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Cost-efficient Deployment of Storage Unit in
Residential Energy Systems

Wei Wei, Senior Member, IEEE, Zhaojian Wang, Member, IEEE, Feng Liu Senior Member, IEEE,
Miadreza Shafie-khah, Senior Member, IEEE, João P. S. Catalão, Senior Member, IEEE

Abstract—With the mushrooming of distributed renewable
generation, energy storage unit (ESU) is becoming increasingly
important in residential energy systems. This letter proposes a
fractional programming model to determine the optimal power
and energy capacities of residential ESUs, aiming at minimizing
the ratio between the reduced electricity tariff and the investment
cost of ESU, ensuring the minimal payback time. A decomposition
algorithm is developed to solve the fractional program based on
convex optimization; the subproblem is a dual convex quadratic
program, and the master problem comes down to a small linear
program after variable transformations. Compared to the widely
used cost-minimum method, the proposed model is cost-efficient:
it enjoys a higher rate of return which is validated in case studies.

Index Terms—cost-efficient investment, residential energy sys-
tem, sizing energy storage unit

I. INTRODUCTION

THE penetration of renewable energy resources at the
demand side, such as rooftop photovoltaic panels, has

witnessed rapid growth in the past decade. With the develop-
ment of advanced metering and communication technologies,
new pricing schemes emerge, for example, real-time pricing
[1] and time-and-level-of-use pricing [2]. The new pricing
policies encourage consumers to adjust their usage and reshape
the load profile. To make full use of distributed renewable
generation with limited controllability and time-varying price
signals, energy storage unit (ESU) is in great need.

Since the capital cost of ESU is still relatively high com-
pared to the daily electricity tariffs, deploying ESU is a long-
term investment, and the capacity of the ESU should be care-
fully optimized. ESU sizing is a classical topic. Although var-
ious technical constraints have been considered and different
optimization models formulated in existing works, a similar
method is used to compromise the long-term investment cost
and the short-term operational cost: special weight coefficients
are employed to aggregate the two costs into a single objective
function to be minimized. The weight coefficients could be
interpreted as net present values [3], annualized discounting
cost [4], and other discounting factors [5]. Nonetheless, the
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Fig. 1. Configuration of the residential energy system.

accurate weight coefficient is not always easy to obtain, and
the efficiency of investment remains an open problem.

This letter proposes an alternative optimization paradigm
that coordinates long-term and short-term costs without any
manually supplied discounting parameters. The contribution
of this work is twofold.

1) A cost-efficient optimization method is proposed to
size the energy storage unit in residential energy systems.
The ratio between the reduced short-term operation cost and
the long-term investment cost is minimized, giving rise to a
fractional program. Such a criterion ensures the shortest time
of cost recovery, which is desired by small consumers with
limited financial capability. Compared to the widely used cost-
minimum approach, the proposed method does not require a
discounting factor, and enjoys a higher rate of return, i.e., the
investment is more efficient.

2) A decomposition algorithm is developed to solve the
proposed fractional programming model, with the non-closed
form optimal value function of the operation problem in the
numerator. Based on the convexity of the operation problem
and pseudo-concavity of the fractional program, the fractional
storage sizing problem is decomposed into a master problem
and a subproblem. The subproblem generates cutting planes to
approximate the optimal value function via solving a convex
quadratic program (QP), and the master problem solves the
fractional program as a linear program (LP) through variable
transformations. Such an algorithm overcomes the computa-
tional challenge brought by the non-convexity of the original
fractional program.

II. MATHEMATICAL MODEL

The configuration of the residential energy system is shown
in Fig. 1. The dynamic operation in periods t = 0, 1, · · · , T
with a step size of ∆t is modeled. The load in period t is pdt ;
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solar power pVt and import power pgt from the grid are used
either to supply load or charge the ESU; ESU can also serve
some load. The power flow variables and directions inside the
system are depicted in Fig. 1, yielding:

pgt = pget + pgdt , ∀t (1)

pVt = pset + psdt , ∀t (2)

pdt = pgdt + psdt + pedt , ∀t (3)

The charging power of ESU is

pect = pget + pset , ∀t (4)

and the operation constraints of ESU include

0 ≤ pect ≤ pem, 0 ≤ pedt ≤ pem, ∀t (5)

Et = Et−1 + ηcp
ec
t ∆t − pedt ∆t/ηd, ∀t (6)

αlEm ≤ Et ≤ αhEm,∀t, E0 = ET = αlEm (7)

where pem and Em are power and energy capacities of ESU in
kW and kWh, respectively; ηc/ηd is the charging/discharging
efficiency; αl/αh is the minimum/maximum energy ratio; Et
is the amount of electrical energy stored in ESU at the end
of period t. Constraints (5)-(7) stipulate charging/discharging
power limits, storage dynamics, as well as energy limits and
boundary conditions, respectively.

