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Abstract—An increasing implementation of renewable sources 
and electric vehicles can be of help in reducing the total 
operational cost of a power system, affecting power system 
technical operation. To this end, a multi-objective optimisation 
method using Normalised Normal Constraint (NNC) is applied in 
this paper by which two competitive objectives are considered: 
Minimisation of Active Distribution System (ADS) operational 
cost and minimisation of ADS power losses. Meanwhile, the 
uncertain behaviour of wind, photovoltaic units, and arrival and 
departure time of electric vehicles are considered. The proposed 
model is a multi-objective problem which comprises two 
stochastic stages and is simulated under GAMS environment on 
a modified IEEE 18-bus test system. The results clearly represent 
the trade-off between economic and technical benefits of the 
considered ADS. Furthermore, the effect of electric vehicles 
charging and discharging tariffs on the operational cost of the 
system are shown.  

Index Terms—Multi-objective optimisation, Normalised Normal 
Constraint (NNC), active distribution system, stochastic 
programming, renewable energy source, electric vehicle.   

NOMENCLATURE 
A. Indices 

 Index for batteries 
 Index for distributed generations 
 Index for nodes 
 Index for photovoltaic units 

 Index for scenarios 
 Index for time 

 Index for wind units 
 Index for electric vehicles 

B. Parameters 
 Active/Reactive load, node i period 

 Apparent power, line between nodes 

 Admittance magnitude of line between 
nodes  
Phase angel of line between nodes 

 Efficiency for EV   
Active power bid, EV  

 Expected coefficient of EV  
C. Variables 

 Active power, unit  , scenario , period  
 Reactive power, unit , scenario , period  

Stored energy, EV  , scenario , period 
 Binary variable of  (1=charge for batteries 

and EVs/on for DGs, 0=discharge for 
batteries and EVs/off for DGs) 
Voltage magnitude, node , scenarios 
 ,period  

Voltage magnitude, node  , scenario , 
period  

Superscript max/min and C/D with any of above symbols present the 
maximum/minimum value and charge/discharge of the corresponded 
symbol. Moreover, Set  runs from 1 to  

I. INTRODUCTION 
Traditionally, a distribution network is a passive network, 

which is controlled by a distribution network operator where 
Distributed Generations (DGs) have been operated with a fit-
and-forget method and demands are inflexible. On the other 
hand, the transition to Active Distribution System (ADS) 
provides more flexibility to control of DGs and demands in the 
distribution system [1]. Having said that increasing utilization 
of DGs, particularly Renewable Energy Sources (RES) such as 
Photovoltaic units (PV) coupled with high penetration of 
Electric Vehicles (EVs) in the distribution system brings 
challenges for the system operators, including tackling with  
their intermittent nature and their lack of inertia [2, 3].  



To this end, several academic works have investigated the 
presence of RESs and EVs in the power system from different 
points of view. By way of illustration, a tri-level optimisation 
of an ADS is presented in [4], where different RESs are 
considered. In this work it was proposed that dispatchable DGs 
such as gas turbines can be of help in facilitating of integrating 
intermittent RESs. A two-stage stochastic programming is 
applied by [5] for capturing the uncertainty of wind and PV 
units. The proposed framework in this work led into decreasing 
of renewable energy curtailment and alleviating of energy 
imbalance because of the intermittent nature of RESs. The push 
towards sustainability and greener world has resulted in the 
substituting of fuel-based vehicles with EVs as they contribute 
significantly in reduction of emissions and environmental 
concerns [6].  

An optimisation framework is presented in [7] where EVs 
are only capable of charging. In this work, EV charging rates 
were optimized in a way that their corresponding costs were 
minimized and keep the voltage profile of the system within the 
plausible range. The effect of State-Of-Charge (SOC) on the 
optimal operation of EVs and their contribution to an ADS is 
discussed in [8]. In this work, an energy management 
framework was proposed which led to improve the flexibility 
of ADS operation with assist of using EVs. Integration of EVs 
in power system causes a significant uncertainty which can be 
captured by Normal and Weibull probability distribution 
function. This view is shared and applied by [9].  

The focus of mentioned articles is mostly fall into the 
minimization (maximization) of cost (revenue) though the 
technical aspects of operation such as operating within the 
acceptable voltage range or at the minimum power losses are 
important. It can be said that the optimal operation problem is 
not a pure single objective as other objectives such as having 
minimum power losses come to the fore and lead to forming a 
multi-objective problem. Several approaches have been used in 
literatures for solving a multi-objective problem among which 
heuristic methods are used by [10-13] and numerical 
optimisation-based methods are implemented by [14-16].  

