The Valuation of European Option Under Subdiffusive Fractional Brownian Motion of the Short Rate

Author(s): Shokrollahi, Foad

Title: The Valuation of European Option Under Subdiffusive Fractional Brownian Motion of the Short Rate

Year: 2020

Version: Accepted manuscript

Copyright © World Scientific Publishing Company,
https://doi.org/10.1142/S0219024920500223

Please cite the original version:

https://doi.org/10.1142/S0219024920500223
THE VALUATION OF EUROPEAN OPTION UNDER SUBDIFFUSIVE FRACTIONAL BROWNIAN MOTION MECHANISM OF THE SHORT RATE

FOAD SHOKROLLAHI

Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, FIN-65101 Vaasa, FINLAND

Abstract. In this paper we propose an extension of the Merton model. We apply the subdiffusive mechanism to analyze European option in a fractional Black-Scholes environment, when the short rate follows the subdiffusive fractional Black-Scholes model. We derive a pricing formula for call and put options and discuss the corresponding fractional Black-Scholes equation. We present some features of our model pricing model for the cases of α and H.

1. Introduction

The pioneer study of the option pricing was introduced by Black-Scholes [1] in 1973. In the Black-Scholes (BS) model has been assumed that the underlying assets follows a geometric Brownian motion. While, there exist a series of evidence which show the BS model unable to cover substantial behavior from financial markets such as: long-range dependence, heavy-tailed and periods of constant values. Hence, they proposed various modifications of the BS model to capture these shortcomings.

One of well developed modifications of the BS model is the fractional Black-Scholes model which, describes long-range dependence and self-similarity from financial data. In the fractional Black-Scholes (FBS) model, the Brownian motion is substituted with the fractional Brownian motion (FBM) in the BS model. For more details about fractional Black-Scholes model, you can see [16, 14, 2, 13].

Furthermore, analysis of financial data displays that various processes viewed in finance show special terms in which they are constant [8]. The same property is observed in physical system with subdiffusion. The fixed terms of financial processes according to the trapping event in which the subdiffusive examination particle is constant [4]. The mathematical interpretation of subdiffusion is in terms of Fractional Fokker Planck equation (FFPE). This equation was introduced from the continuous time random walk strategy with fat tail waiting times [12], later used as a substantial tool to evaluate complex system with slow dynamics. In this paper, we use the FBS model in subdiffusive mechanism to better describe...
behaviour from financial markets. We use the same strategy in [11, 15], which the objective time t is replaced by the inverse α-stable subordinator $T_\alpha(t)$ in the FBS model. Then, the dynamic of asset price is given by the following subdiffusive FBS

$$
dS_\alpha(t) = \frac{dS(T_\alpha(t))}{dT_\alpha(t)} = \mu_s S(T_\alpha(t))d(T_\alpha(t)) + \sigma_s S(T_\alpha(t))dB^H_1(T_\alpha(t)),
$$

(1.1)

where μ_s, σ_s are constant, B^H_1 is FBM with Hurst parameter $H \in \left[\frac{1}{2}, 1\right)$. $T_\alpha(t)$ is the inverse α-stable subordinator with $\alpha \in (0, 1)$ defined as follows

$$
T_\alpha(t) = \inf\{\tau > 0 : U_\alpha(\tau) > t\},
$$

(1.2)

$T_\alpha(t)$ is assumed to be independent of B^H_1. $\{U_\alpha(t)\}_{t \geq 0}$ is a α-stable Levy process with nonnegative increments and Laplace transform: $E(e^{-\alpha U_\alpha(t)}) = e^{-\alpha t^\alpha}$ [5, 17, 7]. When $\alpha \uparrow 1$, the $T_\alpha(t)$ degenerates to t.

On the other hand, all above studies have assumed that the short rate is constant during the life of an option. However, in reality the short rate is evolving randomly over time. Hence, in order to take into account the stochastic short rate, we assume that the short rate $r(t) = \hat{S}(T_\alpha(t))$ follows:

$$
d\hat{S}_\alpha(t) = \frac{d\hat{S}(T_\alpha(t))}{dT_\alpha(t)} = \mu_r dT_\alpha(t) + \sigma_r dB^H_2(T_\alpha(t)),
$$

(1.3)

here μ_r, σ_r are constant, B^H_2 is FBM with Hurst parameter $H \in \left[\frac{1}{2}, 1\right)$ and $T_\alpha(t)$ is assumed to be independent of B^H_2.

