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Abstract— Machine learning requires a relevant amount of 
computational resources and it is usually executed in high-
capacity centralized cloud infrastructures (e.g., data centers). In 
such infrastructures, resources are shared in a scalable manner 
through instantiation and orchestration of multiple virtualized 
services. Emerging trends in machine learning are distribution 
and parallelization of model training, which allows the execution 
of model training tasks in multiple distributed computational 
domains, with the aim of reducing the overall training time. A 
possible drawback in decentralization of machine learning is that 
performance latency issues may arise when the computation of 
training is geographically distributed to nodes with long distance 
from each other.  One way to reduce latency is to utilize edge 
computing infrastructure, i.e., to distribute computation near the 
origin of the request. As edge resources can be scarce, it is 
important to orchestrate the model training in a parallelized 
manner. To this extent, in order to effectively ease the use of 
parallelization both in centralized and in distributed scenarios, we 
propose and implement a concept that we refer to Intelligent 
Agent (IA). An IA is responsible for instantiating and scheduling 
of the machine learning tasks (e.g., model training), and deriving 
inferences. In our solution, model training is distributed to 
multiple IAs in parallel. Each IA is packaged into a Linux 
container in order to take advantage of container portability 
across heterogenous deployments and to reuse existing container 
orchestration tools. We validate our proposal by deploying and 
instantiating multiple IAs across a distributed cloud environment, 
where each IA is accounting for a fixed amount of computational 
resources. 
 

Keywords—Intelligent agent, Model parallelism, Regression 
training, Intelligent cloud 

I. INTRODUCTION 
Cloud computing has gone through significant changes in 

the last decades. We have seen the transition of computing from 
in-house managed servers to virtualized cloud infrastructures. 
Application cloud deployment models have transitioned from 
the monolithic to microservices, and from hosted services to 
cloud native ones [6]. Virtualization models have also been 
evolving from heavier Virtual Machines (VMs) to lighter Linux 
containers and recently to even lighter models provided by 
serverless computing [18]. In general, the evolution of software 
virtualization has resulted in more elastic cloud offering models, 
enabling better scalability and flexibility of on-demand 
resources. These trends provide new opportunities to abstract 
shared pools of resources but also introduce new challenges in 

cloud management and optimization algorithms [19]. New 
generations of cloud-native applications are more flexible and 
elastic to deploy but their structure is often more complex due to 
dependencies in workloads, and due to complexity of distributed 
applications and their interconnectivity. Automation of 
application and infrastructure management are ways to cope 
with such growing complexity [12]. 

One prominent cloud technology trend is to move cloud 
computing from centralized clouds to the edge, closer to the end-
users and real-time data sources [13]. The main advantages of 
an edge cloud include lower latency and improved privacy due 
to local processing. One disadvantage of the edge cloud is the 
extra management cost and data synchronization with the central 
cloud. Particularly challenging are scenarios with the slow and 
unreliable network connectivity between the edge and central 
cloud. This requires that the edge cloud manages local 
operations more autonomously by taking advantage in local 
cloud orchestrator. Additionally, connectivity can be improved 
with the new 5G wireless connectivity technology providing 
more reliable connectivity with the ultra-low latency. Another 
disadvantage is that the edge cloud can be more resource 
constrained, requiring rather lightweight computation locally 
while offloading heavier workloads to the central cloud. In the 
latter case, the resources of multiple edge clouds could be pooled 
together to be utilized in parallel. In this way, edge clouds can 
avoid offloading processes to the centralized clouds and 
minimize the impact of the latency. 

To enhance cloud computing efficiency even beyond 
existing optimization algorithms, machine learning is a widely 
adopted technology in both research and industry. Machine 
learning can extract hidden information from processed data, 
and it enables continuous improvements to the optimization 
models which can be trained by test samples or by learning 
based on previous experience [7, 8]. Machine learning can 
require massive amounts of computational resources which is a 
problem especially for resource constrained edge clouds that 
may not have a reliable connectivity to the central cloud. One 
way to mitigate around this limitation is to utilize resources from 
other edge clouds. 

