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Cloud manufacturing – scheduling as a service for 

sheet metal manufacturing 
 
Abstract 
Cloud manufacturing refers to a new concept of using centralized cloud computing for 
manufacturing information systems to support distributed and dynamic collaborative 
manufacturing environment. The core of cloud manufacturing is to provide service to 
geographically distributed manufacturers centralized services. This paper introduces a cloud based 
production scheduling system for sheet metal manufacturing and discusses the requirements of 
scheduling as a service. A cloud-based genetic algorithm based scheduling application has been 
developed to serve distributed manufacturing. The characteristics of the prototype system are 
described and performance estimates are tested. The solution shows how scheduling as a service 
can be built as part of connected smart machinery and provide a generic platform for varying uses. 
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1. Introduction 

Cloud manufacturing is a novel concept referring to operating manufacturing related software in 
cloud infrastructure or in a broader sense referring to virtual factories, i.e. supply chains that carry 
the production and operations in multiple locations and providing close to real-time information 
from the events (Tao et al., 2011; Xu, 2012). Both approaches acknowledge the importance of 
application of Internet technology. By using the communication technology, the up to date 
information can be shared between the machines, production lines, factories and different actors 
within the supply chains. Some authors, such as Wu et al. (2015) see a new manufacturing 



paradigm emerging from this technology to deal with the competitive and dynamic manufacturing 
environment. Visions of future manufacturing and its associated manufacturing system have been 
presented (Wu et al., 2013). It is vital to provide higher level of operational performance in the 
manufacturing system to achieve green technology and sustainable operations (Park & Jeong, 
2013).  
Cloud computing is considered as green IT technology, because it can provide the computing 
resources as services and enable rapid provisions with minimal management effort (Park & Jeong, 
2013). Cloud computing reduces the environmental impact of computing resources and improve 
the efficiency of computing resources. By using cloud-enabled architecture for manufacturing 
systems, the product lines can be monitored even they are in distributed locations, while guarantee 
the operational performance of systems.  
Part of the cloud manufacturing concept is about servitization – this means that manufacturing is 
gradually transferring from traditional product-oriented type to service-oriented type (Huang et al., 
2013; Luo et al., 2011). Any manufacturing resources and capabilities are provided as services. 
The characteristics of new era of manufacturing are agile, networked, sustainable and sharing 
information with a temporary collaboration nature. A number of similar paradigms have emerged 
in parallel, such as distributed manufacturing, dispersed network manufacturing, and virtual 
enterprises (Ford et al., 2012). Each manufacturing technology or model has its own emphasis and 
has played an important role in the development of manufacturing industries (Zhang et al., 2014) 
and they can be classified into two different aspects: structure oriented concepts which mainly 
focus on the business formation and technology oriented concepts which emphasize the technology 
implementation (Hao & Helo, 2014). Sharing information in the supply chain is an important 
feature of many cloud manufacturing approaches.  
In cloud manufacturing environment, the manufacturing tasks are parallel operated in different 
production lines (Zhang et al., 2014). The scheduling mechanism centrally managed. Fujii, Kaihara 
& Morita (2000) design the integrated simulation model to endorse different criteria in virtual 
factory context. Similar integrated approach is proposed in cloud manufacturing. Shared 
centralized data repository and shared computing resource is another type of approach on cloud 
manufacturing. Production scheduling is a computational task needed to improve the efficiency of 
operations and resource utilization. The scheduling task can be divided into three main phases: (1) 



problem formulation, (2) optimization task and (3) evaluation of results. Problem formulation and 
evaluation of results are conducted locally by the production management. The actual optimization 
task, proposing a suitable sequence of jobs, is a part of process which may be conducted at a 
centralized scheduling system and computing resource may serve several users. 
Targeting the cloud manufacturing, the purpose of this paper is to demonstrate a prototype of a 
cloud system to support the scheduling task in production planning and control in the context of 
sheet metal manufacturing environment. As many of the production planning and control 
techniques in sheet metal manufacturing are relaying on optimization or other computing intensive 
mathematical operations, there is a potential of using cloud computing architecture to take the full 
utilization of the line. In order to test the concept of cloud manufacturing in production planning 
and control, a prototype system was developed and tested. The developed system enables real-time 
scheduling as a service in the flow shop scheduling problem. The objectives of this research are as 
follows:  
(1) To demonstrate a new approach model to provide scheduling as a service to specific type of 
sheet metal production lines which are in distributed locations and are centrally managed.   
(2) A GA based approach to solve multi-objective problems is proposed. The centralized cloud 
solution can separate the optimization problem and solve the problem with different principles. 
The reminder of this paper follows with literature review, a short introduction on the developed 
prototype model, the actual results and finally a conclusions section. 

