

This is a self-archived – parallel published version of this article in the

publication archive of the University of Vaasa. It might differ from the original.

Regression Training using Model Parallelism in

a Distributed Cloud

Author(s): Reijonen, Joel; Opsenica, Miljenko; Morabito, Roberto; Komu, Miika;

Elmusrati, Mohammed

Title: Regression Training using Model Parallelism in a Distributed Cloud

Year: 2019

Version: Accepted manuscript

Copyright © 2019 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

Please cite the original version:

 Reijonen, J., Opsenica, M., Morabito, R., Komu, M. & Elmusrati, M.

(2019). Regression Training using Model Parallelism in a Distributed

Cloud. In: 2019 IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl

Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science

and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),

741-747. Los Alamitos: IEEE.

https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.0

0139

https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00139
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00139

Regression Training using Model Parallelism in a
Distributed Cloud

Joel Reijonen*, Miljenko Opsenica*, Roberto Morabito*, Miika Komu*, Mohammed Elmusratiy
*Ericsson Research, Jorvas Finland – yUniversity of Vaasa, Vaasa Finland

*{firstname.surname@ericsson.com}, ymohammed.elmusrati@uva.fi

Abstract— Machine learning requires a relevant amount of
computational resources and it is usually executed in high-
capacity centralized cloud infrastructures (e.g., data centers). In
such infrastructures, resources are shared in a scalable manner
through instantiation and orchestration of multiple virtualized
services. Emerging trends in machine learning are distribution
and parallelization of model training, which allows the execution
of model training tasks in multiple distributed computational
domains, with the aim of reducing the overall training time. A
possible drawback in decentralization of machine learning is that
performance latency issues may arise when the computation of
training is geographically distributed to nodes with long distance
from each other. One way to reduce latency is to utilize edge
computing infrastructure, i.e., to distribute computation near the
origin of the request. As edge resources can be scarce, it is
important to orchestrate the model training in a parallelized
manner. To this extent, in order to effectively ease the use of
parallelization both in centralized and in distributed scenarios, we
propose and implement a concept that we refer to Intelligent
Agent (IA). An IA is responsible for instantiating and scheduling
of the machine learning tasks (e.g., model training), and deriving
inferences. In our solution, model training is distributed to
multiple IAs in parallel. Each IA is packaged into a Linux
container in order to take advantage of container portability
across heterogenous deployments and to reuse existing container
orchestration tools. We validate our proposal by deploying and
instantiating multiple IAs across a distributed cloud environment,
where each IA is accounting for a fixed amount of computational
resources.

Keywords—Intelligent agent, Model parallelism, Regression
training, Intelligent cloud

I. INTRODUCTION
Cloud computing has gone through significant changes in

the last decades. We have seen the transition of computing from
in-house managed servers to virtualized cloud infrastructures.
Application cloud deployment models have transitioned from
the monolithic to microservices, and from hosted services to
cloud native ones [6]. Virtualization models have also been
evolving from heavier Virtual Machines (VMs) to lighter Linux
containers and recently to even lighter models provided by
serverless computing [18]. In general, the evolution of software
virtualization has resulted in more elastic cloud offering models,
enabling better scalability and flexibility of on-demand
resources. These trends provide new opportunities to abstract
shared pools of resources but also introduce new challenges in

cloud management and optimization algorithms [19]. New
generations of cloud-native applications are more flexible and
elastic to deploy but their structure is often more complex due to
dependencies in workloads, and due to complexity of distributed
applications and their interconnectivity. Automation of
application and infrastructure management are ways to cope
with such growing complexity [12].

