖  is the predicted value and (𝑦𝑦 −  𝑦𝑦𝑖𝑖)P

2 is the squared 
difference between the actual and the predicted value. 

The root mean squared error (RMSE) is actually the most preferred performance 
metrics for regression problems. It is the squared root of the averaged squared 
difference between the target classes and the predicted classes (Mishra, 2019). The 
RMSE is given as: 

(58) RMSE =  

2

1
( )i

N

i
y y

N
=

−∑
 

Of note, RMSE is mostly preferred because the errors are first squared prior to 
averaging. Thus, this penalizes large errors (Mishra, 2019). 

The mean absolute error (MAE) means the difference between the target class and 
the predicted class by the machine learning model. Therefore, the MAE is robust 
to outliers. However, it does not penalizes errors compared to MSE. 

(59) MAE = 
1 ( )iy y
n

−∑  

For MAE, the absolute value of the difference between the actual and predicted 
classes is taken. 

Considering 𝑅𝑅2  error, also known as the coefficient of determination (CoD) is 
another widely used metric for analyzing the performance of a regression machine 
learning model. It evaluates and informs how better the model is when the 
regression model is compared with a constant baseline. Notably, the CoD is a scale-
free score that implies that the metric takes into consideration how large or small 
the value is as CoD will always be less than or equal to one (Mishra, 2019). 

(60) 2 (mod )1
( )

MSE elR
MSE baseline

= −  

The adjusted 2R follows the same interpretation as the ordinary 2R . However, it is 
an improvement over the ordinary 2R as given below:  

 (61)  ( )2 2 21Adjusted R 1
1adjusted

nR R
n k

 −  = = × −  − −  
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:
number of observation

 = number of independent variables

Where
n
k
=     

The adjustments to the ordinary 2R are needed because the ordinary suffers from 
an increasing scores without improved performance of the model when the terms 
are increased. This may lead to misjudgments of the actual performance of the 
model. Therefore, the score of the adjusted R2 is usually lower than the ordinary 

2R because the model tries to adjust for the increasing input variables. In this case, 
the model will only show improvement if the increasing predictors contribute to a 
significant improvement. 

In general, it is often expected that the values of 2R ranges from 0 to 1. Thus, 
positive value of 2R is expected. However, the reality is, it ranges from  to 1−∞ , 
meaning, the 2R can be negative. The reasons for a negative value of R2 could be 
that the chosen regression algorithm does not follow the trend of the data. In 
addition, the presence of outliers may be the cause of a negative R2. Moreover, the 
failure to properly consider the intercept in the regressor may also be the cause of 
a negative value of R2 (Mishra, 2019). 

2.4.6  Errors in machine learning methodology: overfitting and 
underfitting 

Errors usually occur during the training and/or in the testing phase. The 
misclassification error that occurs during the training phase is known as the 
training error. Likewise, the misclassification error on the testing data is termed 
the generalization error. In some cases, the model might fit the training data 
reasonably well, thereby decreasing the training error rates. However, the same 
model may experience increased testing error rates. This phenomenon is known 
as overfitting. It is a form of increased model complexity where the testing error 
rates increases.  In the case of underfitting, the training error increases while the 
testing error also increases. The best model for classification, regression or 
clustering tasks is the ideal model that is devoid of underfitting or overfitting. It is 
a model that produces the lowest generalization error. To have an ideal model, it 
is important to balance the bias-variance decomposition. The bias components 
represent the error rate of the algorithm in use, while the variance represents the 
error over the training and testing sets. From these, the overall error of the model 
is the sum of bias and variance errors. Hence, the name bias-variance 
decomposition.  
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2.4.7 Machine learning in cancer prognostication 

Several articles have been published that employed machine learning techniques 
in the prognostications of cancer (Bur et al., 2019; Cruz & Wishart, 2007; Exarchos 
et al., 2012; Karadaghy et al., 2019; K. Park et al., 2013; Y. Sun et al., 2007). These 
studies have examined the use of machine learning techniques to predict cancer 
susceptibility (risk assessment), recurrence, and survival (Ayer et al., 2010; Bur et 
al., 2019; Exarchos et al., 2012; Karadaghy et al., 2019; K. Park et al., 2013; 
Urbanowicz et al., 2013). The prognostication of outcomes has been reported to be 
beneficial for proper planning of treatment and to improve the prognostication of 
overall survival of the patients (Cruz & Wishart, 2007). For nearly three decades, 
artificial neural network and decision trees have been widely used algorithms in 
various research to employ machine learning for cancer prognostication (Bottaci 
et al., 1997; Maclin et al., 1991; Simes, 1985). 

A growing trend is noted in recently published articles where several machine 
learning algorithms were considered (Bur et al., 2019; Karadaghy et al., 2019). 
Similarly, other types of machine learning algorithms that differ from the artificial 
neural network and decision tree have been used in recently published studies (Bur 
et al., 2019; Chao et al., 2014; Exarchos et al., 2012; Lynch et al., 2017; Montazeri 
et al., 2016; Tapak et al., 2019). These algorithms have been used with 
clinicopathologic, histologic, molecular, genomic, image, demographical, 
epidemiological, and combinations of any of these data input types (heterogeneous 
sources of data), and labelled, unlabelled, and pseudo-labelled patient data 
(Aubreville et al., 2017; Chang et al., 2013; Exarchos et al., 2012; J. Kim & Shin, 
2013; Lu et al., 2017; Shams & Htike, 2017; Sharma & Om, 2013; Tseng et al., 
2015). 

Most of these studies reported that machine learning techniques showed 
significant prognostic ability for cancer outcome (Ahmad & Eshlaghy, 2013; Ayer 
et al., 2010; Chang et al., 2013; Chen et al., 2014; Delen et al., 2005; Exarchos et 
al., 2012; Gevaert et al., 2006; W. Kim et al., 2012; K. Park et al., 2013; Rosado et 
al., 2013; Xu et al., 2019). Despite this reported accuracy in machine learning 
models, they have not been widely used in actual daily clinical practice (Arambula 
& Bur, 2020; Kourou et al., 2015). Of note, several limitations and concerns have 
been raised on the integration of these models into daily clinical practice. 

Therefore, it is important to identify the possible drawbacks in the development of 
machine learning models. Some of these potential drawbacks include the 
collection of appropriate data samples. These data should be pre-processed to 
remove noise and distortions (Kourou et al., 2015). Likewise, sufficiently large data 
samples should be collected. Additionally, the training and testing phases of the 
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machine learning model development should be mapped out with a scientific-
based experimental design (Kourou et al., 2015). That is, the model should be 
devoid of overfitting or underfitting and properly validated internally or externally.   
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3 AIMS AND OBJECTIVES 

3.1 Aims of the study 

The aims of this study were to offer accurate prognostication that can aid in 
personalized medicine of tongue cancer patients (including early-stage) using 
machine learning techniques. Specifically, the objectives of this study were: 

A. To apply machine learning techniques that consider the shortcomings of 
the TNM staging to predict tongue cancer patients’ outcomes such as 
locoregional recurrences and overall survival.  

B. To evaluate the prognostic significance of some input parameters using 
machine learning techniques. 

C. To provide a web-based prognostic tool for stratification of oral tongue 
cancer patients into a low- or high-risk for the occurrence of locoregional 
recurrence. Such an online tool can be an important step towards 
personalized medicine for oral tongue cancer patients.  

D. To compare the performance of machine learning techniques to 
nomograms in the prognostication of outcomes (overall survival) for 
tongue cancer patients. 

E. To consider ethical challenges and other factors that affect the 
implementation of machine learning models into daily clinical practice. 
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4  METHODS 

4.1 Dataset for the study 

Two different datasets were used for this study. The first dataset was a multi-
institution dataset. The second dataset was obtained from the National Cancer 
Institute (NCI) through the Surveillance, Epidemiology, and End Results (SEER) 
Program of the National Institutes of Health (NIH). 

4.1.1 Multi-institution data 

The multi-institution data consist of retrospective data from the five (5) Finnish 
University Hospitals (Helsinki, Oulu, Turku, Tampere, and Kuopio) and at the A.C. 
Camargo Cancer Center, Sao Paulo, Brazil. From these multi-institutions, a total 
of 311 cases were obtained. 

4.1.2 Surveillance, Epidemiology, and End Results (SEER) Program Data 

The Surveillance, Epidemiology, and End Results (SEER) Program is one of the 
largest cancer database that is available to the public (SEER, 2012). In addition, it 
gives non-identifiable information on cancer statistics of the United States 
population (SEER, 2012). These important features makes it good choice for this 
study. The database is managed by the National Cancer Institute through the 
National Institutes of Health (NIH).  

4.2 Ethical permission 

The ethical permissions to use this multi-institution data was granted by the 
Finnish National Supervisory Authority for Welfare and Health (VALVIRA) and by 
the Brazilian Human Research Ethics Committee. Similarly, the use of the SEER 
database was granted via the user identification numbers of 10455-Nov2108 and 
11522-Nov2019, respectively. 

 

4.3 Selection of attributes 

For the analysis that involved the use of the multi-institution data, the following 
attributes were selected and used; age at diagnosis, gender (sex), grade, World 
Health Organization (WHO) grade, the American Joint Committee on Cancer 
(AJCC) Tumor staging scheme, tumor budding, tumor depth, worst pattern of 
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invasion (WPOI), lymphocytic host response (LHR), perineural invasion (PNI), 
treatment (adjuvant [chemo] radiotherapy and/or surgery), neck treatments, 
survival times (in months), and overall survival status [Study I, II, and III] (Table 
1). The parameters and their respective definitions is presented in Table 1.  

Table 1. The histopathological parameters and their definitions 

Variable Categories Definitions 

WHO grade Grade I 

Grade II 

Grade III 

Well-differentiated tumor 

Moderately-differentiated tumor 

Poorly-differentiated tumor 

Tumor budding None 

Low 

High 

No tumor budding 

Tumor has < 5 buds 

Tumor has >= 5 buds 

Depth of Invasion (DOI) Superficial 

Deep 

Tumor is < 4mm in depth 

Tumor with >= 4mm in depth 

Worst pattern of invasion 

(WPOI) 

Type 1-3 

Type 4 

Type 5 

Pushing border; Finger-like growth; Large 

tumor islands 

Small tumor islands 

Tumor satellites 

Lymphocytic host response Type 1 

Type 2 

Type 3 

Strong 

Intermediates 

Weak 

Perineural invasion (PNI) Absent 

Present 

PNI: Not observed 

PNI: Observed 
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Likewise, for analysis that involved the SEER database, the attributes to be 
extracted from the database depends on the attributes used in the literature 
reviews, that is, in the published articles.  For example, in comparing machine 
learning models to nomogram, the extracted attributes were based on the 
nomogram that was used for comparison (Li et al., 2017). These attributes were 
age at diagnosis, race, marital status, grade, Tumor Nodal Metastasis (TNM) status 
according to the American Joint Committee on Cancer 7th edition, treatment 
(surgery, and radiotherapy) (Li et al., 2017). The survival period (in months) and 
overall survival status of the patients were also extracted. The detailed definitions 
of these attributes can be found in the SEER attribute documentation. 

4.4 Machine learning techniques 

In this thesis, a supervised machine learning method was used. Both MATLAB 
version R2015b (Study I) and Microsoft Azure Machine learning studio (Study II 
& III) was used.  

A total of 311 cases (224 Finnish, 87 Brazilian) were included in study I to predict 
locoregional recurrences in early-stage oral tongue squamous cell carcinoma 
(OTSCC) as shown in Table 1. These histopathological parameters were used in the 
training of the artificial neural network. 

 

Table 2. The summary of histopathological parameters 

Variable Categories Total 

WHO grade Grade I 

Grade II 

Grade III 

105 

131 

75 

Tumor budding+ None 

Low 

High 

114 

102 

75 

Depth of Invasion (DOI) Superficial 

Deep 

116 

195 
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Worst pattern of invasion 

(WPOI) 

Type 1-3* 

Type 4 

Type 5 

78 

190 

43 

Lymphocytic host response Type 1 

Type 2 

Type 3 

53 

116 

142 

Perineural invasion (PNI) Absent 

Present 

269 

42 

+ Tumor budding is considered as a single cancer cell or cancer cluster of four 
cancer cells or less 

* Type 1-3 of worst pattern of invasion were considered as one group. 

 

The process of building a reliable predictive machine learning model for precision 
and personalized medicine begins with the selection of appropriate data and the 
corresponding attributes. Of note, the selected attributes were mentioned in 
Section 4.2 of this thesis (for multi-institution data). In terms of the output, 
locoregional recurrences was considered as the output parameter. Furthermore, 
the selected attributes were pre-processed to remove missing, corrupted, or not a 
number (NaN) entries in the data. Then, the preprocessed data can now be safely 
used in the machine learning analysis to produce reliable machine learning 
models. The machine learning process is given in Figure 23. The pre-processed 
data are considered as the data (available data) to be used in the machine learning 
process.  

As a rule of thumb, the available data were divided into training, validation, and 
testing datasets (sub-section 2.4.5). The data division ratio depends on many 
factors, in this case, the data division ratio was 70% training, 15% validation, and 
15% testing sets (Jeong et al., 2013; Puri et al., 2016). Considering the selection of 
the machine learning algorithm, the artificial neural network was selected as the 
algorithm of choice. MATLAB has an inbuilt function for the training of the 
artificial neural network. Therefore, the network was trained using the 
patternnet function.  
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Figure 23. Machine learning process. 

 
It creates a standard solution neural network that classifies inputs into a target. 

The final process involves training the neural network algorithm for prediction. 

For training of the neural network, scaled conjugate gradient backpropagation was 

used. In addition, the performance of the network was evaluated cross-entropy. 

The accuracy and area under the receiving characteristic curve gives the overall 

performance of the network on the test set (Figure 22). In case the performance of 

the trained network is not convincing enough, the data division ratio of the training 

data can be modified, the algorithm may be changed, or the training parameters 

may be tuned to produce a better model.  

4.5 Comparison of machine learning algorithms 

In the quest to produce an effective predictive model for precision and 
personalized medicine, several machine learning algorithms were compared to 
predict locoregional recurrences. Of note, there are numerous machine learning 
algorithms. However, only the most widely used algorithms were used for 
comparison. Thus, the performance of the artificial neural network model was 
compared with logistic regression in terms of accuracy (Study I). Similarly, the 
performance of four supervised machine learning algorithms were compared to 
predict locoregional recurrences. These algorithms were support vector machine, 
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Naïve Bayes, Boosted Decision Tree (BDT), and Decision Forest (DF) algorithms 
(Study II).  

4.6 Comparison of machine learning algorithms with a 
nomogram 

The nomogram used for comparison was constructed in a study that was 
previously published (Li et al., 2017). It was used to predict 5- and 8-year overall 
survival in OTSCC. The nomogram is presented in Figure 24-25, respectively. 

 

Figure 24. Nomogram to predict 5- and 8-year overall survival with surgical 
treatment (Li et al., 2017) 

The nomogram presented in Figure 24 was well calibrated and validated to 
predicting the 5- and 8-year overall survival for patients that received surgery. 

 

Figure 25. Nomogram to predict 5- and 8-year overall survival with 
radiotherapy (Li et al., 2017). 
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Interestingly, the nomogram was constructed in such a way that two distinct 
nomograms were constructed to differentiate between the TSCC patients that 
received surgical treatments and those that received radiotherapy. 

The machine learning algorithms used for comparison with the nomogram were 
logistic regression, Naïve Bayes, support vector machine, neural network, boosted 
decision tree, decision forest, and decision jungle (Study III). In addition, the 
SEER data were used in the development of the machine learning model and 
construction of the nomogram. Of note, the November 2015 submission between 
1973 and 2013 was used because the nomogram was built using the data of the 
same year. 

A total of 7649 cases were extracted from the database. Out of these cases, the last 
53 cases were reserved to further provide external validation for the trained 
machine learning model (Study III). Thus, a total of 7596 cases were used in the 
machine learning analysis. The baseline demography and tumor characteristics of 
the TSCC patients extracted from the SEER database are given in Table 3.  

Table 3. Baseline demographic and tumor characteristics of patients 
extracted from the SEER database 

Variables Overall survival, N = 7596 
Training and testing cohort 

Overall survival, N = 53 
External validation cohort 

Age at diagnosis (years): Age of the patients at the time of diagnosis 
1 – 18 5 (0.1%) 0 (0.0%) 
19 – 44 515 (6.8%) 2 (3.8%) 
45 – 54 1412 (18.6%) 14 (26.4%) 
55 – 64 2497 (32.9%) 18 (34.0%) 
65 – 74 1877 (24.7%) 13 (24.5%) 
75+ 1290 (16.9%) 6 (11.3%) 
Ethnic origin: This implies race and ethnicity of the patient. Other includes American Indian (native), 
Asian/Pacific Islander 
White 6597 (86.8%) 44 (83.0%) 
Black 516 (6.8%) 9 (17.0%) 
Other* 483 (6.4%)  
Sex: The biological sex 
Male 5322 (70.0%) 38 (71.7%) 
Female 2274 (30.0%) 15 (28.3%) 
Marital status: The marital status of the patient at the time of diagnosis of OTSCC 
Married 4430 (58.0%) 29 (54.7%) 
Unmarried 3166 (42.0%) 24 (15.3%) 
Grade: The differentiation of the cancer cell 
Grade I 1215 (16.0%) 8 (15.1%) 
Grade II 3768 (49.6%) 29 (54.7%) 
Grade III 2543 (33.5%) 15 (28.3%) 
Grade IV 70 (0.9%) 1 (1.9%) 
T stage (2010+): The measurement of the dimension of the tumor 
T1 (< 2cm or less) 2942 (38.7%) 19 (35.8%) 
T2 (>2cm & ≤ 4cm) 2492 (32.8%) 16 (30.2%) 
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T3 (> 4cm) 1159 (15.3%) 6 (11.3%) 
T4a (Moderately 
advanced) 

920 (12.1%) 11 (20.8%) 

T4b (Significantly 
advanced) 

83 (1.1%) 1 (1.9%) 

N Stage (2010+): Lymph node metastasis 
N0 (No regional lymph 
node metastasis) 

3485 (45.9%) 14 (26.4%) 

N1 (Single node) 1220 (16.1%) 10 (18.9%) 
N2a (Cancer has spread) 327 (4.3%) 5 (9.4%) 
N2b (Multiple node) 1498 (19.7%) 14 (26.4%) 
N2c (Lymph node in the 
neck) 

880 (11.6%) 9 (17.0%) 

N3 (Spread to one or more 
neck lymph nodes) 

186 (2.4%) 1 (1.9%) 

M stage (2010+): The presence of distant metastasis 
M0 (No distant metastasis) 7425 (97.7%) 50 (94.3%) 
M1 (Distant metastasis) 171 (2.3%) 3 (5.7%) 
Surgery performed: This describes if surgery was performed 
Yes 4654 (61.3%) 22 (41.5%) 
None 2942 (38.7%) 31 (58.5%) 
Radiotherapy: This is the indication of whether the patient has received radiation 
Yes 4489 (59.1%) 37 (69.8%) 
None 3107 (40.9%) 16 (30.2%) 
Overall survival status: This indicate of the patient was alive or died 
Alive 5743 (75.6%) 47 (88.7%) 
Dead 1853 (24.4%) 6 (11.3%) 

 

The Microsoft Azure machine learning studio was used to build the machine 
learning model. The process was similar to the training phase described in Section 
4.3 and Figure 23. First, all the available data were converted to numeric data, for 
easy machine learning training, and uploaded into Azure machine learning studio. 
The data were divided into training and testing sets. In addition, the synthetic 
minority oversampling technique was used to handle possible bias in the target 
output (Blagus & Lusa, 2013) and hyperparameters were fine-tuned to maximize 
the performance of the model. Each algorithm of interest was configured and the 
training was done using cross-validation. The performance of each of the 
algorithms was noted (Microsoft Azure Machine Learning Studio, 2018). The 
algorithm that produced the best performance in terms of accuracy and area under 
the receiving operating characteristic curve was used for comparison with the 
nomogram (Study III). This comparison was carried out using the external 
validation test (53 cases reserved for external validation) [Study III]. 
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4.7 Systematic review of studies that applied machine 
learning in oral cancer (study V) 

The keywords used were “oral cancer” AND “machine learning”. Additionally, the 
search word was extended to include [(“oral cancer”) AND (‘artificial neural 
network’ OR ‘ensemble method’)]. These words were searched in Scopus, PubMed, 
Web of Science, OvidMedline, and Institute of Electrical and Electronic Engineers 
(IEEE) databases. The flowchart for the search process is presented in Figure 26. 

 

Figure 26. Flowchart of database search (study V) 

As shown in the flowchart, the search was limited to articles written in the English 
language. Additionally, the search date for the databases were from inception until 
the end of February 2020. The details of the inclusion and exclusion criteria are as 
shown in Figure 26. The study aimed at examining the machine learning in oral 
squamous cell carcinoma: current status, clinical concerns and prospects for the 
future. It seeks to examine why the machine learning models have made few 
contributions in actual daily clinical practice despite the touted benefits of artificial 
intelligence, or its subfield, machine learning in medicine. 
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4.8 Addressing ethical challenges related to the 
application of machine learning in oral tongue 
cancer: (study IV) 

The application of machine learning techniques for personalized medicine have 
been touted to offer benefits such as precision medicine, improved prognostication 
and the overall survival of OTSCC patients. Despite these benefits, ethical issues 
have been raised in some quarters. The literature was systematically reviewed to 
examine these concerns and how they can be addressed. 

 

Figure 27. Flowchart for the database search on ethical challenges of the 
machine learning model in medicine (study IV). 

The following databases; OvidMedline, PubMed, Scopus, Web of Science, 
Cochrane Library, and Institute of Electrical and Electronic Engineers (IEEE) 
databases were searched with keywords [(‘machine learning OR artificial 
intelligence’) AND (‘ethics’)]. The search word was general. However, the ethical 
challenges mentioned were analyzed to examine how they relates to oral tongue 
cancer. The objective is to examine the ethical challenges to the integration of 
machine learning model into daily clinical practice of oral management, as well as 
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how these ethical challenges can be addressed. Moreover, flowchart towards a 
successful integration of machine learning in daily clinical practice was proposed. 
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5 RESULTS 

The artificial neural network showed promising results in predicting locoregional 
recurrences in early-stage oral tongue squamous cell carcinoma (OTSCC). The 
overall accuracy of 92.7%.  Other performance metrics were also evaluated: recall 
(sensitivity) was 71.2%, specificity (98.9%), and positive and negative predictive 
values were 97.7% and 84.5%, respectively.  

 

 

Figure 28. The area under characteristics curve of the trained neural network 

Similarly, the overall receiving operating characteristic curve (AUC of ROC), which 
is also the C-statistics (C-index) value was 97.3%.  Comparing the trained neural 
network with traditional methods such as the logistic regression model, the neural 
network outperformed the logistic regression. While the neural network gave an 
overall accuracy of 92.7%, the logistic regression model which gave an accuracy of 
86.5%. 

5.1 Comparison of machine learning algorithms to 
predict locoregional recurrences 

Four widely used algorithms were compared to predict locoregional recurrences in 
early stage oral tongue cancer. These algorithms were support vector machine, 
naive Bayes, decision forest, and boosted decision. The basic four thresholds from 
the training process are given in Figure 29. These thresholds are true positive (TP), 
false positives (FP), true negatives (TN), and false negatives (FN).  
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Figure 29. The four basic thresholds after the training phase of the compared 
algorithms. 

Based on these thresholds, the overall accuracy of the compared algorithms after 
the training process were: support vector machine (82.7%), naive Bayes (80.0%), 
decision forest (84.0%), and boosted decision tree (82.0%). Therefore, the 
decision forest outperformed the other compared algorithms. In addition, naïve 
Bayes and decision forest showed the best area under the receiving operating 
characteristic curve of 0.89 each.  

5.2 External validation algorithms to predict 
locoregional recurrences 

The machine learning algorithms were validated externally with new cases (59 
external validation cases) that were not used in the training. The artificial neural 
network gave an accuracy of 81.4% (study I). Additionally, the overall accuracy of 
the compared algorithms with the external validation cohorts were (study II): 
support vector machine (68%), naive Bayes (70%), decision forest (78%), and 
boosted decision tree (81%).  Similarly, the algorithm that showed the best 
accuracy with external cohorts outperformed the traditional method of depth of 
invasion (DOI) which gave an accuracy of 63% (study II).  
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Figure 30. Comparison of depth of invasion model with machine learning 
model 

5.3 Feature importance of the parameters to predict 
locoregional recurrences 

The artificial neural network model identified tumor budding and depth of 
invasion as the most important prognosticators to predict locoregional recurrence 
(study I). Similarly, the boosted decision tree identified tumor budding, depth of 
invasion in addition to age, perineural and worst pattern of invasions as important 
parameters for the model to predict locoregional recurrences in early-stage oral 
tongue cancer (study II). 

5.4 A web based tool to predict locoregional recurrences 

In studies I & II, the artificial neural network outperformed all the compared 
algorithms in terms of accuracy when externally validated with new cohorts. The 
trained neural network model was integrated as a web based tool using Microsoft 
Azure cloud service. The web-based tool is freely available. Users of the website 
can enter the prognostic factors to generate a personalized estimation of 
locoregional recurrence for the patient. The web-based tool is available: 
https://predictrecurrence.azurewebsites.net/Default.aspx 

https://predictrecurrence.azurewebsites.net/Default.aspx
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5.5 Comparison of machine learning algorithm with a 
nomogram (study III) 

The machine learning algorithm (boosted decision tree) performed better than the 
nomogram in predicting overall survival in patients with tongue cancer. When 
these two approaches were compared using the external validation cases 
mentioned in this thesis, the machine learning-based algorithm showed an 
accuracy of 88.7% while the nomogram (with surgical treatment) showed 66.0%, 
and the nomogram (with radiotherapy) produced an accuracy of 60.4%.  