In this paper, we propose a solution to decrease the 
magnitude of resource demanding machine learning in the edge 
cloud by utilizing intelligent agents. As a machine learning 
technique, agents train a regression model that maps the input 
data to the corresponding outputs. We propose an architecture 



   
 

   
 

for model training that supports the agents to take advantage in 
model parallelism. In addition to model training, the intelligent 
agents handle the distribution of computation, evaluation of the 
trained model and communication between each other. We 
measure the performance of these agents in a distributed cloud 
setting. Finally, we analyze the measurements and discuss the 
performance of regression model training that the agents 
perform in parallel. 

The rest of this paper is organized as follows. Section II 
provides background information for familiarizing with the 
research area of this paper. In Section III, we provide a detailed 
description of the system architecture, while Section IV focuses 
on describing the experimental setup. Section V presents the 
results of the performance evaluation of our implementation and 
Section VI describes related research contributions. Finally, 
conclusions and future work are described in Section VII. 

II. ENABLING TEHCNOLOGIES AND METHODS 

A. Intelligent agent 
With the current trend of shifting applications and services 

closer to the edge, there are growing requirements on 
optimization where machine learning can play a major role. 
However, computational resources are often constrained in the 
edge whereas machine learning is rather resource consuming. 
One approach to overcome this problem is to take advantage of 
distributing the computation of machine learning, and divide of 
computational load among multiple domains by utilizing 
intelligent agents. 

The term intelligent agent refers to a popular concept in both 
Artificial Intelligence (AI) and software engineering. In the field 
of agent-based community, the term intelligent agent has been 
problematic since the term is widely used among the 
community, but a universally accepted definition is not 
acknowledged [1]. In this paper, we define intelligent agent to 
refer to an independent software that follows the principles of a 
weak notion of agency as defined in [1]: 

• Autonomy. Agents have autonomy in their actions and 
possible states in such a way that direct human 
intervention is not required [1, 3]. 

• Social ability. Agents are able to establish 
communication with other agents via commonly utilized 
protocols [1, 2]. 

• Reactivity. Agents are able to interact with their 
deployment environment e.g. cloud [1]. 

• Pro-activeness. Agents may take the initiative when it 
comes to the actions in their environment i.e. agents are 
able to take goal driven actions without being triggered 
by the events of the environment [1]. 

Moreover, the term intelligent agent has also a stronger 
notion that appends more human-like features to the weak notion 
of agency that was listed above. Stronger notion of agency 
introduces features such as knowledge, intention and sense of 
free will [1, 4]. 

B. Regression 
In machine learning, regression refers to a supervised 

mathematical procedure that estimates the relations between 
variables of interest by constructing a model [5, 8]. Construction 
of the model is based on the development of mathematical 
expressions that represent the pattern in the relation between 
dependent and independent variables as precisely as possible. 
The constructed model includes parameters that are initially 
unknown, constant coefficients that determine the behavior of 
the model. In addition to the parameters, a model has variety 
both in its degree and its mathematical complexity which are 
both dependent on the modeled mathematical operation [5]. 
Regression based models are used to approximate and predict 
the output values of certain inputs that may not even be 
represented in the given data. 

Regression has no predefined information about the degree 
and the parameters of the model in the context of this paper. 
Therefore, the main objective of intelligent agents is to learn the 
parameters and the degree of the best fitting regression model. 
In [5], the formula for regression model of higher-order 
polynomials has been defined in the following form: 

𝑌𝑖 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖2 + 𝑎3𝑥𝑖3 +⋯+ 𝑎𝑝𝑥𝑖𝑝 + 𝐸𝑖 
where 𝑌 represents the dependent variable, 𝑥 represents the 

independent variable, coefficients 𝑎0, 𝑎1,…𝑎𝑝 are the 
parameters of the model, 𝑝 is the number of terms, 𝐸 represents 
the added random error and subscript 𝑖  represents the 
observation unit where 𝑖 = 1, 2, 3 ... n. 