According to [17] numerical optimisation methods are more 
reliable than heuristic methods as the latter may being stuck in 
a local optimal area and do not guarantee to approach the global 
optimal solution in some cases. Many methods for solving a 
multi-objective problem can be integrated to obtain a single 
Pareto solution though a few of approaches such as Normal 
Boundary Intersection (NBI), Normalized Normal Constraint 
(NNC) and Directed Search Domain (DSD) methods are able 
to generate the whole Pareto frontier. The NNC method is a 
powerful and efficacious numerical optimisation-based method 
which is suitable for the two-objective problems [18].  

For instance, a multi-objective reactive power optimisation 
of an AC-DC power system using piecewise NNC is used in 
[19]. In this work, voltage deviation and power losses are 
considered as objectives and the results showed a good 
distributions of Pareto solutions. Another example is [20] that 
the advantages of using NNC method in transmission 
congestion management is discussed. The virtues of using NNC 
method in this work highlighted as efficacious covering of the 
objective space via well-distributed Pareto solutions. 

The main contributions of the current article can be 
highlighted as follows.  

• Proposing a centralized energy management framework 
for an ADS with the aim of optimizing ADS operation. 

• Investigating the trade-off between the competing 
objectives (ADS operational cost and power losses) 
according to the operator priorities and preferences, based 
on the Pareto optimal solutions using NNC method. 

• Scrutinizing the impact of charging and discharging tariff 
of EVs and their expected SOC on the operational costs of 
the ADS.  

The remainder of the paper is organized as follows. Problem 
formulation is presented in Section II. Section III discusses the 
solution algorithm. Numerical results for the proposed model 
are given in Section IV, and the conclusion is provided in 
Section V.  

II. MODELLING AND FORMULATING THE PROBLEM 
A.  Centralized multi-objective optimisation framework 

The considered ADS consists of various dispatchable units, 
RESs, and loads. ADS can transact in the electricity market and 
buy/sell active power from/to the wholesale electricity market. 
Also, there are some EV parking slots in the ADS which 
provide the opportunities for the operator to utilize EVs 
capability when they are available in the defined parking slots.  

In order to take the advantages of EVs on the operation and 
security of the network, it is efficient to integrate EV’s energy 
management with ADS operation.  

To this end, a centralized energy management framework is 
considered to co-optimize ADS operation and EVs energy 
management.   

In the considered centralized energy framework, it is 
assumed that EV’s aggregators send EVs information to the 
operator in the day-ahead period through communication links. 
This information consists of the forecasted arrival and departure 
times, EV’s forecasted SOC at the arrival time and the expected 
SOC at the departure time.  Based on the received data, system 
operator can manage the EVs energy while is subjected to fulfil 
their expectations. 

The considered multi-objective optimisation  problem in 
this paper is a mixture of two competitive technical and 
economic aims, including minimisation of operational cost and 
minimisation of power losses. In this paper. They are given in 
(1) and details are provided in Section II.B.  

                            (1) 

Operational cost is an economic objective and the power 
losses is a technical one. Considering these objectives, problem 
can be discussed from two perspectives as follows. In this 
context, operator must consider its assets and opportunities 
such as committing the cheaper units and integrating of EVs. 
On the other hand, operator prefers less power losses in its 
network.  



Hence, operator is encountered with two competitive 
objectives that must be co-optimized. Indeed, optimal solution 
of MG operation will be attained by trade-off between 
objectives according to operator’s preferences. 

Generally speaking, the proposed centralized multi-
objective optimisation framework consists of three steps. First, 
information of EVs, market price and ADS’s asset are sent to 
the operator. Second, the centralized optimisation  is applied by 
operator to solve the problem using NNC method. Third, 
optimal scheduling of EV’s charging/discharging, and ADS’s 
distinct asset are determined. 

B. Problem Formulation 
In this paper, ADS’s asset comprises dispatchable DGs such 

as gas turbines and steam turbines, batteries, and uncertain 
sources such as wind turbines, and PV units. The cost of DGs 
are indicated in (2).  

According to [25], cost function of active and reactive 
power for different operation regions of DGs are modeled as a 
quadratic function. In order to avoid modulus function in (2), it 
converted to a linear function using duality method [17].  

DGs technical constraints (e.g. maximum/minimum 
capacity, maximum/minimum up/down time) are considered 
[4],[21]. Furthermore, batteries are modelled according to [4] 
and their degradation costs  are considered. It is worth 
mentioning that transaction in the market is neglected here for 
simplicity.  

