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Abstract–The uncertainty of wind energy makes wind power 
producers (WPPs) incur profit loss due to balancing costs in 
electricity markets, a phenomenon that restricts their 
participation in markets. This paper proposes a stochastic 
bidding strategy based on virtual power plants (VPPs) to increase 
the profit of WPPs in short-term electricity markets in 
coordination with energy storage systems (ESSs) and demand 
response (DR). To implement the stochastic solution strategy, the 
Kantorovich method is used for scenario generation and 
reduction. The optimization problem is formulated as a Mixed-
Integer Linear Programming (MILP) problem. From testing the 
proposed method for a Spanish WPP, it is inferred that the 
proposed method enhances the profit of the VPP compared to 
previous models. 

Index Terms–Wind Energy; Energy Storage System; 
Demand Response; Uncertainty; Stochastic Programming; 
Electricity Market. 

NOMENCLATURE 

Indices 
t (NT) Timeslot index (number of timeslots). 
ω (Nω) Scenario index (number of scenarios). 
l (Nl) Linearized segment index (number of segments). 
  
Parameters 

maxW  Wind unit capacity (MW). 
Dλ , Iλ  Energy price in the DA and intraday markets,

respectively ($/MWh). 

ωρ  Probability of scenario ω. 

R+ , R−  Ratio of positive and negative, respectively, energy
imbalance of WPP with respect to DA market. 

γ  The ratio of WPP offer in the intraday market with
respect to the DA market. 

*λ  Payment rate for incentive-based DR ($/MWh). 

σ The coefficient of relationship between energy price
and load. 

0D  The normal value of aggregated loads (MW). 

1η  Upper limit of curtailable load as a fraction of initial 
load in demand response. 

μ  The portion of total interruptible load energy with 
respect to total initial load energy. 

S  The slope of linearized segments. 
maxP  Maximum charging or discharging power of ESS

(MW). 

0E  Initial energy of ESS (MWh). 

du  Duration of time periods (h). 

chη , dchη  Charging and discharging efficiency of ESS. 
minE  Minimum energy level of ESS (MWh). 
maxE  Rated energy of ESS (MWh). 

  
Variables 

DP , IP  WPP offer in the DA and intraday markets, 
respectively (MW). 

schP  Scheduled power of WPP (MW). 

W  Power output of WPP (MW). 

δ  Power deviation of WPP from its scheduled value
(MW). 

δ + , δ −  Positive and negative, respectively, power deviation 
of WPP with respect to scheduled value (MW). 

DL , IL  Curtailable load offer of DR in DA and intraday 
markets, respectively (MW). 

schL  Scheduled curtailable load of DR (MW). 
_sch lL  Linearized segments of Lsch (MW). 

,ch DP  Charging offer of ESS in the DA market (MW). 
,dch DP  Discharging offer of ESS in the DA market (MW). 

,ch IP  Charging offer of ESS in the intraday market (MW).
,dch IP  Discharging offer of ESS in the intraday market 

(MW). 
y  Binary variable equal to 1 if the ESS is being 

charged. 
,ch schP  Scheduled charging offer of ESS (MW).
,dch schP  Scheduled discharging offer of ESS (MW).

DE  Energy of ESS in the DA market (MWh). 
schE  Scheduled energy of ESS (MWh). 

,D VPPP  Offer of VPP in the DA market (MW). 
,I VPPP  Offer of VPP in the intraday market (MW). 
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,VPPδ +  Positive power deviation of VPP from its scheduled
value (MW). 

,VPPδ −  Negative power deviation of VPP from its scheduled
value (MW). 

,sch VPPL  Scheduled curtailable load of VPP (MW). 
_ ,sch l VPPL  Linearized segments of Lsch,VPP for VPP (MW). 
,sch VPPP  Scheduled offer of VPP (MW). 

, ,ch D VPPP  Charging offer of VPP in the DA market (MW). 
, ,dch D VPPP  Discharging offer of VPP in the DA market (MW). 

, ,ch sch VPPP  Scheduled charging offer of VPP (MW). 
, ,dch sch VPPP  Scheduled discharging offer of VPP (MW). 

,D VPPL  Curtailable load offer of VPP in DA market (MW). 
,I VPPL  Curtailable load offer of VPP in intraday market

(MW). 
,D VPPE  ESS energy of VPP in the DA market (MWh). 

,sch VPPE  Scheduled EES energy of VPP (MWh). 

I. INTRODUCTION 

A.  Motivation and Aim 

ENEWABLE energy sources such as wind power can be 
a viable solution to remedy pollutions and greenhouse 
gases produced by central large power plants. However, 

uncertainty of wind generation restricts participation of Wind 
Power Producers (WPPs) in electricity markets due to energy 
imbalance costs [1].  