2. Research Background  

The cloud based Scheduling as a Service system has been implemented in sheet metal 
manufacturing environment. The background of the development has been to develop service 
solution for smart connected machinery. Additionally, the system has aimed to provide good value 
adding solution for manufacturing companies operating sheet metal lines, very often with limited 
use of advanced planning and sometimes just by using FCFS principle.  
2.1 Sheet metal manufacturing context 
The sheet metal industry has focused on the automation of cutting, punching, forming, shearing 
and nesting processes for sheet metal parts (Wang & Bourne, 1997; Verlinden et al., 2007). Sheet 



metal manufacturing line consists typically of several automated machines connected together, 
such as automated warehousing management system (WMS), laser cutting machines; punching-
shearing machines, conveyors, robots and bending machines. Figure 1 demonstrates a flow shop 
layout of this type of combination.  From scheduling point of view, the layout of the line is 
flowshop or flexible flowshop. Raw material sheets are stored at warehouse system, nested sheets 
are processed at punching-shearing and laser cut machines. Then stacking robot removes parts, 
and remnants. Those parts that are ready will be taken out from the line. The rest will follow toward 
bending machines which are forming the 3D shape to parts.  
 

 
Figure. 1. Flow shop layout consisting of multiple WMSs (every WMS is built up with different sets of machines). 
 
Sheet metal manufacturing has special features related to production planning and control: 

(1) Integration with design (Wei et al., 2013). 
(2) Nesting problem of the part geometrical shapes in the steel sheets (Nehal et al., 2008) 
(3) Process selection problems (Wang & Xie, 2005) 



(4) Tool change and setup problem with wearing parts (Giannakakis & Vosniakos, 2008) 
(5) Flow shop scheduling problem (Akturka et al., 2007) 

 
Several quantitative analytical approaches have been presented to solve these problems related to 
production planning and control. From production planning and control point of view, the 
proposed system needs to be able to handle typical situations in the environment. Based on 
requirements analysis, a typical sheet metal manufacturing line has the following characteristics: 

 Line consisting of 5-6 machines in a flow shop type of layout. Some machines may be not 
used in all routings, however, the sequence of operations remain the same. 

 Typically, a set of from 20 up to 200 jobs in the production queue are available for 
scheduling, due dates are important 

 Setup time calculations are dynamic for each machine, depending on tool selection, tool 
alignment 

 Material changes in terms of type and thickness  
 Some machines may require labour operation and delayed actual operation from planned 

may cause delays for the entire line 
 Maximum buffer size between the machines may present a constraint 
 Nesting problem in sheet metal utilization is affecting the scheduling and batch sizes as 

parts are nested based on waste minimization only 
 

Production planning and control system in this environment needs to be able to combine the 
various optimization needs for different decisions. Different planning issues and numerous 
problem-specific constraints need to be taking into account. Most manufacturing companies use 
manufacturing execution system (MES) or an equivalent system for production planning and 
control. Managing multi-site execution is challenging (Helo et al., 2014).  
For sheet metal production job scheduling is typically adjusting the production sequence of nests. 
Each part is assigned on nesting optimization to a nest. Material related setup time can be avoided 



by combining orders with same sheet types. Tool changes may be reduced by combining orders 
with similar tooling requirements. The challenge is that these requirements are conflicting. 
Sequence decided in the first phases defines the rest of the operations as space for stacking parts 
is limited. Figure 2 illustrates various conflicting machine level optimization tasks. On the high 
production line level, the objective is to minimize total makespan subject to due dates. 
Warehousing systems are quite fast and by using predefined scheduling, work can be conducted 
while laser cut and punch-shear operations are still taking place. For 2D operations, the nesting 
and tool routing defines actual time to complete a nested sheet. Tool changes may be manual or 
automatic and require certain amount of time in all cases. Cutting is driven by nesting as key 
parameter is to minimize total material cost as function of sheet utilization, material cost, remnant 
cost and scrap cost. Stacking robots operate in small spaces and can get stuck in case pallets are 
not handled responsively by the operator. Bending operations are typically fast operations and 
setup times are short compared to other machines in the line.  
 

 
Figure. 2. Conflicting machine objectives for scheduling. 
 



Objectives and operating principles can vary between production lines. High volume lines are 
often connected to other manufacturing phases such as painting and assembly. These lines are 
driven by using high capacity utilisation objective. Lower capacity utilization is typical for contract 
manufacturers and short due dates and rush orders present a priority. 
2.2 Scheduling as a service in cloud manufacturing 
Cloud manufacturing (CM) has gradually become a popular research topic in current continuously 
evolving manufacturing industry. It is a new business formation to support distributed 
manufacturers to collaborate in the manufacturing operations, and share their manufacturing 
resources/capabilities. The benefits of CM are cost-efficiency, flexibility and scalability (Wang, 
2013).      
There are two types of interpretation of CM: smart manufacturing with cloud computing and 
manufacturing version of cloud (Xu, 2012). The perspective of smart manufacturing is to utilize 
the benefits of cloud adoption, and implement various enterprise systems on cloud based platform. 
On the other hand, manufacturing version emphasizes the networked relationship among different 
manufacturers. In this particular research, the former concept is adopted. However, these two 
aspects would illuminate each other. Scalable collaboration based on business requirements needs 
the adoption of cloud technologies (Xu, 2012).  
The main purpose and interest of CM is to create a collaborative working environment (Wang, 
2013). With the relation to cloud, the principle of CM is manufacturing as a service (Tao et al., 
2011; Wu and Yang, 2010). All the heterogeneous and distributed manufacturing 
resources/capabilities are integrated in the CM’s virtual resource pool centrally, and then provided 
as different manufacturing serveries to enable the cooperation of enterprise (Wu & Yang, 2010).  
In this research, the CM and its manufacturing service integration framework is illustrated in 
Figure 3. Different users connect to the CM by network and they can request manufacturing 
services through CM. All the manufacturing services, such as evaluation, scheduling, monitoring, 
etc. are managed by the servitization mechanism.     