The first contribution of this paper is to propose a valuation model to price a zero-coupon bond by applying the subdiffusive mechanism of the short rate. The
second contribution is to value an European option when the asset price and short rate are follow subdiffusive \textit{FBS} model. This paper is organized as follows. In the next section, we derive a new model to value a riskless zero-coupon bond paying 1 at maturity. In Section 3, we obtain the corresponding \textit{FBS} equation by using delta hedging argument and discuss some special cases of this equation. In Section 4, we propose a pricing model for the European call and put options. Some particular features and simulation studies of our subdiffusive model are discussed in Section 5. Section 6 concludes this research.

2. Pricing model for a zero-coupon bond

We assume that the short rate $r(t)$ satisfy Equation (1.3), $\alpha \in (\frac{1}{2},1)$ and $2\alpha - \alpha H > 1$, then by using the Taylor series expansion to $P(r,t,T)$, we obtain

$$P(r + \Delta r, t + \Delta t) = P(r, t, T) + \frac{\partial P}{\partial r} \Delta r + \frac{\partial P}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 P}{\partial r^2} (\Delta r)^2 + \frac{1}{2} \frac{\partial^2 P}{\partial r \partial t} \Delta r (\Delta t) + \frac{1}{2} \frac{\partial^2 P}{\partial t^2} (\Delta t)^2 + O(\Delta t).$$

(2.1)

From Equation (1.3) and [17], we have

$$\Delta r = \mu_r (\Delta T_{\alpha}(t)) + \sigma_r B^H_1(T_{\alpha}(t))$$

(2.2)

and

$$\Delta r (\Delta t) = O((\Delta t)^2).$$

(2.4)

Then from the Lemma 1 in [17], we can get

$$dP(r, t, T) = \left[\left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \left(\mu_r \frac{\partial P}{\partial r} + \frac{1}{2} \sigma_r^2 \frac{\partial^2 P}{\partial r^2} \right) 2H t^{2H-1} + \frac{\partial P}{\partial t} \right] dt + \sigma_r \frac{\partial P}{\partial t} dB^H_1(T_{\alpha}(t)).$$

(2.5)

Assuming

$$\mu = \frac{1}{P} \left[\left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \left(\mu_r \frac{\partial P}{\partial r} + \frac{1}{2} \sigma_r^2 \frac{\partial^2 P}{\partial r^2} \right) 2H t^{2H-1} + \frac{\partial P}{\partial t} \right],$$

(2.6)

and

$$\sigma = \frac{1}{P} \left(\frac{\partial P}{\partial r} \right),$$

(2.7)
and letting the local expectations hypothesis holds for the term structure of interest rates (i.e. $\mu = r$), we have
\[
\frac{\partial P}{\partial t} + 2Ht^{2H-1}\mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial P}{\partial r}
+ Ht^{2H-1}\sigma_r^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial^2 P}{\partial r^2} - rP = 0.
\] (2.7)

Then, zero-coupon bond $P(r, t, T)$ with boundary condition $P(r, t, T) = 1$ satisfy the following partial differential equation
\[
\frac{\partial P}{\partial t} + 2Ht^{2H-1}\mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial P}{\partial r}
+ Ht^{2H-1}\sigma_r^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial^2 P}{\partial r^2} - rP = 0.
\] (2.8)

To solve Equation (2.8) for $P(r, t, T)$, let $\tau = T - t$, $P(r, t, T) = \exp\{f_1(\tau) - rf_2(\tau)\}$, then we can get
\[
\frac{\partial P}{\partial t} = P \left(-\frac{\partial f_1(\tau)}{\partial t} + r \frac{\partial f_2(\tau)}{\partial t} \right),
\] (2.9)
\[
\frac{\partial P}{\partial r} = -P f_2(\tau),
\] (2.10)
\[
\frac{\partial^2 P}{\partial r^2} = Pf_2(\tau)^2.
\] (2.11)

Replacing Equations (2.10) and (2.11) into Equation (2.9) and simplifying Equation (2.8) becomes
\[
P \left[Ht^{2H-1}\sigma_r^2f_2(\tau)^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} - 2Ht^{2H-1}\mu_rf_2(\tau) \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H}
- \frac{\partial f_1(\tau)}{\partial r} + r \left(\frac{\partial f_2(\tau)}{\partial t} - 1 \right) \right] = 0.
\] (2.12)

From Equation (2.12), we obtain
\[
\frac{\partial f_1(\tau)}{\partial \tau} = Ht^{2H-1} \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \left(\sigma_r^2f_2(\tau)^2 - 2\mu_rf_2(\tau) \right),
\] (2.13)
\[
\frac{\partial f_2(\tau)}{\partial \tau} = 1.
\] (2.14)