One prominent cloud technology trend is to move cloud
computing from centralized clouds to the edge, closer to the end-
users and real-time data sources [13]. The main advantages of
an edge cloud include lower latency and improved privacy due
to local processing. One disadvantage of the edge cloud is the
extra management cost and data synchronization with the central
cloud. Particularly challenging are scenarios with the slow and
unreliable network connectivity between the edge and central
cloud. This requires that the edge cloud manages local
operations more autonomously by taking advantage in local
cloud orchestrator. Additionally, connectivity can be improved
with the new 5G wireless connectivity technology providing
more reliable connectivity with the ultra-low latency. Another
disadvantage is that the edge cloud can be more resource
constrained, requiring rather lightweight computation locally
while offloading heavier workloads to the central cloud. In the
latter case, the resources of multiple edge clouds could be pooled
together to be utilized in parallel. In this way, edge clouds can
avoid offloading processes to the centralized clouds and
minimize the impact of the latency.

To enhance cloud computing efficiency even beyond
existing optimization algorithms, machine learning is a widely
adopted technology in both research and industry. Machine
learning can extract hidden information from processed data,
and it enables continuous improvements to the optimization
models which can be trained by test samples or by learning
based on previous experience [7, 8]. Machine learning can
require massive amounts of computational resources which is a
problem especially for resource constrained edge clouds that
may not have a reliable connectivity to the central cloud. One
way to mitigate around this limitation is to utilize resources from
other edge clouds.

In this paper, we propose a solution to decrease the
magnitude of resource demanding machine learning in the edge
cloud by utilizing intelligent agents. As a machine learning
technique, agents train a regression model that maps the input
data to the corresponding outputs. We propose an architecture

for model training that supports the agents to take advantage in
model parallelism. In addition to model training, the intelligent
agents handle the distribution of computation, evaluation of the
trained model and communication between each other. We
measure the performance of these agents in a distributed cloud
setting. Finally, we analyze the measurements and discuss the
performance of regression model training that the agents
perform in parallel.

The rest of this paper is organized as follows. Section II
provides background information for familiarizing with the
research area of this paper. In Section III, we provide a detailed
description of the system architecture, while Section IV focuses
on describing the experimental setup. Section V presents the
results of the performance evaluation of our implementation and
Section VI describes related research contributions. Finally,
conclusions and future work are described in Section VII.

II. ENABLING TEHCNOLOGIES AND METHODS

A. Intelligent agent
With the current trend of shifting applications and services

closer to the edge, there are growing requirements on
optimization where machine learning can play a major role.
However, computational resources are often constrained in the
edge whereas machine learning is rather resource consuming.
One approach to overcome this problem is to take advantage of
distributing the computation of machine learning, and divide of
computational load among multiple domains by utilizing
intelligent agents.

The term intelligent agent refers to a popular concept in both
Artificial Intelligence (AI) and software engineering. In the field
of agent-based community, the term intelligent agent has been
problematic since the term is widely used among the
community, but a universally accepted definition is not
acknowledged [1]. In this paper, we define intelligent agent to
refer to an independent software that follows the principles of a
weak notion of agency as defined in [1]:

• Autonomy. Agents have autonomy in their actions and
possible states in such a way that direct human
intervention is not required [1, 3].

• Social ability. Agents are able to establish
communication with other agents via commonly utilized
protocols [1, 2].

• Reactivity. Agents are able to interact with their
deployment environment e.g. cloud [1].

• Pro-activeness. Agents may take the initiative when it
comes to the actions in their environment i.e. agents are
able to take goal driven actions without being triggered
by the events of the environment [1].

Moreover, the term intelligent agent has also a stronger
notion that appends more human-like features to the weak notion
of agency that was listed above. Stronger notion of agency
introduces features such as knowledge, intention and sense of
free will [1, 4].

B. Regression
In machine learning, regression refers to a supervised

mathematical procedure that estimates the relations between
variables of interest by constructing a model [5, 8]. Construction
of the model is based on the development of mathematical
expressions that represent the pattern in the relation between
dependent and independent variables as precisely as possible.
The constructed model includes parameters that are initially
unknown, constant coefficients that determine the behavior of
the model. In addition to the parameters, a model has variety
both in its degree and its mathematical complexity which are
both dependent on the modeled mathematical operation [5].
Regression based models are used to approximate and predict
the output values of certain inputs that may not even be
represented in the given data.