5.6 Ethical challenges of machine learning model in 
cancer management (study IV) 

Based on the systematic review, privacy and confidentiality of patients’ data, bias 
in the model, peer disagreement, responsibility gap, client-patient relationship, 
and patients’ autonomy were the ethical challenges identified to the use of a 
machine learning model in daily clinical practices. 

 

 

Figure 31. Proposed framework for smooth integration of machine learning  

Furthermore, to enhance hitch-free integration of a machine learning model into 
daily clinical practice of oral cancer management, a framework for smooth 
integration has been proposed as shown in Figure 31. 
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5.7 Machine learning in oral squamous cell carcinoma: 
current status, clinical concerns and prospects for 
future (study V) 

The artificial neural network and support vector machine were the most widely 
used machine learning algorithms in prognostication studies in oral cancer. The 
accuracy of the machine learning algorithms examined in the reviewed paper 
ranged from 63.4% to 100.0%. The clinical concerns of these machine learning 
models include an explainable model (model interpretability), how the model 
produced the result (result interpretability), concern about rendering the 
oncologists less important in the management of oral cancer patients, and privacy 
and confidentiality concerns. For the future, it is important that the machine 
learning model to be used in daily clinical diagnosis should provide quality 
explanations. The quality of explanations may be measured using the system 
causability scale (SCS) (Holzinger et al., 2020). 
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6 DISCUSSION 

Early-stage oral tongue cancer (cT1-2N0M0) is characterized by a high risk of 
recurrences (locoregional), occult nodal metastases, and cancer-related mortality. 
Traditionally, the American Joint Committee on Cancer (AJCC) Tumor-Nodal-
Metastasis (TNM) staging system has been shown to be an objective and accurate 
tool for predicting the prognosis for an entire population of cancer patients. Thus, 
TNM offers an important approach for planning effective strategies for oral tongue 
cancer patients (American Joint Committee on Cancer, 2002; Li et al., 2017). 
Despite the promising prospects shown by the TNM staging scheme, it has been 
criticized as ineffective for individualized prediction of outcome. Also, it fails to 
consider other tumor- and patient-related risk factors (S. G. Patel & Lydiatt, 2008; 
Sobin, 2003). Consequently, this leads to inappropriate management of oral 
cancer. To this end, a tool that considers these factors together to accurately 
predict patients’ outcomes would be pertinent (Li et al., 2017). 

Of note, clinicopathologic markers are used by clinicians to make decisions 
regarding cancer patients. Interestingly, numerous prognostic markers have been 
published in various studies for oral tongue cancer prognosis. Unfortunately, most 
of these studies have shown certain methodological concerns such as a mixture of 
tumor sites (including all oral cavity subsites), single institution consideration, and 
cumbersome protocol (immunostaining consideration). 

In this study, we have attempted to overcome such obstacles by introducing a 
subfield of artificial intelligence, machine learning techniques that combines the 
readily available prognosticators (i.e. that could be easily included in the pathology 
reports) for the prediction of locoregional recurrences and survival assessments of 
tongue cancer patients. 

The artificial neural network and boosted decision tree machine learning 
algorithms showed promising performance in the stratification of patients into 
low- and high-risk recurrence and low- and high-chance of survival of tongue 
cancer, respectively. The neural network works in a way similar to that of the 
human brain by analyzing the dataset used in the training and recognizing patterns 
that could be used to make meaningful inference from a new set of data. In 
addition, the neural network is able to build a nonlinear statistical model to 
examine biological systems. Therefore, in this study, a feedforward neural network 
type was used where enough neurons were used in the hidden layer. Also, the 
performance of the network was computed using cross-entropy. The cross-entropy 
ensured that outputs that are inaccurate were heavily penalized with little or no 
penalty for the accurate classifications. Hence, the trained neural network showed 
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good classification (“low-risk” or “high-risk” of recurrence) performance. The fact 
that the neural network was found to be posited for effective stratification of 
patients was corroborated by the studies of Faradmal et al., and Kazemnejad where 
ANN was found to show improved predictive performance over the traditional 
methods of logistic regression and log-logistic regression (Faradmal et al., 2014; 
Kazemnejad et al., 2010).   

The importance of accurate stratification of patients as either “low-risk” or “high-
risk” of recurrence lies in the fact that effective and informed decision of 
multimodality treatment can be taken for those cases at high risk although they 
are diagnosed at an early stage (Alabi et al., 2019). Additionally, high-risk cases 
may benefit from elective neck dissection (END) and postoperative oncological 
therapy. Also, an enhanced post-treatment follow-up program can be effectively 
tailored to the high-risk patients (Alabi et al., 2019). 

Besides the neural network, the boosted decision tree algorithm showed an 
encouraging performance in the prediction of locoregional recurrences in oral 
tongue cancer patients. The performance of the boosted decision tree algorithm 
can be attributed to its ability as an ensemble method whereby it is able to create 
a fleet of algorithms with relatively similar bias and then combining their outputs 
to minimize variance (Alabi et al., 2019). Therefore, the boosted decision tree 
algorithm is poised to offer accurate prediction of outcome (low or high risk of 
recurrence) in early-stage oral tongue cancer. A similar result was obtained in 
other published studies where the decision tree outperformed other compared 
algorithms in the prognostication of other cancers (de Melo et al., 2018; Sumbaly 
et al., 2014; Tseng et al., 2015; B. Zhang et al., 2017). 

6.1 Prognostic significance of the examined parameters 

Of note, one of the major challenges in the effective treatment of patients with early 
oral tongue squamous carcinoma is finding the appropriate parameters that can 
stratify the patients into risk groups or offer an accurate prognosis. With this 
possibility, the incidence of treatment failure in patients with oral tongue cancer 
can be minimized (Safi et al., 2017). To this end, the permutation feature 
importance (PFI) evaluated the precise contribution of each parameter to the 
overall predictive ability of the machine learning algorithms. For the boosted 
decision tree to predict locoregional recurrence, tumor budding, depth of invasion, 
age at diagnosis, perineural invasion, and worst pattern of invasion were identified 
as important parameters (Alabi et al., 2019). Interestingly, training a machine 
learning algorithm with these identified parameters (tumor budding, depth of 



72     Acta Wasaensia 

invasion, age at diagnosis, perineural invasion, and worst pattern of invasion) 
produced a machine learning model with predictive performance as a model that 
includes other additional parameters such as grade, lymphocytic host response, 
stage of cancer, and gender (Alabi et al., 2019) (study II). 

Therefore, it is important to ensure that the parameters to be used in developing 
the machine learning-based model are independent of each other, which prevents 
a collinearity problem of input parameters. In the training of the machine learning 
model used in our analysis, the input parameters were dissimilar (Figure 32). 

 

Figure 32. The heatmap of the input variables. (Input 1 = Age [Input 1], Gender 
[Input 2], Stage [Input 3], Grade [Input 4], Tumor Budding [Input 
5], Depth [Input 6], Worst Pattern of Invasion [Input 7], 
Lymphocytic Host Response [Input 8], Perineural Invasion [Input 
9], Disease free months [Input 10], Follow-up time [Input 11]). 

Independent input parameters ensure that each input parameter has a unique 
effect on the target (output variable).  For example, with independent variables, it 
makes it possible to perform a preliminary investigation on the ability of these 
variables to clearly and distinctly stratify the target variable into clusters as shown 
in Figure 33.   
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Figure 33. The weight distance matrix of input variables to form cluster. 

As shown in Figure 33, a segment of the dark red band from the lower-right region 
to the upper right region partitions the potential risk groups associated with 
recurrence of oral tongue cancer. 

Therefore, it is advisable to use prognostic markers that have been reported useful 
in the prognostication of that type of cancer. In the case of oral tongue cancer, 
Almangush et al., reported the prognostic importance of tumor budding, depth of 
invasion and worst pattern of invasion (A. Almangush et al., 2015; Alhadi 
Almangush et al., 2015, 2018). Similarly, perineural invasion was touted as a 
marker that showed promising prognostic significance (Yang et al., 2018). These 
findings were corroborated by the study of Arora et al. and others which 
underlined the prognostic significance of the selected parameters used in this 
thesis (A. Almangush et al., 2015; Arora et al., 2017; Ganly et al., 2015; Tai et al., 
2012; Yang et al., 2018). Hence, to ensure that the machine learning-based model 
shows accurate predictive capabilities, it is important to ensure that the input 
parameters are devoid of collinearity issues, that is, they are independent, and also 
these input variables have been reported to have a significant influence in the 
prognostication of such cancers.  
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6.2 Comparison of a machine learning model with a 
nomogram 

Traditionally, the experience of clinicians plays a significant role in estimating the 
risk. However, experience is also subjective and therefore represents a great risk 
of bias and risk estimation errors (Elstein, 1999; Kudo, 2019; Vlaev & Chater, 
2006). The nomogram has been suggested to improve diagnosis and it has been 
used extensively in head and neck cancer (Ali et al., 2014; Cho et al., 2015; Ganly 
et al., 2015; Gross et al., 2008; Montero et al., 2014). Admittedly, nomograms had 
been shown to minimize risk estimates in cancer patients (Shariat et al., 2008). 
However, the emergence of technologies such as machine learning techniques have 
been shown to provide improved risk estimation for patients (Alabi, Elmusrati, 
Sawazaki-Calone, et al., 2019; Alabi, Elmusrati, Sawazaki‐Calone, et al., 2019; Bur 
et al., 2019; Karadaghy et al., 2019) (study III). Of note, the improved predictive 
accuracy exhibited by this model is important in the proper management of cancer 
for personalized medicine (Cruz & Wishart, 2007). 

The machine learning model outperformed the nomogram because it was able to 
identify and understand the hard-to-discern relationships between the input 
variables. Despite the improved risk estimation of the machine learning model, a 
concern relating to model and result interpretability exist. That is, how explainable 
is the model? In contrast, the nomogram provides a transparent, non-computer 
dependent, graphical, and appealing approach to estimating the risk of patients. 
These important features of the nomogram are also worthy of consideration in 
clinical decision making despite the lower predictive accuracy compared to the 
machine learning techniques. This is because these important characteristics 
offered by the nomogram address the concern that the results from machine 
learning models are not easily interpretable.  

Based on the improved risk estimation offered by the machine learning model and 
also the transparency provided by the nomogram, our study proposed a hybrid 
approach known as a Nomogram-Machine learning model (NomoML) for the 
effective and accurate risk estimation of patients. This hybrid approach is intended 
to provide both transparency and improved risk estimation in cancer 
management. The transparency feature is important to ensure that the shared 
decision-making between the patient and clinician can be strengthened. Similarly, 
improved risk estimation gives confident to the patients regarding the 
recommended treatment approach. Therefore, this hybrid approach (NomoML) is 
posited to offer individualized assessment and proper recommendation of the 
most appropriate adjuvant treatment for tongue cancer patients.  
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6.3 Web-based tool towards personalized medicine 

The artificial neural network performed better than all other algorithms explored 
in our studies (studies I, II, and III). With the web-based tool developed in this 
study (https://predictrecurrence.azurewebsites.net/Default.aspx), medical 
treatment tailored to the needs of an individual can be fulfilled. The 
methodological approach fulfilled the vision of personalized medicine because 
there was an integration of retrospective patients’ with evidence-based prognostic 
markers for risk estimation of patients using machine learning techniques, a 
subfield of artificial intelligence. Our web-based prognostic tool seeks to offer 
personalized medicine to the patients through an accurate risk estimate that 
enhances effective treatment planning and informed clinical decision making. 

6.4 Ethical concerns of machine learning models in 
medicine 

Despite the promising performance of machine learning models in effective cancer 
management, certain ethical concerns are raised across different quarters 
(ethicists, clinicians, patients, agencies, human right activists, and government). 
Some of these ethical concerns include data privacy and confidentiality (Arambula 
& Bur, 2020; Ma et al., 2019; Nabi, 2018), peer disagreement (contradictory risk 
estimation between the clinician and the model), reduced patients – clinicians’ 
relationship, and possible lack of shared decision making between the patients and 
the clinicians on the type of treatment plan. 

Regarding data privacy and confidentiality, various hospitals have embraced the 
digitalization of health data, especially, the electronic health records (EHR). These 
records contain the details of the patients, their ailments, clinicopathological 
parameters, genetic information, treatments, and outcomes. Therefore, the 
patients consent should be adequately sought (Geis et al., 2019; Powles & Hodson, 
2017). This is because the development of machine learning models involves 
significant usage of the patient’s data. Therefore, informed consent of the patients 
regarding the potential usage of their data seeks to prevent illegal use of their data 
and privacy breaches (Bali et al., 2019; Balthazar et al., 2018; Char et al., 2018; 
Nabi, 2018; Powles & Hodson, 2017; Yuste et al., 2017). Hospital managements 
should have a standardized data use agreement mechanism (Kohli & Geis, 2018). 
Additionally, a modern and secure scheme to prevent data privacy violations can 
be introduced (Geis et al., 2019; Y. Liu et al., 2017; Ma et al., 2019; Vayena et al., 
2018; G. Wang et al., 2015; X. Zhang et al., 2018). Of note, data privacy and 

https://predictrecurrence.azurewebsites.net/Default.aspx
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confidentiality usually lead to an important issue regarding data ownership. 
However, this issue (data ownership) is beyond the scope of this dissertation.  

Another important ethical concern is the trustworthiness of the machine learning 
model (Figure 34). This concern begins with how transparent is the machine 
learning model? In addition, possible error/malfunctioning of the model such as 
data imbalance in the training should be clearly mentioned (England & Cheng, 
2019; Park & Kressel, 2018; Vayena et al., 2018; Zou & Schiebinger, 2018) to give 
transparency to the model and consequently, the results from these models (Geis 
et al., 2019; S. H. Park et al., 2019).  

 

Figure 34. The trustworthiness principles expected from a machine learning 
model 

Therefore, the trustworthiness principles expected from a machine learning model 
include transparency, credibility, auditability, reliability, and recovery (Figure 34). 
Essentially, it is important to follow the guidelines related to transparent reporting 
(Bossuyt et al., 2015; Collins et al., 2015; England & Cheng, 2019). Bearing in mind 
the concern of transparency and a trustworthy machine learning model, any 
machine learning model to be used in daily clinical practice for prognostication 
should uphold the fundamental pillars of medical ethics (autonomy, beneficence, 
nonmaleficence and justice) (Arambula & Bur, 2020) and the ethical principles of 
transparency, credibility, auditability, reliability and recoverability (Keskinbora, 
2019) (Figure 34).  
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Peer disagreement is another ethical concern (Christensen, 2007; Kelly, 2010). 
That is, what happens when the machine learning model and the clinician have 
contrasting opinions regarding the estimated risk for a patient (Frances & 
Matheson, 2018)? It is impossible to have a dialogical engagement with the model, 
as proposed in the argumentative theory of reasoning (Mercier & Sperber, 2017). 
Should the clinician follow the risk estimate given by the ML model (Christensen, 
2007) or adhere to his/her self-convinced estimates (Enoch, 2010)? Therefore, 
there is a challenge regarding the decision to be made in this scenario. To address 
this concern, an ethical guidelines and legal frameworks to guide the usage of 
machine learning models in daily clinical practice become imperative (Figure 35). 

 

 

Figure 35. Ethical and legal frameworks for ethical agreements. 

The ethical guidelines are expected to detail what to do in such types of situations 
and address the responsibility gap, i.e., who is to be held responsible if the estimate 
from the model is wrong or when the model malfunctions. Also, the hospital and 
medical professional guidelines should be considered in the development of the 
ethical guidelines for the application of the machine learning model in daily 
clinical practices.  

Moreover, the patients’ autonomy and participation in shared decision making 
should not be violated with the use of a machine learning based model (Grote & 
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Berens, 2020). Usually, the discussion in terms of the risk estimates and treatment 
plan is a two-way conversation (face – to – face) between the clinician and the 
patient. Considering the possible introduction of machine learning models in daily 
clinical practices, the need to change from a two-way conversation to a triangular-
type of conversation (clinician – model – patient) appears inevitable (Figure 36). 
That is, in a two-way conversation, the clinicians can take into consideration other 
important factors regarding the patient to suggest a treatment plan that could 
minimise the suffering of the patient. However, with a machine learning-based 
tool, the major consideration for the model is usually to maximize the life span and 
overall survival of the patient, thereby making this model paternalistic in nature. 
In this case, the suffering and other important conditions regarding the patients 
are not considered by the machine learning model in the determination of 
treatment plan. This generally triggers the ethical concern of a shared decision 
making between the clinician and the patient (McDougall, 2019). Therefore, it is 
pertinent to establish relevant standards to determine which information from the 
machine learning model is important to be explained to the patient during the 
shared decision making process. Additionally, the patients should be duly 
informed regarding the use of a machine learning-based model in the decision 
making (Grote & Berens, 2020; McDougall, 2019; Mittelstadt & Floridi, 2016). 

 
 

Figure 36. Shared decision making between patients and clinicians. 

The possible change of paradigm to a patients–models–clinicians (three-way 
diagnostic procedure) raises the concern of humanness of clinicians and their role 
of cognitive empathy, trust, responsibility and confidentiality among clinicians 
(Boers et al., 2020). Will the clinicians still have empathy for the patients? Will the 
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role of the clinicians regarding confidentiality and responsibility be compromised? 
In addition, self-medication and self-management become serious concerns when 
the models are made available to the public. Therefore, the fundamental aspects of 
patient care may be affected (Boers et al., 2020). To mitigate these concerns, the 
ethical guidelines should be developed to guarantee patients’ empathy and 
maintain patient – clinician relationships. This is because such relationships have 
been reported to positively affect how the patients respond to their conditions, 
treatments, and overall quality of care (Kelley et al., 2014). In addition, the 
integration of the model for daily clinical practices should be done in such a way 
that restricts patients’ access.  

Therefore, it is important to set up a dedicated ethical research agenda (Boers et 
al., 2020) aimed at developing structured, standardized, and internationally 
acceptable ethical guidelines for the application of a machine learning model in 
daily clinical practice of cancer management (Arambula & Bur, 2020; Gruson et 
al., 2019; Johnson, 2019, 2019). These ethical concerns are essential to achieve 
trustworthy AI. The ethical guidelines should ensure compliance to ethical norms 
and principles, uphold fundamental human rights, offer acceptable moral values 
and entitlement (European Commission, 2019). These ethical norms and 
principles include respect for patients autonomy, encourages shared decision 
making, prevent harm to the patient, treat the patient fairly, and offer 
explainability in terms of the model itself and the result produced therein 
(European Commission, 2019). Moreover, other fundamental ethical principles 
such as honesty, transparency, non-malevolence, truthfulness, and benevolence 
should be upheld by the model (Keskinbora, 2019). Apart from these principles, 
other criticisms regarding the application of ML-based models in actual clinical 
practice should be considered in the ethical guidelines (Figure 37).   
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Figure 37. The features of a trustworthy machine learning model.  

Corresponding laws both locally (nationally) and internationally should be enacted 
by the respective governments to ensure legally binding principles (e.g., the 
European General Data Protection Regulations) (Flaumenhaft & Ben-Assuli, 2018; 
Vayena et al., 2018) and jurisdictional mechanisms for enforcement (Robles 
Carrillo, 2020). Without a doubt, the application of machine learning is poised to 
revolutionize and improve prognosis in cancer. Hence, an ethical and legal 
framework should be taken into consideration from the data collection point to the 
development and actual integration of these models into daily clinical practice. 
Some of the important ethical questions that should be answered are presented in 
Table 4.  

 

Table 4. Ethical concerns of machine learning models in cancer 
prognostication 

Ethical 
concerns 

Meaning The structural aspect of the ethical 
concerns 
 
 Ethical and moral concerns          

Privacy and 
confidentiality 
of patients’ 
data 

Approval of 
patients’ consent 
and the 
concerned 

Concern 1: Will the 
ML model developer 
use the extracted 
patients’ information 

Concern VII: How 
can the developer 
seek informed 
consent from the 
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authority to use 
patients’ data 

from the hospital 
registry without their 
consent? 

patient, hospital 
authority and 
national agency? 

Bias in the 
data used to 
develop the 
model 

Data may tend 
towards a 
particular race, 
geographical 
location, sexual 
orientation and 
so on 

Concern II: Will the 
developed ML model 
be biased due to the 
imbalance in the data? 

Concern VIII: How 
can the developer 
handle the possible 
data imbalance in 
the developed ML 
model? 

Peer 
disagreement 

Contradictory 
diagnostic or 
prognostic 
opinion between 
the model and 
the clinician 

Concern III: Will the 
clinician follow 
his/her own diagnostic 
decision in cases in 
which the ML model 
gives a contrary 
opinion? 

Concern IX: How 
can the 
discrepancy 
between 
conflicting 
diagnostic 
opinions be 
balanced? Is there 
an ethical 
guideline or 
standard that 
guides the use of a 
ML model in 
cancer 
management? 

Responsibility 
gap 

Assignment of 
responsibility 
when the ML 
models gave a 
wrong prediction 

Concern IV: Will the 
clinician be held 
responsible when the 
ML model gives a 
wrong prediction? 

Concern X: How 
should the 
clinicians interpret 
the hospital 
guidelines on the 
use of ML models? 
What does medical 
ethics stipulate? 
What are ethical 
guidelines or 
standards that 
guide the use of 
ML models in 
cancer 
management? 

Clinician–
patient 
relationship 

Fiduciary 
interaction 
between the 
physicians and 
patients may 
change 

Concern V: Will the 
patient feel 
comfortable and 
confident about the 
diagnostic decision 
made by a 
machine/computer? 

Concern X1: How 
will the clinician 
explain to the 
patient that the 
ML model is 
capable of making 
an accurate 
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decision and 
justify the decision 
made by the 
model? Will this 
continue to uphold 
clinician–patient 
relationship? 

Patients’ 
autonomy 

Ability of the 
patient to 
determine the 
best treatment 
and take part in a 
shared decision-
making process 

Concern VI: Will the 
patient be allowed to 
choose the treatment 
approach that suits 
him/her when the 
model gives a 
different treatment 
plan?  

Concern XII: How 
can the clinician 
take into 
consideration the 
treatment plan that 
best considers the 
daily activities of 
the patient? 

 

Considering the benefits of machine learning models in proper cancer 
management, a dedicated, decisive and proactive role is expected from the 
government, clinical experts, patients’ representatives, data scientists, ML experts 
and legal and human rights activists in defining these ethical guidelines. This is 
important for the machine learning models to achieve the touted benefits of 
providing supports to clinicians in making informed decisions, optimize health 
systems, and improve the quality of patient care.  

6.5 Machine learning in oral squamous cell carcinoma: 
current status, clinical concerns and prospects for 
the future 

Through proper stratification of patients into groups (high- and low risk) using 
machine learning applications, clinical practice can be guided to ensure precision 
and personalized medicine. Proper counselling regarding realistic expectations 
such as specific treatment and follow-up (post-operative adjuvant treatment) can 
be offered to the patients. For instance, high-risk patients might benefit from 
adjuvant oncological therapy after surgery. 

The support vector machine and artificial neural network are the two widely used 
machine learning models for head and neck cancer prognostication (Patil et al., 
2019) (Sharma & Om, 2014). The reason for the use of the support vector machine 
is because it is an empirical risk minimizer algorithm and avoids the danger of 
being trapped in local minima (Levitin, 2007). This makes it resistant to the 
challenge of overfitting. Thus, it is posited to discern the complex relationships 
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between the input and output parameters. Similarly, the success recorded in the 
application of the neural network for risk estimation in cancer gave rise to 
modification to contain multiple hidden layers known as deep learning neural 
networks. It has found application in complex problems such as image analysis 
(LeCun et al., 2015; Michie et al., 1994), especially in oral cancer prognostication 
(Ariji et al., 2019; Aubreville et al., 2017; Chan et al., 2019; Das et al., 2018; Jeyaraj 
& Samuel Nadar, 2019; Shams & Htike, 2017; Uthoff et al., 2018; Xu et al., 2019; 
M. Yu et al., 2019).  

Considering the prospects for the future, machine learning models should be 
explainable (both in terms of the model and results) and avoid black-box criticism 
(Bur et al., 2019; Castelvecchi, 2016; M. K. Yu et al., 2018) (Figure 38).  
 
 
 

 
 

Figure 38. Summary of the black-box of a typical machine learning model. 

Interestingly, as a result of the development trend of machine learning algorithms 
from direct algorithms to ensemble algorithms and to deep learning, the black box 
concern and explainable AI (model and results explainability) become more 
noticeable. To address this concern, it is important to evaluate the quality of the 
explanations provided by this model. An important approach to accurately 
evaluate the quality of explanations by the machine learning models is to use the 
system causability scale (SCS) (Holzinger et al., 2020). The results from the SCS 
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measures how explainable the model is, and also the level of transparency provided 
by such model. Thus, both explainability and transparency (Altmann et al., 2010; 
Bur et al., 2019; Karadaghy et al., 2019; M. K. Yu et al., 2018) (Figure 4) are 
important characteristics of a potential machine learning model for cancer 
prognostication. They offer the clinicians the opportunities to trust, understand, 
and be able to explain how the model arrived at a particular decision. Several terms 
including explainable AI, transparent ML, interpretable ML, and trustworthy AI 
have been employed to describe this phenomenon (Bernease Herman, 2017; 
European Union, 2019; Holzinger et al., 2020; Zachary, 2017).  

Furthermore, the misconception regarding the super-human nature of the 
developed model should be put into proper perspective. These notions have led to 
mixed reactions in terms of the acceptance of these models in actual daily clinical 
practices. The clinical community appeared to be divided. The first group appeared 
to appreciate these models and opined that they help revolutionize clinical 
oncology. On the other hand, there are trepidation and concerns that these models 
could replace the need for professional experience-based consideration in the near 
future (Grace et al., 2018). Therefore, it is important to correct the notion that 
machine learning models are magical diagnostic tools. Rather, several factors such 
as the amount and quality of data and experience of the machine learning experts 
– input parameters selected and training approach used play significant roles in 
the performance of the machine learning model (Bur et al., 2019; Karadaghy et al., 
2019; Shah et al., 2018).  