Then,
\[
f_1(\tau) = \frac{H\sigma_r^2}{(\Gamma(\alpha))^{2H}} \int_0^\tau (T - s)^{(\alpha-1)2H+2H-1}s^2 ds
- \frac{2H\mu_r}{(\Gamma(\alpha))^{2H}} \int_0^\tau (T - s)^{(\alpha-1)2H+2H-1}s ds,
\] (2.15)
\[
f_2(\tau) = \tau.
\] (2.16)

Therefore, we derive a pricing model for a riskless zero-coupon bond.
\[
P(r, t, T) = e^{-r\tau + f_1(\tau)}.
\] (2.16)
Corollary 2.1. When $\alpha \uparrow 1$, Equations (1.3) and (1.1) reduce to the FBM, we obtain
\begin{equation}
(2.17) \quad f_1(\tau) = H \sigma_r^2 \int_0^\tau (T - s)^{2H - 1} s^2 ds - 2H \mu_r \int_0^\tau (T - s)^{2H - 1} ds,
\end{equation}
specially, if $t = 0$
\begin{equation}
(2.18) \quad f_1(\tau) = \frac{\sigma_r^2}{2} \frac{T^{2H + 2}}{(2H + 1)(2H + 2)} - \frac{\mu_r}{2H + 1},
\end{equation}
then
\begin{equation}
(2.19) \quad P(r, t, T) = \exp \left\{ -rT + \sigma_r^2 \frac{T^{2H + 2}}{(2H + 1)(2H + 2)} - \frac{\mu_r}{2H + 1} \right\}.
\end{equation}

Corollary 2.2. If $H = \frac{1}{2}$, from Equation (2.14), we obtain
\begin{equation}
(2.20) \quad f_1(\tau) = \frac{1}{2} \frac{\sigma_r^2}{\Gamma(\alpha)} \int_0^\tau (T - s)^{\alpha - 1} s^2 ds - \frac{\mu_r}{\Gamma(\alpha)} \int_0^\tau (T - s)^{\alpha - 1} ds,
\end{equation}
then the result is consistent with the result in [6].

Further, if $\alpha \uparrow 1$ and $H = \frac{1}{2}$, Equations (1.3) and (1.1) reduce to the geometric Brownian motion, then we have
\begin{equation}
(2.21) \quad f_1(\tau) = \frac{1}{6} \sigma_r^2 \tau^3 - \frac{1}{2} \mu_r \tau^2,
\end{equation}
then
\begin{equation}
(2.22) \quad P(r, t, T) = e^{-rT + \frac{1}{6} \sigma_r^2 \tau^3 - \frac{1}{2} \mu_r \tau^2}.
\end{equation}
which is consistent with the result in [9, 3].

3. Fractional Black-Scholes equation

This section provides corresponding FBS equation for European options when the short rate and stock price satisfy Equations (1.3) and (1.1), respectively, here B^H_1 and B^H_2 are two dependent FBM with Hurst parameter $H \in \left(\frac{1}{2}, 1\right)$ and correlation coefficient ρ.

Let $C = C(S, r, t)$ be the price of a European call option at time t with a strike price K that matures at time T. Then we have.

Theorem 3.1. Assume that the short rate $r(t)$ and stock price $S(t)$ satisfy Equations (1.3) and (1.1), respectively. Then, $C(S, r, t)$ is the solution the following equation:
\begin{equation}
\begin{align*}
\frac{\partial C}{\partial t} + \tilde{\sigma}_s^2(t) S^2 \frac{\partial^2 C}{\partial S^2} + \tilde{\sigma}_r^2(t) \frac{\partial^2 C}{\partial r^2} + 2\rho \tilde{\sigma}_r(t) \tilde{\sigma}_s(t) \frac{\partial^2 C}{\partial S \partial r} + 2H^2 \mu_r \left(\frac{t^{a - 1}}{\Gamma(\alpha)} \right) 2H \frac{\partial C}{\partial r} + rS \frac{\partial C}{\partial S} - rC = 0,
\end{align*}
\end{equation}

\begin{align*}
(3.1) &\quad + 2H^2 \mu_r \frac{\sigma_r}{\Gamma(\alpha)} \frac{1}{\Gamma(\alpha)} + rS \frac{\partial C}{\partial S} - rC = 0.
\end{align*}
where

\(\tilde{\sigma}^2_s(t) = Ht^{2H-1} \sigma_s^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H}, \)
\(\tilde{\sigma}^2_r(t) = Ht^{2H-1} \sigma_r^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H}. \)

\(\sigma_s, \sigma_r, \mu_s, \mu_r, \) are constant, \(H \in [\frac{1}{2}, 1) \) and \(\alpha \in (\frac{1}{2}, 1) \) and \(2\alpha - \alpha H > 1. \)