Although, there are some supportive solutions for WPPs 
such as assigning subsides or special tariffs in order to keep 
them in markets, these solutions are less compatible with 
competitive electricity market principles and therefore, a 
market-based solution is more preferred to increase the 
penetration level of renewables [2]. Intraday markets have 
been introduced to give a chance for WPPs to adjust their 
bids/offers after gate closure of the Day-ahead (DA) market in 
order to reduce their imbalance costs. Corrections after DA 
gate closure not only can be beneficial to increase WPP 
penetration in electricity markets but also can reduce the 
energy volume and price of real-time balancing markets [3]. 

In order to cope with the uncertainty of wind energy and 
therefore to increase the profit and penetration level of WPPs 
in electricity markets, Demand Response (DR) and Energy 
Storage System (ESS) are also used in the literature. From 
WPP uncertainty point of view, DR provides a flexible load 
profile to be more consistent with uncertain wind power and 
finally to reduce WPP uncertainty costs. ESSs can also be 
used to mitigate energy imbalances in the real-time markets 
[4]. Accordingly, to cope with the wind power uncertainty, 
Virtual Power Plants (VPPs) can play an active role in 
electricity markets. Although, DR, ESS, and VPP are 
employed in the literature for wind energy applications, there 
is a research gap to model a VPP that jointly employs DR and 
ESS to increase the profit of WPP in the DA and intraday 
markets. This model of VPP makes a higher profit for WPP 
than existing models and consequently, it better prepares the 
ground for participation of renewable energy sources in the 
competitive electricity markets. 

B.  Literature Review 

Valuable research is available in literature to incorporate 
WPPs in different electricity markets. For instance, in [5], a 
bilevel stochastic model is proposed for strategic offering of a 
WPP with market power in the DA market as a price maker 
and in the balancing market as a deviator. Authors in [2] 
proposed a multi-stage risk-constrained model to derive 
optimal offering strategy of a WPP to participate in DA and 
balancing markets as a price maker entity. The application of 
DR and ESS is also addressed in literature.  

Authors in [3] suggested a stochastic framework for WPP 
participation in different electricity markets (DA and 
balancing markets) considering DR as uncoordinated 
operation problem. In [6], a strategic bidding is proposed for a 
WPP using an energy storage facility to participate in DA and 
real-time markets with modeling the WPP as a price-taker in 
the markets. In addition, a VPP, which is composed of WPP 
and DR, is proposed to mitigate wind uncertainty. Authors in 
[7] formulated the coordinated operation of WPP and a storage 
unit in DA and hour-ahead markets. Optimal energy and 
reserve bids are derived and the stochastic problem is 
converted to a convex optimization to assure the profitability 
of private investments on storage units. In [8], the optimal 
bidding, scheduling, and deployment of battery ESS are 
studied in the California DA energy market by decomposing 
the stochastic problem into inner and outer subproblems. 
Authors in [9] studied DR trading in DA markets using a two-
step sequential market clearing.  

Similarly, the WPP in the DA market model has been 
proposed by [10]. In [11], a mechanism of intraday market 
with considering real-time information of WPPs and shiftable 
loads has been presented. In this reference, the WPPs make 
decisions to multiple market transactions in different hours 
based on the market price. Also, the authors of [12] have 
formulated the model of the energy bidding problem for VPP 
with its participants in the regular electricity market and the 
intraday demand response exchange market. Moreover, the 
coupon-based DR program is used in [13] to coordinate with 
WPP to obtain optimal operation in the electricity market. In 
[14] and [15], the DA market model based on DR capability 
for congestion management with WPP uncertainty has been 
proposed. Finally, the capability of flexible resources such as 
DR and ESS to reduce the curtailed wind energy and virtual 
biding as well as increasing system flexibility have been 
presented in [16] - [18].           

C.  Contributions  

Considering the reviewed literature, the contribution of the 
current paper is to propose an offering strategy to maximize 
the profit of a VPP consisting of a WPP, DR, and ESS, 
entitled wind-demand response-storage, in a coordinated 
operation in the DA, intraday, and balancing markets. 
Although these parts of the VPP are separately addressed in 
the literature, they are not modeled in a coordinated operation 
by an integrated model of the VPP.  

In order to model the uncertainties of wind power and 
market prices (in DA, intraday, and balancing markets), a 
scenario-based stochastic programming is used.  
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The optimization problem is linearized to enhance its 
computational efficiency and it is formulated as a Mixed-
Integer Linear Programming (MILP) problem. The 
Kantorovich method with a fast forward algorithm is 
employed for scenario generation and reduction. Different 
case studies with/without DR and ESS are thoroughly studied 
and compared; it is inferred that the coordinated operation 
results in a higher profit of the VPP in the three electricity 
markets compared with existing literature works. To 
summarize the unique features of the proposed framework 
with respect to the previous works in the area, the taxonomy 
of recent works can be seen in Table I. 

Noted that the ES system has been considered in our 
proposed model. Accordingly, the ES system is capable of 
storing wind energy during the periods when wind price is low 
to be used during the periods when wind price is high, thus, 
WPP can be scheduled with the ES system. A proficient way 
to dispatch the WPP in electricity markets and manage the 
WPP volatility is to exploit utility-scale energy storage 
systems. Also, DRs similar to ES system can play an 
important role in addressing the issue of wind power 
scheduling. 