                                             (2)                        

For modelling renewable sources, including wind and PV 
units, the model of [4] has been implemented here. Some 
assumptions are contemplated for modelling EVs.  

Firstly, they can operate in either charging or discharging 
modes and this cannot happen simultaneously. In addition, once 
they are connected to the ADS, the operator can control their 
charging/discharging modes.  

Next, EVs have individual owners and consequently the 
behavior of each EVs in arriving and departing of parking slots 
are determined by them which causes a stochastic behaviour. 
Having said that, Normal distribution function can be used in 
large-scale problems where the number of EVs are considerable 
and is implemented here to capture the uncertainty in arrival 
and departure time of EVs [2].  

Moreover, EVs need to be charged to their likely SOC at 
their departure time. The cost (revenue) of 
charging(discharging) EVs is illustrated in (3). The 
charging/discharging of EVs are subjected to (4). Energy 
balance of EVs are demonstrated in (5). Storage capacity limits 
of EVs is presented in (6). Finally, (7) shows the SOC 
fulfillment of EVs at their departure time.  

 
(3)
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Active and reactive power balance equations are illustrated 
in (8) and (9), respectively. Maximum apparent power of lines 
and maximum/minimum voltage of buses are indicated in (10). 
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,st

max 

Finally, the multi-objective formulation is represented in (11), 
where the economic and technical parts are provided in (12) and 
(13), respectively. The aim of (11) is minimising two objectives 
simultaneously.  

 (11)

 
(12)

 

(13) 

III. SOLUTION ALGORITHM 
The proposed model is a two-stage stochastic programming 

problem which is explained as follows. Furthermore, the NNC 
method is discussed briefly too.  



A. Uncertainty Stages 
The scenario set in the proposed model comprises the 

stochastic nature of RESs, including wind and PV units and the 
stochastic behaviour of EVs in arriving and departing the 
parking slots. Notably, the output power of dispatchable DGs 
should be specified before determination of uncertain stochastic 
sets. In other words, dispatchable DGs are here-and-now 
decisions and they are independent from the scenario 
realisations.  

Other variables such as batteries charging/discharging are 
wait-and-see variables. In order to generate a meaningful set of 
possible scenarios, Latin Hypercube Sampling (LHS) [22] 
technique is applied following by the Kantorovich distance [23] 
method as an effective mean for scenario reduction. In this 
paper, uncertain behaviors of wind turbine and PV power, and 
the uncertainty in the arrival and departure time of EVs are 
considered.  

B. Normalised Normal Constraint Method 
By and large, optimal solutions of a multi-objective 

problem are named Pareto optimal solutions. In this paper, in 
order to generate Pareto solutions, NNC method is applied. 
Generally, there are three main advantages for this method:  

1- For a two-objective optimisation problem it can search 
the entire solution space and does not neglect any region [18] 
which means that all regions of the solution space are 
adequately represented in the generated solutions.  

2- The generation of Pareto points is performed in the 
normalized objective space, which results in critically 
beneficial scaling properties [26]. This normalized space has 
the desirable property that performance of the method is 
entirely independent of the objectives’ scales.  

3-The NNC produces a Pareto optimal with a regularly 
distributed set of points, even distribution of Pareto solutions is 
an indication that the solution space is well represented in the 
Pareto points [26]. 

 
  In NNC method, at first, solution space is normalized (Fig. 

1a). Next, Anchor points (Fig. 1b) are generated, these points 
are obtained when each of objective in multi-objective problem 
is minimized independently. Anchor points also are the end 
points of Pareto frontier (Fig. 1b). In the two-objective 
problem, the line that connects two Anchor points to each other 
is named Utopia line (Fig. 1b). Second, Utopia point (Fig. 1b) 
are produced that are distributed points on Utopia line.  

Finally, in order to find each Pareto optimal point according 
to each Utopia point, Normal line is generated. This line 
intersects the Utopia line in Utopia point and also is 
perpendicular to Utopia line. Normal line is applied to produce 
an inequality constraint which is used as an additional 
constraint that progressively reduces the feasible region which 
must be searched to find optimal solution (Fig.1 c) [26].  