Proof: We consider a portfolio with \(D_{1t} \) units of stock and \(D_{2t} \) units of zero-coupon bond \(P(r, t, T) \) and one unit of \(C = C(r, t, T) \). Then, the value of the portfolio at current time \(t \) is

\(\Pi_t = C - D_{1t}S_t - D_{2t}P_t. \)

Then, from [6] we have

\[
d\Pi_t = \left[\frac{\partial C}{\partial t} + Ht^{2H-1} \sigma_r^2 S_t^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial^2 C}{\partial S^2} + Ht^{2H-1} \sigma_r^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial^2 C}{\partial r^2} \right] dt + \left[\frac{\partial C}{\partial r} \right] dS_t
\]

\[
+ 2Ht^{2H-1} \rho \sigma_r \sigma_s S \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial^2 C}{\partial S \partial r} dt + \left[\frac{\partial C}{\partial r} - D_{1t} \right] dS_t
\]

By setting \(D_{1t} = \frac{\partial C}{\partial S} \), \(D_{2t} = \frac{\partial C}{\partial r} \), to eliminate the stochastic noise, then

\[
d\Pi_t = \left[\frac{\partial C}{\partial t} + Ht^{2H-1} \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \left(\sigma_r^2 S_t^2 \frac{\partial^2 C}{\partial S^2} + \sigma_r^2 \frac{\partial^2 C}{\partial r^2} + 2\rho \sigma_r \sigma_s S \frac{\partial^2 C}{\partial S \partial r} \right) \right] dt
\]

\[
- \left[\frac{\partial C}{\partial r} \right] rP + 2Ht^{2H-1} \mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial P}{\partial r} dt.
\]

The return of an amount \(\Pi_t \) invested in bank account is equal to \(r(t) \Pi_t dt \) at time \(dt \), \(\mathbb{E}(d\Pi_t) = r(t) \Pi_t dt = r(t) (C - D_{1t}S_t - D_{2t}P_t) \), hence from Equation (3.6) we have

\[
\frac{\partial C}{\partial t} + Ht^{2H-1} \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \left(\sigma_r^2 S_t^2 \frac{\partial^2 C}{\partial S^2} + \sigma_r^2 \frac{\partial^2 C}{\partial r^2} + 2\rho \sigma_r \sigma_s S \frac{\partial^2 C}{\partial S \partial r} \right)
\]

\[
+ 2Ht^{2H-1} \mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial C}{\partial r} + rS \frac{\partial C}{\partial S} - rC = 0.
\]

Let

\(\tilde{\sigma}^2_s(t) = Ht^{2H-1} \sigma_s^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H}, \)

\(\tilde{\sigma}^2_r(t) = Ht^{2H-1} \sigma_r^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H}. \)
Then
\[
\frac{\partial C}{\partial t} + \hat{\sigma}^2(t) S_t^2 \frac{\partial^2 C}{\partial S^2} + \hat{\sigma}^2(t) \frac{\partial^2 C}{\partial r^2} + 2 \rho \hat{\sigma}_r(t) \hat{\sigma}(t) \frac{\partial^2 C}{\partial S \partial r}
\]
\[+ 2H t^{2H-1} \mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial C}{\partial r} + r S \frac{\partial C}{\partial S} - r C = 0, \tag{3.10}\]

proof is completed.

From Theorem (3.1), we can get the following corollaries

Corollary 3.1. If \(\rho = 0 \) and \(r(t) \) be a constant, then the European call option \(C = C(S,r,T) \) satisfies

\[
\frac{\partial C}{\partial t} + H t^{2H-1} \sigma^2 S_t^2 \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right)^{2H} \frac{\partial^2 C}{\partial S^2} + H t^{2H-1} \sigma^2 \frac{\partial^2 C}{\partial r^2} + 2H t^{2H-1} \rho \sigma_r \sigma_s \frac{\partial^2 C}{\partial S \partial r} + r S \frac{\partial C}{\partial S} - r C = 0, \tag{3.11}\]

which is a fractional BS equation considered in [10].