As stated in [5], the model usually falls into the class of 
models that are linear in the parameters in preliminary studies of 
the operation, but the more realistic models are often nonlinear 
in the parameters. For this reason, we expand the intelligent 
agents to consider also nonlinear regression models, in training, 
even though linear models have reduced complexity compared 
to nonlinear models. 

C. Least squares estimation 
The evaluation of the trained regression models is an 

essential part in order to derive the model with the best fit. There 
are various metrics that can be used to evaluate machine learning 
models such as mean squared error, mean absolute error, 
classification accuracy, logarithmic loss, etc. In this paper, we 
evaluate the models by utilizing least squares estimation (LSQ). 
The least squares estimation is an applicable option in the 
evaluation of regression models since these models result 
numerical output values. 

 The least squares estimation is a method where the trained 
models are evaluated by comparing sums of squared deviations 
between the real measurements and the estimations of the 
models. In the least squares estimation, the model with the best 
fit is the model that results the smallest sum of squared 
deviations [5]. 

In this paper, intelligent agents evaluate and select the best 
fitting regression models by utilizing the principles of the least 
squares estimation. The following formula for least squares 
estimation can be used by calculating the sum of the squares of 
the residuals – 𝑆𝑆(𝑅𝑒𝑠) [5]: 



   
 

   
 

𝑆𝑆(𝑅𝑒𝑠) =6(𝑌𝑟𝑖 − 𝑌𝑒𝑖)2,
9

:;<

 

where the 𝑌𝑟𝑖  is the real observation, the 𝑌𝑒𝑖  is the 
estimation of the model and 𝑌𝑟𝑖 − 𝑌𝑒𝑖 is the residual. 

D. Parallel machine learning 
Parallel machine learning is a paradigm where multiple 

workers train parts of a complete model [9]. Workers are entities 
that handle computational operations and they have allocated 
resources. In context of this paper, intelligent agents are 
regarded as workers. We review two popular strategies in 
parallelization of machine learning that are data parallelism and 
model parallelism [9]. 

In data parallelism, model training is parallelized across the 
data dimension which refers to a parallelization where the data 
is split into subsets and each subset is used to train a model by 
multiple workers [9-11]. In this approach, the workers train a 
model with the same architecture and, after training, the 
parameters of the model are synchronized in order to compose 
the complete model [9, 10]. Data parallelism is an efficient and 
scalable strategy to be considered especially if the 
computational load per weight is high since the weights are the 
units in synchronization [9]. 

Respectively, model training is parallelized across the model 
dimension where the model is split among the workers in model 
parallelism. Each worker trains a different part of the model by 
utilizing the same data, and the workers are responsible for 
synchronization of the intermediate results when the input of a 
certain part of the model is the output of another part of the 
model [11]. These split parts of the model can be referred as 
computational nodes, and the model parallelism is an efficient 
strategy when the computational load per node is high because 
the nodes are the units in synchronization [9]. Generally, the 
performance of model parallelism is inferior to data parallelism 
since the model parallelism introduces higher latency due to 
increased synchronization expenses [11]. 

III. SYSTEM ARCHITECTURE 
We propose a solution for regression training that utilizes 

model parallelism as a parallelization strategy. This solution 
aims to support machine learning that is executed in the 
proximity of the source of the data which is especially useful in 
the context of edge clouds. In our solution, we utilize intelligent 
agents that are responsible for the management of machine 
learning activities and handling agent-to-agent communications. 
Agents are deployed in a distributed edge cloud where they 
utilize the allocated computational resources for machine 
learning. To the best of our knowledge, this is the very first 
contribution that, through intelligent agents, tries to shed light 
on parallelized regression training, by considering also the trade-
off between performance and resource usage when training is 
parallelized among multiple agents. 

In this paper, we parallelize the training of a regression 
model that maps the dependent variable to the independent 
variable as precisely as possible. We propose an architecture for 
regression in Figure 1. 

Fig. 1. Proposed functional architecture for regression based machine
 learning 

The proposed architecture introduces visible input and output 
layers that are exploited in the environment. Moreover, we 
define a hidden layer where the inputs are weighted by the 
coefficient an and the exponent of the input increases as the 
number of computational nodes increases. In this architecture, 
machine learning is responsible of a weight optimization, 
establishment of synapses and finding out the optimal number 
of computational nodes. 