The time-and-level-of-use electricity price is [2]

λt = λ0
t + ξpet/2, (8)

where the base price λ0
t = λl or λh during valley/peak hours.

ξ is a constant, and the second term in (8) helps to prevent an
excessive rise in demand when the base price drops down.

In summary, the daily economic operation of the residential
energy system gives rise to a convex QP:

min λl
∑
t∈TL

pet∆t + λh
∑
t∈TH

pet∆t +
ξ

2

T∑
t=0

(pet )
2

∆t

s.t. (1)− (7), variable lower and upper bounds

(9)

For notation brevity, problem (9) is written in a matrix form

v̄(θ) = min
{
x̄>Q̄x̄/2 + c̄>x̄

∣∣Āx̄ ≥ b̄+ B̄θ
}

(10)

where θ = [pem, Em] denotes capacity parameters; decision
variable x includes power flow variables and ESU operating
strategies; Q̄, Ā, B̄, b̄, and c̄ are constant coefficients. For any
given θ, the optimum is v̄(θ).

When the uncertainty of solar generation and load is taken
into account, the constraint right-hand term b̄ is unknown.
We select S typical days with probabilities ρs and construct
scenarios b̄s, s = 1 : S. Problem (10) in scenario s becomes

v̄s(θ) = min
x̄s

{
x̄>s Q̄x̄s/2 + c̄>x̄s

∣∣Āx̄s ≥ b̄s + B̄θ
}

(11)

The stochastic operation problem can be cast as

vav(θ) = min
∑S

s=1
ρsv̄s(θ) (12)

Problem (12) can be written in a more compact form as

vav(θ) = min
{
x>Qx/2 + c>x

∣∣Ax ≥ b+Bθ
}

(13)

where x = [x̄>1 , · · · , x̄>S ]>; Q, A, B, b, and c aggregate the
coefficients in each scenario.

III. COST-EFFICIENT STORAGE SIZING

In this section, we propose a new formulation for sizing the
ESU and develop a decomposition algorithm to solve it.

A. Formulation of Cost-efficient Storage Sizing

The investment cost is an affine function in θ

Cinvest = κpp
e
m + κeEm + κ0 = κ>θ + κ0 (14)

where κ0 is the fixed cost of deploying the ESU, representing
the transportation cost and installation cost of facilities; κe is
the unit capacity cost of battery array; κp is the unit capacity
cost of power electronics convertors.

The average cost without/with ESU is vav(0)/vav(θ). Let
v0
av = vav(0), v0

av ≥ vav(θ) must hold for θ > 0. The cost-
efficient sizing model aims to maximize the ratio between the
reduced operation cost and the investment cost, giving rise to

max
θ≥0

v0
av − vav(θ)
κ>θ + κ0

(15)

When θ = 0, the objective value is equal to 0; when θ is large
enough, vav(θ) is a constant, because the excessive capacity
is not used. In such a circumstance, the objective value is
also very small due to the large investment cost Cinvest, so the
maximum exists. Suppose the optimum is σ∗, its multiplicative
inverse 1/σ∗ interprets the minimum payback time.

Two difficulties prevent problem (15) from being solved
directly. One is the lack of an explicit expression for the value
function vav(θ); the other is the non-convexity of the fractional
objective function. Furthermore, although the dimension of θ
is low, problem (10) entailing operation data in multiple days
is non-trivial. The direct search method may not be a good
option, because the repeated evaluation of function vav(θ) is
time-consuming.

B. Approximating the Optimal Value Function

To solve problem (15), we first discuss the approximation
of value function vav(θ). Write out the dual of QP (13) [6]

vav(θ) = max
µ,ν

− µ>Qµ/2 + (b+Bθ)>ν

s.t. A>ν −Qµ = c, ν ≥ 0
(16)

The optimum of (16) is equal to vav(θ) due to strong duality
[6]. From (16), vav(θ) is the pointwise maximum of infinitely
many affine functions in θ. As pointwise maximum preserves
convexity [7], vav(θ) is a convex function in θ. Such a
convex property plays an extremely important role in solving
fractional program (15). As −vav(θ) is concave, so is the
numerator; the denominator is strictly positive and linear, and
the feasible region is a polyhedron, so fractional program (15)
is pseudo-concave [8], implying that any stationary point is the
global maximum. Therefore, a local algorithm can be used to
solve problem (15), once vav(θ) can be approximated.