The generalizability of the model is another important concern for the future. Of 
note, a generalized model means that the inherent bias in the dataset has been 
accounted for in the development of the model (Heinrichs & Eickhoff, 2019). 
Therefore, a model trained with a limited amount of data may not offer reasonable 
generalizability when exposed to external data (not used in the training of the 
model) (Alabi et al., 2019; Aubreville et al., 2017; Chang et al., 2013, 2014; 
Exarchos et al., 2012; Shams & Htike, 2017; Sharma & Om, 2015; Tseng et al., 
2015; C.-Y. Wang et al., 2003; X. Wang et al., 2020). Thus, the health data 
economy should be improved to ensure that the patients’ health data can be shared 
relatively easily. With improved data infrastructure of healthcare organizations’, a 
machine learning model can be developed using integrated data (data fusion) to 
enhance generalizability. However, in the quest to ensure vibrant health data 
economy, privacy and ethical usage of data should be significantly considered (Bur 
et al., 2019; Karadaghy et al., 2019). Also, an effective health data economy address 
the concern for reduction in revenue for healthcare organizations or rendering the 
clinicians less important (Bur et al., 2019).  
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Admittedly, machine learning has a huge potential in the management of oral 
cancer. Therefore, resolving these issues related to the concerns – ethical and 
methodological – highlights important steps towards the implementation of this 
approach in daily clinical practice. These potentials include informed clinical 
decision-making, improved quality of care, precise diagnosis, effective treatment 
planning, and accurate prognostication of oral cancer. 
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7 CONCLUSION 

In this multicenter international study, we have examined and combined evidence-
based clinicopathologic parameters that have been suggested to play significant 
roles in the prognostication of tongue cancers for risk estimation of patients in 
order to achieve precision and personalized medicine. Specifically:   

A. We applied machine learning techniques that considered the shortcomings 
of the Cancer (AJCC) Tumor-Nodal-Metastasis (TNM) staging to estimate 
and predict tongue cancer patients’ outcomes such as locoregional 
recurrences and overall survival. We found that the artificial neural 
network and boosted decision tree showed promising performance in the 
risk estimation of patients’ outcomes. 

B. We evaluated the prognostic significance of the input parameters using 
machine learning techniques. Our models showed that tumor budding and 
depth of invasion are promising parameters in the prognostication of oral 
tongue cancers.  

C. We developed a machine learning-based web prognostic tool that was 
targeted at providing personalized medicine for oral tongue cancer 
patients. Our web-based tool stratifies oral cancer patients into a low- or 
high-risk locoregional recurrence.  

D. We compared the performance of a machine-learning based model to a 
model based on depth of invasion. We found that the depth of invasion 
alone is not enough for risk estimation of early oral tongue cancer patients.  

E. Additionally, we compared the performance of machine learning 
techniques to nomograms in the prognostication of outcomes (overall 
survival) for tongue cancer patients. The machine learning outperformed 
the nomogram, while the nomogram showed transparency and clarity 
(explainability) in the risk estimation of patients. Thus, we proposed a 
hybrid approach that combines improved performance (machine learning 
model) and transparency and explainability (nomogram). This hybrid was 
termed a nomogram – machine learning model (NomoML). 

F. We highlighted some ethical challenges that can affect the implementation 
of machine learning models for daily clinical practice.  

G. We examined the current status of ML applications in oral cancer in 
addition to clinical concerns and offer prospects for the future. 
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Abstract
Estimation of risk of recurrence in early-stage oral tongue squamous cell carcinoma (OTSCC) remains a challenge in the field of
head and neck oncology.We examined the use of artificial neural networks (ANNs) to predict recurrences in early-stage OTSCC.
A Web-based tool available for public use was also developed. A feedforward neural network was trained for prediction of
locoregional recurrences in early OTSCC. The trained network was used to evaluate several prognostic parameters (age, gender,
T stage, WHO histologic grade, depth of invasion, tumor budding, worst pattern of invasion, perineural invasion, and lympho-
cytic host response). Our neural network model identified tumor budding and depth of invasion as the most important prognos-
ticators to predict locoregional recurrence. The accuracy of the neural network was 92.7%, which was higher than that of the
logistic regression model (86.5%). Our online tool provided 88.2% accuracy, 71.2% sensitivity, and 98.9% specificity. In
conclusion, ANN seems to offer a unique decision-making support predicting recurrences and thus adding value for the man-
agement of early OTSCC. To the best of our knowledge, this is the first study that applied ANN for prediction of recurrence in
early OTSCC and provided a Web-based tool.
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Introduction

Oral tongue squamous cell carcinoma (OTSCC) typically dis-
plays aggressive behavior even at an early stage [1, 2].
Inaccurate assessment of OTSCC behavior may lead to im-
proper management either as ineffective treatment or as unnec-
essary overtreatment. Therefore, identifying patients with low-
risk or high-risk OTSCC can influence management decision-
making and guide the selection of treatment approach. Several
prognostic markers have been suggested to improve the prog-
nostication of OTSCC [3, 4]. The advantages of evaluating
some histopathologic prognostic markers in the examination
of routine hematoxylin and eosin (HE)-stained slides include
their low cost and time-saving aspects (as there is no need for
additional staining) as well as the fact that these markers are
potentially ready to be included in the routine pathology re-
ports. Such advantages have motivated researchers to study
various histopathologic features, and the recent evidence has
confirmed the prognostic value of certain markers including,
for example, tumor budding [5], depth of invasion [6], worst
pattern of invasion [7], and perineural invasion [8]. It is neces-
sary to mention that the previous studies on these markers have
used traditional tools for data analysis, which have not pro-
duced any simple approach to utilize them as multiple prognos-
tic factors should be applied to aid decision making.

The use of machine learning, a branch of artificial intelli-
gence, in medical applications has increased widely in recent
years; this has been driven by the rapidly accumulating vol-
ume of medical data. Similarly, artificial neural networks
(ANNs) are an integral part and a subfield of machine learn-
ing. An ANN is an innovative hardware/software model that
functions in a way inspired by the human brain [9–12]. In
addition, ANN seems effective since the complex relationship
between input and output can be accurately modeled with a
relatively simple computer programming code. Structurally,
ANN comprises input, hidden, and output layers (Fig. 1).

ANNs have an effective learning ability, and they can learn
the relationship within a dataset. This effective learning char-
acteristic has made ANN a good choice for predictive infer-
ences that can be used to provide support for clinical decision-
making. Many recent studies have applied ANNs for the prog-
nostication of different cancers [9–12]. ANNs are adapted sta-
tistical models that analyze data for the prediction of outcomes
in medical applications [13, 14], such as in colorectal cancer
[15] and acute pancreatitis [16]. Spelt and collaborators applied
ANN to predict survival in colorectal cancer, revealing that
ANN produces better C-index than Cox regression [17].

The use of ANNs specifically for early OTSCC has not
been previously studied. Thus, this study examined the use
of ANN in prognostication of early OTSCC. We examined
the use of ANNs to estimate the risk of locoregional recur-
rence in early-stage OTSCC. The neural network toolbox of
MATLAB (R2018b version) was used to create, train, and
simulate ANN for pattern recognition and classification [18].
Furthermore, the Microsoft Azure machine learning studio
(Azure, 2018) was used to develop a Web-based prognostic
estimator that can provide a prediction for each individual case
in daily practice.

Material and methods

Patients

The clinicopathologic characteristics of 311 patients
with cT1-2cN0cM0 OTSCC treated between 1979 and
2009 at the University Hospitals of Helsinki, Oulu,
Turku, Tampere, and Kuopio (all in Finland) and at
the A.C. Camargo Cancer Center in Sao Paulo, Brazil,
were collected. The histopathologic parameters are brief-
ly summarized in Table 1. The use of patient samples
and data inquiry in this study were approved by the
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Fig. 1 Structure of ANN with prognostic factors for training the network (WPOI worst pattern of invasion, LHR lymphocytic host response, PNI
perineural invasion)
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Finnish National Supervisory Authority for Welfare and
Health (VALVIRA), and by the Ethics Committee in
Research of the Piracicaba Dental School, University
of Campinas, São Paulo, Brazil.

Prognostic parameters

Clinicopathologic variables including age, gender, T
stage (AJCC 7th), and WHO grade were included as
classic prognostic factors. All histopathologic parameters
were evaluated on postoperative surgical specimens
stained with routine hematoxylin and eosin. The histo-
pathologic parameters include the WHO histological
grade, tumor budding, depth of invasion, worst pattern
of invasion (WPOI), lymphocytic host response (LHR),
and perineural invasion (PNI). We selected these prog-
nostic factors based on our recent reports on the signif-
icance of tumor budding [19, 20], depth of invasion,
and worst pattern of invasion in early OTSCC [7]. Of
note, a recent study on a large cohort of OSCC [21]
underlined the prognostic significance of all the prog-
nostic factors that we used to construct the ANN.

ANN for prediction of locoregional recurrence

The dataset of 311 cases was loaded into the MATLAB
workspace (The MathWorks, Inc., USA). An example of a
feedforward neural network used was the basic feedforward net-
work also known as multi-layer perceptron (MLP), with sigmoid

hidden and softmax output activation function [22]. It is a two-
layer network where the training of the network is based on the
definition of a suitable error function, which is optimized with
respect to the weights and biases in the network [22].

Prediction of locoregional recurrence

A supervised learning method was used in this study. After
loading the dataset into the MATLAB workspace, prognostic
factors including age, gender, stage, WHO histologic grade,
tumor budding, tumor depth, WPOI, LHR, and PNI were set
as inputs for the neural network, and locoregional recurrence
was considered as the output. The neural network representa-
tion of the inputs, hidden neurons, and the outputs of the
training process is shown in Fig. 1.

The dataset is usually divided into 70% training, 15% val-
idation, and 15% testing sets [18, 23, 24]. In some instances,
the validation and testing sets can be combined and consid-
ered to be testing sets only. This was the case with the Azure
machine learning studio [25]. The prediction of locoregional
recurrence was thought to be a classification task which is a
form of pattern recognition. Therefore, the network was
trained using patternnet function. It creates a standard solution
neural network that classifies inputs into a target. The final
process involves training the configured network for predic-
tion [26, 27]. Follow-up time and disease-free time were in-
cluded in the training of the network. The network was trained
using scaled conjugate gradient backpropagation and the per-
formance of the network was computed using cross-entropy as

Table 1 Summary of
histopathologic parameters
included for neural network
analysis and development of the
Web-based tool

Variable Categories Definition Total Recurrence

WHO grade
Grade I Well-differentiated tumor 105 28
Grade II Moderately differentiated tumor 131 38
Grade III Poorly differentiated tumor 75 23

Tumor budding*
None There is no tumor budding 114 26
Low Tumor has less than five buds 102 24
High Tumor has five buds or more at the invasive front 95 39

Depth of invasion
Superficial Tumor less than 4 mm in depth 116 26
Deep Tumor with 4 mm in depth or deeper 195 63

Worst pattern of invasion (WPOI)
Type 1; Type 2; Type 3** Pushing border; finger-like growth; large tumor islands 78 15
Type 4 Small tumor islands (≤ 15 cancer cells) 190 61
Type 5 Tumor satellites 43 13

Lymphocytic host response (LHR)
Type 1 Strong 53 16
Type 2 Intermediate 116 35
Type 3 Weak 142 38

Perineural invasion (PNI)
Absent PNI was not observed 269 73
Present PNI was observed 42 16

*Tumor budding defined as a single cancer cell or cancer cluster of four cancer cells or less

**Types 1, 2, and 3 of worst pattern of invasion were considered in one risk group
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shown in Fig. 2. The overall performance of this trained net-
work was measured in terms of accuracy and area under re-
ceiving characteristic curve. Additionally, we compared the
performance of this ANNmodel with logistic regression mod-
el in terms of accuracy.

Analyses of the importance of prognostic parameters

To examine the importance of each of the prognostic factors,
each factor was removed from the inputs and the network was
re-trained. The performance error was observed. This process
was repeated for all the inputs shown in Fig. 1. Furthermore, it
is important to gain insight into the input variables, recognize
the pattern between them, and their level of correlation.
Therefore, clustering offers one unique approach to achieve
these. It is another excellent application of neural network,
though mostly used in unsupervised learning. In this study,
clustering was performed with a self-organizing map (SOM).
The SOM is the most commonly used type of neural network
for clustering. It has a competitive layer with neurons arranged
in a grid form and hexagonal topology. The SOM network is
trained with the input variables with each of them being con-
nected to each of the neurons using the weight vector. The input
data have been visualized in 2D using heatmap. Heatmaps
visualize data through setting variations in coloring. The
heatmap (weight planes/component planes) showing different
input variables is shown in Supplementary Fig. 1. Additionally,
the clustering of patients into two groups of either high- or low-
risk recurrence is given in Supplementary Fig. 2.

Implementation of the Web-based prognostic tool

The process of Web deployment using the Azure machine
learning Web application templates (Microsoft Corporation,
USA) involves two phases. The first phase is to develop a

predictive model using a machine learning studio. In the sec-
ond phase, the predictive model was then accessed and thus
set up as a Web service directly from Azure machine learning
studio. The Web tool for recurrence prediction can be freely
accessed on the Microsoft Azure cloud service [25]. Users of
this Web site can enter prognostic factors to generate a per-
sonalized estimation of locoregional recurrence for the patient.
The Web page is https://predictrecurrence.azurewebsites.net/
Default.aspx. We tested the accuracy of our Web-based prog-
nostic tool using 59 new cases of early OSCC treated between
1998 to 2008 at the UOPECCAN Cancer Hospital (Cascavel,
Parana, Brazil). These cases were included in our previous
study [28], but they were not included in the training of the
ANN and were not included in the development of our Web
page.

Results

The clinicopathologic characteristics of these patients have
been previously reported [19]. This cohort consists of 165
men and 146 women. The distribution of tumors according
to their diameter showed that 124 cases were staged T1 and
187 were T2. The number of patients with disease recurrences
was 89 (28.6%). All cases were clinically N0 and M0.
Similarly, the new cohort of 59 cases (46 men, 13 women)
differs from the first one of 311 cases used in the training. The
distribution according to tumor diameter showed that 22 pa-
tients had stage T1 and 37 stage T2. In terms of the distribu-
tion according to tumor budding, 14 patients showed no bud-
ding, 19 patients had less than five buds, and 26 patients had
five buds or more. The mean age at diagnosis within this
cohort was 56.2 (range 31–84). The number of patients with
a disease recurrence was 19 (32.2%) in this cohort that was
used to test the Web-based tool.

Our ANN model recognized tumor budding and depth of
invasion as the most important histopathological prognostic
parameters for the network to effectively predict locoregional
recurrence. The heatmap presented (Supplementary Fig. 1)
showed that the prognostic significance of input variables
were independent. Also, the SOM network appeared to have
clustered the patient into two distinct groups of high- and low-
risk recurrence (Supplementary Fig. 2). In terms of accuracy
of the network, the ANN yielded an overall accuracy of
92.7%. The accuracy of the ANN was higher than that given
by the logistic regression model which gave an accuracy of
86.5%. The receiving operating characteristic curve of the
network is given in Fig. 3. The error histogram of the training,
validation, and testing phases is shown in Fig. 4a.

An overall accuracy of 88.2% was obtained with the Web
prognostication tool. This was actually the overall proportion
of properly classified instances between the outputs and the
targets. Other metrics from the evaluation model included
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Fig. 2 The network training performance measure using cross-entropy
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recall, precision, and area under receiving operating character-
istics curve (AUC). Recall, which is also known as sensitivity,
was 71.2% and specificity was 98.9%. The positive and neg-
ative predictive values were 97.7% and 84.5%, respectively.
The C-statistics (C-index) value was 97.3%. It is necessary to
mention that C-index equals to the area under the receiving
operating characteristics (ROC) curve shown in Fig. 4b. The
performance measures for both MATLAB and Azure Web
services are summarized in Table 2.

Testing/validation of the Web site with new cases

The Web site was tested with a new cohort of cases. Of the 59
cases tested, 48 cases were predicted correctly while 11 cases
gave incorrect predictions when compared with the actual
status of locoregional recurrence recorded by the hospital.
For this new cohort of cases, an 81.4% overall accuracy was
achieved using this Web-based tool. A sensitivity value of
78.9% was recorded indicating more than two thirds of the

cases under consideration. With this high value of sensitivity,
false-negative cases would be greatly reduced and would lead
to reduction in classification (prediction) error. The overall
performance metrics of the tested cohorts using our Web-
based prognostic tool is presented in Table 3.

Furthermore, a specificity value of 82.5% was achieved
with these test cases. In other words, the data from 33/40
patients with “low-risk” truly gave a prediction of “low-risk”
in the Web-based tool. A positive predictive value of 68.2%
was observed, pointing out the likelihood of a high-risk test
result in individuals who actually developed a recurrence.
Conversely, a negative predictive value of 89.2% was ob-
served. The latter value indicates the probability of a low-
risk result in the Web-based tool in individuals who are cases
of a true low risk for recurrence. Finally, from the
abovementioned performance information, a positive likeli-
hood ratio (LR+) of 4.5 and a negative likelihood ratio (LR−)
of 0.25 were computed. A LR+ indicates how much more
likely it is for the Web-based tool to predict a high risk for

Virchows Arch (2019) 475:489–497 493
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recurrence compared to a low risk for recurrence. Similarly,
the LR− value indicates howmuch less likely it is for theWeb-
based tool to predict a low risk for recurrence.

Discussion

In this study, we explored the use of ANN to predict
locoregional recurrences in early-stage oral tongue cancer
and we reported a better performance for the ANN compared
with logistic regression. We also examined the odd ratios of
each of these prognostic parameters. In addition, we devel-
oped a Web-based tool that provides the prediction as “low-
risk” or “high-risk” of recurrence. The histopathologic param-
eters used in this study (and involved in our Web-based tool)
were selected based on findings in our previous study [19] and
our recent meta-analysis of many studies reporting the impor-
tance of tumor budding [20]. Depth of invasion and worst
pattern of invasion have also shown promising prognostic
significance in recent research by our group [7] and others
[29, 30]. Perineural invasion was a valuable marker in other

recent studies [8, 31]. In early OSCC, Arora et al. [21] have
recently introduced a prognostic model including all the his-
topathologic parameters that were included in our current
study. Of note, all histopathologic parameters included in this
study can be evaluated using routine hematoxylin and eosin
staining, and some of those parameters are routinely included
in pathology reports. Moreover, multivariate analyses of many
studies have underlined the prognostic significance of the se-
lected parameters [8, 19, 21, 29, 31].

This is the first study that used an ANN and provided a
Web tool for the prediction of recurrence in early-stage
OTSCC. A neural network seems to have the potential to offer
a better approach to data analyses and pattern recognition
within data. It can build a nonlinear statistical model to exam-
ine biological systems. There is no need to identify key prog-
nostic markers or to form a hypothesis in analyses using ANN.
Interestingly, the input variables were shown to be indepen-
dent of each other (Supplementary Fig. 1) as the connection
patterns of these inputs are dissimilar; hence, each of these
variables represents a different concept on the target variable.
Thus, the issue of collinearity inmachine learning is prevented

Table 2 The overall performance
measures of the network Software Performance measures for the training of the network

MATLAB 0.24471

Network performance error

92.7%

Accuracy
Azure Machine Learning (ML) Studio 88.2%

Accuracy

71.2%

Sensitivity

98.9%

Specificity

0.824

F1 Score

97.3%

C-index/AUC
97.7%

Positive predictive value (PPV)

84.5%

Negative predictive value (NPV)
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Fig. 4 a Error histogram showing the difference between the targets and outputs. b An indicative receiver operating characteristics (ROC) curve from
Azure for the Web deployment
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(no two input variables have the same effects on the target
variable). Therefore, a band of dark segments from the
lower-right region to the upper-right region demonstrate the
potential group associated with recurrence of OTSCC
(Supplementary Fig. 2).

While age of patient, tumor budding, depth, worst pattern
of invasion, and perineural invasion showed significant asso-
ciation in terms of odd ratios to the recurrence of OTSCC,
other parameters such as gender, clinical stage, histopatholog-
ical grade, lymphocytic host response, and follow-up time
showed low odd ratios but were included in the neural net-
work as confounders to report independence of the significant
markers and to improve the performance of ANN. Our study
assessed histopathologic parameters based on postoperative
surgical specimens. Therefore, patients that were recognized
as “high-risk cases” (according to our Web-based tool) might
benefit from postoperative adjuvant treatment (e.g., radiother-
apy). Of note, recent research has showed that some histopath-
ologic parameters (e.g., PNI, depth of invasion, and tumor
budding) that were included in our study can be evaluated
preoperatively either using magnetic resonance imaging [32]
or satisfactory diagnostic biopsies [20]. All these are addition-
al parameters to tumor grade, which is routinely reported for
preoperative biopsies. Thus, further research should consider
examining our Web-based tool in a large cohort with preop-
erative assessment of these histopathologic parameters. Such
approach has the potential of being of great importance for
treatment planning.

In the Microsoft Azure machine learning studio, a two-
class neural network algorithm was used to develop the
Web-based prognostic tool. It was able to produce reasonably
well true positive and false negative values in recurrence pre-
diction and had a high precision value of 97.7%. This value is
also known as the positive predictive value, which explains
the performance of our Web-based tool. The true positive and
false positive rates can be inspected in the receiving operating
characteristics (ROC) plot, also known as a precision/recall
plot, and the corresponding area under the ROC curve (Fig.
4b). In our study, the area under the characteristic curve was
97.3% with a curve that tends towards the upper left corner
(Fig. 4b) and far from the diagonal. This suggests a good

performance of the model. The values of the likelihood ratios
(LR+ 4.5/LR− 0.25) implied that our Web-based tool could
effectively predict the cases associated with or without a re-
currence of OTSCC.

This study also showed that the performance accuracy of
ANN was higher than the logistic regression model. Other
studies have compared ANN with traditional statistical
models. For example, the study by Faradmal et al. demonstrat-
ed that the ability of prediction with ANN was higher than
with the log-logistic regression model in predicting breast
cancer relapse [33]. Similarly, Kazemnejad et al. compared
ANN with binary logistic regression based on their perfor-
mance in differentiating between disease-free patients and pa-
tients with impaired glucose tolerance or diabetes mellitus
diagnosed by fasting plasma glucose [34].

In this study, the feedforward neural network produced a
better performance and predicted the recurrences reasonably
well by using enough neurons in the hidden layer. Computing
the performance of the network using cross-entropy ensures a
trained network that heavily penalizes outputs that are ex-
tremely inaccurate, with only little penalty for fairly correct
classifications. Thereby, it proved to be a network with good
classification capabilities. Hence, our findings indicated that
ANN is an effective approach for predicting recurrences in
early OTSCC. The Web-based tool provides the prediction
as “low-risk” or “high-risk” of recurrence. Thus, the decision
of multimodality treatment can be taken for those cases at high
risk although they are diagnosed at early stage.

It is important to mention that our Web-based tool was
trained with a limited number of cases. Therefore, it is possible
that it will miss some predictions. In addition, the values with-
in the follow-up time inmonths and disease-free time columns
are not sufficiently diverse. This means that prediction from
the Web-based tool for extremely high values of follow-up
time could not be relied upon. Accordingly, feedback from
users of this Web-based tool would be greatly appreciated. It
is also hoped that this tool would be re-trained at certain in-
tervals for better prediction based on the anticipated feedback
for better prediction capacity. In addition, our current neural
network did not include some parameters such as margin sta-
tus and pTNM stage due to unavailability of such information

Table 3 The performance of the Web-based tool on the newly tested cases

Patients with OTSCC

Web-based tool for the prediction
of OTSCC recurrences

High-risk OTSCC recurrences Low-risk OTSCC recurrences Total Other performance metrics
15
True positive

7
False positive

22
Total_Test-positive

68.2%
Positive predictive value (PPV)

4
False negative

33
True negative

37
Total_Test-negative

89.2%
Negative predictive value (NPV)

19
Total_High-risk OTSCC recurrences

40
Total_Low-risk OTSCC recurrences

59
Total_Test-cases

4.5/0.35
Positive/negative likelihood ratios

78.9%
Sensitivity

82.5%
Specificity
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for several cases in our multicenter cohort of six institutions.
Thus, we were not able to include these two parameters during
the construction of our neural network, and we advise includ-
ing such parameters in the further development of the neural
network of early OTSCC.