Regression has no predefined information about the degree
and the parameters of the model in the context of this paper.
Therefore, the main objective of intelligent agents is to learn the
parameters and the degree of the best fitting regression model.
In [5], the formula for regression model of higher-order
polynomials has been defined in the following form:

𝑌𝑖 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖2 + 𝑎3𝑥𝑖3 +⋯+ 𝑎𝑝𝑥𝑖𝑝 + 𝐸𝑖
where 𝑌 represents the dependent variable, 𝑥 represents the

independent variable, coefficients 𝑎0, 𝑎1,…𝑎𝑝 are the
parameters of the model, 𝑝 is the number of terms, 𝐸 represents
the added random error and subscript 𝑖 represents the
observation unit where 𝑖 = 1, 2, 3 ... n.

As stated in [5], the model usually falls into the class of
models that are linear in the parameters in preliminary studies of
the operation, but the more realistic models are often nonlinear
in the parameters. For this reason, we expand the intelligent
agents to consider also nonlinear regression models, in training,
even though linear models have reduced complexity compared
to nonlinear models.

C. Least squares estimation
The evaluation of the trained regression models is an

essential part in order to derive the model with the best fit. There
are various metrics that can be used to evaluate machine learning
models such as mean squared error, mean absolute error,
classification accuracy, logarithmic loss, etc. In this paper, we
evaluate the models by utilizing least squares estimation (LSQ).
The least squares estimation is an applicable option in the
evaluation of regression models since these models result
numerical output values.

 The least squares estimation is a method where the trained
models are evaluated by comparing sums of squared deviations
between the real measurements and the estimations of the
models. In the least squares estimation, the model with the best
fit is the model that results the smallest sum of squared
deviations [5].

In this paper, intelligent agents evaluate and select the best
fitting regression models by utilizing the principles of the least
squares estimation. The following formula for least squares
estimation can be used by calculating the sum of the squares of
the residuals – 𝑆𝑆(𝑅𝑒𝑠) [5]:

𝑆𝑆(𝑅𝑒𝑠) =6(𝑌𝑟𝑖 − 𝑌𝑒𝑖)2,
9

:;<

where the 𝑌𝑟𝑖 is the real observation, the 𝑌𝑒𝑖 is the
estimation of the model and 𝑌𝑟𝑖 − 𝑌𝑒𝑖 is the residual.

D. Parallel machine learning
Parallel machine learning is a paradigm where multiple

workers train parts of a complete model [9]. Workers are entities
that handle computational operations and they have allocated
resources. In context of this paper, intelligent agents are
regarded as workers. We review two popular strategies in
parallelization of machine learning that are data parallelism and
model parallelism [9].

In data parallelism, model training is parallelized across the
data dimension which refers to a parallelization where the data
is split into subsets and each subset is used to train a model by
multiple workers [9-11]. In this approach, the workers train a
model with the same architecture and, after training, the
parameters of the model are synchronized in order to compose
the complete model [9, 10]. Data parallelism is an efficient and
scalable strategy to be considered especially if the
computational load per weight is high since the weights are the
units in synchronization [9].

Respectively, model training is parallelized across the model
dimension where the model is split among the workers in model
parallelism. Each worker trains a different part of the model by
utilizing the same data, and the workers are responsible for
synchronization of the intermediate results when the input of a
certain part of the model is the output of another part of the
model [11]. These split parts of the model can be referred as
computational nodes, and the model parallelism is an efficient
strategy when the computational load per node is high because
the nodes are the units in synchronization [9]. Generally, the
performance of model parallelism is inferior to data parallelism
since the model parallelism introduces higher latency due to
increased synchronization expenses [11].