IV. NUMERICAL RESULTS AND DISCUSSIONS 

A modified 18-bus IEEE test system is employed as the case 
study to demonstrate the effectiveness of the suggested 
framework.  
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Fig. 1. Representation of the Normalized Normal Constraint Method for two-

Objective Problem 

 

Finally, the optimisation problem is formulated in GAMS 
environment [2]. For solving the MINLP problem, DICOPT 
solver has been used. To guarantee accuracy and feasibility of 
solutions in GAMS, two important parameters exist whose 
values can be determined by user. 1- OPTCR: Relative 
optimality criterion and 2-OPTCA: Absolute optimality 
criterion.  

These attributes specify a relative termination tolerance 
and absolute termination tolerance for solving mixed-integer 
models, respectively. In this paper, OPTCR is considered 10-6 
and OPTCA is considered 0.  

As the proposed model is a stochastic problem, all the 
values which are indicated in figures and tables are the expected 
values.  

A. Two-objective optimisation analysis 

In this section, two-objective optimisation of an ADS is 
investigated. Fig. 2a shows the cost and apparent losses of the 
considered ADS in all Pareto points that have been attained 
using NNC method. It can be seen that two objectives behave 
oppositely against each other, increasing of operational costs 
leads to reduction in the apparent power losses and vice versa. 
Fig. 2b represents the cost versus apparent power losses in 
Pareto points. Indeed, this figure shows the trade-off between 
cost and apparent losses. According to the preferences and 
priorities of decision maker, optimal point would be different. 
In fact, considering the importance of each objective from 
operator’s perspective, the suitable operating point would be 
determined. 

According to Fig. 2b, from point 1 to point 15, power losses 
has a decreasing trend. This trend indicates that importance of 
loss increases gradually in comparison with operational cost 
and at point 15, the most priority dedicates to the power losses.   



B. Cost analysis 

In order to analyse the effect of different elements on the 
operational cost, three cases are considered. Case1 indicates the 
normal operation of the network in which all the elements are 
available. In Case2, EVs are not considered, and Case3 is 
without RESs. Table 2 illustrates the results of each case. 
According to Table 2, the operational cost in Case2 is more than 
case1 which is the result of lacking EVs and has two main 
reasons. 

First, in the absence of EVs, network does not have this 
opportunity to sell power to EVs and get benefits. Second, 
network loses the opportunity to exploit arbitrage opportunity 
of EVs’ batteries. In Case3 which renewable energy resources 
are neglected, the operational costs increase in comparison 
with other cases, owning to the fact that the operational costs 
of RES are neglected in this paper. As DGs are the only 
resources for providing reactive power, the cost of supplying 
reactive power does not change significantly in the mentioned 
cases. In addition, in Case 2 and Case 3 which EVs and RES 
are eliminated respectively, batteries are used more than 
Case 1 as their costs are less than other DGs.   

C. EV analysis 
In this section, impact of charge/discharge tariff ratio and 

EV owner’s expectation on the operational cost is investigated. 
Cases 1, 2 and 3, indicate ratio of discharge to charge tariff of 
which are considered 1.1, 1.15 and 1.2, respectively.  

Table 3 represents the results of cases. According to Table 
3, by increasing this ratio, the benefits of using EVs decreases 
because the operator must pay more to provide active power 
from EVs. In Cases 4, 5, and 6, operator is obliged to charge 
EVs’ battery 100%, 90% and 80% of their maximum capacity, 
respectively at their departure time. The results of mentioned 
cases are indicated in Table 4. According to Table 4, 
decreasing of EVs expectation, network would have this 
opportunity to charge/discharge EVs battery capacity in a more 
flexible way which leads to get more benefit. 

D. Further Discussion 
Recently, some literatures [6, 24, 25] discussed the 

possibility of providing reactive power by EVs which is an 
optimistic and maybe unrealistic to some extend from the 
industry points of view. However, they show that for example 
EVs can contribute in improvement of voltage and reducing 
power losses via providing reactive power to the grid [24]. As 
a future work, the pros and cons of providing reactive power 
through EVs for an ADS will be scrutinised. In addition, apart 
from the economic and technical objectives, an environmental 
objective can be considered to show the significance impact of 
using EVs in pollution reduction. Further research contributes 
to the physical correlation of EV’s arrival and departure time 
and different probability distributions.  

Having said that the reason of using Normal distribution 
which is used in this paper is supported by several reasons (e.g., 
from the mathematical and computational points of view is easy 
to work with) [24]. Further research can contribute to 
accommodate the proposed model on the larger test systems. 