In conclusion, the use of ANN is an efficient means to
predict recurrence in early OTSCC. The combination of
markers that were presented in our Web-based tool were able
to predict recurrence successfully. With our Web-based tool,
patients could be identified as high or low-risk individuals,
which makes it easier to assess their prognoses. Those high-
risk cases were identified with aggressive histopathologic
characteristics (e.g., high intensity of tumor budding and deep
invasion). Thus, such cases might benefit from elective neck
dissection and postoperative oncological therapy in addition
to an individualized enhanced posttreatment follow-up pro-
gram. To further develop this Web-based tool, a multicenter
setting should be applied to add more data to improve its
effectiveness.
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A B S T R A C T

Background: The proper estimate of the risk of recurrences in early-stage oral tongue squamous cell carcinoma
(OTSCC) is mandatory for individual treatment-decision making. However, this remains a challenge even for
experienced multidisciplinary centers.
Objectives: We compared the performance of four machine learning (ML) algorithms for predicting the risk of
locoregional recurrences in patients with OTSCC. These algorithms were Support Vector Machine (SVM), Naive
Bayes (NB), Boosted Decision Tree (BDT), and Decision Forest (DF).
Materials and methods: The study cohort comprised 311 cases from the five University Hospitals in Finland and
A.C. Camargo Cancer Center, São Paulo, Brazil. For comparison of the algorithms, we used the harmonic mean of
precision and recall called F1 score, specificity, and accuracy values. These algorithms and their corresponding
permutation feature importance (PFI) with the input parameters were externally tested on 59 new cases.
Furthermore, we compared the performance of the algorithm that showed the highest prediction accuracy with
the prognostic significance of depth of invasion (DOI).
Results: The results showed that the average specificity of all the algorithms was 71% . The SVM showed an
accuracy of 68% and F1 score of 0.63, NB an accuracy of 70% and F1 score of 0.64, BDT an accuracy of 81% and
F1 score of 0.78, and DF an accuracy of 78% and F1 score of 0.70. Additionally, these algorithms outperformed
the DOI-based approach, which gave an accuracy of 63%. With PFI-analysis, there was no significant difference
in the overall accuracies of three of the algorithms; PFI-BDT accuracy increased to 83.1%, PFI-DF increased to
80%, PFI-SVM decreased to 64.4%, while PFI-NB accuracy increased significantly to 81.4%.
Conclusions: Our findings show that the best classification accuracy was achieved with the boosted decision tree algo-
rithm. Additionally, these algorithms outperformed the DOI-based approach. Furthermore, with few parameters identified
in the PFI analysis, ML technique still showed the ability to predict locoregional recurrence. The application of boosted
decision tree machine learning algorithm can stratify OTSCC patients and thus aid in their individual treatment planning.
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1. Introduction

Oral tongue squamous cell carcinoma (OTSCC) refers to squamous
cell carcinoma that arises from the anterior two thirds of the tongue
(also known as mobile tongue). It is usually reported as part of oral
squamous cell carcinoma (OSCC), which includes all anatomical sub-
sites of the oral cavity. A recent international study including 22 re-
gistries reported 89,212 incident cases of OTSCC and an increasing
annual incidence [1], which has been confirmed by others [2]. The
primary treatment of choice for OTSCC is surgical excision. However,
even early-stage tumors may express a pattern of aggressive behavior
[3,4]. Thus, OTSCC with aggressive behavior and those with advanced
stage require multimodality treatment including neck dissection and
adjuvant (chemo)radiotherapy. Therefore, it is important to precisely
estimate the clinical behavior and outcome of OTSCC. Predicting the
risk of recurrences is one of the important assessments for the clinician
during treatment planning. More importantly, early diagnosis and
predicting the risk of recurrences form a milestone in the management
of OTSCC as the recent analysis of Finnish cases reported that about
67% of OTSCC cases were diagnosed at an early stage (I-II) [5]. With
accurate and timely recurrence prediction, high-risk cases of OTSCC
can be identified and multimodality treatment applied accordingly. In a
large cohort of early OTSCC, about one fourth of cases (27.8%) devel-
oped a recurrence, and all of them might have benefitted from early
prediction and corresponding treatment planning [6].

Many recent studies have examined the use of machine learning
(ML) techniques for prognostication of different cancers [7,8]. Inter-
estingly, predicting patient outcome by ML techniques has shown better
accuracy than Cox regression [9]. This is why the use of ML has been in
active research focus during recent years. For instance, ML techniques
have been used to predict the outcome of various cancer types [10–12]
and a web-based tool based on artificial neural network to predict
outcome in cancer has been reported [13].

In this study, we examined four different ML algorithms, namely,
support vector machine (SVM), naive Bayes (NB), boosted decision tree
(BDT), and decision forest (DF) in terms of their performances to

predict locoregional recurrence in OTSCC patients. Also, the predictive
performance of a permutation feature importance (PFI) of these algo-
rithms was evaluated. Many researchers have used this approach for
comparing ML techniques for survival prediction in different malig-
nancies like breast and lung cancers [14–17]. Tapak et al. examined six
ML algorithms and two traditional methods for the prediction of breast
cancer survival and metastasis [15]. In our study, we aimed to identify
the best algorithm that would effectively classify patients as either low-
risk or high-risk OTSCC recurrence. The algorithm with the overall best
classification performance was further compared to a recently reported
risk model based on the depth of invasion (DOI) [18]. This comparison
was a result of the fact that DOI of 4mm or deeper has been considered
to be a factor that accurately predicts locoregional recurrence [6].
Moreover, the recent American Joint Committee on Cancer (AJCC) 8th
edition incorporated depth of invasion (DOI) into T-stage [19]. Simi-
larly, the study by Almangush et al. suggested that DOI is one of the
strongest pathological predictors for locoregional recurrence [6]. This
suggestion is in agreement with reports by others [20,21].

We hypothesize that the application of the above-mentioned su-
pervised learning classifiers may be used in the prediction of OTSCC
locoregional recurrences and will thereby add value for the manage-
ment of OTSCC.

2. Material and methods

2.1. Patients

We used data from a study cohort comprising patients treated at the
five Finnish University Hospitals of Helsinki, Oulu, Turku, Tampere,
and Kuopio and at the A.C. Camargo Cancer Center, Sao Paulo, Brazil.
This is a multicenter study from six institutions and data were provided
for many cases as locoregional recurrences without specification. The
clinicopathologic characteristics of this cohort have been previously
reported and summarized [22]. The primary treatment for all cases was
surgical excision. In addition, some cases received neck dissection and/
or adjuvant radiotherapy. The parameters included were age, gender, T-

Table 1
The parameters contained in the dataset and their respective descriptors.

Number Parameters Description Type

1 Age Age at the time of diagnosis. Discrete
2 Gender The sexual orientation of the patient Categorical

1 = Male; 2 = Female
3 T-stage T stage describing tumor size Categorical

1 = T1; 2=T2.
4 WHO Grade Histopathologic grading according to World Health Organization (WHO) criteria Categorical

1 = Grade I; 2 = Grade II; 3 = Grade III
5 Tumor budding Tumor budding is defined as the presence of single cells or small clusters of cancer

cells detached from the main tumor mass
Categorical
0 = No budding; 1 < 5 buds; 2 for ≥ 5 buds.

6 Tumor depth This is the measure of tumor depth of invasion. It was measured in millimetres (mm) Categorical
1 for < 4mm,
2 for ≥ 4mm

7 WPOI Worst pattern of invasion Categorical
Value of 0 for WPOI type 1 to 3; Value of 1 for WPOI type 4;
Value of 3 for WPOI type 5.

8 LHR Lymphocytic host response Categorical
Value of 0 for LHR type 1; Value of 1 for LHR type 2; Value of
3 for LHR type 3.

9 PNI Perineural invasion Categorical
0 = Absent; 1 = Present

10 Treatment This indicates the type of treatment offered for the patient. It could either be surgery
alone or adjuvant (chemo)radiotherapy in addition to the surgery

Categorical
0 = Surgery alone
1 = Surgery+Adjuvant (chemo)radiotherapy

11 Neck treatment This variable indicates whether neck dissection was performed or not Categorical
0 = No neck dissection
1 = Neck dissection performed.

12 Recurrencea The occurrence of disease after treatment Categorical
0 = Low-Risk; 1 = High-Risk

a Recurrence was considered as the output/target label.
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stage, WHO grade, tumor budding, depth of invasion, worst pattern of
invasion (WPOI), lymphocytic host response (LHR), and perineural in-
vasion (PNI) as shown in Table 1. Several studies have confirmed the
prognostic importance of these variables [6,13,22–25]. Neck dissection
and adjuvant radiotherapy were also included in the machine learning
algorithms due to the impact of variation in the treatment modality that
might influence the risk of recurrence. The use of patient samples and
data inquiry were approved by the Hospital Research Ethics Commit-
tees of all individual hospitals, by the Finnish National Supervisory
Authority for Welfare and Health (VALVIRA) and by the Brazilian
Human Research Ethics Committee.

2.2. The classification algorithms examined

The algorithms considered in this study are basic and have been
commonly used in other cancer studies [14–18].

2.2.1. Support vector machine (SVM)
Support vector machine (SVM) is an elegant and powerful ML

technique extensively used for both classification and regression pro-
blems [26]. This is due to its ability to classify non-linearly separable
patterns by projecting the original features into a higher dimensional
space (hyperplane) [27].

2.2.2. Naive Bayes (NB)
Naive Bayes (NB) is known as Bayes point machine in the Azure ML

studio and it is based on the generally-known Bayes theorem [26,27].
The algorithm operates by learning and estimating the prior probability
of belonging to each class using the training data [27,28].

2.2.3. Boosted Decision Tree (BDT)
Boosted Decision Tree (BDT) with gradient boosting machine was

the subtype of BDT used in this study. It is an ensemble learning method
where the second tree corrects the errors of the first tree, the third tree
corrects the errors in the second trees, the fourth tree corrects the errors
in the third trees, etc. Predictions are based on the entire ensemble of
trees [27,28].

2.2.4. Decision Forest (DF)
Decision Forest (DF) relies on the combination of multiple related

models to get better results and a more generalized model. Therefore, it
works by using a bootstrapped sample of data to build each tree where
only a proportion of the variable set is considered for each tree. Each
tree in the decision forest outputs a frequency histogram of labels that is
non-normalized. These frequency histograms were aggregated in the
process that sums these histograms and then normalizes the results to
get the probabilities for each label [27].

2.2.5. Permutation Feature Importance (PFI)
Permutation Feature Importance (PFI) is a model-agnostic ranker

feature ranker that computes the scores for each of the variables con-
tained in a dataset. It basically examines the contribution of each fea-
ture to the overall predictive performance of the algorithm [27].

2.3. Evaluation of the performance of the algorithms

The performance metrics were aimed to evaluate how the algo-
rithms performed [29–31]. Most of these metrics have been previously
used in other studies [15,32]. However, in addition to accuracy, only
two (F1 score and specificity) of these statistical measures that are
medically more relevant in the clinic, were discussed in the current
study.

3. The training-validation phase for the algorithms in Microsoft
Azure for prediction of recurrence

Microsoft Azure Machine Learning Studio (Azure ML 2019) was
used in this study [27]. The data was preprocessed to handle missing
values. The input parameters were age, gender, stage, grade, tumor
budding, depth of invasion (DOI), worst pattern of invasion (WPOI),
lymphocytic host response (LHR), perineural invasion (PNI) and treat-
ment given, while the target output was locoregional recurrence. Dis-
ease-free survival (DFS) time of the cases ranged from 1 to 267 months.
Specifically, the DFS in cases with recurrence varied between 1 and 120
months. Firstly, a potential class imbalance with respect to the number
of patients who experienced a tumor recurrence in the target class
(locoregional recurrence) was handled by up-sampling in order to
balance the classes used in the training. Synthetic minority over-
sampling technique (SMOTE) [33] offers a better way to handle im-
balance than simply duplicating existing cases. The dataset and the
corresponding samples are therefore more general [33]. The dataset
was divided into two sets of training and validation. Due to the rela-
tively limited amount of data, a 5-fold cross validation was used with
50% training and 50% validation {50:50} percentage splitting sets
[15]. Each of the algorithms of interest was then configured as shown in
Fig. 1 [27,28]. After training, the algorithms were evaluated for the
various quality metrics (Table 3.

Furthermore, these algorithms were further tested with new cases
(Section 3.1). The result obtained from this approach was considered as
the gold standard in this study as it gives an account of how the algo-
rithm is expected to predict in reality. Also, it addresses any concerns
about the generalizability of the trained models. In addition, the con-
tribution of each of the input variables on the predictive ability of each
model was examined using permutation feature importance (PFI) ana-
lysis. Their contributions were given in the form of PFI-performance
scores. To avoid bias in the algorithm, disease-free survival and treat-
ment were removed from the PFI analysis that was aimed to examine
the predictive ability of each variables. The input features with positive
scores were selected. Also, only one of the inputs was selected when
two or more inputs give the same negative score. The variables with
least scores were not selected. These selected variables were used to
train the algorithms. The given accuracies in the PFI analysis were
compared with the accuracies obtained without PFI. Similarly, the PFI-
based algorithms were tested with new cases.

Fig. 1. The training process in azure machine learning studio.
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3.1. Testing performance of the model with new cases

In this phase, the trained algorithms were tested with 59 new cohort
cases that were not included in the training or in the validation sets
(Fig. 1). These new independent data were obtained from a cancer
center in Brazil. The results are presented in Table 4. The PFI-based
models were also tested with these new cases as presented in Table 5.

3.2. Comparison with the depth of invasion (DOI)

The algorithm that showed the highest overall accuracy when tested
with these new external cases (Section 3.1) was also compared with the
depth of invasion (DOI) based model as shown in Fig. 3.

4. Results

4.1. Data description

The study cohort included 311 patients with cT1-T2cN0M0 OTSCC;
165 men and 146 women, resulting in a male-to-female range of 1.1:1.
Out of these 311 cases, 57 cases had missing details about any post-
operative treatment information. Therefore, these cases were excluded
and the machine learning training was performed with 254 cases. These
cases included 141 men and 113 women with the mean age at diagnosis
was 61.51 (SD ± 14.81: range 10–95) and the median age was 62.0
years. The distribution according to tumor diameter showed that 100
patients had stage T1 and 154 stage T2. The histopathologic parameters
are briefly summarized in Table 2. In terms of the treatment, 157 pa-
tients had surgery alone while 97 had adjuvant (chemo)radiotherapy
(92 radiotherapy and 5 chemoradiotherapy). Similarly, 185 had neck
dissection while 69 had no neck dissection performed. Thus, from the
185 patients who had neck dissection, 43% were exposed to adjuvant
radiotherapy while 57% had only surgery as single-modality treatment.
Similarly, out of the 69 cases who had no dissection performed, 25%
were exposed to adjuvant radiotherapy while 75% had only surgery.

The number of patients with disease recurrences was 68 (26.8%).
While the disease-free survival (DFS) time ranged from 1 to 267
months, the DFS time for cases with a locoregional recurrence was
between 1 to 120 months. Overall, 89.6% of the recurrences occurred in
the first 2 years, while 10.45% recurrence was recorded after 2 years.
The mean follow-up time was 75 months (SD ± 64.6; range 1–258
months) and the median was 60 months. Similarly, for the 59 new
OSCC cases used for external testing, DFS time varied between 1 to 146
months. Also, 74% had a recurrence in the first year, 16% after the first
and before end of second year, and 10% of the patients recurred after
the second year. The mean age in this external validation cohort was
56.2 years (range, 31–84 years). All these new cases had neck dissec-
tion, where 34 cases had surgery alone while 25 had adjuvant (chemo)
radiotherapy (22 radiotherapy and 3 chemoradiotherapy). The DOI
model performance in terms of accuracy in the training set was 47.2%
and the overall accuracy in the new cohorts used for external validation
was 63%.

4.2. Performance metrics for the algorithms

The distribution of true and false positives, true and false negatives,
and other performance metrics for the algorithms in the training phase
are given in Fig. 2a and Table 3, respectively. During the training phase,
decision forest showed the highest accuracy while naive Bayes and
decision forest showed the best area under receiving operating char-
acteristic (AUC of ROC). When these algorithms were tested on the 59
new external cases from the cancer center in Brazil, the average spe-
cificity of all the algorithms was 71%. The tested algorithms i.e. support
vector machine, naive Bayes, decision forest, and boosted decision tree
gave an overall accuracy of 68%, 70%, 78% and 81%, respectively. The
details of the performance of parameters with this new cohorts are

given in Table 4. Considering the harmonic mean of precision and re-
call, that is, F1 score, the support vector machine, naive Bayes, decision
forest, and boosted decision tree gave 0.63, 0.64, 0.70 and 0.78, re-
spectively. Therefore, the best overall classification performance to
predict recurrence was achieved with the boosted decision tree algo-
rithm. Comparison of the boosted decision tree algorithm and the DOI
model is shown in Fig. 3; the DOI model showed an accuracy of 63%
where 54.1% of the patients would be observed, thereby not subjected
to adjuvant therapy or elective neck dissection (END). The boosted
decision tree on the other hand showed 81% overall accuracy where
21.1% of the patients would have been observed and not subjected to
END. Similarly, about half (49.5%) of the patients were correctly
identified as having OTSCC recurrence using the DOI model. Boosted
decision tree machine learning technique correctly identified 78.9% as
having OTSCC recurrence as shown in Fig. 3. Thus, each of these al-
gorithms performed significantly better than the DOI-based model.

The results of the permutation feature importance (PFI) analyses are
given in Table 5. The PFI scores were calculated for each feature in-
dependently. A zero score is returned when there is no difference in the
performance metrics before and after PFI of that feature. Similarly, a
negative score is returned when a random PFI of that feature produced
a higher accuracy and lower error (better performance metrics) com-
pared to the performance before PFI was applied. Moreover, a higher
importance score (positive) gives an indication of the contribution of
that feature to the predictive ability of the model. The PFI of boosted
decision tree (PFI-BDT) showed the highest accuracy (83.1%). Also, it
was observed that the accuracy of BDT increased from 81.0% to 83.1%
and DF increased from 78% to 80%, while SVM showed a reduction in
accuracy from 68% to 64.4% in the PFI analysis. Interestingly, the ac-
curacy of NB increased significantly from 70.0% to 81.4% in the per-
mutation feature importance fitting. The ranking of the scores of the

Table 2
Summary of histopathologic parameters included for the machine learning
training.

Variable Category (Definition) Number

WHO grade
Grade I (Well-differentiated tumor) 78
Grade II (Moderately-differentiated
tumor)

103

Grade III (Poorly-differentiated tumor) 73

Tumor budding
None (There is no tumor budding) 93
Low (Tumor has less than five buds) 85
High (Tumor has five buds or more at
the invasive front)

76

Depth of invasion
Superficial (Tumor < 4mm in depth) 96
Deep (Tumor 4mm in depth) 158

Worst pattern of invasion
(WPOI)

Type 1 (Pushing border)
Type 2 (Finger-like growth)
Type 3 (Large tumor islands)

64

Type 4(Small tumor islands of ≤ 15
cancer cells)

158

Type 5 (Tumor satellites) 32

Lymphocytic host response
(LHR)

Type 1 (Strong) 36
Type 2 (Intermediate) 88
Type 3 (Weak) 130

Perineural invasion (PNI)
Absent (PNI was not observed) 223
Present (PNI was observed) 31
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features is as shown in Table 5.

5. Discussion

The present study compared the performance of ML algorithms to
stratify patients with OTSCC into low or high-recurrence risk group. In
this regard, four ML algorithms, namely, boosted decision tree, naive
Bayes, support vector machine, and decision forest were examined. We
found that the performance of these techniques was higher than that of
depth of invasion (DOI) based approach. Our multicenter cohort of
cases is one of the largest published series. Majority of the previous
publications including hundreds of cases have mixed early-stage cases
with those with advanced stage, and/or have mixed different subsites of
the oral cavity (e.g. oral tongue with floor of mouth and retromolar
region). Therefore, heterogeneity of such series makes it difficult to
identify robust prognostic markers. The advantage of our homogenous
cohort (only early stage and only oral tongue) allows for reaching de-
finitive conclusions that can be considered to be applied in daily
practice.

Although significant progress has been made in early diagnostics,
treatment strategies and prevention of OTSCC in recent years, the
prognosis of OTSCC is poor due to aggressive local invasion and me-
tastasis, leading to recurrence. The mortality rates in cases with re-
currence has been reported to be very high [34]. When recurrence is
diagnosed earlier, the mortality rates have been reported to decrease
[35,36]. The reported rates of recurrence in oral squamous cell carci-
noma range from 6.9% to 37.4% of patients [37,38]. This is in ac-
cordance with the 26.8% locoregional recurrence rate within the da-
taset used in this study. Improved prediction of locoregional

recurrences in early-stage OTSCC can lead to an adjusted, patient-or-
iented follow-up program. For example, based on prediction of the
patient as a high-risk case, a customized surveillance could be orga-
nized instead of the general follow-up program.

Abundant studies exist that have considered DOI as a strong histo-
logic feature that correlates with locoregional recurrence. The machine
learning algorithms examined in this study, however, outperformed the
power of prediction of locoregional recurrence based on DOI. However,
it will offer a better approach with significant accuracy in stratifying
the patients as carrying a high- or low-risk for recurrence. Therefore, it
seems obvious, that the described challenge in the treatment-decision
making would be successfully addressed by the machine learning model
due to increased specificity, F1 score and overall accuracies of the ML

Fig. 2. The classification results of the four basic parameters for each algorithm in the training and also for PFI analysis.
(TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative, BDT: Boosted Decision Tree, SVM: Support Vector Machine, NB: Naive Bayes, and DF:
Decision Forest).

Table 3
The overall performance metrics of the classifiers in the training phase.

50% Training and 50% Testing Cross Validation Scheme

Algorithm Sensitivity Specificity Precision NPV LR + LR − F1 Score AUC Accuracy %

NB 0.67 0.81 0.77 0.92 3.53 0.41 0.66 0.89 80.0
SVM 0.94 0.79 0.59 0.97 4.48 0.08 0.73 0.88 82.7
DF 0.77 0.86 0.65 0.92 5.50 0.27 0.71 0.89 84.0
BDT 0.68 0.87 0.62 0.89 5.23 0.37 0.65 0.82 82.0
PFI-NB 0.77 0.83 0.59 0.92 4.53 0.28 0.67 0.89 81.0
PFI-SVM 0.87 0.72 0.50 0.95 3.11 0.18 0.64 0.87 76.0
PFI-DF 0.77 0.83 0.60 0.92 4.53 0.28 0.68 0.85 82.0
PFI-BDT 0.65 0.85 0.59 0.88 4.33 0.41 0.62 0.84 80.0

BDT=Boosted Decision Tree, SVM=Support Vector Machine, BPM=Bayes Point Machine, DF=Decision Forest, Precision (PPV=Predictive positive value),
NPV=Negative predictive value, LR+ = Positive likelihood ratio and LR− = Negative likelihood ratio, Sensitivity (recall), Area under receiving operating
characteristics curve (AUC), and CDE=Custom Designed Ensemble.

Table 4
The performance of the algorithms with external cases.

Parameter SVM NB BDT DF

True Positive (TP) 16 16 15 15
False Positive (FP) 16 15 07 09
True Negative (TN) 24 25 33 31
False Negative (FN) 03 03 04 04
Sensitivity 0.84 0.84 0.79 0.79
Specificity 0.60 0.63 0.83 0.78
Precision (PPV) 0.50 0.52 0.76 0.63
NPV 0.89 0.89 0.89 0.89
LR+ 2.10 2.27 4.65 3.59
LR− 0.27 0.25 0.25 0.27
F1 Score 0.63 0.64 0.78 0.70
Accuracy 68% 70% 81% 78%
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algorithms. Thus, this study has potentially high impact to clinicians in
the management of early OTSCC.

With regards to the performance metrics examined, F1 score used as
the benchmark to choose the best algorithm as it finds the optimal
blend between two other performance metrics (precision and recall). As
shown in Table 4, the F1 score for the boosted decision tree algorithm
showed to be very good at stratifying the patients as having either low-
risk or high-risk of recurrence of OTSCC. This justifies why boosted
decision tree was compared to the DOI as shown in Fig. 3 [18]. It is
important to note that the support vector machine showed promising
evaluation performance metrics in the training phase. This is due to the
fact that it is an empirical risk minimizer algorithm. Hence, it is not
usually prone to overfitting related issue as it avoids the danger of
getting trapped into local minima [39]. However, the ensemble algo-
rithms performed better than the support vector machine because they
were able to create a fleet of algorithms with relatively similar bias and
subsequently combining their outputs to reduce variance.

Furthermore, a major challenge in the treatment of patients with
early OTSCC is in finding the right parameters that predict prognosis
and help to properly identify patients at high risk of locoregional

recurrences. This would carry the potential to minimize the incidence
treatment failure of patients with OTSCC [35]. With the PFI-analyses,
the exact contribution of each parameter to the predictive ability of the
machine learning algorithms was known. Interestingly, there was no
significant difference in the overall accuracies achieved in the ensemble
methods (decision forest and boosted decision tree) with reduced
parameters identified in the PFI analyses compared to the algorithms
without PFI. Therefore, the cost and resources associated with getting
numerous parameters can be properly managed. Also, the time taken to
properly prepare an individualized treatment plan for the patients can
be improved. This is because a few but important features that are
needed for the ML algorithms were identified in the PFI analysis while
producing the same range of prediction accuracies. Thus, predicting
recurrence with such accuracy as shown in this study would be crucial
to the clinicians in terms of management decisions.

Numerous studies have compared the performance of various ma-
chine learning classifiers to predict an outcome of interest in cancer.
Tapak et al. compared various machine learning classifiers in series of
550 breast cancer patients, and found that the support vector machine
predicted survival better than other classifiers [15]. Similarly, the study

Fig. 3. The comparison of the boosted decision tree algorithm to the depth of Invasion model [18].

Table 5
Permutation Feature Importance (PFI) of the algorithms.

PFI-DF PFI-BDT PFI-SVM PFI-NB

Features Scores Features Scores Features Scores Features Scores

PNI 0.0078 Age 0.0315 Gender 0.0079 Age 0.0079
Depth 0.0000 Depth 0.0236 Stage 0.0079 Gender 0.0079
Tumor Budding 0.0158a WPOI 0.0236 Tumor Budding 0.0079 Stage 0.0079
Stage 0.0315a PNI 0.0079 Depth 0.0079 Depth 0.0079
LHR 0.0315a Tumor Budding 0.0000 LHR 0.0079 Grade 0.0000
Gender 0.0394a LHR 0.0079a PNI 0.0079 Tumor Budding 0.0079a

Grade 0.0394a Stage 0.0158a Age 0.0000 LHR 0.0079a

WPOI 0.0472a Grade 0.0158a Grade 0.0000 PNI 0.0079a

Age 0.0551a Gender 0.0236a WPOI 0.0000 WPOI 0.0236a

Accuracy
(External Testing)

80.0% Accuracy
(External Testing)

83.1% Accuracy
(External Testing)

64.4% Accuracy
(External Testing)

81.4%

a Negative score. DF: Decision Forest, BDT: Boosted Decision Forest, SVM: Support Vector Machine, NB: Naive Bayes. WPOI: Worst Pattern of Invasion, PNI:
Perineural Invasion, LHR: Lymphocytic host response.
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by Tseng et al. compared decision tree ML technique with a traditional
statistical model such as logistic regression in series of 673 oral cancer
patients and the decision tree was found to perform better [40]. De
Melo et al. used decision tree to evaluate the quality of life among
patients with head and neck cancer [41]. Similarly, Sumbaly et al. used
the decision tree in the diagnosis of breast cancer [42]. The decision
forest also produced the highest prognostic performance when com-
pared with other machine algorithms by Zhang et al. for the radiomics-
based prediction of failure in advanced nasopharyngeal carcinoma
[43].