Corollary 3.2. When \(\alpha \uparrow 1 \), we obtain

\[
\frac{\partial C}{\partial t} + H t^{2H-1} \sigma^2 S_t^2 \frac{\partial^2 C}{\partial S^2} + H t^{2H-1} \sigma^2 \frac{\partial^2 C}{\partial r^2} + 2H t^{2H-1} \rho \sigma_r \sigma_s \frac{\partial^2 C}{\partial S \partial r} + r S \frac{\partial C}{\partial S} - r C = 0, \tag{3.12}\]

Further, if \(\rho = 0 \), \(H = \frac{1}{2} \), and \(r(t) \) be a constant, from Equation (3.12) we have the celebrated BS equation

\[
\frac{\partial C}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C = 0, \tag{3.13}\]

4. Pricing formula under subdiffusive fractional Black-Scholes model

In this section, we propose an explicit formula for European call option when its value satisfies the partial differential equation (3.1) with boundary condition \(C(S,r,T) = (S_T - K)^+ \). Then, we can get

Theorem 4.1. Let \(r(t) \) satisfies Equation (1.3) and \(S(t) \) satisfies Equation (1.1), then the price of European call and put options with strike price \(K \) and maturity \(T \) are given by

\[
C(S,r,t) = S \phi(d_1) - K P(r,t,T) \phi(d_2), \tag{4.1}\]
\[
P(S,r,t) = K P(r,t,T) \phi(-d_2) - \phi(-d_1), \tag{4.2}\]

where

\[
d_1 = \ln \frac{S}{K} - \ln P(r,t,T) + \frac{H}{\Gamma(\alpha)^{2\alpha}} \int_t^T \hat{\sigma}^2(s) s^{(\alpha-1)2H+2H-1} ds, \tag{4.3}\]
\[
d_2 = d_1 - \sqrt{\frac{2H}{\Gamma(\alpha)^{2\alpha}} \int_t^T \hat{\sigma}^2(s) s^{(\alpha-1)2H+2H-1} ds}, \tag{4.4}\]
\[
\hat{\sigma}^2(t) = \sigma^2 + 2 \rho \sigma_r \sigma_s(T - t) + \sigma^2_r(T - t)^2, \tag{4.5}\]
\(P(r, t, T)\) is given by Equation (2.16) and \(\phi(.)\) is the cumulative normal distribution function.

Proof:

Consider the partial differential equation (3.1) of the European call option with boundary condition \(C(S, r, T) = (S_T - K)^+\)

\[
\frac{\partial C}{\partial t} + \tilde{\sigma}^2(t)S^2 \frac{\partial^2 C}{\partial S^2} + \sigma^2_r(t) \frac{\partial^2 C}{\partial r^2} + 2\rho \tilde{\sigma}_r(t) \tilde{\sigma}_s(t) \frac{\partial^2 C}{\partial S \partial r} \\
+ 2Ht^{2H-1} \mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right) \frac{\partial C}{\partial r} + rS \frac{\partial C}{\partial S} - rC = 0.
\]

(4.6)

Denote

\[
z = \frac{S}{P(r, t, T)}, \quad \Theta(z, t) = \frac{C(S, r, t)}{P(r, t, T)}
\]

therefore by computing, we get

\[
\begin{align*}
\frac{\partial C}{\partial t} &= \Theta \frac{\partial P}{\partial t} + \frac{\partial \Theta}{\partial z} \frac{\partial P}{\partial z} - z \frac{\partial \Theta}{\partial z} \frac{\partial P}{\partial t}, \\
\frac{\partial C}{\partial r} &= \Theta \frac{\partial P}{\partial r} - z \frac{\partial \Theta}{\partial z} \frac{\partial P}{\partial r}, \\
\frac{\partial C}{\partial S} &= \frac{\partial \Theta}{\partial z}, \\
\frac{\partial^2 C}{\partial r^2} &= \Theta \frac{\partial^2 P}{\partial r^2} - z \frac{\partial \Theta}{\partial z} \frac{\partial^2 P}{\partial r^2} + \frac{z}{P} \frac{\partial^2 \Theta}{\partial z^2} \left(\frac{\partial P}{\partial r} \right)^2, \\
\frac{\partial^2 C}{\partial r \partial S} &= -\frac{z}{P} \frac{\partial^2 \Theta \partial P}{\partial z^2}, \\
\frac{\partial^2 C}{\partial S^2} &= \frac{1}{P} \frac{\partial^2 \Theta}{\partial z^2}.
\end{align*}
\]

(4.8)

Inserting Equation (4.8) into Equation (4.6)

\[
\begin{align*}
\frac{\partial \Theta}{\partial t} + \frac{\partial^2 \Theta}{\partial z^2} \left[\sigma^2_r(t) \frac{S^2}{P^2} + 2\rho z^2 \tilde{\sigma}_r(t) \tilde{\sigma}_s(t) \frac{1}{P} \frac{\partial P}{\partial r} + \tilde{\sigma}_r^2(t) z^2 \left(\frac{1}{P} \frac{\partial P}{\partial r} \right)^2 \right] \\
- \frac{z}{P} \left[\frac{\partial P}{\partial t} + \tilde{\sigma}_r^2(t) \frac{\partial^2 P}{\partial r^2} + 2Ht^{2H-1} \mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right) \frac{2H}{\partial r} + rS \right] \\
+ \frac{\Theta}{P} \left[\frac{\partial P}{\partial t} + \tilde{\sigma}_r^2(t) \frac{\partial^2 P}{\partial r^2} + 2Ht^{2H-1} \mu_r \left(\frac{t^{\alpha-1}}{\Gamma(\alpha)} \right) \frac{2H}{\partial r} + rP \right] = 0.
\end{align*}
\]