III. SYSTEM ARCHITECTURE
We propose a solution for regression training that utilizes

model parallelism as a parallelization strategy. This solution
aims to support machine learning that is executed in the
proximity of the source of the data which is especially useful in
the context of edge clouds. In our solution, we utilize intelligent
agents that are responsible for the management of machine
learning activities and handling agent-to-agent communications.
Agents are deployed in a distributed edge cloud where they
utilize the allocated computational resources for machine
learning. To the best of our knowledge, this is the very first
contribution that, through intelligent agents, tries to shed light
on parallelized regression training, by considering also the trade-
off between performance and resource usage when training is
parallelized among multiple agents.

In this paper, we parallelize the training of a regression
model that maps the dependent variable to the independent
variable as precisely as possible. We propose an architecture for
regression in Figure 1.

Fig. 1. Proposed functional architecture for regression based machine
 learning

The proposed architecture introduces visible input and output
layers that are exploited in the environment. Moreover, we
define a hidden layer where the inputs are weighted by the
coefficient an and the exponent of the input increases as the
number of computational nodes increases. In this architecture,
machine learning is responsible of a weight optimization,
establishment of synapses and finding out the optimal number
of computational nodes.

In machine learning, the evaluation of the used algorithm is
an essential factor as, without evaluation, the outcome may
introduce undesirable results such as low accuracy, overfitting
or false positives. In this paper, we propose least squares
estimation (LSQ) as the evaluation metric. Least squares
estimation is an efficient evaluation metric since the sum of
squared deviations can be derived from the remainder of
predictions of the regression model and corresponding
measurements. Moreover, we define the best fitting regression
model by selecting the regression model that produces the
smallest sum of squared errors.

By combining the proposed regression architecture and
evaluation strategy in model training, intelligent agent
implements model training as described in Algorithm 1.

In Algorithm1, the agent splits the given data into training
and test sets. By splitting the data, the agent reduces the risk of
overfitting the model. Overfitting is a phenomenon where the
model corresponds very closely to the training data which again
may lead to failures when fitting new data that has not been
introduced in the training set. By utilizing training sets, the agent
generates and fits the computational graph that describes the
architecture of the model. After the graph is fitted, the agent
evaluates the graph by utilizing least squares estimation and test
sets. Based on the evaluation, the agent selects the graph that
produces the smallest sum of squared error to be utilized as the
regression model.

Since we propose an architecture where the inputs are
weighed and increasing exponent, we propose model parallelism
as the parallelization strategy. In the proposed architecture,
computational load per node is relatively high, due to the
increasing exponent, and therefore model parallelism is an
efficient strategy [9]. Even though model parallelism is
generally inferior to data parallelism, we have proposed an
architecture with a single hidden layer, so the latency due to
weight synchronization can be avoided.

In parallelization, we take advantage of intelligent agents.
Agents act as workers that are deployed in different
computational domains (Figure 2). These agents are
autonomous software that are responsible for distributing model
training among other agents, executing regression training
(Algorithm 1) by utilizing model parallelism and handling
agent-to-agent communication. We utilize container
technologies in the deployment of the agents to facilitate
portability in distributed edge clouds.

Fig. 2. Overview of the proposed intelligent agent based system

In the Figure 2, intelligent agents may request other agents
to participate in decentralization of machine learning by training
a certain part of the model. The requesting agent splits the model
into parts among the participating agents in such a way that each
agent incurs approximately the same computational load for
model training. After the individual parts of the model are
trained, the requesting agent gathers the parameters of the model
and merges the complete model. Moreover, the requesting agent
stores the complete model in a model database for long-term use.

Fig. 3. Overview of the message sequence between user and intelligent agents

In the Figure 3, a user requests regression model from an
intelligent agent. The agent requests assistance for model
training from the other agents that are within a feasible range.
Agents may accept or deny the request depending on the
availability of their resources. Requesting agent divides the
model training among the agents who accepted the request.
When partitioning the model training, the agent utilizes model
parallelism as a parallelization strategy so that each participating
agent has a dedicated part of the model to train. After the agents
have finalized model training, they send the trained parts of the

model to the requesting agent. Finally, the requesting agent
merges the results and returns trained model to the user.