In conclusion, this study investigated four different ML algorithms
and found that the boosted decision tree algorithm showed the best
overall performance accuracy. Due to the sensitive nature of the ap-
plication of machine learning in medicine, it is important for these al-
gorithms to produce very high accuracies. In this study, the ensemble
algorithms such as the boosted decision tree and the decision forest
algorithms performed better than non-ensemble algorithms such as
support vector machine, naive Bayes and a method based on depth of
invasion. Therefore, the ensemble machine algorithms should be con-
sidered in medical applications. Presently, it is challenging for clin-
icians to assess the outcomes of clinical early-stage oral cancer. For the
clinicians, knowledge of potential locoregional prediction to stratify the
patients into low-risk or high-risk groups using machine learning ap-
plications can help to guide clinical practice. Patients can be counseled
accordingly with realistic expectations and clinicians can be guided in
making informed decisions. Furthermore, this contributes to the in-
dividual data regarding patient and tumor-related factors and thereby
helps the clinician in planning the optimal patient-specific treatment
and follow-up (post-operative adjuvant treatment). For instance, high-
risk patients might benefit from adjuvant oncological therapy after
surgery. Future research should consider including other prognostic
parameters as inputs for the selected algorithms. In terms of the lim-
itation of this study, we are limited by the number of available cases as
this was a retrospective study of five teaching hospitals in Finland and
one in Brazil. Also, the external data used to test the performance of the
algorithms were relatively limited. Therefore, with larger external data,
the performance of the algorithms could be improved.
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Summary Points
What was already known on the topic

• There are few published studies on the comparison of machine
learning techniques to predict locoregional recurrence of oral
tongue squamous cell carcinoma (OTSCC).

• Accuracy value is the most considered performance metrics to
choosing the machine learning technique for prediction.

What knowledge this study adds

• To the best of our knowledge, this is the first study that analyzed
more than three machine learning techniques to predict risk of lo-
coregional recurrence in oral tongue squamous cell carcinoma
(OTSCC) as low-risk or high-risk.

• It is important to consider other performance metrics such as spe-
cificity and F1 score (weighted average of precision and recall) in
medical applications.

• The permutation importance feature (PFI) algorithm to extract im-
portant features does not correspond to better overall prediction and
does not necessarily perform better than the ensemble algorithms.

• The application of these supervised learning techniques to stratify
the patients as having low-risk or high-risk for the recurrence of
OTSCC may be useful for effective cancer management.
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A B S T R A C T   

Background: The prediction of overall survival in tongue cancer is important for planning of personalized care 
and patient counselling. 
Objectives: This study compares the performance of a nomogram with a machine learning model to predict overall 
survival in tongue cancer. The nomogram and machine learning model were built using a large data set from the 
Surveillance, Epidemiology, and End Results (SEER) program database. The comparison is necessary to provide 
the clinicians with a comprehensive, practical, and most accurate assistive system to predict overall survival of 
this patient population. 
Methods: The data set used included the records of 7596 tongue cancer patients. The considered machine learning 
algorithms were logistic regression, support vector machine, Bayes point machine, boosted decision tree, deci-
sion forest, and decision jungle. These algorithms were mainly evaluated in terms of the areas under the receiver- 
operating characteristic (ROC) curve (AUC) and accuracy values. The performance of the algorithm that pro-
duced the best result was compared with a nomogram to predict overall survival in tongue cancer patients. 
Results: The boosted decision-tree algorithm outperformed other algorithms. When compared with a nomogram 
using external validation data, the boosted decision tree produced an accuracy of 88.7% while the nomogram 
showed an accuracy of 60.4%. In addition, it was found that age of patient, T stage, radiotherapy, and the 
surgical resection were the most prominent features with significant influence on the machine learning model’s 
performance to predict overall survival. 
Conclusion: The machine learning model provides more personalized and reliable prognostic information of 
tongue cancer than the nomogram. However, the level of transparency offered by the nomogram in estimating 
patients’ outcomes seems more confident and strengthened the principle of shared decision making between the 
patient and clinician. Therefore, a combination of a nomogram – machine learning (NomoML) predictive model 
may help to improve care, provides information to patients, and facilitates the clinicians in making tongue cancer 
management-related decisions.   
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1. Introduction 

The most common epithelial neoplasm affecting the oral cavity is the 
oral cavity squamous cell carcinoma (OCSCC) [1]. Tongue squamous 
cell carcinoma (TSCC) accounts for the most common cases in oral 
cavity cancers [2–6]. It is characterized by an aggressive clinical 
behavior [7] such as rapid local invasion and early lymph node metas-
tasis [8]. This aggressive behavior leads to a high rate of recurrence and 
mortality [9]. Despite the advancement in cancer diagnostic and man-
agement approaches in recent years, the 5-year relative overall survival 
(OS) for patients treated with curative intent was 61% in a recent study 
[10] and 63% in another report [11]. 

The prediction of tongue cancer survival outcomes is of utmost in-
terest to both clinicians and patients. This is because determining cancer 
outcomes may crucially contribute to personalized treatment planning 
and even to avoiding unnecessary therapies [12]. Also, it provides a 
useful insight into effective management decision-making and may 
guide the selection of a protocol treatment approach. Of note, predicting 
TSCC survival is challenging due to different patient-related factors, 
tumor characteristics, and available treatment modalities. The American 
Joint Committee on Cancer (AJCC) Tumor-Nodal-Metastasis (TNM) 
staging system has shown to be an objective and accurate tool for pre-
dicting the prognosis for an entire population of cancer patients. Thus, it 
was widely used for planning of treatment strategies for TSCC patients 
[8,13]. However, for an individual patient, it is ineffective for predicting 
outcome due to its inability to consider other tumor- and patient-related 
risk factors [14,15]. To this end, a tool that considers these factors 
together to accurately predict patients’ outcomes would be pertinent 
[8]. 

Nomogram is defined as a pictorial representation of a complex 
mathematical formula that uses certain variables such as demographics, 
clinical, or treatment variables to graphically depict a statistical prog-
nostic model [16,17]. This graphical representation of the prognostic 
model can be used for the prognostication of clinical events such as 
recurrence, disease-specific survival or overall survival for a given pa-
tient [17]. Nomograms have been used in predicting survival in breast 
cancer [18], gastric cancer [19], and head and neck cancer [8,20,21]. 
Similarly, machine learning techniques have been touted for effective 
prediction of outcomes. These include for instance, predicting locore-
gional recurrence [22,23], occult node metastasis [24,25], and survival 
rates [26–29]. 

In this study, we aim to compare the performance of a nomogram 
with machine learning techniques in predicting the overall survival of 
tongue cancer patients. The survival time in months of tongue cancer 
patients was considered as the time from the beginning of treatment 
until the last follow-up or death [30]. The examined machine learning 
algorithms were logistic regression, support vector machine (SVM), 
naive Bayes (NB), neural network, boosted decision tree, decision forest, 
and decision jungle algorithms. This comparison is pertinent as it is 
aimed at providing the clinicians with a comprehensive, practical, and 
most accurate assistive system to predict overall survival for patients. 
Additionally, this system will assist the clinicians to provide a more 
personalized and precise therapeutic decision. This study is based on 
multi-population data obtained from the National Cancer Institute (NCI) 
through the Surveillance, Epidemiology, and End Results (SEER) Pro-
gram of the National Institutes of Health (NIH). 

2. Material and Methods 

2.1. National Cancer Institute Database 

The study data were obtained from the National Cancer Institute 
(NCI) through the Surveillance, Epidemiology, and End Results (SEER) 
Program of the National Institutes of Health (NIH). It is one of the largest 
cancer database that is available publicly [31]. It gives non-identifiable 
information on cancer statistics of the United States population. These 

important characteristics of this database make it a database of choice, 
thus facilitating large-scale outcome analysis research. The ethical 
permission to use the SEER database was approved with the user iden-
tification numbers of 10455-Nov 2018 and 11522-Nov2019, 
respectively. 

2.2. Selection of patient attributes 

The SEER database was chosen as it was considered as a high-quality 
database of different cancer patients [8]. The SEER program of the 
National Cancer Institute was searched for Nov 2015 submission [1973 – 
2013] (Fig. 1). These years (1973 – 2013) under consideration were also 
selected because the nomogram to be used for comparison was built 
using the same date range. 

The inclusion criteria included that the patients were diagnosed with 
histologically confirmed (positive) tongue cancer. Additionally, the 
patient must have known basic data such as gender and age at diagnosis. 
Therefore, the included known clinical and pathologic characteristics 
were age at diagnosis, race, marital status, grade, TNM status according 
to AJCC 7th edition, treatment (surgery, and radiotherapy) [8]. The 
survival period (in months) and overall survival status of the patients 
were also extracted. All patients whose diagnostic information were 
unknown were excluded. A total of 7649 cases were found eligible to be 
included in this study (Table 1). The data extraction process is shown in 
Fig. 1. The explanation of the included variables and categorization is 
shown in Table 2. 

2.3. Separate external validation cases 

Out of 7649 cases, we reserved the last 53. These cases were not used 
in the machine learning training and testing phase. It was reserved to 
externally validate the model that showed the best performance metrics 
in terms of the accuracy. The external validation cases, who had been 
labelled as dead, had died within 5 years from the first treatment. 
Similarly, the individuals who were labelled as alive were alive at least 5 
years from the first treatment. It is important to externally validate the 
model to address the possible concern about the generalizability of the 
model. 

2.4. Nomogram 

We used the nomogram constructed in another previously published 
study for evaluating the 5- and 8-year overall survival in tongue squa-
mous cell carcinoma (Figs. 2,3) [8]. It was chosen because it considered 
overall survival as a distinct event in its construction. Additionally, it 
was well-validated (internal and external validation) and calibrated [8]. 

2.5. Machine learning training process 

Microsoft Azure Machine Learning Studio (Azure ML 2019) was used 
in this study [32]. The input parameters were age at diagnosis, race, sex, 
marital status at diagnosis, tumor grade, AJCC TNM staging system, 
survival time, treatment (radiotherapy, surgical resection). The output 
variable was overall survival (alive or dead). The survival months 
ranged from 1 to 47 months. Firstly, the extracted data were checked to 
ensure that these were properly preprocessed. In addition, all the vari-
ables were converted to numeric to reduce possible spelling errors and 
omissions in each variable (Table 2). Also, potential class imbalance in 
the target variable was handled by up-sampling using synthetic minority 
oversampling technique (SMOTE) [33]. This approach offers a reason-
able approach to handling potential imbalance than simply duplicating 
existing cases. 

The data set was divided into two sets of training and validation 
using a 5-fold cross-validation method in the ratio 80% training and 
20% validation {80:20} percentage splitting sets [34] (Fig. 4). Using 
cross-validation, hyperparameters were fine-tuned to maximize the area 
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under receiving operating characteristics curve (AUC) or concordant 
partial AUC especially when imbalanced dataset was used in the training 
[35] for each of the examined algorithms. Each of the algorithms of 
interest was then configured and used for the whole training data set 
[36,37]. After training, the algorithms were evaluated for the perfor-
mance metrics of interest (Fig. 4, Table 3). The performance of classi-
fication algorithms was compared mainly in terms of accuracy, AUC 
(internal validation), F1 score, and likelihood ratios as represented in 
Table 3. The algorithm that showed the best AUC values was used for 
external validation and comparison with the nomogram. The data used 
for external validation were not used during the training phase. The 
result obtained for validating this model externally was considered as 
the true performance of the algorithm (Table 4). Also, it addressed 
possible concerns relating to the generalization of the algorithm. 

2.6. Comparison of the performance of the machine learning with a 
nomogram 

The nomogram and the machine learning algorithm that showed the 
best accuracy were compared using the external validation data (Section 
2.3). The machine learning algorithm was compared with a nomogram 
built with surgical treatment (Fig. 2). The result of this comparison is 

presented in Table 4. Likewise, the algorithm was compared with a 
nomogram built with radiotherapy (Fig. 3). The result of this compari-
son is given in Table 4. The overall performance of these two predictive 
tools in terms of accuracy, sensitivity, specificity, and F1 score is shown 
in Table 4. The comparison was necessary to ensure that the predictive 
tool used in medicine is convenient, accurate, and explainable (enables 
clinicians to understand why the algorithm produced certain result). 
This was corroborated by the study of Holzinger et al., where human and 
machine explanations were compared using system causability scale 
(SCS) to allow for explainable AI [38]. 

3. Results 

3.1. Data Description 

The study cohort included 7596 patients with tongue squamous cell 
carcinoma; 5322 male and 2274 female in a male-to-female ratio of 
2.3:1. The mean age at diagnosis was 62.3 (SD ± 12.7: range 12-102) 
and the median age was 62.0 years. In terms of the ethnicity, 6597 
(86.8%) were from the white origin, 516 (6.8%) were black, and 483 
(6.4%) were from other origins including American Indian/AK Native, 
Asian/Pacific Islander. Considering marital status, 4430 (58.3%) were 

Fig. 1. Flowchart for data extraction for the Surveillance, Epidemiology, and End Results data selection.  
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married while 3166 (41.7%) were considered unmarried (single, 
divorced, widowed, and separated) at the time of diagnosis. For 1215 
(16.0%) out of the 7596 patients the grade was well-differentiated, for 
3768 (49.6%) moderately differentiated, 2543 (33.5%) poorly differ-
entiated, and 70 (0.9%) undifferentiated. 

Similarly, the distribution according to the AJCC TNM staging 
scheme, the tumor diameter showed that 2942 (38.7%) patients had 
stage T1, 2492 (32.8%) stage T2, 1159 (15.3%) stage T3, 920 (12.1%) 
stage T4a, and 83 (1.1%) stage T4b. Also, 3485 (45.9%) had N0, 1220 
(16.1%) had N1, 327 (4.3%) N2a, 1498 (19.7%) N2b, 880 (11.6%) N2c, 
186 (2.4%) N3; 7425 M0, and 171 M1. The histopathologic character-
istics are briefly summarized in Table 2. In terms of the treatment, 4654 
(61.3%) had surgery while 2942 (38.7) had no surgery. Adjuvant 
radiotherapy was administered to 4489 (59.1%) patients. The follow-up 
time ranged from 0 to 47 months (Mean 18.3; SD ± 13.3). The number of 
patients who were alive at last follow-up was 5743 (75.6%). 

For the testing series (n = 53) that was not included in the con-
struction of the machine learning model, the mean age at diagnosis was 
61.1 years (SD ± 11.1; range from 31 to 85 years with 44 (83.0%) male 
and 9 (17.0%) female. Additionally, 38 (71.7%) were married and 15 

(28.3%) unmarried. For histological grade, 29 (54.7%) were well- 
differentiated, 10 (18.9%) moderately-differentiated, 9 (17.0%) 
poorly-differentiated, and 5 (9.4%) undifferentiated grade. In terms of 
treatment, 37 (69.8%) patients had radiotherapy while 22 (41.5%) had 
surgery performed. The mean follow-up time was 4.2 months (SD ± 5.2; 
range 0-23 months) and 47 (88.6%) patients were alive at the end of 
follow-up. The detailed characteristics of the external validation data 
are given in Table 1. 

Table 1 
Baseline demographic and tumor characteristics of patients in SEER database.  

Variables Overall survival, N = 7596 
Training and testing cohort 

Overall survival, N = 53 
External validation cohort 

Age at diagnosis (years) 
1 – 18 5 (0.1%) 0 (0.0%) 
19 – 44 515 (6.8%) 2 (3.8%) 
45 – 54 1412 (18.6%) 14 (26.4%) 
55 – 64 2497 (32.9%) 18 (34.0%) 
65 – 74 1877 (24.7%) 13 (24.5%) 
75+ 1290 (16.9%) 6 (11.3%) 
Ethnic origin 
White 6597 (86.8%) 44 (83.0%) 
Black 516 (6.8%) 9 (17.0%) 
Other* 483 (6.4%)  
Sex 
Male 5322 (70.0%) 38 (71.7%) 
Female 2274 (30.0%) 15 (28.3%) 
Marital status 
Married 4430 (58.0%) 29 (54.7%) 
Unmarried 3166 (42.0%) 24 (15.3%) 
Grade 
Grade I 1215 (16.0%) 8 (15.1%) 
Grade II 3768 (49.6%) 29 (54.7%) 
Grade III 2543 (33.5%) 15 (28.3%) 
Grade IV 70 (0.9%) 1 (1.9%) 
T stage (2010þ) 
T1 2942 (38.7%) 19 (35.8%) 
T2 2492 (32.8%) 16 (30.2%) 
T3 1159 (15.3%) 6 (11.3%) 
T4a 920 (12.1%) 11 (20.8%) 
T4b 83 (1.1%) 1 (1.9%) 
N Stage (2010þ) 
N0 3485 (45.9%) 14 (26.4%) 
N1 1220 (16.1%) 10 (18.9%) 
N2a 327 (4.3%) 5 (9.4%) 
N2b 1498 (19.7%) 14 (26.4%) 
N2c 880 (11.6%) 9 (17.0%) 
N3 186 (2.4%) 1 (1.9%) 
M stage (2010þ) 
M0 7425 (97.7%) 50 (94.3%) 
M1 171 (2.3%) 3 (5.7%) 
Surgery performed 
Yes 4654 (61.3%) 22 (41.5%) 
None 2942 (38.7%) 31 (58.5%) 
Radiotherapy 
Yes 4489 (59.1%) 37 (69.8%) 
None 3107 (40.9%) 16 (30.2%) 
Overall survival status 
Alive 5743 (75.6%) 47 (88.7%) 
Dead 1853 (24.4%) 6 (11.3%)  

* Other including American Indian (native), Asian/Pacific Islander. 

Table 2 
Selected SEER attributes, description, and categorization used in machine 
learning training.  

Attribute Description Categorization for machine 
learning training 

Type 

Age Age at time of 
diagnosis 

No categorization Discrete 

Race/ 
Ethnicity 

This describes the 
ethnicity of the patient 

0 = White; 1 = Black; 2=
Others (American Indian 
/AK Native, Asian pacific 

Numeric 

Sex Biological sex 0 = Male; 1 = Female Numeric 
Marital 

Status 
The marital status of 
the patient at diagnosis 
of TSCC. 

0 = Married; 1 = Single 
(never married, Unmarried 
or domestic partner); 2 =
Divorced (separated); 3 =
Widowed; 4 = Separated. 

Numeric 

Grade The differentiation of 
the cancer cell. 

1 = Grade 1 (Well 
differentiated), 2 = Grade 2 
(Moderately 
differentiated), 3 = Grade 3 
(poorly differentiated), 4 
=(Undifferentiated) 

Numeric 

Derived 
AJCC T, 7th 

edition 
(2010+) 
stage 

T1: The tumor is ≤ 2 
cm or less in greatest 
dimension. 

T1 = 1; T2 = 2; T3 = 3; T4a 
= 4; T4b = 5 Numeric 

T2: The tumor is > 2 
cm & ≤ 4 cm. 
T3: Tumor is > 4 cm. 
T4a: Moderately 
advanced local disease. 
T4b: Significantly 
advanced local disease. 

Derived 
AJCC N, 
7th edition 
(2010+) 
stage 

N0; No regional lymph 
node metastasis 

N0 = 0; N1 = 1; N2a = 2; 
N2b = 3; N2c = 4; N3 = 5; 

Numeric 

N1: Regional lymph 
node metastasis (single 
node). 
N2a: Cancer has spread 
to a single lymph node. 
N2b: The present of 
multiple lymph nodes. 
N2c: There are lymph 
nodes in the neck 
either on the opposite 
side as the main cancer 
or on both sides. 
N3: There is spread to 
one or more neck 
lymph nodes 

Derived 
AJCC M, 
7th edition 
(2010+) 
stage 

M0; No distant 
metastasis 

M0 = 0; M1 = 1 Numeric 
M1; Distant metastasis 

Radiation 
Indication of whether 
patient has received 
radiation 

0 = None, 1 = exposed to 
radiation 

Numeric 

Surgical 
resection 

This describes if 
surgery was performed 

0 = No surgery performed; 
1 = Surgery not performed Numeric 

Overall 
survival 

The time from the 
beginning of treatment 
until the last follow-up 
time or death 

0 = Alive; 1 = Dead Discrete  
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3.2. Performance metrics for the algorithms 

The performance metrics of the algorithms are presented in Table 3. 
The average specificity of the examined algorithms was 0.89. Similarly, 
the average sensitivity was 0.76. In terms of the accuracy and the area 
under receiving operating characteristics curve (AUC), the boosted de-
cision tree outperformed all other algorithms. 

3.3. Evaluating the input variables for importance 

The permutation feature importance of the input variables showed 
that the AJCC T stage, radiotherapy, age and surgical status are the most 
prominent features that had significant influence on the model’s per-
formance to predict the overall survival in tongue cancer patients. 

3.4. Comparison of the performance of the nomogram with machine 
learning algorithm 

The nomogram (with surgical treatment) showed 66.0% accuracy, 
likewise, the nomogram (with radiotherapy) produced an accuracy of 
60.4% when tested with the external validation data. The machine 
learning algorithm (boosted decision tree) showed an accuracy of 88.7% 
when tested with external validation data. All the examined methods 
showed 100% sensitivity (Table 4). Considering the specificity and F1 
score, the nomogram (with surgical treatment) showed 0.62 and 0.40, 
machine learning model gave 0.87 and 0.66, and nomogram (with ra-
diation) produced 0.55 and 0.36 (Table 4). 

4. Discussion 

In this study, a nomogram and several machine learning algorithms 
were utilized and compared in the prediction of overall survival in pa-
tients with tongue cancer. These machine learning algorithms used were 

Fig. 2. Nomogram for predicting 5- and 8-year overall survival with surgical treatment.  

Fig. 3. Nomogram for predicting 5- and 8-year overall survival with radiation treatment.  
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Fig. 4. The flowchart for the machine learning process and comparison with nomogram.  

Table 3 
The performance metrics of the cross-validated machine learning algorithms on 
the training data.  

Algorithms Accuracy 
(%) 

AUC Precision F1 score Recall 

Logistic Regression 69.6 0.76 0.71 0.69 0.66 
Naive Bayes 69.6 0.76 0.71 0.67 0.67 
Support Vector 

Machine 
69.5 0.76 0.71 0.68 0.66 

Neural Network 73.1 0.83 0.78 0.70 0.63 
Boosted Decision Tree 83.1 0.90 0.82 0.83 0.85 
Decision Forest 81.5 0.89 0.81 0.82 0.83 
Decision Jungle 79.6 0.88 0.80 0.79 0.79 

Area Under Receiving Operating Characteristic (ROC) Curve (AUC); Recall =
Sensitivity. 

Table 4 
The performance metrics of the comparison between the nomogram and ma-
chine learning model.  

Parameters Nomogram (with 
surgical treatment) 

Machine 
learning model 

Nomogram (with 
radiotherapy) 

True 
positive 

6 6 6 

False 
positive 

18 6 21 

True 
negative 

29 41 26 

False 
negative 

0 0 0 

Sensitivity 1 1 1 
Specificity 0.62 0.87 0.55 
F1 score 0.40 0.66 0.36 
Accuracy 

(%) 
66.0 88.7 60.4  
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logistic regression, support vector machine, naive Bayes, neural network 
(NN), boosted decision tree, decision forest, and decision jungle. The 
algorithm that produced the best accuracy was compared with a 
nomogram. This comparison was based on a separate cohort that was 
not used in the training or testing phase. This comparison is necessary to 
ensure that the best model is selected for the specific management of 
patients with tongue cancer. 

Several studies have examined the significance of machine learning 
(shallow and deep learning) techniques for oral cancer prognostication. 
For example, Tseng et al. developed a machine learning model for sur-
vival risk stratification of patients with advanced OSCC using clinico-
pathologic and genetic data [39]. This approach was corroborated by 
Karadaghy et al., where social, demographic, and clinicopathologic 
features were used to develop a machine learning-based model to pre-
dict 5-year overall survival of OSCC patients [29]. These studies 
concluded that a machine learning-based approach augments the clini-
cians’ ability to properly estimate the survival risk of OSCC patients. 
Thus, effective and efficient treatment plan – intensifying or dein-
tensifying the regimen, can be mapped out to improve the quality of care 
and survival of OSCC patients [39]. 

Besides survival risk estimate with machine learning techniques, 
Alabi et al., and Bur et al., have published promising results regarding 
predicting clinical outcome of a progressive disease such as locoregional 
tumor recurrence and/or distant metastases [22–24,40]. This technique 
has also been found to be better than such conventional methods as 
tumor depth of invasion (DOI), neutrophil-to-lymphocyte ratio (NLR), or 
tumor budding in predicting clinical outcomes [24,41]. Also, deep 
learning techniques have shown to be a promising noninvasive approach 
in early diagnosis [42], assessment of cervical lymph node metastasis 
[43], and discriminating between well-differentiated and poorly 
differentiated OSCC [44]. 

In this study, the boosted decision tree outperformed other algo-
rithms and the nomogram. It uses the gradient boosting approach to 
create an ensemble of classification trees needed to stratify the patients 
in terms of their overall survival of tongue cancer. Each of the tree 
created is dependent on the prior trees. The algorithm learns by fitting 
the errors of the tree that proceeded it. Consequently, the second tree fits 
the errors of the first tree, the third tree fits the errors in the second trees, 
the sequence of error fitting continues in that order until the final tree. 
Predictions are therefore based on the entire ensemble of trees [23,36, 
37]. With a reasonable amount of data used in the study, the boosted 
decision tree algorithm was able to minimize errors due to the large 
coverage of the relationship between the data to improve the accuracy. 