(4.9)

From Equation (2.8), we can obtain

\[
\frac{\partial \Theta}{\partial t} + \tilde{\sigma}^2(t) z^2 \frac{\partial^2 \Theta}{\partial z^2} = 0,
\]

(4.10)

with boundary condition \(\Theta(z, T) = (z - K)^+\),
where
\begin{equation}
\sigma^2(t) = \tilde{\sigma}_s^2(t) + 2\rho\tilde{\sigma}_r(t)\tilde{\sigma}_s(t)(T - t) + \tilde{\sigma}_r(t)^2(T - t)^2.
\end{equation}

The solution of partial differential Equation (4.10) with boundary condition \(\Theta(z, T) = (z - K)^+ \), is given by

\begin{equation}
\Theta(z, t) = z\phi(\hat{d}_1) - K\phi(\hat{d}_2),
\end{equation}

here
\begin{equation}
\hat{d}_1 = \frac{\ln \frac{z}{K} + \int_t^T \tilde{\sigma}^2(s)ds}{\sqrt{2\int_t^T \tilde{\sigma}^2(s)ds}},
\end{equation}

\begin{equation}
\hat{d}_2 = \hat{d}_1 - \sqrt{2\int_t^T \tilde{\sigma}^2(s)ds}.
\end{equation}

Thus, from Equations (4.7) and (4.12)-(4.14) we obtain

\begin{equation}
C(S, r, t) = S\phi(d_1) - KP(r, t, T)\phi(d_2),
\end{equation}

where

\begin{equation}
d_1 = \frac{\ln \frac{S}{K} - \ln P(r, t, T) + \frac{H}{(\Gamma(\alpha))^{2H}} \int_t^T \tilde{\sigma}^2(s)s^{(\alpha-1)2H+2H-1}ds}{\sqrt{\frac{2H}{(\Gamma(\alpha))^{2H}} \int_t^T \tilde{\sigma}^2(s)s^{(\alpha-1)2H+2H-1}ds}},
\end{equation}

\begin{equation}
d_2 = d_1 - \sqrt{\frac{2H}{(\Gamma(\alpha))^{2H}} \int_t^T \tilde{\sigma}^2(s)s^{(\alpha-1)2H+2H-1}ds}.
\end{equation}

Letting \(\alpha \uparrow 1 \), from Theorem 4.1, we obtain

Corollary 4.1. The price of European call and put options with strike price \(K \) and maturity \(T \) are given by

\begin{equation}
C(S, r, T) = S\phi(d_1) - KP(r, t, T)\phi(d_2),
\end{equation}

\begin{equation}
P(S, r, T) = KP(r, t, T)\phi(-d_2) - S\phi(-d_1).
\end{equation}

where

\begin{equation}
d_1 = \frac{\ln \frac{S}{K} - \ln P(r, t, T) + H\int_t^T \tilde{\sigma}^2(s)s^{2H-1}ds}{\sqrt{2H\int_t^T \tilde{\sigma}^2(s)s^{2H-1}ds}},
\end{equation}

\begin{equation}
d_2 = d_1 - \sqrt{2H\int_t^T \tilde{\sigma}^2(s)s^{2H-1}ds},
\end{equation}

\begin{equation}
\tilde{\sigma}^2(t) = \sigma_s^2 + 2\rho\sigma_r\sigma_s(T - t) + \sigma_r^2(T - t)^2,
\end{equation}

\begin{equation}
P(r, t, T) = \exp\left\{-r\tau + H\sigma_r^2\int_0^\tau (T - s)^{2H-1}s^2ds\right\}, \tau = T - t.
\end{equation}
More specifically, if \(H = \frac{1}{2} \), we have

\[
(4.24) \quad d_1 = \frac{\ln S - \ln P(r,t,T) + \frac{1}{2} \varphi(t,T)}{\sqrt{\varphi(t,T)}},
\]

\[
(4.25) \quad d_2 = d_1 - \sqrt{\varphi(t,T)},
\]

\[
(4.26) \quad \varphi(t,T) = \sigma_s^2(T-t) + \rho \sigma_s \sigma_r (T-t)^2 + \frac{1}{3} \sigma_r^2 (T-t)^3,
\]

\[
(4.27) \quad P(r,t,T) = \exp \left\{ -r(T-t) - \frac{1}{2} \mu_r(T-t)^2 + \frac{1}{6} \sigma_r^2 (T-t)^3 \right\}.
\]

which is consistent with result in [3].