IV. EXPERIMENTAL SETUP
We ran our experiments using eight KVM-based VMs

(c1m1 image with Ubuntu 18.04, 1 VCPU, 1 GB RAM, 20 GB
disk). The VMs were running on an OpenStack (Pike version)
environment operated at Ericsson Research datacenter (ERDC)
in Lund (Sweden). For each VM, we executed a testing
procedure to ensure a homogeneous performance of the
machines before we deployed intelligent agents. As a testing
procedure, the agents performed a training of a simple linear
regression. If the agent performed model training longer than
expected, we instantiated a new VM to replace the overloaded
VM.

The experiments included measuring the performance of
regression model training. In experiments, the utilized data
simulates the pattern of a single sin wave with random deviation
that draws samples from a uniform distribution (Figure 4).

Fig. 4. Overview of the simulated data

The utilized data consists of million rows of two-
dimensional data where the independent variable x varies
between values 0.0 and 6.0, and dependent variable y varies
between values of -1.0 and 1.5. Even though the dependent
variable introduces both positive and negative values, least
squares estimation, as an evaluation metric, is still valid in model
training since the deviations are squared.

When intelligent agents train the regression models, the
agents split the data into training and test sets. By splitting the
data, the agents guarantee that the regression models are not
overfitted. Overfitting is a rather common problem in machine
learning, where the trained model ‘memorizes’ the pattern of the
data instead of deriving a generalization. Hence, the effect of
overfitting has a greater effect in scenarios that are not described
in training, so utilization of overfitting model may lead to
unpredictable results.

We experiment regression-based machine learning by
utilizing up to eight participating agents that are responsible for
performing model training in parallel. In this experiment, we
measure the time that is consumed in model training, data
reading, data partitioning, and request handling. Each
measurement has been repeated ten times in order to reduce the
impact of the background noise that may occur in the
measurements.

V. RESULTS AND DISCUSSION
In this section, we describe the results of parallelized

regression training using the proposed simulated data set and the
ERDC as a test environment. These results provide insights
about the trained regression model and the trends of the
execution times. Measured execution times consist of four major
workloads that are model training, data reading, data
partitioning and agent-to-agent request handling.

After intelligent agent(s) have finalized regression model
training, we receive a regression model that describes the pattern
of the data. Figure 5 shows how the regression model fits the
experimental data, with blue dots representing the training data
and orange dots representing the test data.

Fig. 5. Overview of the fitted regression model where the original data is split
 into training and test data sets

Figure 5 depicts how the trained regression model fits both
training and test data. Even though the training data does not
introduce the pattern that the test data set described, the trained
model has learned the generalized pattern so the model also fits
the test data. Based on the fit, we can state that the trained
regression model does not introduce overfitting, and the model
has a precise overall fit since the selected model also produces
the smallest sum of squared deviations in least squares
estimation.

Fig. 6. Overall execution time of machine learning decreases as the number of
 intelligent agents increases

Figure 6 shows the overall processing time when a growing
number of intelligent agent(s) is instantiated. Overall processing

time refers to the period of time that is needed for the agent(s) to
provide a trained regression model after they have been
requested to train one. As the number of the participating agents
increases, the overall processing time decreases. Moreover, the
parallelization of model training has a greater amplitude in the
left hand side of the graph. This phenomenon can be explained
with certain fixed operations, such as data reading, that consume
constant period of time when employing model parallelism.
However, the model parallelism reduces the time consumption
of model training which has high correlation to overall time
consumption.

Fig. 7. Combined time consumption of each participating agent(s) is the total
 sum of time consumption that the agent(s) spend in machine learning

Figure 7 shows the combined time consumption of each
participating agent in parallelized model training. Combined
time consumption decreases as the number of participating
agents increases from one to five. After having more than five
participating agents, the combined time consumption starts to
increase This increase can be explained by agents executing
certain fixed operations that consume a constant period of time.
Based on these observations, parallel model training achieves
peak in performance while having five participating agents
when it comes to the combined time consumption.