Given the convexity of vav(θ), if we have enough sampling
points θi, and (µi, νi) are the corresponding dual optimal
solutions of (16), then vav(θ) in (15) can be replaced by a
scalar variable ζ while adding the following cutting planes

ζ ≥ −µ>i Qµi/2 + (b+Bθ)>νi, ∀i (17)
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in the constraints [7]. The graph of vav(θ) and the cutting
plane are tangent at θi. So vav(θ) can be approximated by
(17) around θi. Actually, we can update the sampling points
θi dynamically via iteration, which will be discussed later.

C. Solving Storage Sizing Problem as a Linear Program

Once vav(θ) has been approximated by cutting planes, we
obtain the following problem

max
θ,ζ

v0
av − ζ

κ>θ + κ0

s.t. ζ ≥ mi + n>i θ,∀i
θ ≥ 0

(18)

where
mi = b>vi − µ>i Qµi/2, ni = B>vi (19)

This problem can be solved by a local algorithm, thanks to
the pseudo-concavity mentioned above. Nonetheless, it can be
converted to an LP, the most tractable optimization problem.
To this end, define new variables

θ̄ =
θ

κ>θ + κ0
, ζ̄ =

ζ

κ>θ + κ0
, z =

1

κ>θ + κ0
(20)

Then, the following relations hold

κ>θ̄ + κ0z = 1, θ = θ̄/z, ζ = ζ̄/z (21)

Because the investment κ>θ+ κ0 > 0, z < +∞, the variable
transformation in (20) is invertible. On this account, linear
fractional program (18) can be transformed to a linear program

max
θ̄,ζ̄,z

v0
αvz − ζ̄

s.t. ζ̄ ≥ miz + n>i θ̄,∀i
κ>θ̄ + κ0z = 1

z ≥ 0, θ̄ ≥ 0

(22)

Problems (18) and (22) have the same optimum. The optimal
sizing strategy θ can be recovered from (21), based on the
optimal solution of problem (22). Compared to directly solving
(18) using a general-purpose nonlinear programming solver,
the transition from (18) to (22) incurs no approximation, and
LPs can be solved with a higher precision.

D. The Decomposition Algorithm

Finally, a decomposition algorithm is developed. The master
problem gives the optimal sizing strategy θ; the subproblem
generates the cutting plane according to (16) and (17). The
set of cutting planes are updated dynamically in the iterative
procedure. The flowchart is given in Algorithm 1.

Convergence With more cutting planes added into problem
(22), the feasible region shrinks, and the optimal value σ∗

generated in step 2 is a decreasing sequence. Furthermore, the
objective function is bounded, so Algorithm 1 must converge.

Efficiency The impact of sizing strategy θ on the operation
cost is reflected by dual variables. Cutting plane (17) decom-
poses the large-scale operation problem in the dual form (16)
and the master LP (22). Both problems can be readily solved,
so Algorithm 1 is generally efficient.

Algorithm 1
1: Initiation: error tolerance ε > 0; σpast is a big number.

Solve problem (16) at sampled points θs; the optimizers
are (µs, νs), ∀s; initiate the cutting plane set Γ.

2: Solve master problem (22) with the current Γ. The optimal
solution is θ∗, and the optimal value is σ∗.

3: If (σpast − σ∗)/σ∗ < ε, report solution θ∗ and terminate.
4: Solve subproblem (16) at θ∗; the optimizer is (µ∗, ν∗);

create a cut in (17); update the cutting plane set Γ and
σpast = σ∗; go to step 2.

Fig. 2. The objective of problem (15) as a function of capacity parameters.

IV. CASE STUDIES

The demand of a villa in Xining, Qinghai province of China
and the solar radiation data at the same place are used in our
tests. We select 56 typical days, two weeks in each season,
and build the operation problem (13). In the time-and-level-of-
use pricing scheme, λl, λh, and ξ are 0.5¥/kWh, 1.0¥/kWh,
and 0.1¥/kWh2, respectively. Investment parameters κp, κe,
and κ0 are 1000¥/kW, 800¥/kWh, and 1000¥, respectively.
In Algorithm 1, 5 × 5 samples in [0.5, 3]kW×[3, 8]kWh are
chosen to generate initial cuts, and the convergence tolerance
is set as ε = 10−6.

First, we choose ∆t = 1hour which is a typical setting. The
algorithm converges in 4 iterations, reporting pem = 1.31kW
and Em = 6.95kWh with the minimal payback time of 1082
days. For validation, the objective function of (15) is plotted
in θ-plane with a resolution of 0.1 × 0.1. The optimal sizing
strategy is found at pem = 1.3kW and Em = 6.9kWh with
the same payback time. Nonetheless, this process is time-
consuming, as evaluating vav(θ) at each point entails solving
problem (15), which is large in size. As pointed out in [9] and
[10], the operation of a small residential energy system may
desire a time step less than an hour, so we also test ∆t = 15
minutes. The proposed method gives pem = 1.16kW and
Em = 7.10kWh with the minimal payback time of 1111 days.
We observed that when the time resolution is improved, the
value of v0

av decreases because the system operation becomes
more flexible; as a result, the cost reduction brought by energy
storage drops slightly, and thus the payback time is longer.