Letting \(H = \frac{1}{2} \), from Theorem 4.1, we can get

Corollary 4.2. The price of European call and put options with strike price \(K \) and maturity \(T \) are given by

\[
(4.28) \quad C(S,r,T) = S \phi(d_1) - K P(r,t,T) \phi(d_2),
\]

\[
(4.29) \quad P(S,r,T) = K P(r,t,T) \phi(-d_2) - \phi(-d_1).
\]

where

\[
(4.30) \quad d_1 = \frac{\ln S - \ln P(r,t,T) + \frac{1}{2} \int_t^T \tilde{\sigma}^2(s) s^\alpha - 1 ds}{\sqrt{\int_t^T \tilde{\sigma}^2(s) s^\alpha - 1 ds}},
\]

\[
(4.31) \quad d_2 = d_1 - \sqrt{\frac{1}{\Gamma(\alpha)} \int_t^T \tilde{\sigma}^2(s) s^\alpha - 1 ds},
\]

\[
(4.32) \quad \tilde{\sigma}^2(t) = \sigma_s^2 + 2 \rho \sigma_s \sigma_r (T-t) + \sigma_r^2 (T-t)^2,
\]

\[
(4.33) \quad P(r,t,T) = \exp \left\{ -r T - \frac{\sigma_r^2}{2 \Gamma(\alpha)} \int_0^T (T-s)^{\alpha - 1} s^2 ds - \mu_r \Gamma(\alpha) \int^T_0 (T-s)^{\alpha - 1} s ds \right\}.
\]

Specially, If \(\rho = 0 \), from Equations (4.28)-(4.33), we have

\[
(4.34) \quad d_1 = \frac{\ln S - \ln P(r,t,T) + \frac{1}{2} \int_t^T \tilde{\sigma}^2(s) s^\alpha - 1 ds}{\sqrt{\int_t^T \tilde{\sigma}^2(s) s^\alpha - 1 ds}},
\]

\[
(4.35) \quad d_2 = d_1 - \sqrt{\frac{1}{\Gamma(\alpha)} \int_t^T \tilde{\sigma}^2(s) s^\alpha - 1 ds},
\]

\[
(4.36) \quad \tilde{\sigma}^2(t) = \sigma_s^2 + \sigma_r^2 (T-t)^2,
\]

\[
(4.37) \quad P(r,t,T) = \exp \left\{ -r T + \frac{1}{2} \frac{\sigma_r^2}{\Gamma(\alpha)} \int_0^T (T-s)^{\alpha - 1} s^2 ds - \mu_r \Gamma(\alpha) \int^T_0 (T-s)^{\alpha - 1} s ds \right\}.
\]

which is similar with results mentioned in [6].
5. Simulation studies

Let us first discuss about the implied volatility of the subdiffusive FBS model, then we will show some simulation findings.

Corollary 5.1. If \(t = 0 \), the value of European call option \(\overline{C}(K, T) \) and put option \(\overline{P}(K, T) \) can be written as

\[
\begin{align*}
\overline{C}(K, T) &= S_0 \phi(d_1) - K P_0 \phi(d_2), \\
\overline{P}(K, T) &= K P_0 \phi(-d_2) - S_0 \phi(-d_1).
\end{align*}
\]

where

\[
\begin{align*}
P_0 &= \exp \left\{ -r_0 T + \frac{2HT(\alpha-1)2H+2H+1}{(\Gamma(\alpha))^2H((\alpha-1)2H+2H)((\alpha-1)2H+2H+1)} \right. \\
& \left. \times \left(\sigma_s^2 T + \left(\frac{\sigma_s^2 T}{(\alpha-1)2H+2H+2} - \mu_r \right) \right) \right\}, \\
d_1 &= \ln \frac{S_0 K + r_T - \frac{1}{2} \sigma^2 T}{\sigma \sqrt{T}}, \\
d_2 &= d_1 - \sigma \sqrt{T},
\end{align*}
\]

\[
\begin{align*}
\sigma^2 &= \frac{2HT(\alpha-1)2H+2H-1}{(\Gamma(\alpha))^2H((\alpha-1)2H+2H+1)} \left(\frac{\sigma_s^2 T}{(\alpha-1)2H+2H+2} + \frac{\rho \sigma_s \sigma_r}{(\alpha-1)2H+2H+1} \right) \\
& \quad \times \left(\frac{\sigma_s^2 T^2}{((\alpha-1)2H+2H+1)((\alpha-1)2H+2H+2)} \right),
\end{align*}
\]

and \(\phi(.) \) is the cumulative normal distribution function.