Fig. 8. Overview of the average workload execution time per participating
 agent(s)

Figure 8 shows the average workload execution time per
participating agent(s). In Figure 8, we have improved
visualization of the execution times by utilizing logarithmic

scale in y axis. From these workloads, the execution time of
model training decreases and request handling increases as the
number of participating agents increases.

Based on these results, the determination of the optimal
number of participating agents depends on the objective of the
optimization. If the objective is to reduce computation time for
machine learning, then the number of participating agents
should be high. However, if the objective is to reduce cloud
resource usage, then the most optimal performance can be
achieved by employing five participating agents.

VI. RELATED WORK
Gupta & Pujari [15] proposed a multi-agent system where

agents are responsible for handling different computational tasks
in the context of medical diagnosis systems. In the proposed
architecture, the agents – which are characterized by the
definition of common attributes – execute specific tasks and
share their results with other peer agents. Finally, the exchanged
results are aggregated by a specific agent that generates a report
based on the results.

Alessandrini et al. [16] proposed the integration of artificial
intelligence (AI) into Service Oriented Architectures (SOA) by
utilizing an agent-based approach. In such an implementation,
agents handle the coupling of AI and SOA-based services in a
flexible manner. The agents provide machine learning
functionality (e.g., neural networks), and the results of the
machine learning are utilized by the coupled service.

Abid et al. [17] introduced a method to deploy intelligent
agents as a multi-agent system in a cloud environment. The
agents execute intelligent services such as k-means clustering
for data mining and web service searching. The use intelligent
agents in cloud-based services allows to automate cloud service
selection, due to clustering, as well as introducing several
mutual advantages both for cloud service users and providers.
These advantages enable evaluation and comparison of cloud
based services by cloud service providers.

Meng et al. [23] presented an open source distributed
machine learning library called MLlib. The library provides
various features implementing different multiple machine
learning techniques and pipelines in a distributed manner by
taking advantage of Apache Spark. In large-scale learning, the
library supports data and model parallelism strategies. The main
difference is that the MLlib library takes advantage in cluster-
based computing whereas our proposed solution utilizes agent-
based computing. To be more precise, agent-based computing
consists of autonomous agents that can accept or decline
workloads depending on their resource utilization, whereas
clusters operate as a single unit as enforced by the orchestrator.

In previous work [14], we proposed a cloud native multi-
agent system where the agents provide machine learning as a
service. In this work, the agents provided regression based
optimization for a miniature version of an autonomous ship. The
agents are deployed in both edge and central clouds: the heavy
computation is offloaded to the central cloud while lightweight
operations are executed on the edge (Figure 9).

Fig. 9. Overview of prototype version of an autonomous ship that utilizes
 distributed cloud

The proposed multi-agent system in [14] has been
demonstrated as a part of a national Finnish ecosystem called
DIMECC. DIMECC is a co-creation ecosystem which consists
of more than 2 000 research and development professionals who
are working in more than 400 different organizations [22]. The
contribution of this paper builds on and extends this work.

As highlighted from the literature review, agents and
intelligent agents are a well-established concept that has been
largely used in previous years. The context in which agents can
be used can vary within a wide set of heterogenous scenarios.

VII. CONCLUSIONS AND FUTURE WORK
Model parallelism is an efficient strategy to parallelize

machine learning especially when the computational load is high
on each node. In this paper, it has been demonstrated how to
decrease the overall computation time in regression training by
utilizing model parallelism. Moreover, parallelized training
supports machine learning in a computationally constrained
environments since the training of the model is split among the
participating nodes. We implemented parallel regression
training by utilizing autonomous software that we refer to as
intelligent agents. The agents are responsible for distributing
machine learning activities and establishing agent-to-agent
communication.

Our measurements show that the parallelization decreases
overall execution time as the number of participating agents
increases. However, the summed execution time of the
participating agent(s) does not follow a similar trend since its
optimal performance occurs when training is parallelized among
five participating agents. Therefore, determining the optimal
number of participating agents depends on the objective of the
optimization: to minimize the computation time for machine
learning or to minimize cloud resource usage.