D.  Paper Organization 

The remaining parts of this paper are organized as follows: 
In Section II, the problem formulation is described in states 
with/without DR and ESS and the stochastic method used in 
the paper is briefly explained. Section III includes numerical 
results and discussions, and Section IV concludes the paper. 

II. PROBLEM FORMULATION  

In this section, the uncoordinated model of WPP, DR, and 
ESS is separately represented and afterward, the proposed 
coordinated model of VPP is presented. In the numerical result 
section, we follow these models to compare and see the effect 
of coordinated operation of VPP on its cost. 

TABLE I. TAXONOMY OF RECENT WORKS 

Ref 
Resource Market 

Coordinated 
operation 

WPP DR ESS DA Intraday Balancing Yes No 

[2] ×    ×  ×  ×  

[3] × ×  ×  ×  × 

[5] ×   ×  ×  × 

[6] ×  × ×    × 

[7] ×  × ×   ×  

[8]   × ×    ×  

[9]  ×  ×    ×  

[10] ×   ×    × 

[11] ×    ×   × 

[12] × ×   ×   × 

[13] × ×  ×    × 

[14] × ×  ×  ×  × 

[15] × ×  ×  ×  × 

[16] × × × ×    × 

[17] × ×  ×   ×  

[18] × ×  ×   ×  

This paper × × × × × × ×  

A.  The Uncoordinated Model of WPP 

The proposed basic model for WPP is formulated [3] as:  

, , , ,
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 

+ −  
  (1)

subject to: 
max

,0 ,D
tP W tω ω≤ ≤ ∀ ∀  (2)

, , , ,sch D I
t t tP P P tω ω ω ω= + ∀ ∀  (3)

max
,0 ,sch

tP W tω ω≤ ≤ ∀ ∀  (4)

, , , ,sch
t t tW P tω ω ωδ ω= − ∀ ∀  (5)

, , , ,t t t tω ω ωδ δ δ ω+ −= − ∀ ∀  (6)

, ,0 ,t tW tω ωδ ω+≤ ≤ ∀ ∀  (7)
max

,0 ,t W tωδ ω−≤ ≤ ∀ ∀  (8)

( )( ), , , , 0 , ,D D D D
t t t tP P tω ω ω ωλ λ ω ω′ ′ ′− − ≥ ∀ ∀ ∀  (9)

, , , ,, , :D D D D
t t t tP P tω ω ω ωω ω λ λ′ ′′= ∀ ∀ ∀ =  (10)

, , , ,, , :I I D D
t t t tP P tω ω ω ωω ω λ λ′ ′′= ∀ ∀ ∀ =  (11)

, , , ,D I D
t t tP P P tω ω ωγ γ ω− ≤ ≤ ∀ ∀ . (12)

The objective function in (1) maximizes WPP profit. The 
first and second summation terms represent WPP profits in 
DA and intraday markets, respectively, whereas the 3rd and 4th 
terms are WPP profit and cost, respectively, in the balancing 
market. In (1), we have R− ≥1 and R+ ≤1 implying that the 
generation deficiency of WPP has a higher penalty and its 
surplus generation is bought with a less price. 

Constraint (2) confines the offer of WPP in the DA market 
to its rated power. The WPP scheduled power in (3) is 
comprised of its offers in the DA and intraday markets and is 
limited to WPP rated power by (4). The power deviation of 
WPP with respect to its scheduled power is given by (5). The 
positive and negative power deviation results in a profit and 
cost for WPP, respectively, in the objective function (1). In 
order to extract the positive and negative deviations, (6)-(8) 
are imposed. Note that only one of δ + and δ − can be nonzero 
in one individual time period: ( ) 0δ δ+ − =  if ( ) 0δ δ− + ≠ . It is 
noted that the maximum value of δ +  occurs when schP  is 
equal to zero; thus, the upper limit of δ +  is set to W  in (7). 
Also, the maximum of δ −  occurs when schP  is equal to 

maxW ; therefore, its upper limit is set to maxW  in (8). The fact 
that the offer curve of WPP is not scenario dependent is 
constrained by (9)-(11). The intraday market is in fact 
developed to modify the DA offer by a given value. The 
portion of intraday offer with respect to the DA market is 
expressed by (12), where the coefficient γ  is decided by the 
market operator. 