The impact of the peak price λh, the coefficient κe, and the
coefficient κp is investigated. Results are summarized in Tables
I-III. For the same reason, the payback times with ∆t = 15
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TABLE I
IMPACT OF PEAK PRICE

λh (¥/kWh) 0.7 0.9 1.1 1.3 1.5

pem (kW) 1.39 1.30 1.30 1.32 1.31
∆t = 1hour Em (kWh) 6.71 6.93 6.91 7.16 7.30

TP (days) 1327 1017 819 685 588

pem (kW) 1.19 1.14 1.23 1.20 1.28
∆t = 15min Em (kWh) 6.76 6.99 7.59 7.36 7.73

TP (days) 1378 1042 832 692 593

TABLE II
IMPACT OF PARAMETER κe

κe (¥/kWh) 1300 1100 900 700 500

pem (kW) 1.36 1.32 1.36 1.32 1.27
∆t = 1hour Em (kWh) 5.46 6.20 6.65 7.28 7.77

TP (days) 1542 1362 1177 986 789

pem (kW) 1.12 1.13 1.15 1.24 1.31
∆t = 15min Em (kWh) 5.88 6.14 6.64 7.70 8.39

TP (days) 1599 1406 1210 1009 804

TABLE III
IMPACT OF PARAMETER κp

κp (¥/kW) 1300 1100 900 700 500

pem (kW) 1.23 1.31 1.37 1.44 1.64
∆t = 1hour Em (kWh) 6.83 6.95 6.86 6.59 6.29

TP (days) 1133 1100 1064 1026 983

pem (kW) 1.10 1.19 1.21 1.29 1.42
∆t = 15min Em (kWh) 6.98 6.70 7.24 7.02 7.06

TP (days) 1159 1127 1094 1059 1021

minutes is slightly longer than those with ∆t = 1hour. It can
be observed that the peak price λh has little impact on storage
sizing strategies, but significantly influences the payback time.
Coefficient κe has tiny impact on the optimal power capacity
pem, yet notably affects the energy capacity Em and payback
time. The power capacity pem exhibits a negative correlation
with κp, whose impact on Em and the payback time TP is
not as significant as κe and λh.

Finally, the proposes cost-efficient model is compared with
the widely used cost-minimum model. Recall the operation
problem in the compact form (13), the cost-minimum model
can be cast as

min κ>θ + κ0 + Tlf ·
(
x>Qx

2
+ c>x

)
s.t. θ ≥ 0, Ax ≥ b+Bθ

(23)

where Tlf (in days) is the lifespan of the facilities. The cost-
minimum model (23) endeavours to minimize the sum of the
investment cost and the total operation cost during the service
period. Problem (23) is a convex quadratic program and is
solved by CPLEX in our tests.

The cost-minimum method and the cost-efficient method
are compared in terms of cost and profit; results are shown

TABLE IV
COMPARISON OF COST-MINIMUM AND COST-EFFICIENT MODELS

Cost/Profit (¥)
Tlf (days)

1500 1800 2000

Cost-minimum

Investment cost 13727 16832 17861
Operation cost 19480 19961 21082

Net Profit 3737 7540 10315
Rate of return 27.2% 44.8% 57.8%

Cost-efficient

Investment cost 7926 7926 7926
Operation cost 26255 31506 35006

Net Profit 2763 4901 6326
Rate of return 34.9% 61.8% 79.8%

in Table IV. The cost-efficient model is independent of Tlf ,
so the sizing strategy remains the same in the three instances.
To reduce the total operation cost, which is Tlf · vav(θ), the
cost-minimum method always suggests to build a larger ESU,
leading to a higher investment cost Cinvest as well as net profit
defined as Tlf · [v0

av − vav(θ)]. However, the cost-efficient
approach enjoys a higher rate of return, which is the ratio
of net profit and Cinvest, although the operation cost is higher.
This feature is desired by small consumers who pursue fast
cost recovery and a higher return on investment.

V. CONCLUSIONS

This letter proposes a cost-efficient optimization framework
for storage sizing in residential energy systems. The ratio
between cost reduction and investment is maximized, ensuring
the minimum time of cost recovery. A decomposition algo-
rithm is developed to solve the fractional programming model
based on QP and LP solvers. Case studies demonstrate that the
proposed method leads to a higher rate of return compared to
the standard cost-minimum approach.
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