Tumor stage (T stage), radiotherapy, age of patient, and surgical 
resection were the input variables that had significant importance on the 
machine learning model’s ability to predict overall survival in tongue 
cancer patients. For the stage of the disease at diagnosis, it has been 
reported that it is strongly correlated with prognosis [45]. The survival 
of patients with stage I (T1N0) of the disease exceeds 80% while stage 
III-IV (T3-T4) reduces below 40% [46,47]. Interestingly, most of the oral 
cancer patients are usually found to be at stage III or IV at the time of 
diagnosis [48,49]. This further corroborated the importance of T stage 
on the predictive model. Similarly, the age of the patient at the time of 
diagnosis was found to play an important role in the model’s predictive 
ability. This result was emphasized in other studies that reported that 
the survival of oral cancer patients steadily decreases with age of the 
patient [30,50]. As the cohort contained largely early-stage tongue 
cancer, it is no surprise that the treatment options had a significant 
impact on the predictive performance of the model. This is because the 
treatment of choice for early-stage tongue cancer can either be surgery, 
radiotherapy or combination of both [45]. 

Traditionally, the clinicians’ judgments have formed the foundation 
for estimating the risk of patients, counseling and decision making. 
Therefore, the experience of clinicians plays a significant role in accu-
rate risk estimation and decision making. This approach poses a great 
risk of bias and the predicted outcomes of the patients may be highly 

subjective [12,51,52]. The nomogram has been used to predict survival 
in various head and neck cancers [20,21,53–55]. Its performance was 
reported to provide superior disease-related risk estimations for patients 
[56]. Likewise, machine learning models have shown encouraging risk 
estimation for patients [22–24,29]. Therefore, the introduction of 
nomogram and machine learning models have been touted to providing 
the clinicians with a decision-making assistive tool that gives more ac-
curate predictions of patients’ outcome. When these two approaches 
were compared as presented in this study, the machine learning model 
outperformed the nomogram in predicting the overall survival in tongue 
cancer patients. To the best of our knowledge, this is the first study that 
compares the performance of a nomogram with machine learning for 
tongue cancer. 

The machine learning model showed that it was able to identify and 
understand the hard-to-discern relationships between the input vari-
ables. The predictive accuracy exhibited by this model is particularly 
well-suited to medical applications for personalized and predictive 
medicine [57]. The boosted decision-tree algorithm was able to build 
formidable overall survival classification trees in a step-wise manner, 
where the error in each step is measured and corrected in the next step to 
produce a model with improved predictive accuracy. Despite the better 
predictive performance of the machine learning model over the nomo-
gram, the fact that the nomogram offers an appealing, transparent 
means of estimating the risk of patients without the use of the internet or 
computer is worthy of consideration for clinical decision-making. 

Of note, the transparency offered by the nomogram addresses the 
concerns that the results from machine learning models are not easily 
interpretable. With this level of transparency in calculating the patients’ 
outcomes, it is obvious that the patient will be more confident in the 
recommended treatment approach. More importantly, the principle of 
shared decision-making between the patient and clinician can be 
strengthened. Therefore, a combination of nomogram – machine 
learning (NomoML) approach may offer a more transparent approach 
for individualized assessment and add to the planning of the most 
appropriate adjuvant treatment for tongue cancer patients. The level of 
transparency in calculating the patients’ outcomes in addition to the 
significant accuracy offered by the machine learning model is poised to 
give confidence to the patient for the recommended treatment approach. 

In addition to the accuracy and transparency that the proposed 
NomoML seeks to offer, it is also poised to allow for explainable artificial 
intelligence (AI). However, as this proposed tool seeks to combine 
human and automatic (autonomous) machine learning approaches, the 
need to examine the causability (property of a person that measures the 
quality of explanations [58]) and explainability (property of a system 
that measures why an algorithm/system came up with certain result [38, 
58]) of this tool becomes imperative. An example of a viable tool to 
measure the quality of these explanations is the systematic causability 
scale (SCS) proposed by Holzinger et al. [38]. This tool (SCS) combines 
causability and explainability to reach the level of explainable medicine 
[59]. Therefore, for future study, it would be important to examine our 
proposed diagnostic tool for SCS evaluation. Undoubtedly, concerns 
about human-AI relationship and the extent to which AI-based model 
can or should support clinical decisions is growing. However, it is 
important to properly understand causability and explainability prior to 
addressing the former concerns [59]. 

In this study, there were certain limitations to be considered. Both 
the nomogram and machine learning were developed using retrospec-
tive cohorts; it remains important to validate these with a prospective 
cohort for the comparison to be a representation of the performance of 
these tools. Also, there may be a possibility of bias in the data set as a 
significant number of the patients were alive at the end of follow-up. In 
addition, information about some variables such as perineural invasion 
that have been reported to have significant influence on the overall 
survival are not available. Therefore, it would be worthwhile to further 
calibrate the nomogram to include these variables and to compare it 
with deep machine learning technologies. 
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In conclusion, concerted efforts should be made towards the con-
struction of a more accurate nomogram and machine learning models. 
This includes use of larger data sets, inclusion of novel biomarkers, 
improved data collection, calibration, and validation methods. With an 
improved NomoML, accurate estimation of the likelihood of re-
currences, tongue-specific and overall survival of tongue cancer can be 
greatly improved and management-related decisions for tongue cancer 
patients can be enhanced. 
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Abstract. 
Background: Machine learning models have shown high performance, 
particularly in the diagnosis and prognosis of oral cancer. However, in actual 
everyday clinical practice, the diagnosis and prognosis using these models remain 
limited. This is due to the fact that these models have raised several ethical and 
morally laden dilemmas. Purpose: This study aims to provide a systematic state-
of-the-art review of the ethical and social implications of machine learning 
models in oral cancer management. Methods: We searched the OvidMedline, 
PubMed, Scopus, Web of Science and Institute of Electrical and Electronics 
Engineers databases for articles examining the ethical issues of machine learning 
or artificial intelligence in medicine, healthcare or care providers. The Preferred 
Reporting Items for Systematic Review and Meta-Analysis was used in the 
searching and screening processes. Findings: A total of 33 studies examined the 
ethical challenges of machine learning models or artificial intelligence in 
medicine, healthcare or diagnostic analytics. Some ethical concerns were data 
privacy and confidentiality, peer disagreement (contradictory diagnostic or 
prognostic opinion between the model and the clinician), patient’s liberty to 
decide the type of treatment to follow may be violated, patients–clinicians’ 
relationship may change and the need for ethical and legal frameworks. 
Conclusion: Government, ethicists, clinicians, legal experts, patients’ 
representatives, data scientists and machine learning experts need to be involved 
in the development of internationally standardised and structured ethical review 
guidelines for the machine learning model to be beneficial in daily clinical 
practice.  

Keywords: Ethics, machine learning, oral tongue cancer, systematic review 
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1 Introduction 

Cancer is the second leading cause of death, with an estimated 9.6 million deaths 
worldwide in 2018 (Bray et al., 2018). From this estimation, oral cancer accounts for 
354,864 new cases and 177,384 deaths (Bray et al., 2018), making it one of the most 
common cancers and thus a source of significant health concern. Notably, oral 
squamous cell carcinoma is the most frequent of all cases of oral cancer (Ng et al., 
2017). It represents about 90% of all the reported cases of oral cancer (Le Campion et 
al., 2017; Neville et al., 2009). Oral tongue cancer has been reported to have a worse 
prognosis than squamous cell carcinoma arising from other subsites of the oral cavity 
(Rusthoven et al., 2008). Therefore, an accurate tool for the effective prognostication 
of oral cancer is necessary. 

Artificial intelligence (AI), or its subfield machine learning (ML), holds great 
promise in effective oral cancer diagnosis and prognosis (Amato et al., 2013), clinical 
decision making (Bennett & Hauser, 2013; Esteva et al., 2019; Topol, 2019) and 
personalised medicine (Dilsizian & Siegel, 2014) because of the improved availability 
of large datasets (big data), increased computational power and advances in ML 
training algorithms. In the era of unprecedented technological advancements, AI or ML 
is recognised as one of the most important application areas. It is currently positioned 
at the apex of the hype curve and is touted to facilitate improved diagnostics, 
prognostics, workflow and treatment planning and monitoring of oral cancer patients.  

Several studies have been published emphasising the importance of ML 
techniques in prediction outcomes, such as recurrence (Alabi, Elmusrati, Sawazaki-
Calone, et al., 2019; Alabi, Elmusrati, Sawazaki‐Calone, et al., 2019), occult node 
metastasis (Bur et al., 2019) or five-year overall survival in oral cancer patients 
(Karadaghy et al., 2019). Despite the reported high accuracy in the application of ML 
techniques in head and neck cancer studies, there is also some trepidation among 
clinicians regarding its uncertain effect on the demand and training of the current and 
future workforce. Some clinicians have considered the introduction of ML to daily 
routine medical practice as a transformative improvement in the ability to diagnose the 
disease early enough and more accurately, and others have expressed concerns about 
the assessment of and consensus on possible ethical pitfalls. Interestingly, this is usually 
the case with most disruptive technologies.  

The adoption of AI technology in actual daily medical practice has been 
argued to threaten patients’ preference, safety and privacy (Michael, 2019). 
Considering the progress made by AI technology and ML-based models in cancer 
management, the current policy and ethical guidelines are lagging (Michael, 2019). 
Although there are some efforts to engage in these ethical discussions (Luxton, 2014, 
2016; Peek et al., 2015), the medical community needs to be informed about the 
complexities surrounding the application of AI technology and ML-based models in 
actual clinical practice (Michael, 2019). 

Studies have examined the ethical challenges in the implementation of AI, or 
its subfield ML, in healthcare or medicine. As this approach seems general, few 
published works have focused on the ethical challenges in AI or ML in oral cancer. 
Therefore, our study aims to systematically review the research on the ethics of AI in 
medicine. This study mainly focuses on ML models. These ethical dilemmas are 
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adapted to when these ML models are used in oral cancer management. To this end, 
this systematic review addresses the following research questions (RQ): 

RQ. What are the ethical challenges in the integration of the ML model into 
the daily clinical practice of oral cancer management? 

RQ. What are the generic approaches to addressing these ethical challenges? 
This paper is organised as follows. Section 2 describes the methodology. Section 3 

examines the results obtained from the systematic review. Section 4 discusses the 
results and the implications for daily clinical practices. 
  

2 Materials and methods 

2.1 Search protocol  

In this study, we systematically retrieved all studies that examined ethics in ML or AI. 
The systematic search included the databases of OvidMedline, PubMed, Scopus, 
Institute of Electrical and Electronics Engineers, Web of Science and Cochrane Library 
from their inception until 17 March 2020. The search approach was developed by 
combining the following search keywords: [(‘machine learning OR artificial 
intelligence’) AND (‘ethics’)]. The retrieved hits were further analysed for possible 
duplicates and irrelevant studies. To further minimise the omission of any study, the 
reference lists of all eligible articles were manually searched to ensure that all the 
relevant studies were duly included. In addition, the Preferred Reporting Items for 
Systematic Review and Meta-Analysis was used in the searching and screening 
processes (Figure 1). 
 

 
Figure 1. The number of articles included that examined the ethical concerns of ML 
models in medicine. 
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2.2 Inclusion and exclusion criteria 

All original articles that considered the ethics of ML or AI in medicine or healthcare 
were included in this study. The eligible studies must have evaluated the ethical 
considerations or concerns of ML or AI in medicine. Studies that examined privacy 
issues, ethics of data practice and stewardship were also deemed eligible. Owing to the 
nature of the research questions in this study, perspectives, editorials and reviews were 
included. However, studies on animals, abstracts and conference papers were omitted. 
Articles in languages other than English were also excluded (Figure 1). 

2.3 Screening 

A data extraction sheet was used to minimise errors due to the omission of eligible 
studies. 

 
2.4 Data extraction 

The extracted parameters from each study included the author’s/authors’ name, year of 
publication, country of authors, title of studies and summary of the ethical issues 
mentioned in the study (Supplementary Table 1). Other important parameters, such as 
how to address such ethical challenges, were noted and discussed collectively in the 
discussion section.  

3 Results 

3.1 Results of the search strategy 

The flow chart (Figure 1) describes the study selection process. A total of 931 hits were 
retrieved. Among them, 178 studies were found to be duplicate studies, and 591 were 
found to be irrelevant to the research questions in this review. Additionally, 129 studies 
did not consider ethics in medicine, biomedicine, healthcare, predictive analytics, 
digital health or patients. Thus, they were all excluded. Overall, 33 studies were found 
eligible for this systematic review (Figure 1, Supplementary Table 1). The findings of 
these studies indicated the ethical consideration of AI or ML in medicine. They were 
examined on how they relate to the implementation of ML models in oral cancer 
management. The ethical concerns discussed in these studies were privacy and 
confidentiality of patients’ data, bias in the data used to develop the model, peer 
disagreement (Grote & Berens, 2020), responsibility or accountability gap (Grote & 
Berens, 2020; Jaremko et al., 2019; Kwiatkowski, 2018), fiduciary relationship 
between physicians and patients may change (Char et al., 2018; Nabi, 2018; Reddy et 
al., 2020) and patients’ autonomy may be violated (Arambula & Bur, 2020; Boers et 
al., 2020; Grote & Berens, 2020; Johnson, 2019). These ethical concerns, brief 
definitions and corresponding structural aspects (what and how to address these 
concerns) are presented in Table 1.  
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Table 1. Ethical concerns of ML models in oral cancer prognostication. 

Ethical concerns Meaning The structural aspect of the ethical concerns 
 
 Ethical and moral concerns          

Privacy and confidentiality of 
patients’ data 

Approval of patients’ consent 
and the concerned authority 
to use patients’ data 

Concern 1: Will the ML model 
developer use the extracted patients’ 
information from the hospital registry 
without their consent? 

Concern VII: How can the 
developer seek informed 
consent from the patient, 
hospital authority and 
national agency? 

Bias in the data used to develop 
the model 

Data may tend towards a 
particular race, geographical 
location, sexual orientation 
and so on 

Concern II: Will the developed ML 
model be biased due to the imbalance 
in the data? 

Concern VIII: How can the 
developer handle the possible 
data imbalance in the 
developed ML model? 

Peer disagreement Contradictory diagnostic or 
prognostic opinion between 
the model and the clinician 

Concern III: Will the clinician follow 
his/her own diagnostic decision in 
cases in which the ML model gives a 
contrary opinion? 

Concern IX: How can I find 
balance between conflicting 
diagnostic opinions? Is there 
an ethical guideline or 
standard that guides the use of 
a ML model in cancer 
management? 

Responsibility gap Assignment of responsibility 
when the ML models gave a 
wrong prediction 

Concern IV: Will the clinician be held 
responsible when the ML model gives 
a wrong prediction? 

Concern X: How should the 
clinicians interpret the 
hospital guidelines on the use 
of ML models? What does 
medical ethics stipulate? 
What are ethical guidelines or 
standards that guide the use of 
ML models in cancer 
management? 

Clinician–patient relationship Fiduciary interaction between 
the physicians and patients 
may change 

Concern V: Will the patient feel 
comfortable and confident about the 
diagnostic decision made by a 
machine/computer? 

Concern X1: How will I 
explain to the patient that the 
ML model is capable of 
making an accurate decision? 
How can I further justify the 
decision made by the model? 
How can I uphold clinician–
patient relationship? 

Patients’ autonomy Ability of the patient to 
determine the best treatment 
and take part in a shared 
decision-making process 

Concern VI: Will the patient be 
allowed to choose the treatment 
approach that suits him/her when the 
model gives a different treatment 
plan?  

Concern XII: How can the 
clinician take into 
consideration the treatment 
plan that best considers the 
daily activities of the patient? 

 

The title of each concern (Table 1) addresses the core ethical challenge: in the case of 
ethical and moral concerns, ‘Will the clinician, ML developer or the corresponding 
model perform the unethical action?’ and in the case of morally acceptable actions, 
‘How can the clinician, ML developer or the corresponding model resolve the ethical 
concerns’? From these findings, it is important for the ML model to be trustworthy 
before it can be considered in actual medical practice. To ensure the trustworthiness of 
the model, the five trustworthiness principles of transparency, credibility, auditability, 
reliability and recoverability should be incorporated (Figure 2) (Keskinbora, 2019; 
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Rossi, 2016). Moreover, an ethics board has been proposed to discuss ethics in ML 
models from the perspective of experts and patients (Mamzer et al., 2017) (Figure 3).   

 
3.2 Characteristics of the study 

In terms of language, all the studies included were conducted in English. Out of the 33 
included studies, 16 (48.5%) emphasised the privacy and confidentiality of patients’ 
data (Bali et al., 2019a; Balthazar et al., 2018; Boers et al., 2020; Geis et al., 2019; 
Grote & Berens, 2020; Jaremko et al., 2019; Kluge, 1999; Kohli & Geis, 2018; Ma et 
al., 2019; Nabi, 2018; Nebeker et al., 2019; Reddy et al., 2020; Seddon, 1996; Sethi & 
Theodos, 2009; Vayena et al., 2018; Yuste et al., 2017), 13 (39.4%) examined the 
significance of informed consent, data protection, access, usability, sharing and 
regulatory schemes or rules prior to the use of patients’ data (Balthazar et al., 2018; 
Gruson et al., 2019; Jaremko et al., 2019; Kluge, 1999; Kohli & Geis, 2018, 2018; Ma 
et al., 2019; Nabi, 2018; Nebeker et al., 2019; Reddy et al., 2020; Sethi & Theodos, 
2009; Vayena et al., 2018; Yuste et al., 2017), 12 (36.4%) discussed the possibility bias 
in the data used for ML applications (Boers et al., 2020; Cahan et al., 2019; Char et al., 
2018; Geis et al., 2019; Grote & Berens, 2020; Gruson et al., 2019; Kohli & Geis, 2018; 
Nabi, 2018; Reddy et al., 2020; Vayena et al., 2018; Wiens et al., 2019; Yuste et al., 
2017), 4 (12.1%) suggested that the integration of ML models in clinical settings could 
assist clinicians to make informed decisions (Berner, 2002; Boers et al., 2020; Grote & 
Berens, 2020; Kwiatkowski, 2018) and 13 (39.4%) reported the need for ethical 
principles, guidelines and legal frameworks before ML models could be integrated into 
medical practice (Arambula & Bur, 2020; Cahan et al., 2019; Char et al., 2018; Gruson 
et al., 2019; Jian, 2019; Johnson, 2019; Keskinbora, 2019; Mamzer et al., 2017; Morley 
& Floridi, 2020; Nebeker et al., 2019; Rajkomar et al., 2018; Reddy et al., 2020; Robles 
Carrillo, 2020).  

4 Discussion 

This systematic review examined the ethical challenges in ML models in clinical 
practice. These challenges were examined on how they relate to the integration of ML 
models in oral cancer management. These ethical challenges carry significant 
implications in terms of integrating the ML model for daily routine in oral cancer 
management. The following highlights these ethical challenges and suggests a generic 
approach to addressing them. 
 
Data privacy and confidentiality: the patient’s consent should be sought 

The first of these ethical concerns is healthcare data privacy (Arambula & Bur, 
2020; Nabi, 2018). Developing ML models involves the substantial usage of healthcare 
data of patients. Therefore, it raises privacy and patient confidentiality concerns (Ma et 
al., 2019; Nabi, 2018). To arrest this concern, the patients, or their respective subjects, 
need to be informed about the collection and usage of their data (Geis et al., 2019; 
Powles & Hodson, 2017) to ensure informed consent and avoid illegal proprietary 
exploitation of the data and data privacy breaches (Bali et al., 2019b; Balthazar et al., 
2018; Char et al., 2018; Nabi, 2018; Powles & Hodson, 2017; Yuste et al., 2017). 
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Nevertheless, it is important that data use agreements should be reviewed and approved 
by the appropriate quarters (Kohli & Geis, 2018). Moreover, a scheme (i.e., privacy-
preserving clinical decision with cloud support) that preserves the privacy of the patient 
in terms of their data can be introduced (Geis et al., 2019; Liu et al., 2017; Ma et al., 
2019; Vayena et al., 2018; Wang et al., 2015; Zhang et al., 2018). However, the 
discussion about the ownership of the data is beyond the scope of this study.  

 
Trustworthy AI: the model should be trustworthy 

It is important for the model to work as expected. Therefore, the model should 
have minimal errors in the training phase. Any form of error/malfunctioning of the 
model should be mentioned and defined (England & Cheng, 2019; Park & Kressel, 
2018; Vayena et al., 2018; Zou & Schiebinger, 2018) to give transparency to the model 
and consequently, the results from these models (Geis et al., 2019; Park et al., 2019). 
Therefore, a possible imbalance in the data should be considered when developing the 
model to ensure the trustworthiness of the model. To address this challenge, related 
guidelines can be followed for transparent reporting (Bossuyt et al., 2015; Collins et 
al., 2015; England & Cheng, 2019). With these guidelines, the ML model deployed will 
be trustworthy and uphold the fundamental pillars of medical ethics (autonomy, 
beneficence, nonmaleficence and justice) (Arambula & Bur, 2020) and the ethical 
principles of transparency, credibility, audibility, reliability and recoverability 
(Keskinbora, 2019) (Figure 2).  

 
 
 

 
Figure 2. The trustworthiness principles expected from a ML model 
 
 

In this way, an inherently biased model is avoided (Arambula & Bur, 2020; Collins & 
Moon, 2018; Reddy et al., 2020; Wiens et al., 2019). Trustworthiness should not only 
concern the properties of the ML or AI inherent model but also the socio-technical 
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systems involving the ML or AI applications (European Commission, 2019), that is, 
the expected trustworthiness of all actors and processes that constitute the socio-
technical context in the application of AI for the prognostication of oral tongue cancer. 
Thus, for trustworthiness in AI, the essential components of trust in design, 
development, law compliance, ethics and robustness must be present (European 
Commission, 2019). In addition, the key requirements for a trustworthy AI include 
human regulatory agency, technical robustness and safety, privacy and data 
governance, transparency, non-discrimination and fairness, environmental friendliness 
and compliance, and accountability (European Commission, 2019). 
 
Peer disagreement: the model and clinician should act to protect the patient from harm 

As the ML model is viewed as an expert system/model, peer disagreement and 
its possible resolution guidelines are another important ethical issue (Christensen, 2007; 
Kelly T, 2010). What happens when the model and the clinicians disagree on the output 
of a proposition (diagnosis or prognosis) (Frances & Matheson, 2018)? It is impossible 
to have a dialogical engagement with the model, as proposed by Mercier and Sperber 
in the argumentative theory of reasoning (Mercier & Sperber, 2017). Should the 
clinician follow the proposition of the ML model (Christensen, 2007) or adhere to her 
own proposition (Enoch, 2010)? Therefore, there is a standoff in terms of the possible 
decision to make by the clinician. In this case, ethical guidelines and legal frameworks 
become imperative (Figure 3). 

 

 
Figure 3. Ethical and legal frameworks for ethical agreements. 

 
The ethical guidelines in this case ensure that clinicians make a decision to protect the 
safety and improve the overall health condition of the patient. The hospital and ethical 
guidelines should also address the possible errors that may arise from using the model 
(responsibility gap). 
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Patients’ autonomy: shared decision making 
The ethical question of patients’ autonomy also comes to fore (Grote & Berens, 2020). 
For example, an ML model that predicts the type of treatment for an oral cancer patient 
should eschew the preferred treatment that could minimise the suffering of the patient. 
Instead, it should maximise the lifespan and overall survival of the patient, thereby 
making this model paternalistic in nature. This raises the ethical question of a shared 
decision making between the clinician and the patient to ensure that the autonomy and 
dignity of the patient are not violated (McDougall, 2019). Therefore, it is important to 
establish relevant standards to determine which information from the ML model is 
essential to be explained to the patient to be regarded as informed consent so that the 
patient can make an informed decision (Grote & Berens, 2020; McDougall, 2019; 
Mittelstadt & Floridi, 2016).  
 
Humanness: Empathy and trust from the clinician–patient relationship 

Another ethical concern is the ‘humanness’ of clinicians and the role of 
cognitive empathy, trust, responsibility and confidentiality among clinicians (Boers et 
al., 2020). This seems to be a source of concern, as the integration of ML models in 
oral cancer management may lead to a paradigm shift from the current face-to-face or 
direct interaction between patients and clinicians (two-way diagnostic procedure) to a 
triangular relationship of patients–models–clinicians (three-way diagnostic procedure). 
This concern becomes pronounced especially when the models are publicly available, 
as the patients may engage in self-medication and self-management. Thus, the 
fundamental aspects of patients’ care may be undermined (Boers et al., 2020). To 
mitigate this, these models should be integrated in such a way that restricts patients’ 
access. In this way, the patient–clinician relationship can still be maintained, as this 
type of relationship has been reported to influence how patients respond to their 
illnesses and treatments (Kelley et al., 2014).   

Ethics is one of the essential components to achieve a trustworthy AI. It is 
important to have a model that ensures compliance to ethical norms and principles, 
including fundamental human rights, moral entitlements and acceptable moral values 
(European Commission, 2019). As mentioned previously, some of these principles 
include respect for human autonomy, prevention of harm, fairness and explicability 
(European Commission, 2019). To this end, we tend to agree with the suggestion of 
setting up a dedicated ethical research agenda (Boers et al., 2020). This ethical research 
agenda is expected to form the required premise for the development of internationally 
standardised and structured ethical review guidelines (Arambula & Bur, 2020; Gruson 
et al., 2019; Johnson, 2019, 2019). These guidelines should emphasise the fundamental 
ethical rules of honesty, truthfulness, transparency, benevolence, non-malevolence and 
respect for autonomy (Keskinbora, 2019) and address other criticisms surrounding the 
application of ML-based models in actual clinical practice (Figure 4).  
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Figure 4. The fundamental ethical principles expected from the clinician and 

the ML model.  
 

Aside from these ethical guidelines, corresponding laws (internal framework and 
international sphere) should be enacted by the government to ensure the legal (e.g., the 
European General Data Protection Regulations) (Flaumenhaft & Ben-Assuli, 2018; 
Vayena et al., 2018) and jurisdictional mechanisms for their enforcement (Robles 
Carrillo, 2020).   
 