B.  The Uncoordinated Model of Aggregated DR      

The proposed model for DR is formulated as [3]:  

( )

* *
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subject to: 

, , , ,sch D I
t t tL L L tω ω ω ω= + ∀ ∀  (14)

, 1 0,0 ,D
t tL D tω η ω≤ ≤ ∀ ∀  (15)

, 1 0,0 ,sch
t tL D tω η ω≤ ≤ ∀ ∀  (16)

, 0,
1 1

T TN N
sch
t t

t t

L Dω μ ω
= =

≤ ∀  . (17)

The objective function in (13) maximizes DR profit: the 
first two summation terms are the money paid to demands 
with the normal energy price rates in DA and intraday 
markets. In addition, demands are paid an incentive payment 
with a fixed rate as modeled by the third and fourth 
summation terms. The last term of the summation expresses 
DR profit considering elastic demand by using the exponential 
demand consumption versus price and Taylor series of DR 
benefit function [3]. The scheduled curtailable DR power is 
given in (14) as the sum of DR powers in the DA and intraday 
markets. The upper limit of DA and scheduled load 
curtailments are limited by (15) and (16), respectively, as a 
fraction of initial load. Constraint (17) limits the scheduled 
curtailable load energy (in DA and intraday markets) to its 

upper limit of 0,1

TN

tt
Dμ

= . In fact, the demand can offer the 

energy volume of 0,1

TN

tt
Dμ

=  as the total amount of daily 

curtailable load energy like a generation capacity to participate 
in the DA and intraday markets. The last summation term in 
(13) makes the optimization problem nonlinear. This term can 
be linearized using the conventional piecewise linearization 
method [19]. Thus, the linearized objective function of (13) is 
expressed as: 
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subject to: 

_
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1

,
LN
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t l t

l

L L tω ω ω
=
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Constraints (14)-(17). 

C.  The Uncoordinated Model of ESS 

The proposed model for ESS is formulated as:  
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min max
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tE E E tω ω≤ ≤ ∀ ∀  (31)
min max

, ,sch
tE E E tω ω≤ ≤ ∀ ∀ . (32)

The profit of ESS is maximized by the objective function of 
(20), where the first and second summation terms refer to ESS 
profit in the DA and intraday markets, respectively. The 
scheduled charging power of ESS is sum of its offers in DA 
and intraday markets as expressed by (21). Similarly, the 
discharging power is given by (22). The charging and 
discharging offer of ESS in the DA market is constrained by 
(23) and (24), respectively, where yt as a binary variable 
determines whether the ESS is being charged. Similarly, (25) 
and (26) constraint the scheduled charging and discharging 
offers of ESS, respectively. The stored energy of ESS in the 
DA market is formulated by (27) and (28) for the first and 
other time periods, respectively. In these equations, the 
charging and discharging efficiency of ESS is taken into 
account. Equations (29) and (30) similarly give the scheduled 
energy of ESS. Finally, (31) and (32) confine ESS energy to 
its lower and upper limits. 

D.  The Proposed Model for VPP 

In the previous subsections, uncoordinated models of WPP, 
DR, and ESS are reviewed. As it can be seen in Fig. 1, in the 
uncoordinated operation, WPPs and ESSs submit their 
generation scheduling offer and the DRPs submit their 
reduction bid, independently. According to the proposed 
model in Fig. 1, for the coordinated scheme, for the joint 
operation of WPP, DR, and ESS, a central decision maker is 
required. The so called VPP is directly responsible for 
participating in all three markets (day-ahead, intraday, and 
balancing markets). Accordingly, firstly, VPP gathers the 
information of WPP (e.g., predicted wind power), ESS (status 
of charge, charging and discharging efficiencies) and DRP 
(e.g., load shifting/reduction capability, initial hourly load) 
and afterwards, decides the best offering strategy by 
forecasting market prices based on the latest information, 
technical constraints and market rules. Here, we formulate a 
VPP model consisting of a WPP, DR, and ESS.  Using the 
coordinated operation of these resources, the profit of VPP in 
different markets are higher than uncoordinated operations. 
The complete form of the proposed VPP model is as follows: 
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t t t tP P tω ω ω ωλ λ ω ω′ ′ ′− − ≥ ∀ ∀ ∀  (41)
, ,

, , , ,, , :D VPP D VPP D D
t t t tP P tω ω ω ωω ω λ λ′ ′′= ∀ ∀ ∀ =  (42)

, ,
, , , ,, , :I VPP I VPP D D

t t t tP P tω ω ω ωω ω λ λ′ ′′= ∀ ∀ ∀ =  (43)
, , ,

, , , ,D VPP I VPP D VPP
t t tP P P tω ω ωγ γ ω− ≤ ≤ ∀ ∀  (44)

, , ,
, , , ,sch VPP D VPP I VPP

t t tL L L tω ω ω ω= + ∀ ∀  (45)
,

, 1 0,0 ,D VPP
t tL D tω η ω≤ ≤ ∀ ∀  (46)

,
, 1 0,0 ,sch VPP

t tL D tω η ω≤ ≤ ∀ ∀  (47)

,
, 0,

1 1

T TN N
sch VPP
t t

t t

L Dω μ ω
= =

≤ ∀   (48)

, _ ,
, , ,

1

,
LN

sch VPP sch l VPP
t l t

l

L L tω ω ω
=

= ∀ ∀  (49)