In machine learning, the evaluation of the used algorithm is 
an essential factor as, without evaluation, the outcome may 
introduce undesirable results such as low accuracy, overfitting 
or false positives. In this paper, we propose least squares 
estimation (LSQ) as the evaluation metric. Least squares 
estimation is an efficient evaluation metric since the sum of 
squared deviations can be derived from the remainder of 
predictions of the regression model and corresponding 
measurements. Moreover, we define the best fitting regression 
model by selecting the regression model that produces the 
smallest sum of squared errors.  

By combining the proposed regression architecture and 
evaluation strategy in model training, intelligent agent 
implements model training as described in Algorithm 1. 



   
 

   
 

 

In Algorithm1, the agent splits the given data into training 
and test sets. By splitting the data, the agent reduces the risk of 
overfitting the model. Overfitting is a phenomenon where the 
model corresponds very closely to the training data which again 
may lead to failures when fitting new data that has not been 
introduced in the training set. By utilizing training sets, the agent 
generates and fits the computational graph that describes the 
architecture of the model. After the graph is fitted, the agent 
evaluates the graph by utilizing least squares estimation and test 
sets. Based on the evaluation, the agent selects the graph that 
produces the smallest sum of squared error to be utilized as the 
regression model. 

Since we propose an architecture where the inputs are 
weighed and increasing exponent, we propose model parallelism 
as the parallelization strategy. In the proposed architecture, 
computational load per node is relatively high, due to the 
increasing exponent, and therefore model parallelism is an 
efficient strategy [9]. Even though model parallelism is 
generally inferior to data parallelism, we have proposed an 
architecture with a single hidden layer, so the latency due to 
weight synchronization can be avoided. 

In parallelization, we take advantage of intelligent agents. 
Agents act as workers that are deployed in different 
computational domains (Figure 2). These agents are 
autonomous software that are responsible for distributing model 
training among other agents, executing regression training 
(Algorithm 1) by utilizing model parallelism and handling 
agent-to-agent communication. We utilize container 
technologies in the deployment of the agents to facilitate 
portability in distributed edge clouds. 

 

 

 

 

 

 

 

Fig. 2. Overview of the proposed intelligent agent based system 

In the Figure 2, intelligent agents may request other agents 
to participate in decentralization of machine learning by training 
a certain part of the model. The requesting agent splits the model 
into parts among the participating agents in such a way that each 
agent incurs approximately the same computational load for 
model training. After the individual parts of the model are 
trained, the requesting agent gathers the parameters of the model 
and merges the complete model. Moreover, the requesting agent 
stores the complete model in a model database for long-term use. 

Fig. 3. Overview of the message sequence between user and intelligent agents 

In the Figure 3, a user requests regression model from an 
intelligent agent. The agent requests assistance for model 
training from the other agents that are within a feasible range. 
Agents may accept or deny the request depending on the 
availability of their resources. Requesting agent divides the 
model training among the agents who accepted the request. 
When partitioning the model training, the agent utilizes model 
parallelism as a parallelization strategy so that each participating 
agent has a dedicated part of the model to train. After the agents 
have finalized model training, they send the trained parts of the 



   
 

   
 

model to the requesting agent. Finally, the requesting agent 
merges the results and returns trained model to the user. 

IV. EXPERIMENTAL SETUP 
We ran our experiments using eight KVM-based VMs 

(c1m1 image with Ubuntu 18.04, 1 VCPU, 1 GB RAM, 20 GB 
disk). The VMs were running on an OpenStack (Pike version) 
environment operated at Ericsson Research datacenter (ERDC) 
in Lund (Sweden). For each VM, we executed a testing 
procedure to ensure a homogeneous performance of the 
machines before we deployed intelligent agents. As a testing 
procedure, the agents performed a training of a simple linear 
regression. If the agent performed model training longer than 
expected, we instantiated a new VM to replace the overloaded 
VM. 