In conclusion, the development of ML models should take the ethical and legal 
framework into consideration from the data collection to the ML process and to the 
integration into clinical practice. A strong and proactive role is expected from the 
government, clinical experts, patients’ representatives, data scientists, ML experts and 
legal and human rights activists in defining these ethical guidelines. Through this, ML 
models can achieve the touted benefits of optimising health systems and decision 
support for professionals and improve the overall health of patients. As oral tongue 
cancer was considered in this study, the ethical concerns mentioned and the proposed 
solution are peculiar to other cancer types. 
 
 
 
 
 
 
Supplementary 
Supplementary Table 1. Included studies and the main ethical points discussed (below) 



	 Acta Wasaensia	 141	

11 

Name of Author Country Year 
Published 

Title Ethical points/Summary 

Seddon A.M United 
Kingdom 

1996 Predicting our health: 
ethical implications of 
neural networks and 
outcome potential 
predictions 

 Privacy concern 

Kluge E.H Canada 1999 Medical narratives 
and patient analogs: 
ethical implications of 
electronic patient 
records 

 Privacy 
 Accessibility of the 

data 

Bernie E.S United States 2002 Ethical and legal 
issues in the use of 
clinical decision 
support systems 

 Informed decision 
 Transparency 

Sethi & Theodos United States 2009 Translational 
bioinformatics and 
healthcare 
informatics: 
computational and 
ethical challenges 

 Sensitive nature of 
genetic data 

 Privacy and 
confidentiality 

Mamzer et al.  France 2017 Partnering with 
patients in 
translational oncology 
research: ethical 
approach 

 To establish a long-
term partnership 
integrating patient’s 
expectations 

 Expert and Patient 
 Cancer research and 

personalised medicine 
(CARPEM) develops 
translational research 
of precision medicine 
for cancer 

Yuste et al.  United States 2017 Four ethical priorities 
for neuroethologies 
and AI 

 Privacy and consent 
 Agency and identity 
 Augmentation 
 Biases 

Balthazar et al.  United States 2017 Protecting patients’ 
interest in the era of 
big data, artificial 
intelligence and 
predictive analytics 

 Privacy 
 Confidentiality 
 Data ownership 
 Informed consent 
 Epistemology 
 Inequalities 

Kwiatkowski W Poland 2018 Medicine and 
technology. Remarks 
on the notion of 
responsibility in 

 The notion of 
responsibility 
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technology-assisted 
healthcare 

Rajkomar et al. United States 2018 Ensuring fairness in 
machine learning to 
advance health equity 

 The principle of 
distributed justice 

 Health equity 
 Four medical ethics 

principles 
Char et al. United States 2018 Implementing 

machine learning in 
healthcare– 
Addressing ethical 
challenges 

 

 Biases 
 Fiduciary relationship 

between physicians 
and patients 

 Ethical guidelines 
 Proposition of policy 

enactment, 
programming 
approaches, task force 
or a combination of 
these strategies 

Nabi Junaid United States 2018 How bioethics can 
shape artificial 
intelligence and 
machine learning 

 Biases 
 Privacy of patients 
 Informed consent 
 Fairness, trust, equity 

and confidentiality 
 Patient–clinician 

relationship might 
change 

 
Vayena et al. Switzerland 

& United States 
2018 Machine learning in 

medicine: Addressing 
ethical challenges 

 Data protection 
 Privacy preservation 
 Biased dataset 
 Fairness and 

transparency 
Kohli & Geis United States 2018 Ethics, artificial 

Intelligence and 
radiology 

 Informed consent 
 Privacy 
 Objectivity 
 Data protection 
 Ownership 
 Bias 
 Data use agreement 
 Review of agreement 
 Safety, transparency 

and value alignment 
 

Geis et al. Canada 2019 Ethics of artificial 
intelligence in 
radiology 

 Bias 
 Informed consent 
 Privacy 
 Data protection 
 Ownership 
 Objectivity and 

transparency 
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Cahan et al. United States 2019 Putting the data before 
the algorithm in big 
data addressing 
personalised 
healthcare 

 Biases in the data 
 Handling the 

confluence between 
data and algorithm 

 Generalisability of the 
model 

 Introducing the 
quality standard for 
the dataset guidelines 

Gruson et al. Belgium 2019 Data science, artificial 
intelligence and 
machine learning: 
opportunities for 
laboratory medicine 
and the value of 
positive regulation 

 Biases 
 Patient information 

and consent 
 Ethical and legal 

frameworks 
 AI human warranty 
 Regulation of health 

data according to their 
level of sensitivity 

 
Jaremko et al. Canada 2019 Canadian Association 

of Radiologists white 
paper on ethical and 
legal issues related to 
artificial intelligence 
in radiology 

 Data value and 
ownership 

 Data privacy 
 Data sharing rules 
 Reliability gap 

(liability) 

Nebeker et al. United States 2019 Building the case for 
actionable ethics in 
digital health research 
supported by artificial 
intelligence 

 Privacy 
 Data management 
 Risks and benefits 
 Access and usability 
 Ethical principles 

(respect for persons, 
beneficence, justice) 

Wiens at al. United States 
and Canada 

 Do not harm: a 
roadmap for 
responsible machine 
learning for healthcare 

 Choosing the right 
problems 

 Developing a useful 
solution 

 Biases 
 Proper evaluation of 

the performance of 
the model 

 Thoughtful reporting 
of the models’ results 

 Integration (making it 
to the market) 

 
Guan Jian   Artificial intelligence 

in healthcare and 
medicine: promises, 
ethical challenges and 
governance 

 Role of government in 
the ethical auditing 

 Stakeholders’ 
responsibilities in 
ethical governance 
system 
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Nikola et al.  2019 Algorithm-aided 
prediction of patient 
preference: an ethics 
sneak peek 

 Protection of patients 
and clinicians (safety, 
validity, 
reproducibility, 
usability, reliability) 

 Transparency and 
comprehensibility 

 Quality control and 
monitoring of models 

Ma et al. China 2019 PPCD: Privacy-
preserving clinical 
decision with cloud 
support 

• Data usage privacy 
concern scheme 

Bali et al. India 2019 Artificial intelligence 
in healthcare and 
biomedical research: 
Why a strong 
computational/AI 
bioethics framework 
is required 

 Data privacy 
 Confidentiality 
 Do not harm principle 

should be upheld 

Mazurowski United 
Kingdom 

2019 Artificial intelligence 
in radiology: some 
ethical considerations 
for radiologists and 
algorithm developers 

• When it is unethical 
for a radiologist to 
oppose AI 

• Conflicts of interests 
between radiologists 
and AI developers 

Keskinbora Turkey 2019 Medical ethics 
considerations on 
artificial intelligence 

 Trustworthy AI  
 Important ethical 

principles should be 
embraced 

Park et al. Korea 2019 Ethical challenges in 
artificial intelligence 
in medicine from the 
perspective of science 
editing and peer 
review 

 Transparency in 
training, testing and 
validation dataset 

 Clearly explains the 
data preparation 
processes 

 
Johnson Sandra United 

Kingdom 
2019 AI, machine learning 

and ethics in 
healthcare 

 Ethical guidelines 
recommendation 

 Vigilant to potential 
errors and biases 

 Medical ethics 
Arambula & 

Bur 
United States 2019 Ethical considerations 

in the advent of 
artificial intelligence 
in otolaryngology 

 Four ethical principles 
(respect for patient’s 
autonomy, 
beneficence, 
nonmaleficence, and 
justice) 
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Reddy et al., Australia 2019 A governance model 
for the application of 
AI in healthcare 

 AI biases 
 Privacy 
 Patient and clinician 

trust 
 Regulatory guidelines 
 Proposed governance 

for AI in healthcare 
 Stages for monitoring 

and evaluating AI-
enabled services 

Boers et al., Netherlands 
and United 
Kingdom 

2019 SERIES: eHealth in 
primary care. Part 2: 
Exploring the ethical 
implications of its 
application in primary 
care practice 

 Biased and 
discriminatory 
algorithm 

 Patient’s autonomy 
 Shared decision 

making 
 Data privacy, trust 

and confidentiality 
Morley & 

Floridi 
United 

Kingdom 
2020 An ethical mindful 

approach to AI for 
healthcare 

• Internationally 
standardised and 
structured ethical 
review guidelines 

Carrillo et al., Spain 2020 Artificial intelligence: 
From ethics to law 

 Distinguish between 
legal and ethical 
aspects 

 Non-formalistic 
approach to law 

 International law is 
identified as the 
principal legal 
framework for the 
regulation of AI 
models 

 
Grote & Berens Germany 2020 On the ethics of 

algorithmic decision 
making in healthcare 

• Peer disagreement 
• Patients’ autonomy 
• Shared decision 

making 
• Obscuration of 

accountability 
• Biased and 

discriminatory 
algorithm 

• Data privacy 
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Abstract  

Importance: Oral cancer can show heterogenous patterns of behavior. For proper and effective 

management of oral cancer, early diagnosis and prognosis are important. To achieve this, artificial 

intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize 

cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it 

has made only few contributions to actual medical practice or patient care. Objectives: This study 

provides a state of art the review of diagnostic and prognostic roles of machine learning in oral 

squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians 

towards the implementation of these models into daily clinical practice. Design: We searched 

OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers 

(IEEE) databases for articles that used machine learning for diagnostic or prognostic purposes of OSCC. 

We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the 

searching and screening processes. Main outcomes and measures: The clinical concerns for the 

integration of machine learning models for actual daily practice in oral tongue cancer were identified. 

Results: A total of 41 studies were reported to have used machine learning to analyse of OSCC. The 

majority of these studies used support vector machine (SVM) and artificial neural network (ANN) 

algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 

0.70 to 1.00, and accuracy from 63.4% to 100.0% in these studies. The main limitations and concerns 

were a lack of proper understanding of the used machine learning models, inability to interpret which 

aspect of the data contributes to the result, concern about models possibly rendering the clinicians less 

important in patient management decisions, and privacy violation. Conclusion:  The accumulated 

evidence indicates that machine learning models have a great potential in improving survival of OSCC 

patients. Therefore, it is important that the concerns of the clinicians are taken into consideration in the 

development of machine learning models. This would allow for a seamless integration of these models 

into the daily clinical practice. 

 

KEYWORDS: Machine learning; Oral squamous cell carcinoma; Systematic review; explainable AI  
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1. Introduction  

Oral cancer is an aggressive disease characterized by a low average survival rate [1]. 

Developments in treatment modalities in the domains of both oncology and surgery have only 

contributed to a rather limited improvement in outcome. Therefore, accurate diagnosis and 

prognosis prediction of cancer, especially at an early stage are important in improving survival 

rate [2]. The availability of different treatment options for oral cancer requires a proper 

selection of the treatment on a case-by-case basis.  

Despite improved effect of the treatment, individualized patient-specific treatments are 

mostly lacking. Thus, improvements in diagnostic and prognostic accuracy could significantly 

assist the clinicians in making informed decisions on treatment. To this end, technical advances 

in statistics and computer software have led to improved prognostication using multi-factor 

analysis via conventional logistic and Cox regression models. Similarly, the application of 

machine learning techniques, a subfield of artificial intelligence (AI), plays a major role in the 

improved prediction of cancer outcomes. Several studies have reported that machine learning 

approach is more accurate in prognostication than the traditional statistical analyses [3–7]. 

Machine learning approach was found to be beneficial in the three aspects that are 

essential to early diagnosis and prognosis. These are an improved accuracy of cancer 

susceptibility, recurrence, and survival predictions [2], which improve the survival rates 

through the effective clinical management of patients [8–14]. Over the coming years, the 

application of the machine learning approach to clinical research continues to increase due to 

its feasibility and its many advantages. For instance, our group has used machine learning 

techniques to predict the locoregional recurrence of oral tongue cancer [15]. Similarly, it has 

been used to detect oral cancer [16–22], and to predict oral cancer recurrence [23,24], occult 

node metastasis [25,26], and survival rates of oral cancer [27–30]. Additionally, it has been 

used for the prognostication of other cancers [31–33] and to predict progression of diseases on 
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the basis of patient records such as from pre-diabetes to type 2 diabetes based on the patients’ 

records [34]. All these applications of machine learning in healthcare are aimed at assisting the 

doctors in making informed decisions, reducing diagnostics errors, improving and promoting 

the overall patient health. 

Despite numerous studies on the application of machine learning and various intelligent 

models deployed, the question remains – what are the concerns of clinicians towards the actual 

implementation of machine learning-based models in clinical settings? These concerns were 

considered from the limitations, shortcomings, and clinicians’ concerns in the published studies 

regarding the application of machine learning for oral squamous cell carcinoma (OSCC) 

prognosis. This study, therefore, aims to systematically review the studies on the application 

of machine learning for diagnosis and prognosis of oral squamous cell carcinoma. OSCC was 

chosen in this review as it is the most common malignancy of the oral cavity. Also, it constitutes 

a majority of head and neck squamous cell carcinoma. 

 

2. Methods 

2.1. Search protocol. In this study, we systematically retrieved all studies that applied 

machine learning techniques to oral cancer diagnosis or prognosis. The systematic search 

included databases of OvidMedline, PubMed, Scopus, Web of Science, and Institute of 

Electrical and Electronics Engineers (IEEE) from their inception until February 2020. The 

search approach was developed by combining search keywords: [(‘oral cancer’) AND 

(‘machine learning’)]. An additional search was conducted using the search terms: [(‘oral 

cancer’) AND (‘artificial neural network’ OR ‘ensemble method’)]. To minimize the 

possibility of omission of any study, the reference lists of all the eligible articles were manually 

searched to ensure that all the relevant studies were duly included. Also, the Preferred 
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Reporting Items for Systematic Review and Meta-Analysis (PRISMA) was followed in the 

searching and screening processes (Figure 1) [35]. 

2.2. Inclusion and exclusion criteria. The eligible studies must have evaluated the 

diagnostic or prognostic significance of using machine learning algorithms in oral cancer. 

Invited reviews, review articles, case series, case reports, abstracts, studies on animals, 

conference papers, editorials, letters to the editors, commentaries, comparative studies, expert 

views, and general studies on cancer (not specific to oral cancer) were all excluded. Similarly, 

articles in languages other than English were excluded. Studies that examined machine learning 

application for normal oral mucosa, oral lesions (without cancer), oral caries, oral mucosa, 

DNA and RNA microarray genes, proteomics, fluorescence spectroscopy, genetic 

programming and Fuzzy systems were excluded. The details of the inclusion and exclusion 

criteria are described in Figure 1. 

2.3. Screening. To ensure that all eligible studies were included in this study, a data 

extraction sheet was used where the studies selected to meet the required criteria for this review. 

The data extraction process was conducted by two independent reviewers (A.R., & O.Y.). 

Possible discrepancies were resolved by discussion. A consensus was reached on which studies 

should be included or excluded after deliberations considering the objectives, and the inclusion 

and exclusion criteria of the study. 

2.3. Data extraction. The extracted parameters from each study included author (s) name, 

year of publication, country of authors, site of mouth cancer, number of study participants, 

machine learning algorithms examined in the study, definition of study objective (prognostic 

or diagnostic), study aim, results, performance metrics (accuracy and/or specificity, or area 

under receiving operating characteristics (ROC) curve AUC) reported, and conclusion from 

the study (Table 1). When more than one algorithm was considered in the study, the algorithm 

with the best performance metrics was extracted, and included in the corresponding column in 
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Table 1. Similarly, where the results were reported separately for training and validation sets, 

the reported results for the validation were presented as shown in Table 1. Other important 

information, such as the limitations of the study and the prognostic significance of the 

application of the machine learning technique, were noted and summarized in the Discussion 

section.  

2.4. Quality assessment. We used the guidelines for developing and reporting machine 

learning predictive models to assess the quality of studies that evaluated the application of 

machine learning in the prognosis of OSCC [36]. We summarized the main guidelines in Table 

2. Each point from the guidelines carries a single mark. The threshold was set to be half of the 

maximum marks. The details of the studies and the final score from these guidelines are given 

in Table 3. 

 

3. Results 

3.1. Results of the database search. The PRISMA flowchart (Figure 1) describes the study 

selection process. A total of 297 hits were retrieved. After deleting duplicates (N = 150), 

irrelevant papers (N = 91), and exclusions (N = 15), we found 41 studies eligible to be included 

in this systematic review as shown in Figure 1 [5, 15–30, 37–60]. The findings of these studies 

(summarized in Table 1) indicated that the application of machine learning techniques for oral 

cancer (diagnosis and/or prognosis) could assist the clinicians in making informed decisions 

regarding diagnostics and prognostic parameters. The results also indicated that these 

techniques are poised to offer personalized patient care and could improve survival and reduce 

the death rate associated with oral cancer. In addition, many of these studies mentioned 

significant limitations for the adoption of such models to actual daily medical practice. 
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3.2. Characteristics of relevant studies. 

All the articles included were published in the English language. Of the 41 included studies, 

35 studies considered oral cavity cancer in general [16–30,37,40,41,43,44,46,48,49,52–60], 4 

studies focused on oral tongue squamous cell carcinoma [5,15,50,51], while 2 studies 

considered other sites in addition to oral cavity [38,47]. Furthermore, 19 studies examined the 

prognostic significance of machine learning applications, 21 studies evaluated the diagnostic 

significance of machine learning applications, and one study evaluated both (Table 1). Most 

studies on the application of machine learning techniques in oral cancer were published 

recently in 2018 and 2019 (N = 24). Over 90% of the data used in the included studies were 

retrospective in nature. With regards to the origin of relevant articles, 65.8% of the studies were 

carried out entirely in Asia, 9.6% in Europe, 7.3% in America, and 17.3% of the studies were 

collaborative efforts from different regions. Furthermore, a total of 4 (9.8%) of the studies used 

autofluorescence spectral data analysis in addition to the machine learning techniques 

[38,40,41,52]. Additionally, 18 (43.9%) studies used clinicopathologic or imaging data 

[5,15,17–21,24,25,27,28,37,45,48,49,57–59]. Also, 2 (4.9%) studies used either 

clinicopathologic and image [29,56], or clinicopathologic and genomic [43,44], or genomic 

data only [46,47], or Raman spectral data [50,51]. A single study (2.4%) combined clinical, 

imaging and genomic data [23]. Similarly, one study (2.4%) used clinical and genomic data 

[42], while 9 (21.9%) studies used other types of data (combination of risk habits, personal 

details, and dental attendance, or histopathologic, saliva samples, demographics and 

histopathologic, pathologic, lesion conditions and histological grade, clinicopathologic and 

socio-demographic, histologic and brush cytologic parameters, demographics-histopathologic 

and immunohistochemical). 

Most of the included studies considered artificial neural networks (N =12, 29.3%) or 

support vector machines (N = 14, 34.1%) in their analyses. These two popular algorithms were 
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followed closely by deep convolutional neural networks (N = 11, 26.8%) [17,19,20,46,48,50–

52,57–59]. There was also an increase in the application of deep neural network from the year 

2017 onwards. In total, 24 (80%) of the studies had the number of cases less than 500. 

Similarly, most of the cases used for the analysis were extracted from hospital health records 

(N = 27, 65.8%). Several metrics were reported in these studies to report the performance of 

these machine learning algorithms. Of the included studies, 13 (31.7%) reported accuracy as 

their performance metrics [21–23,28,30,37,43,44,48,49,54,59,60]. Also, 13 (31.7%) used 

sensitivity, specificity and accuracy [5,15,17,18,26,39,42,45,46,50,51,57,58] while 8 (19.5%) 

studies employed only sensitivity and specificity [16,20,27,38,40,41,52,55] . Four (7.3%) 

studies reported only specificity and accuracy [24,25,53,56]. A single study (2.4%) considered 

sensitivity, specificity, accuracy and area under receiving operating characteristic curve (AUC) 

[19], while 2 (4.9%) studies used only AUC or its mean (MAUC) [29,47].  

A total of 30 studies (73.2%) used a shallow machine learning approach while 

11(26.8%) employed a deep machine learning approach. Reported specificity in the reported 

studies ranged from 0.57 to 1.00 [25,27,41] and sensitivity varied between 0.70 and 1 [16, 27]. 

Similarly, accuracy ranged from 63.4% to 100%. Notably, only 4 (9.8%) of the included studies 

reported less than 75% performance accuracy of the machine learning model [18,25,30,45]. 

Some of the concerns were the black-box concern (inability to interpret how the trained 

machine learning models make the diagnosis or predictions of the patients on a case-by-case 

basis) [25,61], result and model interpretability (what aspect of the data or the input features 

led to the prediction) [25,62,63], the amount and quality of the data used in the training [25,30], 

super-human analogy (assumption that the diagnosis or prognosis from the machine learning 

algorithm is close to perfect or better than the performance of the clinicians) [62], 

generalizability of the model (the predictive model can be used outside the data on which it 

was trained initially) [5,15,25], job-competitor (concerns that the adoption of machine learning 
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model would replace the pathologists), commercial interests (integration of machine learning-

based model may actually reduce the revenue of the health systems and consequently of the 

clinicians) [25], and ethical issues (protecting the privacy of the patients information and 

defining who will be responsible if the model fails) [25,30]. 

3.4. Quality assessment of the studies included in the review 

The quality of the studies included in this study was scaled from satisfactory to excellent. Most 

of the studies were generally good (Table 3). Although some of the studies did not properly 

follow the guidelines provided by Luo et al. (Table 2).  

 

4.0  Discussion 

The number of studies that focus on the application of machine learning in oral cancer has 

increased in recent years. In this systematic review, we examined for the first time the studies 

published on the application of machine learning in oral cancer management. The evaluated 

studies considered the use of machine learning to analyze clinicopathologic data, genomic data, 

combination of clinicopathologic and genomic data, image data, and autofluorescence spectral 

data. These approaches generated models to assist in clinical decision making  [64].  

Interestingly, the performance metrics reported in the included studies suggest high 

performance. Thus, the application of machine learning for oral cancer, as well as in other 

fields of medicine is not merely science fiction, but is becoming a reality [65]. This finding 

was corroborated by another study that examined machine learning and its potential 

applications to genomic studies of the head and neck [66]. Of note, sensitivity, specificity and 

accuracy have been the widely reported performance metrics. This is because accuracy simply 

considers correct predictions over all the predictions made by the algorithm. Similarly, 

specificity measures the proportion of patients that did not have oral cancer and were predicted 
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by the model as non-oral cancer while sensitivity (recall) measures what proportion of patients 

actually had oral cancer and were identified by the algorithm as having oral cancer. 

Using machine learning techniques, a web-based tool has been developed to predict 

locoregional recurrence [5]. Similarly, machine learning technique was used to automate the 

diagnosis of oral cancer [49]. Many prognostic factors have been combined together via 

machine learning techniques for outcome predictions [15,23–30,43,58]. Also, the approach has 

demonstrated significant accuracy in discriminating between patients with or without oral 

cancer [16–19,21,22,38,41,47,52,57,59]. In other contexts to enhance effective management of 

oral cancer, machine learning techniques were used for early-stage detection of precancerous 

and cancerous lesions [20,40,46,55,60].     

 Despite the benefits of ensemble machine learning algorithms, support vector machine 

(SVM) was the most widely used machine learning algorithm for oral cancer 

diagnosis/prognosis as shown in this systematic review. This was also noted in a study that 

examined machine learning and its application to genomic data of head and neck cancer [66]. 

In another study, the support vector machine was concluded to be the most favorable algorithm 

for predicting survival rate of oral cancer [45]. The support vector machine is frequently used 

because it is an empirical risk minimizer algorithm. Additionally, it avoids the danger of being 

trapped in local minima [67]. Thus, it is usually not prone to overfitting, thereby making it 

capable of producing a good model that can properly capture the complex relationships 

between the input and output parameters. Of note, the first study that examined the use of 

artificial intelligence to identify patients at high risks of oral cancer used artificial neural 

network (ANN) [16]. Consequently, the neural network was also one of the most widely used 

algorithms. Success recorded from the use of neural network led to its’ modification to contain 

multiple hidden layers. Hence, the name deep neural networks. Deep neural networks are well-

positioned to solve most complex problems such as image analysis [68,69]. The application of 
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deep learning technologies to oral cancer diagnosis and prognosis has increased in recent years 

[19,20,46,48,51,52,57–59].  

All the studies included in this systematic review emphasized that machine learning 

techniques offer an increased precision approach to clinicians by making informed decisions. 

This further enhances patient-specific treatments and effective management of hospital 

resources in a timely, efficient and dynamic manner [5,15–17,20,23,25,30,38,70,71]. Despite 

these potential benefits, the application of machine learning for medical diagnosis and 

prognosis has made few contributions to actual medical practice or patient care (Figure 2). 

Several issues are particularly significant from the clinical and ethical viewpoints. 

The first and most frequent issue is the black-box concern [25,61,72] (Figure 3). It 

comes in from two distinct yet interacting perspectives, namely the result and model 

interpretability concerns [62]. Result interpretability concern entails an inability of the 

clinicians to explain which aspect of the dataset used in the training led to the predicted result 

in a particular case. Similarly, model interpretability reflects the clinicians’ ability to 

understand how the algorithm developed the model [25,62]. As the trend in machine learning 

techniques moves from direct algorithms, such as support vector machine, to ensemble 

algorithms, and to deep learning, the black-box concern becomes more pronounced. To address 

this concern, it is pertinent for the machine learning techniques and the corresponding model 

to be explainable (“explainable model”) and transparent [25,30,61,63] (Figure 4). Clinicians 

should be able to understand, to trust, to explain and to effectively manage the emerging 

generation of models to be used for clinical decision making. Several terms have been used to 

describe this concept. These include explainable AI, transparent ML, interpretable ML, and 

trustworthy AI [73–75].  

The second concerns is the misconceptions of the scope of machine learning in medical 

diagnosis. The notion that machine learning models are super-human or close to perfect is 
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erroneous and misleading. This has led to the fear and predictions that these models in the 

nearest future could replace the need for professional experience-based consideration in 

diagnostics and prognostication [76]. The experience of the machine learning experts and the 

quality of the data used in machine learning analyses play a central role in producing a good 

model. Therefore, it is necessary that the quality of data used for model training should be the 

best possible and well-structured to produce a high-quality model [25,30,77].  