, ,
, , , ,, , :I VPP I VPP D D

t t t tL L tω ω ω ωω ω λ λ′ ′′= ∀ ∀ ∀ =  (50)
, ,

, , , ,, , :sch VPP sch VPP D D
t t t tP P tω ω ω ωω ω λ λ′ ′′= ∀ ∀ ∀ =  (51)

, , , , ,
, 0 , ,

1

1,

D VPP ch D VPP dch D VPP
t t ch t t

dch

E E du P P

t

ω ω ωη
η

ω

 
= + − 

 
∀ = ∀

 (52)

, , , , , ,
, 1, , ,

1

2,

D VPP D VPP ch D VPP dch D VPP
t t t ch t t

dch

E E du P P

t

ω ω ω ωη
η

ω

−

 
= + − 

 
∀ ≥ ∀

 (53)

min , max
, ,D VPP

tE E E tω ω≤ ≤ ∀ ∀  (54)
, , max

,0 ,ch D VPP
t tP P y tω ω≤ ≤ ∀ ∀  (55)

( ), , max
,0 1 ,dch D VPP

t tP P y tω ω≤ ≤ − ∀ ∀  (56)

, , , , ,
, 0 , ,

1

1,

sch VPP ch sch VPP dch sch VPP
t t ch t t

dch

E E du P P

t

ω ω ωη
η

ω

 
= + − 

 
∀ = ∀

 (57)

, , , , , ,
, 1, , ,

1

2,

sch VPP sch VPP ch sch VPP dch sch VPP
t t t ch t t

dch

E E du P P

t

ω ω ω ωη
η

ω

−

 
= + − 

 
∀ ≥ ∀

 (58)

min , max
, ,sch VPP

tE E E tω ω≤ ≤ ∀ ∀  (59)
, , max

,0 ,ch sch VPP
t tP P y tω ω≤ ≤ ∀ ∀  (60)

( ), , max
,0 1 ,dch sch VPP

t tP P y tω ω≤ ≤ − ∀ ∀ . (61)
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Fig. 1. Schematic representation of the proposed coordinated configuration. 

The profit of VPP is maximized by objective function of 
(33), where the first two summation terms are VPP profit in 
DA and intraday markets, the third and fourth terms represent 
VPP income and cost due to power positive and negative 
imbalances in the balancing market, and the last summation 
term is the VPP income due to curtailable demands. The offer 
capacity of VPP is constrained by (34) that includes three 

parts of maxW  as the WPP generation capacity, 1 0,tDη  as the 

DR generation capacity, and ( )max max1 t tP y P y− −  as the ESS 

generation capacity. The scheduled power of VPP in (35) is 
sum of its offers in DA and intraday markets. The VPP 
scheduled offer is constrained in (36) similar to (35). The offer 
deviation from the scheduled value is given by (37). 
Constraints (38)-(40) extract the positive and negative offer 
deviation as done in (6)-(8).The scenario characteristic of the 
offer curve is modeled by (41)-(43) like as done in (9)-(11). 
The offer adjustment limits are set by (44). The scheduled 
curtailable load of VPP is sum of its offers in the DA and 
intraday markets as formulated by (45). Equations (46)-(47) 
confines DA and scheduled curtailable load amounts to their 
limits. Constraint (48) limits the total amount of curtailable 
load energy of VPP to a preset percentage of initial load 
energy. Equation (49) calculates the scheduled curtailable load 
offer from linearized segments. Equations (50)-(51) imposes 
non-anticipative condition for the intraday and scheduled 
energy offer of VPP, respectively. The energy level of ESS of 
VPP in the DA market is calculated by (52)-(54) and its 
charging and discharging offer is constrained by (55)-(56). 
Similarly, equations (57)-(61) set constrains for the scheduled 
ESS offer of VPP. 

It is noted that in the proposed model, the VPP is like to a 
package that includes WPP, DR and ESS. Therefore, the VPP 
has a variable power generation such as Psch, VPP, where it 
includes WPP generated power, DR shifted/reduced power, 
and ESS charging/discharging power. Hence, it is limited to 
Wmax, η1D0,t, Pmax(1–yt) and –Pmaxyt due to WPP generated 
power, DR shifted/reduced power, and ESS 
charging/discharging power, respectively. Also, the WPP, DR 
and ESS constraints should be included. Hence, equations 
(37)-(43) are used in the proposed model to satisfy  
WPP requirements. Also, DR part of VPP is modeled as  
(44)-(51) by defining the variable Lsch, VPP for the VPP.  



Note, this variable shows the load shifting/reduction in VPP. 
Finally, the constraints (52)-(61) formulate the ESS part of the 

VPP using variables , ,
,
ch sch VPP

tP ω and , ,
,
ch sch VPP

tP ω .            