The experiments included measuring the performance of 
regression model training. In experiments, the utilized data 
simulates the pattern of a single sin wave with random deviation 
that draws samples from a uniform distribution (Figure 4). 

Fig. 4. Overview of the simulated data 

The utilized data consists of million rows of two-
dimensional data where the independent variable x varies 
between values 0.0 and 6.0, and dependent variable y varies 
between values of -1.0 and 1.5. Even though the dependent 
variable introduces both positive and negative values, least 
squares estimation, as an evaluation metric, is still valid in model 
training since the deviations are squared. 

When intelligent agents train the regression models, the 
agents split the data into training and test sets. By splitting the 
data, the agents guarantee that the regression models are not 
overfitted. Overfitting is a rather common problem in machine 
learning, where the trained model ‘memorizes’ the pattern of the 
data instead of deriving a generalization. Hence, the effect of 
overfitting has a greater effect in scenarios that are not described 
in training, so utilization of overfitting model may lead to 
unpredictable results. 

We experiment regression-based machine learning by 
utilizing up to eight participating agents that are responsible for 
performing model training in parallel. In this experiment, we 
measure the time that is consumed in model training, data 
reading, data partitioning, and request handling. Each 
measurement has been repeated ten times in order to reduce the 
impact of the background noise that may occur in the 
measurements. 

V. RESULTS AND DISCUSSION 
In this section, we describe the results of parallelized 

regression training using the proposed simulated data set and the 
ERDC as a test environment. These results provide insights 
about the trained regression model and the trends of the 
execution times. Measured execution times consist of four major 
workloads that are model training, data reading,  data 
partitioning and agent-to-agent request handling. 

After intelligent agent(s) have finalized regression model 
training, we receive a regression model that describes the pattern 
of the data. Figure 5 shows how the regression model fits the 
experimental data, with blue dots representing the training data 
and orange dots representing the test data. 

Fig. 5. Overview of the fitted regression model where the original data is split 
 into training and test data sets 

Figure 5 depicts how the trained regression model fits both 
training and test data. Even though the training data does not 
introduce the pattern that the test data set described, the trained 
model has learned the generalized pattern so the model also fits 
the test data. Based on the fit, we can state that the trained 
regression model does not introduce overfitting, and the model 
has a precise overall fit since the selected model also produces 
the smallest sum of squared deviations in least squares 
estimation. 

Fig. 6. Overall execution time of machine learning decreases as the number of 
 intelligent agents increases 

Figure 6 shows the overall processing time when a growing 
number of intelligent agent(s) is instantiated. Overall processing 



   
 

   
 

time refers to the period of time that is needed for the agent(s) to 
provide a trained regression model after they have been 
requested to train one. As the number of the participating agents 
increases, the overall processing time decreases. Moreover, the 
parallelization of model training has a greater amplitude in the 
left hand side of the graph. This phenomenon can be explained 
with certain fixed operations, such as data reading, that consume 
constant period of time when employing model parallelism. 
However, the model parallelism reduces the time consumption 
of model training which has high correlation to overall time 
consumption. 

 
Fig. 7. Combined time consumption of each participating agent(s) is the total
 sum of time consumption that the agent(s) spend in machine learning 

Figure 7 shows the combined time consumption of each 
participating agent in parallelized model training. Combined 
time consumption decreases as the number of participating 
agents increases from one to five. After having more than five 
participating agents, the combined time consumption starts to 
increase This increase can be explained by agents executing 
certain fixed operations that consume a constant period of time. 
Based on these observations, parallel model training achieves 
peak in performance while having five participating agents 
when it comes to the combined time consumption. 

 
Fig. 8. Overview of the average workload execution time per participating
 agent(s) 

Figure 8 shows the average workload execution time per 
participating agent(s). In Figure 8, we have improved 
visualization of the execution times by utilizing logarithmic 

scale in y axis. From these workloads, the execution time of 
model training decreases and request handling increases as the 
number of participating agents increases. 