 

 
a) Cost and apparent power losses in Pareto points 

 
b)  Cost versus apparent power losses 

Fig. 2. Two-objective optimization 

 

TABLE I: IMPACT OF DIFFERENT COMPONENTS ON THE OPERATIONAL COST 
 

 
Operational 

Cost 
($) 

PPEV 
($) 

PDG 
 ($) 

QDG 
 ($) 

Battery 
($) 

Case1 36905 -670 32494 5069 12 

Case2 37743 0 32652 5076 15 

Case3 39218 -657 34916 4930 29 

 
 

TABLE II: IMPACT OF CHARGE AND DISCHARGE TARIFF RATIO 
 

 Operational Cost 
($) 

PEV 
($) 

Case1 36918 -670 

Case2 36986 -605 

Case3 37077 -537 

 
 

TABLE III: IMPACT OF SOC EXPECTATION AT THE DEPARTURE TIME 

 Operational Cost 
($) 

PPEV 
($) 

Case4 36918 -670 

Case5 36812 -726 

Case6 36757 -789 



V. CONCLUSION 
A bi-objective optimisation problem was proposed which 

considered two competitive objectives: minimisation of the 
operational cost and the minimisation of ADS power losses. 
The NNC method has been applied for solving the problem. 
The uncertainty associated with wind and PV units was 
considered. Furthermore, stochastic behaviour of EVs was 
modelled. Finally, the proposed model, a bi-objective 
optimisation problem with two stochastic stages, was solved 
using GAMS on a modified 18-bus IEEE test system. Results 
were analysed from three perspectives: first, the trade-off 
between cost and power losses showed that they are in direct 
contradiction with one another (i.e. a decrease in one leads to 
an increase in the other). Second, the effect of each ADS 
component on the total operation cost of ADS has been 
investigated and concluded that the most expensive case is 
without RES. Finally, the impact of EVs charging and 
discharging tariffs and their expected SOC have been 
scrutinized. It has been shown that the less the expected SOC 
of EVs is, the more ADS can gain benefits.   

ACKNOWLEDGEMENTS 
Mohamed Lotfi and João P. S. Catalão acknowledge the 

support by FEDER funds through COMPETE 2020 and by 
Portuguese funds through FCT, under 02/SAICT/2017 (POCI-
01-0145-FEDER-029803). 

REFERENCES 
[1] A. Saint-Pierre and P. Mancarella, "Active Distribution System 

Management: A Dual-Horizon Scheduling Framework for DSO/TSO 
Interface Under Uncertainty," IEEE Transactions on Smart Grid, vol. 8, 
pp. 2186-2197, 2017. 

[2] M. S. Misaghian, M. Saffari, M. Kia, M. S. Nazar, A. Heidari, M. Shafie-
khah, and J. P. S. Catalão, "Hierarchical framework for optimal operation 
of multiple microgrids considering demand response programs," Electric 
Power Systems Research, vol. 165, pp. 199-213, 2018/12/01/ 2018. 

[3] O. T. Olowu, A. Sundararajan, M. Moghaddami, and I. A. Sarwat, 
"Future Challenges and Mitigation Methods for High Photovoltaic 
Penetration: A Survey," Energies, vol. 11, 2018. 

[4] M. S. Misaghian, M. Saffari, M. Kia, A. Heidari, M. Shafie-khah, and J. 
P. S. Catalão, "Tri-level optimization  of industrial microgrids 
considering renewable energy sources, combined heat and power units, 
thermal and electrical storage systems," Energy, vol. 161, pp. 396-411, 
2018/10/15/ 2018. 

[5] D. T. Nguyen and L. B. Le, "Optimal Bidding Strategy for Microgrids 
Considering Renewable Energy and Building Thermal Dynamics," IEEE 
Transactions on Smart Grid, vol. 5, pp. 1608-1620, 2014. 

[6] S. Pirouzi et al., "Robust linear architecture for active/reactive power 
scheduling of EV integrated smart distribution networks," Electric 
Power Systems Research, vol. 155, pp. 8-20, 2018/02/01/ 2018. 

[7] S. Y. Derakhshandeh et al., "Coordination of Generation Scheduling 
with PEVs Charging in Industrial Microgrids," IEEE Transactions on 
Power Systems, vol. 28, pp. 3451-3461, 2013. 

[8] Y. Xiang, J. Liu, and Y. Liu, "Optimal active distribution system 
management considering aggregated plug-in electric vehicles," Electric 
Power Systems Research, vol. 131, pp. 105-115, 2016/02/01/ 2016. 