E.  Stochastic Programming Method  

WPPs face two major sources of uncertainty: availability of 
the wind generation and market prices (DA, ID and 
Balancing). In addition, DRP and ESS problem described 
above is subject to the uncertainty of DA and ID market 
prices. In order to deal with these uncertainties, the 
coordinated offering strategy of VPP has been modeled as 
stochastic processes. To this end, a multi-stage stochastic 
programming is employed to solve offering strategy of VPP. 
Each stage refers to each market (DA, ID and Balancing) 
including first-stage (here-and-now), second-stage (wait-and-
see1) and third-stage (wait-and-see2).  Decision making of the 
first stage should be specified before the realization of the 
scenarios. Accordingly, the first-stage decision variables are 
related to the DA market variables. When the DA market 
prices are known for each time horizon, the decision variables 
of the second stage should be determined for each possible 
realization of DA market prices. Finally, decision variables of 
the third stage of the stochastic programming refers to the 
balancing market.  In this paper, we follow a stochastic 
programming method based on [20-22]. 

In the proposed method, we assume that WPP generation as 
well as prices of the DA, intraday, and balancing markets are 
uncertain parameters. These parameters are forecasted in 
advance and we formulate their forecast errors using 
appropriate Probability Distribution Functions (PDFs) [20]. 
Then, the roulette wheel mechanism [21] is used to generate 
possible joint scenarios. In order to enhance the computational 
efficiency of the stochastic programming, the Kantorovich 
method [22] is applied for scenario reduction. The number of 
scenarios that are generated for the above-mentioned 
stochastic parameters in the proposed method are as: 

• NW scenarios for the wind power generation. 

• ND scenarios for DA market price (λD). 

• NI scenarios for intraday market price (λI). 

• NR scenarios for balancing market price (R+, R-). 

As a result, the total number of combinational scenarios in 
the proposed method will be . . .W D I RN N N N . In the case study, 

we assumed 10, 10, 5, 6 for NW, ND, NI and NR, respectively, 
resulting in total number of 3000 combinational scenarios. 
Finally, noted that further details about the proposed scenario 
generation\reduction algorithm can be found in [23].     

III. NUMERICAL RESULTS  

The proposed method is here tested on the Spanish 
Sotavento wind farm [24] with the rated capacity of 17.56 
MW. This WPP is considered with an ESS with the 
specifications listed in Table II [25]. The system load data and 
energy prices for DA and intraday markets are adopted from 
the Iberian Peninsula market [26]. Our study is carried out on 
a week spanning 7-13 March 2010 of this market.  

In the following subsections of A-D, we focus on the first 
day of the week (March 7 of 2010) to better focus on the 
results. However, in subsection E, we present results for the 
whole week. Parameters of the proposed method as used in the 
simulations are 0.3, 0.04, -0.3, 0.2, and 0.3 $/MWh for γ, μ, σ, 
η1, and λ*, respectively [23]. The DA market price is a 
random parameter in the proposed method; its mean values are 
depicted in Fig. 2 for days of the week under study [26].  

In Fig. 3, the initial hourly load before curtailing is 
presented for days of the week [26]. In order to solve 
optimization problems, we used here the GAMS software and 
CPLEX solver [27]. In the subsequent parts, results are 
presented in different uncoordinated and coordinated modes in 
order to compare them and evaluate the performance of the 
proposed joint operation of VPP. Results presented in 
following subsections are resulted from stochastic 
programming as a weighted sum of parameters using 
probability of scenarios. It is noted that, the day-ahead 
scheduling power for WPP, ESS and DR are defined by 

variables ,
,
D VPP

tP ω , ,
,

D VPP
tL ω and { }, , , ,

, ,,ch D VPP dch D VPP
t tP Pω ω , with 

superscript D, respectively. The hourly power scheduling of 
WPP, ESS, DR and VPP is obtained using objective function 
(33), equations (45) and (52)-(53). 

A.  Optimal Uncoordinated Operation of WPP 

The problem in this section is formulated by (1)-(12) as a 
Linear Programming (LP) model. The optimal hourly bid of 
WPP in the DA and intraday markets as obtained after solving 
the model is plotted in Fig. 4. As seen, the WPP participated 
with its full capacity (17.56 MW) when the price is higher (see 
Fig. 2) in order to maximize its profit in DA, intraday, and 
balancing markets. The hourly expected profit of WPP is also 
depicted in Fig. 5. As seen, WPP obtain its profit majorly from 
the DA market. Total profit of WPP from the three markets is 
equal to $4721. 

 
Fig. 2. Mean energy price of the day-head market in March 7-13 of 2010 [26] 

 
Fig. 3. Initial load demand in March 7-13 of 2010 [26] 
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TABLE II. ENERGY STORAGE SYSTEM SPECIFICATIONS 

Quantity Value 
Initial energy (MWh) 5 

Minimum energy (MWh) 2 
Maximum energy (MWh) 25 

Maximum charging/discharging power (MW) 4 
 

 
Fig. 4. Optimal bid of WPP in March 7 of 2010 

 
Fig. 5. The expected profit of WPP in March 7 of 2010   

B.  Optimal Uncoordinated Operation of Aggregated DR 

The problem in this case is formulated by (14)-(19) as an LP 
model. The optimal curtailable DR offer and its profit is 
depicted in Fig. 6 and Fig. 7, respectively, for March 7 of 
2010. As seen, DR is more sensitive than WPP to price signals 
and its offer happens only in peak hours of the market. That is,  
only when the energy price is high, it is profitable for DR to 
participate in the market.  