As future work, we propose an alternative implementation
by utilizing state of the art frameworks such as TensorFlow,
PyTorch or MXNet to train a regression-based model in a
parallelized manner

REFERENCES
[1] M. Wooldridge & N. R. Jennings, Intelligent agents: theory and practice,

1994, pp. 3–9
[2] M. R. Genesereth & S. P. Ketchpel, Software agents, 1994, pp. 46–55

[3] C. Castelfranchi, Guarantees for autonomy in cognitive agent
architecture, 1994, pp. 55–71

[4] Y. Shoham, Agent-oriented programming, 1993, pp. 52–56
[5] J. O. Rawlings, S. G. Pantula & D. A. Dickey, Applied regression

analysis: a research tool, 1988, pp. 1–6, 233–237
[6] R. Rodger, The tao of microservices, 2018, pp. 33–46
[7] H. Brink, J. W. Richards & M. Fetherolf, Real-world machine learning,

2017, pp. 3–5
[8] E. Alpaydin, Introduction to machine learning, 2010, pp. 3–10
[9] A. Krizhevsky, One weird trick for parallelizing convolutional neural

networks, 2014, Cornell University arXiv e-print, pp. 1–5
[10] J. Reinders, A. Robinson & M. McCool, Structured parallel

programming: patterns for efficient computation, 2012, pp. 38–42
[11] R. Buyya, R. N. Calheiros & A. V. Dastjerdi, Big data: principles and

paradigms, 2016, pp. 110–114
[12] C. Meirosu, W. John, M. Opsenica, T. Mecklin, F. Degirmenci & T.

Dinsing, DevOps: fueling the evolution toward 5G networks, 2017,
Ericsson technology review, [online], available:
https://www.ericsson.com/en/ericsson-technology-
review/archive/2017/devops-fueling-the-evolution-toward-5g-networks

[13] C. Boberg, M. Svensson & B. Kovács, Distributed cloud – a key enabler
of automotive and industry 4.0 use cases, 2018, Ericsson technology
review, [online], available: https://www.ericsson.com/en/ericsson-
technology-review/archive/2018/distributed-cloud

[14] J. Reijonen, Decentralized machine learning for autonomous ships in a
distributed cloud environment, 2018, University of Vaasa master’s thesis,
pp. 66–69

[15] S. Gupta & S. Pujari, A multi-agent system (MAS) based scheme for
health care and medical diagnosis system, 2009, 2009 international
conference on intelligent agents & multi-agent systems

[16] M. Alessandrini, W-M. Lippe & W. Nuesser, Intelligent service system:
an agent-based approach for integrating artificial intelligence components
in SOA landscapes, 2009, IEEE/WIC/ACEM international conference on
web intelligence and intelligent agent technology, pp. 496–499

[17] M. Abid, S. Umar & S. Shahzad, A recommendation system for cloud
services selection based on intelligent agents, 2018, Indian journal of
science and technology vol 11, pp. 2–5

[18] C. C. Fox, V. Ishakian, V. Muthusamy & A. Slominski, Report from
workshop and panel on the status of serverless computing and function-
as-a-service (FaaS) in industry and research, 2017, white paper from first
international workshop on serverless computing (WoSC) 2017, pp. 3–12

[19] M. Lukša, Kubernetes in action, 2018, pp. 3–12
[20] T. Janssen, What is cloud-native? Is it hype or the future of software

development?, 2018, [online], available: https://stackify.com/cloud-
native/

[21] I. Lee, The evolution of cloud computing, 2018, [online], available:
https://www.embotics.com/blog/the-evolution-of-cloud-computing

[22] DIMECC, 2018, [online], available: https://www.dimecc.com/
[23] X. Meng et al., Mllib: machine learning in apache spark, 2016, The

journal of machine learning research, vol 17, pp. 1-7