[9] S. A. Arefifar, M. Ordonez, and Y. A. I. Mohamed, "Energy 
Management in Multi-Microgrid Systems—Development and 
Assessment," IEEE Transactions on Power Systems, vol. 32, pp. 910-
922, 2017. 

[10] G. Aghajani and N. Ghadimi, "Multi-objective energy management in a 
micro-grid," Energy Reports, vol. 4, pp. 218-225, 2018/11/01/ 2018. 

[11] X. Li, K. Deb, and Y. Fang, "A derived heuristics based multi-objective 
optimization procedure for micro-grid scheduling," Engineering 
Optimization, vol. 49, pp. 1078-1096, 2017/06/03 2017. 

[12] A. S. Loyarte, L. A. Clementi, and J. R. Vega, "A multi-objective 
optimization strategy for the economic dispatch in a microgrid," in 2016 
IEEE PES T&D-LA, 2016, pp. 1-6. 

[13] I. V, L. R, S. V, V. V, P. Siarry, and L. Uden, "Multi-objective 
optimization and energy management in renewable based AC/DC 
microgrid," Computers & Electrical Engineering, vol. 70, pp. 179-198, 
2018/08/01/ 2018. 

[14] M. Ross, C. Abbey, F. Bouffard, and G. Jos, "Multiobjective 
Optimization Dispatch for Microgrids With a High Penetration of 
Renewable Generation," IEEE Transactions on Sustainable Energy, vol. 
6, pp. 1306-1314, 2015. 

[15] V. S. Tabar, M. A. Jirdehi, and R. Hemmati, "Energy management in 
microgrid based on the multi objective stochastic programming 
incorporating portable renewable energy resource as demand response 
option," Energy, vol. 118, pp. 827-839, 2017/01/01/ 2017. 

[16] G. Carpinelli, F. Mottola, D. Proto, and A. Russo, "A Multi-Objective 
Approach for Microgrid Scheduling," IEEE Transactions on Smart Grid, 
vol. 8, pp. 2109-2118, 2017. 

[17] M. Kia, M. Setayesh Nazar, M. S. Sepasian, A. Heidari, and P. Siano, 
"An efficient linear model for optimal day ahead scheduling of CHP units 
in active distribution networks considering load commitment programs," 
Energy, vol. 139, pp. 798-817, 2017/11/15/ 2017. 

[18] S. Rahmani and N. Amjady, "Improved normalised normal constraint 
method to solve multi-objective optimal power flow problem," IET 
Generation, Transmission & Distribution, vol. 12, pp. 859-872, 2018. 

[19] Q. Li, M. Liu, and H. Liu, "Piecewise Normalized Normal Constraint 
Method Applied to Minimization of Voltage Deviation and Active Power 
Loss in an AC–DC Hybrid Power System," IEEE Transactions on Power 
Systems, vol. 30, pp. 1243-1251, 2015. 

[20] S. A. Hosseini, N. Amjady, M. Shafie-khah, and J. P. S. Catalão, "A new 
multi-objective solution approach to solve transmission congestion 
management problem of energy markets," Applied Energy, vol. 165, pp. 
462-471, 2016/03/01/ 2016. 

[21] G. Liu, Y. Xu, and K. Tomsovic, "Bidding Strategy for Microgrid in 
Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization ," 
IEEE Transactions on Smart Grid, vol. 7, pp. 227-237, 2016. 

[22] L. Shi, Y. Luo, and G. Y. Tu, "Bidding strategy of microgrid with 
consideration of uncertainty for participating in power market," 
International Journal of Electrical Power & Energy Systems, vol. 59, pp. 
1-13, 2014/07/01/ 2014. 

[23] F. S. Gazijahani and J. Salehi, "Optimal Bi-level Model for Stochastic 
Risk-based Planning of Microgrids Under Uncertainty," IEEE 
Transactions on Industrial Informatics, vol. PP, pp. 1-1, 2017. 

[24] M. S. Misaghian, M. Kia, A. Heidari, P. Dehghanian, and Bo Wang, 
"Electric Vehicles Contributions to Voltage Improvement and Loss 
Reduction in Microgrids," in 50th North American Power Symposium, 
North Dakota State University 2018. 

[25] A. Rabiee et al., "Integration of Plug-in Electric Vehicles Into Microgrids 
as Energy and Reactive Power Providers in Market Environment," IEEE 
Transactions on Industrial Informatics, vol. 12, pp. 1312-1320, 2016. 

[26] A. Messac, Optimization in Practice with MATLAB®: For Engineering 
Students and Professionals. Cambridge: Cambridge University Press, 
2015

 