The third concern relates to the limited amount of data used in the machine learning 

analyses [5,17,19,23,28,38,43,44,46,55]. Therefore, there is concern for generalizability 

concern of the developed machine learning model. Performance of the model to be applied for 

external cases outside the data for which the model was trained, is a subject to be highlighted 

[5,15,25,29,38]. Thus, for the machine learning model to create sustainable benefits in medical 

diagnosis, the data infrastructure of healthcare organizations’ needs to be improved and the 

model produced should be externally validated to avoid biases and to enhance generalizability 

of the model. In the quest to improve the healthcare organizations’ data infrastructure, also 

privacy of patient information and ethical use of the data should also be considered [25,30]. Of 

note, a generalized model does not mean a super-human model [62], which is a concern 

amongst certain clinicians. Rather, it means that the inherent bias in the dataset has been 

accounted for in the machine learning process. Therefore, it is important to consider machine 

learning models as clinical decision support to alleviate the concern for reduction in revenue 

for healthcare organizations or rendering the clinicians less important [25].  

In conclusion, our systematic review reveals the potential of machine learning models 

in the management of oral cancer. More importantly, resolving the issues related to the 

concerns highlighted in this systematic review will ensure a faster implementation of this 

approach in clinical practice. This would further enhance an informed clinical decision-making 

and offer a better diagnosis, treatment and prognostication of oral cancer.  
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Summary points 

What was already known on the topic: 

o There are published studies on the application of machine learning techniques to 

analyse oral tongue squamous cell carcinoma (OTSCC). 

o The machine model used in actual clinical practice is limited due to certain limitations 

and concerns. 

What knowledge this study adds: 

 To the best of our knowledge, this is the first study that systematically review the 

published studies that examined the application of machine learning techniques to 

analyse tongue squamous cell carcinoma (OTSCC). 

 It examines the concerns and limitations to the actual implementation of machine 

learning-based models in clinical settings. This study also offers possible solutions to 

these concerns. 

 Support vector machine and artificial neural network are the most widely used 

algorithms for oral cancer prognostication.  
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 Addressing these limitations as suggested in this study may ensure that the models are 

useful for effective oral cancer management. 
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Figure Legend 

Figure 1. The flow diagram highlighting the search strategy and the search results.  

Figure 2. Machine learning training scheme showing the concern to actual implementation. 

Figure 3. The black-box concern of the machine learning models in oral cancer management 

Figure 4. An explainable and trustworthy machine learning model. 
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Figure 1. The flow diagram highlighting the search strategy and the search results.  
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Figure 2. Machine learning training scheme showing the concern to actual implementation. 
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Figure 3. The black-box concern of the machine learning models in oral cancer management 
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Figure 4. An explainable and trustworthy machine learning model. 
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Table 1. Extracts of the main findings from the included studies 
 

Authors, year 
(country of 
authors) 

Site No of 
Cases 

Machine Learning 
Methods 

Use of Machine 
Learning in Oral 

cancer 

Study Aim Results Performance  
metric(s) 

Speight et al., 
1995 (United 
Kingdom) 

Oral cavity 2027 Neural Network Diagnostic (data of 
risk habits, personal 
details, dental 
attendance). 

To predict the 
likelihood of an 
individual to 
having a malignant 
or potentially 
malignant oral 
lesion. 

This 
approach 
showed 
promisin
g results 
compared 
with the 
performa
nce of the 
dentist 
for the 
screening 
exercise. 

Sensitivity: 0.80 
Specificity: 0.77 

        
Wang et al., 
2003 (China) 

Oral cavity* 97 Partial Least 
Squares and 
Artificial Neural 
Network (PLS-
ANN) 

Diagnostic 
(autofluorescence 
spectra data 
analysis). 

To differentiate 
between 
premalignant and 
malignant tissues 
from benign. 

The 
multivari
ate 
algorithm 
differenti
ated 
human 
premalig
nant and 
malignant 
lesions 
from 
benign 
lesions or 
normal 
oral 
mucosa. 

Sensitivity: 0.81 
Specificity: 0.96 
 

        
Kawazu et al., 
2003 (Japan) 

Oral cavity 1,116 Neural Network Diagnostic 
(Histopathological) 

To predict lymph 
node metastasis in 
oral cancer 

The 
predictio
n 
performa
nce was 
comparab
le to 
clinical 
radiologis
ts 

Sensitivity: 0.80 
Specificity: 0.94 
Accuracy: 93.6% 

        
Majumder et 
al., 2005 
(India) 

Oral cavity 171 Relevance Vector 
Machine (RVM) & 
Support Vector 
Machine (SVM) 

Diagnostic 
(autofluorescence 
spectra data 
analysis) 
 

To diagnose early 
stage oral cancer 

The 
performa
nce 
shown by 
the 
Bayesian 
framewor
k of RVM 
was 
comparab
le to the 
traditiona
l SVM. 

Sensitivity: 0.91 
Specificity: 0.96 
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Nayak et al., 
2006 (India) 

Oral cavity 143 Principal 
Component 
Analysis (PCA) & 
Artificial Neural 
Network (ANN) 

Diagnostic 
(autoflourescence 
spectra data 
analysis). 

To classify images 
into normal, 
premalignant, and 
malignant. 

The 
performa
nce of 
ANN was 
better 
than PCA. 

Sensitivity: 0.96 
Specificity: 1.00 

        
Kim & Cha, 
2011 (Korea) 

Oral cavity 90 Principal 
Component 
Analysis (PCA) 

Prognostic (Clinical 
and genomic) 

To predict lymph 
node status before 
surgery 

The 
model 
performe
d better 
when the 
clinical 
and 
genomic 
paramete
rs were 
combined
. 

Sensitivity: 0.70 
Specificity: 0.88 
Accuracy: 84.0% 

        
Exarchos et 
al., 2012 
(Greece) 

Oral cavity 41 Bayesian Networks 
(BN), Artificial 
Neural Network 
(ANN), Support 
Vector Machine 
(SVM), Decision 
Tree (DT) & 
Random Forest 
(RF) 

Prognostic 
(Clinical, image and 
genomic). 

To predict oral 
cancer 
reoccurrence. 

The 
multipara
metric 
approach 
presente
d 
successfu
lly 
predicted 
oral 
cancer 
reoccurre
nce. 

Accuracy: 100% 

        
Sharma and 
Om, 2013 
(India) 

Oral cavity 1024 Single Tree (ST), 
Decision Tree 
Forest (DTF), Tree 
Boost (TB) model 

Prognostic 
(clinicopathologic) 

To predict the 
survival rate in 
cancer patients. 

The three 
examined 
algorithm
s showed 
similar 
results 
and 
performa
nces. 

Sensitivity: 1.00 
Specificity: 1.00 

        
Chang et al., 
2013 
(Malaysia)  

Oral cavity 31 Adaptive Neuro 
Fuzzy Inference 
System (ANFIS), 
Artificial Neural 
Network (ANN), 
Support Vector 
Machine (SVM), 
Logistic 
Regression (LR) 

Prognostic 
(Clinicopathologic 
and genomic) 

Oral cancer 
prognosis using 
the hybrid of 
feature selection 
and several 
machine learning 
methods. 
[Continuation of 
previous studies] 

Prognosis 
is more 
accurate 
with the 
combinati
on of 
clinicopat
hologic 
and 
genomic 
markers.  

Accuracy: 93.8% 

        
Chang et al., 
2014 
(Malaysia)  

Oral cavity 31 ReliefF-Genetic 
Algorithm, Feature 
Selection, Adaptive 
Neuro Fuzzy 
Inference System 
(ANFIS  

Prognostic 
(Clinicopathologic 
and genomic) 

To apply the 
hybrid of feature 
selection (Relief-
GA) & machine 
learning technique 
(ANFIS) in 
prognosis of oral 
cancer. 

The 
prognose
s was 
more 
accurate 
in group 
2 
(clinicopa

Accuracy: 93.8% 
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thologic 
and 
genomic) 
than 
group 1 
(clinicopa
thologic 
markers 
only) 

        
Sharma and 
Om, 2014 
(India) 

Oral cavity 1024 Support Vector 
Machine (SVM) & 
Multi-layer 
Perceptron (MLP) 

Prognostic 
(Clinicopathologic) 

To predict 
survivability of 
oral cancer 
patients. 

The 
performa
nce 
metrics 
showed 
by SVM 
outperfor
ms the 
multi-
layer 
perceptro
n. 

Sensitivity: 0.73 
Specificity: 0.73 
Accuracy: 73.6% 

        
Tseng et al., 
2015 
(Taiwan) 

Oral cavity 673 Decision Tree 
(DT), Artificial 
Neural Network 
(ANN), Logistic 
Regression (LR), & 
K-means 

Prognostic 
(Clinicopathologic) 

To predict 5-year 
survival rate and 
recurrence. 
Clustering of 
patients were 
conducted.  

Decision 
tree and 
neural 
network 
showed 
superior 
to 
traditiona
l method. 

Accuracy: 98.4% 

        
Sharma and 
Om, 2015 
(India) 

Oral cavity 1025 Probabilistic and 
General Neural 
Network 
(PNN/GRNN), 
Linear Regression 
(LR), Decision Tree 
(DT), Tree Boost 
(TB), Multi-layer 
perceptron (MLP), 
Convolutional 
Neural Network 
(CNN) 

Diagnostic 
(Clinicopathologic) 

To detect oral 
cancer. 

The 
model 
predicted 
cancer 
stages 
and 
survivabil
ity 

Sensitivity: 0.92 
Specificity: 0.79 
Accuracy: 80.0% 

        
Sharma & Om, 
2015 (India)  

Oral cavity 1025 Group method if 
data handling 
(GMDH) 
polynomial neural 
network & Radial 
basis neural 
network (RBNN) 

Diagnostic 
(Clinicopathologic) 

To diagnose new 
cases of oral 
cancer. 

The two 
variant of 
NN 
showed 
competiti
ve results 
in 
differenti
ating 
patients 
with or 
without 
oral 
cancer. 

Sensitivity: 0.77 
Specificity: 0.61 
Accuracy: 67.8% 

        
Shams & 
Htike, 2017 
(Malaysia)  

Oral cavity 86 Support Vector 
Machine (SVM), 
Deep Neural 
Network (DNN), 

Prognostic 
(Gene expression 
data). 

To predict the 
risks of oral cancer 
in oral 
premalignant 

The DNN 
technique 
performe
d better 

Sensitivity:0.98 
Specificity: 0.94 
Accuracy: 96% 
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Regularized Least 
Squares (RLS) & 
Multi-layer 
perceptron (MLP) 

lesion (OPL) 
patients. 

than 
others. 

 
 

 

        
Aubreville et 
al., 2017 
(Germany)  

Oral cavity 7,894 Deep learning 
technologies on 
Confocal Laser 
Endomicroscopy 
(CLE) images of 
oral squamous cell 
carcinoma (OSCC) 

Diagnostic 
(image analysis) 

Detection of oral 
cancer based on 
images. 

A CNN-
based 
image 
recogniti
on was 
successfu
lly 
applied 
on 
confocal 
laser 
endomicr
oscopy 
images of 
OSCC. 

Sensitivity: 0.86 
Specificity: 0.90 
Accuracy: 88.3% 
AUC: 0.96 

        
Lu et al., 2017 
(China & USA) 

Oral cavity 115 Linear 
Discriminant 
Analysis (LDA), 
Quadratic 
Discriminant 
Analysis (QDA), 
Support Vector 
Machine (SVM), 
Random Forest 
(RF) 

Prognostic 
(Clinicopathologic + 
image analysis). 

To predict the 
disease-specific 
survival. 

The study 
properly 
associate
d local 
nuclear 
morpholo
gic 
heteroge
neity 
with long 
term 
outcomes
. 

AUC: 0.72 

        
Uthoff et al., 
2018 (USA & 
India) 

Oral cavity 170 Convolutional 
Neural Network 
(CNN) 

Diagnostic (image 
analysis) 

Early detection of 
precancerous and 
cancerous lesions  

A low-
cost, 
smartpho
ne-based 
image 
system 
for oral 
screening 
was 
develope
d 

Sensitivity: 0.85 
Specificity: 0.88 
 

        
Al-Ma’aitah & 
AlZubi, 2018 
(Saudi 
Arabia) 

Oral cavity - Gravitational 
Search Optimized 
Echo State Neural 
Networks 
(GSOESNN, 
Support Vector 
Machine (SVM), 
Multi-layer 
perceptron (MLP), 
& Neural Network 

Diagnostic 
(image analysis) 

Detection of oral 
cancer  

The 
optimized 
neural 
network 
examined 
in this 
study 
identified 
oral 
cancer 
than 
other 
machine 
learning 
methods. 

Accuracy: 99.2%. 
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Turki & Wei, 
2018 (Saudi 
Arabia & USA)  

Oral cavity* 86 Boosted Support 
Vector Machine 
(BSVM) 

Prognostic (gene 
expression data) 

Identification of 
oral cancer 

The 
boosting 
versions 
of the 
examined 
algorithm
s 
outperfor
med the 
baseline 
algorithm
s.   

MAUC: 0.849. 

        
Cheng et al., 
2018 
(Taiwan)  

Oral cavity 1,429 K-Nearest 
Neighbor (KNN), 
K-shortest paths 
(K-STAR), 
Randomizable 
Filtered Classifier 
(RFC), & Random 
Tree (RT) 

Diagnostic 
(Clinicopathological 
data) 

To predict 
recurrence 

Importan
t risk 
factors 
for 
recurrenc
e were 
identified
. Also,  
KSTAR 
algorithm 
showed 
the best 
performa
nce 

Specificity: 0.75 
Accuracy: 77.0% 

        
Das et al., 
2018 (India)  

Oral cavity 126 Deep Convolution 
Neural Network 
(DCNN) 

Diagnostic (image 
analysis) 

Automatic 
identification of 
relevant regions 
for OSCC diagnosis 

Keratin 
pearls 
region 
were 
identified 
with 
significan
t 
accuracy. 

Accuracy: 96.9% 

        
Nawandhar et 
al., 2019 
(India)  

Oral cavity 676 Decision Tree 
(DT), Quadratic 
Support Vector 
Machine (QSVM), 
Cubic SVM (Cu-
SVM), 
Neighborhood 
Component 
Analysis (NCA), 
Random-
Subspaces Linear 
Discriminant 
Analysis (RS-LDA) 
& Stratified 
Squamous 
Epithelium – 
Biopsy Image 
Classifier (SSC–
BIC) 

Prognostic (Image 
analysis) 

To develop an 
automatic OSCC 
image classifier 

H&E 
stained 
microsco
pic 
images 
were 
classified 
as either  
normal, 
well, 
moderate
ly, or 
poorly 
differenti
ated 
 

Accuracy: 95.6% 
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Yan et al., 
2019 (China) 

Tongue 
Squamous 
Cell 
Carcinoma 
(TSCC) 

24 Convolutional 
Neural Networks 
(CNN) 

Diagnostic (Raman 
Spectroscopy) 

To discriminate 
the border of 
tongue squamous 
cell carcinoma 
from non-
tumorous tissue. 

The 
extracted 
features 
combined 
to 
produce 
significan
t 
accuracy 
for 
tongue 
squamou
s cell 
carcinom
a 
discrimin
ations 

Sensitivity: 0.99 
Specificity: 0.95 
Accuracy: 97.2% 

        
Yu et al., 2019 
(China) 

Oral 
Tongue 
Squamous 
Cell 
Carcinoma 
(OTSCC) 

36 Deep 
Convolutional 
Neural Networks 
(DCNN), Principle 
Component 
Analysis (PCA), 
Support Vector 
Machine (SVM), & 
Linear 
Discriminant 
Analysis (LDA) 

Diagnostic (Raman 
spectral data) 

To discriminate 
OTSCC from non-
tumorous tissue 

DCNN 
showed 
better 
result 
than the 
state-of-
the-art 
methods 

Sensitivity: 0.99 
Specificity: 0.94 
Accuracy: 96.9% 

        
Chan et al., 
2019 
(Taiwan) 

Oral cavity 80 Deep 
Convolutional 
Neural Networks 
(DCNN) 

Diagnostic (auto-
fluorescence data 
analysis) 

To detect oral 
cancer 

The 
feature 
extracted 
by Gabor 
filter 
provide 
more 
useful 
informati
on for 
cancer 
detection 

Sensitivity: 0.93 
Specificity: 0.94 

        
Bur et al., 
2019 (USA)  

Oral cavity 782 Decision Forest 
(DF), Gradient 
Boosting (GB) 

Prognostic 
(clinicopathologic) 

Predict occult 
nodal metastasis 

The DF 
and GB 
performe
d better 
at 
predictin
g occult 
nodal 
metastasi
s than 
DOI 
model. 

Specificity: 0.57 
Accuracy: 63.4% 

        
Zlotogorski-H
urvitz et al., 
2019 (Israel) 

Oral cavity 34 Principal 
Component 
Analysis – Linear 
Discriminant 
Analysis (PCA-
LDA), Support 
Vector Machine 
(SVM) 

Prognostic 
(saliva samples) 

To differentiate 
between the 
spectra of oral 
cancer and healthy 
individuals. 

The mid-
infrared 
(IR) 
spectra of 
oral 
cancer 
patients 
was 
different 

Specificity: 89% 
Accuracy: 95% 
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from 
healthy 
individua
ls. The 
PCA-LDA 
outperfor
med 
other 
examined 
technique
s. 

        
Alabi et al., 
2019 (Finland 
&Brazil) 

Oral 
Tongue 
Squamous 
Cell 
Carcinoma 
(OTSCC) 

254 Support Vector 
Machine (SVM), 
Naive Bayes (NB), 
Boosted Decision 
Tree (BDT), 
Decision Forest 
(DF), & 
Permutation 
Feature 
Importance (PFI) 

Prognostic 
(clinicopathologic) 

To predict 
locoregional 
recurrence 

The BDT 
produced 
the 
highest 
accuracy. 
Also, the 
examined 
algorithm
s 
performe
d better 
than the 
depth of 
invasion 
model. 

Sensitivity: 0.79 
Specificity: 0.83 
Accuracy: 81% 

        
Lalithamani et 
al., 2019 
(India)  

Oral cavity - Deep Neural Based 
Adaptive Fuzzy 
System (DNAFS) 

Diagnostic 
(demographics and 
histopathologic) 

To identify oral 
cancer patients 

The novel 
classifier 
uses 
fuzzy 
logic and 
DNN for 
oral 
cancer 
identifica
tion and 
detection 

Accuracy: 96.3% 

        
Lavanya & 
Chandra, 
2019 (India)  

Oral cavity - Decision Tree 
(DT), Random 
Forest (RF), 
Support Vector 
Machine (SVM), K-
Nearest Neighbor 
(KNN), Multi-layer 
perceptron (MLP), 
Logistic 
Regression (LR) 

Prognostic 
(Pathological data) 

To classify oral 
cancer into stages 

The ML 
predicted 
different 
stages in 
oral 
cancer 

Accuracy: 90.6% 

        
Wang et al., 
2019 (China) 

Oral cavity 266 Random Forest 
(RF) 

Prognostic (personal 
details, smoking & 
drinking status, 
lesion conditions, & 
histological grade) 

Predict cancer risk 
of oral potentially 
malignant 
disorders. 

The 
personali
zed 
model 
performe
d better 
than the 
baseline 
& clinical 
expert 

Sensitivity: 0.82 
Specificity: 0.91 

        
Alabi et al., 
2019 (Finland 
& Brazil) 

Oral tongue 
squamous 
cell 

311 Artificial Neural 
Network (ANN) 

Prognostic 
(Clinicopathological 
data) 

Prediction of 
locoregional 
recurrences 

The 
accuracy 
of the 

Sensitivity: 0.71 
Specificity: 0.98 
Accuracy: 88.2% 
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carcinoma 
(OTSCC) 

neural 
network 
was 
significan
tly 
higher. 

        
Karadaghy et 
al., 2019 
(USA)     

Oral cavity 33,065 Decision Forest 
(DF) 

Prognostic 
(Clinicopathological, 
social and 
demographic data) 

Prediction of 5-
year overall 
survival of OSCC 
patients 

Combinin
g 
clinicopat
hological, 
social and 
demogra
phics 
produced 
better 
model 
than 
TNM-
based 
model. 

Accuracy: 71% 

        
Sunny et al., 
2019 (India, 
Germany & 
America) 

Oral cavity 100 Artificial Neural 
Network (ANN) 
 

Diagnostic (image) & 
prognostic   
(clinicopathologic) 

To develop a risk 
stratification 
model using ANN. 
Also to enable tele-
cytology-based 
point of care 
diagnosis 
(detection of 
OPML). 

The ANN 
showed 
higher 
accuracy. 

Specificity: 0.90 
Accuracy: 86% 

        
Jeyaraj & 
Samuel Nadar, 
2019 (India) 

Oral cavity 100 Convolution 
Neural Network 
(CNN) 

Diagnostic 
(image analysis) 

To use CNN for the 
detection of 
cancerous tumor 
with benign and 
cancerous tumor 
with normal tissue. 

The 
regressio
n-based 
partitione
d CNN 
performs 
better 
than 
other 
traditiona
l medical 
image 
classificat
ion 
technique 
examined
. 

Sensitivity: 0.94 
Specificity: 0.91 
Accuracy: 91.4 % 

        
Ariji et al., 
2019 (Japan) 

Oral cavity 45 Convolution 
Neural Network 
(CNN) 

Diagnostic 
(image analysis) 

To evaluate the 
performance of 
CNN for the 
diagnosis of lymph 
node metastasis. 

The CNN 
yielded 
performa
nce that is 
similar to 
pathologi
sts. 

Sensitivity: 0.75 
Specificity: 0.81 
Accuracy: 78.2%. 

        
Xu et al., 2019 
(China) 

Oral cavity ~ 7000 
 

Three-Dimensional  
Convolutional 
Neural Networks 
(3DCNN)  

Diagnostic (image 
analysis) 

To differentiate 
between benign 
and malignant oral 
cancers 

The 
3DCNN 
variant 
gave a 
better 
performa

Accuracy: 75.4% 
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nce than 
the 
2DCNN in 
differenti
ating 
between 
benign 
and 
malignant
. 

        
Romeo et al., 
2020 (Italy)  

Oral cavity 40 Naïve Bayes (NB), 
Bagging of NB, K-
Nearest Neighbors 
(KNN), J48, 
boosting J48 

Prognostic (Image 
analysis) 

Prediction of 
tumor grade and 
nodal status in 
patients with 
OCSCC & 
oropharyngeal. 

Most 
accurate 
subset of 
features 
to predict 
tumor 
grade and 
nodal 
status 
were 
identified
. 

Accuracy: 92.9% 

        
McRae et al., 
2020 (USA) 

Oral cavity 999 K-Nearest 
Neighbors (KNN) 

Diagnostic 
(histopathologic and 
brush cytologic 
parameters) 

To detect potential 
malignant oral 
lesions (PMOL). 

This 
approach 
represent 
a 
practical 
solution 
for quick 
PMOL 
assessme
nt. 

Accuracy: 99.3% 

        
Mermod et al., 
2020 
(Switzerland 
& Australia) 

Oral cavity 56 
(112 
external 
validation
) 

Random Forest 
(RF), linear 
Support Vector 
Machine (SVM), 
LASSO regularized 
logistic regression, 
C5.0 decision trees 

Prognostic 
(demographic, 
histopathologic, 
immunohistochemic
al) 

To predict occult 
lymph node 
metastases 
(OLNM) 

The 
examined 
algorithm 
offered a 
clinical 
managem
ent 
strategies 
to 
identify 
patients 
that 
would 
benefit 
from neck 
dissectio
n 

Sensitivity: 0.8 
Specificity: 0.9 
Accuracy: 90% 

        
 

 

 

 

 



190	 Acta Wasaensia

34 
 

Table 2. Quality measurement guidelines [Adapted from Luo et al., 2016] [36] 

Article sections Parameters Explanation 
Title  Title (Nature of Study)  The study clearly showed that it focused on 

either diagnostic or prognosis model, or both. 
   
Abstract   Abstract (Structured 

summary of the study) 
It contains the background, objectives, data 
sources, performance metrics and conclusion. 
The data sources and no of data is preferred 
but can also be optional in the abstract. 

   
Introduction  Rationale 

 Objectives 
Describes the goals of the study. It properly 
introduced the reader to the study. A brief 
introduction that reviews the current practice 
and prediction performance of existing models. 
Also, identify how the newly proposed model 
may benefit the clinical practices.  

   
Methods  Describe the available 

data/describe the setting 
 Define the problem 

(diagnostic/prognostic) 
 Data preparation 
 Build the model 

Describe the data source, size of data sample, 
year/duration of the available data. The 
nature of the data 
(retrospective/prospective), input and target 
variables definition, cost of prediction errors, 
performance metrics definition, and the 
explanation of the success criteria. Data 
inclusion and exclusion criteria, data 
processing methods, missing values and how 
it was handled. Finally, explain how the model 
was built. 
 
(Explaining the nature of data and the external 
validation are desirable but not mandatory) 

   
Results  The performance of the 

model using the external 
validation dataset 
 

This reports the final model and its 
performance. It is recommended to compare 
the performance of the model with other 
known models, clinical standards or statistical 
methods. Reporting the confidence intervals is 
optional but desirable. Similarly, it is highly 
recommended to validate the model externally. 
If not possible, internal validation becomes 
important. 

   
Discussion  Discuss the clinical 

implications 
 Discuss the limitations 

Discuss the significance of the findings and 
possible limitations (potential pitfalls) of the 
study or the model to be specific. Mentioning 
the financial implications, that is, the amount 
of money that can be saved using this model is 
optional. 

   
Conclusion o Discuss the overall usage 

of the model in the 
clinical arena. 

Report the unexpected signs of the model such 
as collinearity, overfitting, underfitting. Most 
importantly, evaluates if the objective of the 
studies was fulfilled. 
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