As seen in Fig. 3 (the March 7, 2010 curve), the load 
demand at peak hours is about 17 MW before DR. The 
participation of DR reduces this peak demand by about 3 MW 
at peak hours as seen in Fig. 6. Total profit of DR from the 
three markets of DA, intraday, and balancing is equal to 
$1200. 

C.  Optimal Uncoordinated Operation of ESS 

The optimization problem in this case is modeled by (20)-
(32) as an MILP. The optimal offer of ESS in the DA market 
is plotted in Fig. 8 and the expected profit of ESS is shown in 
Fig. 9.  

 
Fig. 6. The curtailable load offer of aggregated DR in March 7 of 2010 

 
Fig. 7. The expected profit of aggregated DR in March 7 of 2010 

 
Fig. 8. The optimal offer of ESS in March 7 of 2010 

 
Fig. 9. The expected profit of ESS in March 7 of 2010 

As seen in Fig. 8, the ESS is charged in off-peak and mid-
peak hours and it is discharged in on-peak hours. That is, the 
energy is bought in low-tariff hours and it is sold in high-tariff 
hours in order to maximize ESS profit.  

Although the ESS optimization problem of (20)-(32) 
includes its offers in both DA and intraday markets, it is not 
profitable for ESS to participate in the intraday market and 
then, it participates only in the DA market as seen in Fig. 8. 
Total profit of ESS is equal to $662. 

D.  Optimal Coordinated Operation of VPP 

The VPP in this case includes the joint optimization of 
WPP, DR, and ESS as formulated by (33)-(61) as an MILP 
model. The VPP optimal offer and its expected profit are 
plotted in Fig. 10 and Fig. 11, respectively.  

 

 
Fig. 10. Optimal offer of VPP in March 7 of 2010 
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Fig. 11. The expected profit of VPP in March 7 of 2010 

As seen in Fig. 10, the VPP offer has increased to about 25 
MW at peak hours compared with the uncoordinated operation 
of WPP with 17.56 MW offer. In fact, VPP employs DR and 
ESS in addition to WPP as generation assets to more increase 
its profit at peak hours with higher tariffs. Total expected 
profit of VPP over the 24 hours has been $7810. In the 
subsection, we compare the profit of VPP with individual 
uncoordinated operations of WPP, DR, and ESS.  

E.  Comparison  

Results of uncoordinated operations of WPP, DR, and ESS 
as well as the coordinated operation of VPP are presented in 
previous subsections for the first day (7 March, 2010) of the 
week under study. In Table III, the summary of expected 
profits of uncoordinated and coordinated cases are presented 
for all days of the week under study. Also, sum of profits of 
the three uncoordinated operations is shown in the table. In 
addition, the coordinated operation of VPP (including WPP, 
DR, and ESS) is reported in the second part of Table III. 
Under column “7” of this table, profits of $4721 (for WPP), 
$1200 (for DR), $662 (for ESS), and $7810 (for VPP) are 
previously reported in preceding subsections. Considering the 
first day of the week (March 7 of 2010) in this table, sum of 
uncoordinated profits of WPP, DR, and ESS is equal to $6583 
(4721 + 1200 + 662), whereas their coordinated operations in 
the VPP results in the profit of $7810, which is considerably 
higher than uncoordinated operations (18.64%). The gain in 
profit due to the coordinated VPP with respect to sum of 
uncoordinated operations is reported in the last row of the 
table for all days of the week. A higher profit implies a higher 
incentive for VPP to be participated in electricity markets 
using our proposed model. In other words, the proposed model 
increases the ability of WPPs in electricity markets without 
any need to supportive or subsidizing mechanisms. 

This trend finally rises the penetration level of renewable 
energies in electricity markets. Not only the WPP power 
increases under the VPP framework, but also DR and ESS 
participate more effectively. For instance, the participation of 
DR in the DA market for the two cases is plotted in Fig. 112 
for 7 March 2010. As seen, in the uncoordinated operation, the 
DR participates in limited hours with only positive values 
implying only load curtailment. However, in case of VPP 
coordinated operation, DR participates in extended hours with 
both positive and negative offers. The ultimate result is that 
the expected profit of the VPP increases in case of coordinated 
operation. In addition to increasing the profit of VPP, total 
energy supplied by WPP, ESS, and DR in the three markets 
also increase. In Table IV, the energy supplied by coordinated 
and uncoordinated cases is mentioned for the considered week. 