Based on these results, the determination of the optimal 
number of participating agents depends on the objective of the 
optimization. If the objective is to reduce computation time for 
machine learning, then the number of participating agents 
should be high. However, if the objective is to reduce cloud 
resource usage, then the most optimal performance can be 
achieved by employing five participating agents.  

VI. RELATED WORK 
Gupta & Pujari [15] proposed a multi-agent system where 

agents are responsible for handling different computational tasks 
in the context of medical diagnosis systems. In the proposed 
architecture, the agents – which are characterized by the 
definition of common attributes – execute specific tasks and 
share their results with other peer agents. Finally, the exchanged 
results are aggregated by a specific agent that generates a report 
based on the results. 

Alessandrini et al. [16] proposed the integration of artificial 
intelligence (AI) into Service Oriented Architectures (SOA) by 
utilizing an agent-based approach. In such an implementation, 
agents handle the coupling of AI and SOA-based services in a 
flexible manner. The agents provide machine learning 
functionality (e.g., neural networks), and the results of the 
machine learning are utilized by the coupled service. 

Abid et al. [17] introduced a method to deploy intelligent 
agents as a multi-agent system in a cloud environment. The 
agents execute intelligent services such as k-means clustering 
for data mining and web service searching. The use intelligent 
agents in cloud-based services allows to automate cloud service 
selection, due to clustering, as well as introducing several 
mutual advantages both for cloud service users and providers. 
These advantages enable evaluation and comparison of cloud 
based services by cloud service providers. 

Meng et al. [23] presented an open source distributed 
machine learning library called MLlib. The library provides 
various features implementing different multiple machine 
learning techniques and pipelines in a distributed manner by 
taking advantage of Apache Spark. In large-scale learning, the 
library supports data and model parallelism strategies. The main 
difference is that the MLlib library takes advantage in cluster-
based computing whereas our proposed solution utilizes agent-
based computing. To be more precise, agent-based computing 
consists of autonomous agents that can accept or decline 
workloads depending on their resource utilization, whereas 
clusters operate as a single unit  as enforced by the orchestrator. 

In previous work [14], we proposed a cloud native multi-
agent system where the agents provide machine learning as a 
service. In this work, the agents provided regression based 
optimization for a miniature version of an autonomous ship. The 
agents are deployed in both edge and central clouds: the heavy 
computation is offloaded to the central cloud while lightweight 
operations are executed on the edge (Figure 9).  



   
 

   
 

Fig. 9. Overview of prototype version of an autonomous ship that utilizes 
 distributed cloud 

The proposed multi-agent system in [14] has been 
demonstrated as a part of a national Finnish ecosystem called 
DIMECC. DIMECC is a co-creation ecosystem which consists 
of more than 2 000 research and development professionals who 
are working in more than 400 different organizations [22]. The 
contribution of this paper builds on and extends this work. 

As highlighted from the literature review, agents and 
intelligent agents are a well-established concept that has been 
largely used in previous years. The context in which agents can  
be used can vary within a wide set of heterogenous scenarios. 

VII. CONCLUSIONS AND FUTURE WORK 
Model parallelism is an efficient strategy to parallelize 

machine learning especially when the computational load is high 
on each node. In this paper, it has been demonstrated how to 
decrease the overall computation time in regression training by 
utilizing model parallelism. Moreover, parallelized training 
supports machine learning in a computationally constrained 
environments since the training of the model is split among the 
participating nodes. We implemented parallel regression 
training by utilizing autonomous software that we refer to as 
intelligent agents. The agents are responsible for distributing 
machine learning activities and establishing agent-to-agent 
communication. 

Our measurements show that the parallelization decreases 
overall execution time as the number of participating agents 
increases. However, the summed execution time of the 
participating agent(s) does not follow a similar trend since its 
optimal performance occurs when training is parallelized among 
five participating agents. Therefore, determining the optimal 
number of participating agents depends on the objective of the 
optimization: to minimize the computation time for machine 
learning or to minimize cloud resource usage. 

As future work, we propose an alternative implementation 
by utilizing state of the art frameworks such as TensorFlow, 
PyTorch or MXNet to train a regression-based model in a 
parallelized manner 
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