Table 1 indicates the theoretical prices from our FBS and subdiffusive FBS models and Merton and subdiffusive BS models, where \(S_0 \) shows the stock price, \(P_M \) presents the prices evaluated by the Merton model, \(P_{SBS} \) denotes the price simulated by the subdiffusive BS model, \(P_{FBS} \) and \(P_{SFBS} \) show the price obtained by the FBS and subdiffusive FBS models, respectively.
Table 1. Results by different pricing models. Here, $\alpha = 0.9, H = 0.6, K = 3, \sigma_r = 0.3, \sigma_s = 0.4, \rho = 0.4, \mu_r = 0.5, r_0 = 0.3, T = 0.3, t = 0$.

<table>
<thead>
<tr>
<th>S</th>
<th>P_M</th>
<th>P_{SBS}</th>
<th>P_{FBS}</th>
<th>P_{SFBS}</th>
<th>$T = 0.2$</th>
<th>P_M</th>
<th>P_{SBS}</th>
<th>P_{FBS}</th>
<th>P_{SFBS}</th>
<th>$T = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0174</td>
<td>0.0334</td>
<td>0.0012</td>
<td>0.0036</td>
<td>1.8826</td>
<td>1.9129</td>
<td>1.7986</td>
<td>1.8347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>0.0638</td>
<td>0.0979</td>
<td>0.0122</td>
<td>0.0236</td>
<td>2.1326</td>
<td>2.1629</td>
<td>2.0486</td>
<td>2.0847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.1598</td>
<td>0.2126</td>
<td>0.0587</td>
<td>0.0859</td>
<td>2.3826</td>
<td>2.4129</td>
<td>2.2986</td>
<td>2.3347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td>0.3094</td>
<td>0.3754</td>
<td>0.1687</td>
<td>0.2094</td>
<td>2.6326</td>
<td>2.6629</td>
<td>2.5486</td>
<td>2.5847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5023</td>
<td>0.5752</td>
<td>0.3440</td>
<td>0.3900</td>
<td>2.8826</td>
<td>2.9129</td>
<td>2.7986</td>
<td>2.8347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>0.7235</td>
<td>0.7988</td>
<td>0.5630</td>
<td>0.6086</td>
<td>3.1326</td>
<td>3.1629</td>
<td>3.0486</td>
<td>3.0847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.9604</td>
<td>1.0360</td>
<td>0.8026</td>
<td>0.8466</td>
<td>3.3826</td>
<td>3.4129</td>
<td>3.2986</td>
<td>3.3347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td>1.2094</td>
<td>1.2801</td>
<td>1.0498</td>
<td>1.0926</td>
<td>3.6326</td>
<td>3.6629</td>
<td>3.5486</td>
<td>3.5847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.4527</td>
<td>1.5275</td>
<td>1.2991</td>
<td>1.3414</td>
<td>3.8826</td>
<td>3.9129</td>
<td>3.7986</td>
<td>3.8347</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By comparing columns P_M, P_{SBS}, P_{FBS} and P_{SFBS} in Table 1, we conclude the call option prices obtained by four pricing models are close to each other in the both in-the-money and out-of-the-money cases with low and high maturities. Meanwhile, we can see that the prices given by the our FBS and subdiffusive FBS models are smaller than the prices given by the Merton and subdiffusive Merton models [3, 6].

Figure 2. The European call option under subdiffusive FBS. Where $r_0 = 0.1, \alpha = 0.9, H = 0.8, \sigma_r = 0.3, \sigma_s = 0.4, S_0 = 3, \mu_r = 0.2, \rho = 0.2$.
From Equations (5.1)-(5.7), it is easy to see that σ and τ is the implied volatility and implied short rate connected to the FBS model, respectively (See Fig 2, 3 and 4).

6. Conclusion

Most of prior pricing models have assumed the constant short rate during the life of an option. However, in real life the short rate is evolving randomly through time. For this purpose, we apply the subdiffusive mechanism to get better characteristic
property of stock markets. We propose a pricing model for a zero-coupon bond when the short rate is governed by the subdiffusive fractional Black-Scholes model. Then, we exert these results to develop analytical valuation formulas for European option and corresponding fractional Black-Scholes equation.

We allow to referees to evaluate our manuscript.

REFERENCES