TABLE III. EXPECTED PROFIT OF UNCOORDINATED AND COORDINATED CASES 

IN MARCH 7-13 OF 2010 

Day of week 7 8 9 10 11 12 13 

Uncoordinated 
operation 

WPP 4721 6524 9643 5235 10451 8345 7340

DR 1200 1520 1800 1621 2111 1851 1901

ESS 662 650 980 730 1112 1051 1023

Sum 6583 8694 12423 7586 13674 11247 10264

Coordinated 
operation (VPP) 

WPP 4728 6534 9648 5241 10463 8353 7347
DR 2414 2602 2578 2453 3843 2913 2949
ESS 668 656 985 737 1117 1055 1029
Sum 7810 9792 13211 8431 15423 12321 11325

Gain (%) 18.64 12.63 6.34 11.14 12.79 9.55 10.34
 

TABLE IV. ENERGY SUPPLIED BY WPP, ESS, AND DR IN 7-13 OF MARCH 2010 

IN UNCOORDINATED AND COORDINATED CASES 

Day of week 7 8 9 10 11 12 13 

Energy supplied 
by uncoordinated 

operations 
(MWh) 

WPP 4721 6524 9643 5235 10451 8345 7340

DR 1200 1520 1800 1621 2111 1851 1901

ESS 662 650 980 730 1112 1051 1023

Sum 6583 8694 12423 7586 13674 11247 10264

Energy supplied 
by coordinated 

operation of VPP 
(MWh) 

WPP 4728 6534 9648 5241 10463 8353 7347
DR 2414 2602 2578 2453 3843 2913 2949
ESS 668 656 985 737 1117 1055 1029
Sum 7810 9792 13211 8431 15423 12321 11325

 
Fig. 12. The comparison of DR offer in the coordinated and uncoordinated 
operations in the day-head market in 7 March 2010  

For instance, in the first day, total energy supplied by 
uncoordinated operations of WPP, DR, and ESS is 6583 
MWh, whereas it is 7810 MWh in case of coordinated 
operation of VPP. Considering the whole week, total supplied 
energy over the week is 70.471 GWh and 78.313 GWh for 
uncoordinated and coordinated operations, respectively. This 
means that penetration level of renewable energies 
(WPP+ESS+DR) increases by 11.1% by the coordinated 
operation. As a result, the proposed coordinated operation 
increases not only the participation of renewables but also 
their profits, Table V. It is noted that these gains are obtained 
by a market-based framework, not by a subsidizing 
mechanism to support renewables. In other words, the main 
advantage of the proposed VPP framework is to promote 
renewable energy in electricity markets without any need to 
subside mechanisms, a development which is more consistent 
with electricity markets principles. 

F.  Sensitivity Analysis for Degree of Coordination  

Here, the sensitivity analysis is done to determine the 
degree of coordination of the VPP’s expected profit with 
respect to the variations of the capacity for WPP, DR and ESS 
as well as DA and ID market prices’ change.  
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Accordingly, the results have been shown in Table V. As it 
is seen in this table, the increment value (ζ%) of each 
parameter has been changed from 0% to 30%. Results show 
increasing trend in the value of expected profit for the VPP by 
increasing different parameters. In the last row of Table V, the 
sensitivity factor of the expected profit of VPP with respect to 
the variations of each parameter has been addressed. For 
variations of the size for WPP, DR and ESS, the sensitivity 
factor has the approximate constant value. However, changing 
the DA and ID market prices reveals nonlinear change of the 
degree of coordination, because by changing the price, the 
degree of coordination of the WPP, DR and ESS will be 
changed for each hour.  

TABLE V. THE PROFIT OF VPP IN THE SENSITIVE ANALYZE AT 7 MARCH 2010  

Increment (ζ %) 0 10 20 30 Deviation 

VPP profit 
($) 

WPP size 7810 8283 8756 9228 +0.605* ζ 
DR size 7810 8051 8293 8534 +0.308* ζ 
ESS size 7810 7877 7944 8010 +0.086* ζ 

DA market price 7810 8531 9372 10153 +(0.923 to 1)* ζ 
ID market price 7810 7943 8201 8653 +(0.17 to 0.36)* ζ

IV. CONCLUSIONS  

This paper presented a framework to maximize the profit of 
VPP, including a WPP, DR, and ESS in day-ahead, intraday, 
and balancing electricity markets. First, uncoordinated 
operations of WPP, DR, and ESS were formulated. Then, a 
model was proposed for the coordinated operation of VPP to 
maximize its profit for more efficiently managing power 
system assets. Scenarios of stochastic programming were 
generated using a joint scenario tree and the Kantorovich 
method was used for scenario reduction. The proposed 
framework was tested on a Spanish wind farm and was 
compared with previous methods. According to the obtained 
results, it was determined that the proposed VPP leads to both 
a higher participation of wind energy and a higher profit; for 
instance, in the first day of the week under study, it leads to 
18.64% more profit and 11.1% more renewable energy 
participation compared with uncoordinated operations.  
The proposed method considers the simultaneous participation 
in three markets, so, a further work is needed to establish the 
optimization of scheduling in the intraday market. In fact, 
transactions in the intraday market are always in the form of 
bilateral contract which means that there could be lots of 
different prices in the same hour. Hence, investigation and 
experimentation into optimization in this market is strongly 
recommended. 
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