 
Figure 3. Cloud manufacturing and the manufacturing service model 
 
Planning and scheduling, such as production planning, and resources scheduling, is the core parts 
for implementing CM in the distributed manufacturing environment (Tao et al., 2011). Current 
research in CM area is mainly focused on CM’s concept, business opportunities, and 
implementations. However, there is not much research attention on solution of scheduling as a 
service in CM domain. It is important to design new applications to make the planning and 
scheduling in CM possible. To solve the manufacturing production scheduling problem, an 
improved intelligent algorithm should be proposed. 
For small and medium size enterprises (SMEs), adopting with CM and using manufacturing 
services through CM are beneficial because they can dynamically establish collaborative 
relationship with other partners to accomplish particular business requirements while main their 
competitive advantage by relying on their own core resources. Besides, SMEs can avoid large 
initial investment on both the manufacturing resources and the IT resources to achieve sustainable 
operation. 



 
2.3 Genetic algorithms in Scheduling 
Flow shop scheduling problem is a special case of job scheduling problem in which the jobs have 
to be performed in a strict order. Given a set of jobs J1, J2, J3… and a set of machines M1, M2, 
M3…, in flow shop each of J jobs is processed once and only once on each of M machines and for 
each job, its operation on machine M1 must precede its operation on machine M2, and its operation 
on machine M2 must precede its operation on machine M3, etc. (Ignall and Schrage, 1965). The 
performance of scheduling can be measured by one or several objectives such as flow times, 
makespan, or tardiness. Minimizing makespan is equivalent to minimizing idle time and 
minimizing waiting time on all machines. In most of the cases, job shop scheduling is a NP-hard 
problem (Non-deterministic Polynomial-time hard) and it is hardly to be solved with exact 
methods especially when it is bound to different type of constraints.  
Genetic algorithm (GA) is a “stochastic optimization method” and can be “conveniently presented 
using the metaphor of natural evolution”: a randomly initialized group of individuals will evolve 

following the Darwin’s Theory of Evolution (Michalewicz et al., 1996; Gen & Cheng, 2000). 
Individuals with suitable characteristics will have more chance to survive and reproduce in next 
generation; over time the population will be spread through with these variants. In other words, in 
GA, individuals which have better “fitness” will have better probability to be selected in the 

“selection” stage and the newly generated population will be created based on these individuals 
and their offspring using genetic operations such as “mutation” and “crossover”; the rest will be 

quickly discarded. There are many variants of implementation of GA. Yet, the three most 
important parts about GA are chromosome encoding, fitness evaluation and selection, and GA 
operators (crossover and mutation): 

 Chromosome encoding: The chromosome contains the information in which the problem 
is presented. This is the first starting point which needs to be solved when dealing with 
GA. Encoding very depends on the problem, and there are typically four different type of 
encoding: binary encoding, permutation encoding, value encoding, and tree encoding. In 
most of the cases, a binary string (a vector of 0s and 1s) is used. However, in combinatorial 
optimization problems, such as travelling salesman problem (TSP) or scheduling or 



sequencing problems, permutation encoding (a string or numbers in sequence) is more 
useful. 

 Fitness evaluation and selection: The fitness of each solution chromosome result is 
evaluated by comparing the results from fitness function𝑓𝑖. For example, when minimizing 
total make-span, each job sequence returns and total make-span value, which may be 
compared. The selection process of chromosomes that will be used in the next generation 
is an important part of the algorithm. Fitness of each chromosome is compared and based 
on this, decisions are made. Four generic approaches are: (1) Roulette wheel selection, 
where probability is proportional to goodness of fitness function; (2) Rank selection, where 
probability of selection is rank of fitness among the population of chromosomes in reverse 
order; (3) Tournament selection is based on random selection of a set of s chromosomes, 
then the fittest chromosome from this group is selected to breed; (4) Elite selection method 
means selecting best chromosomes from the generation. The percentage can be adjusted 
with parameter. 

 GA operators: There are many ways how to implement crossover and mutation operators 
in GA and this mostly depends on the nature of the problem and the type of encoding. The 
operations decide the evolutionary direction of population and the whole searching way of 
algorithm. These algorithms are suitable for solving the job scheduling problem in 
manufacturing and optimization problems. Crossover refers to randomly select two 
chromosomes as two parents and swapping them to produce two children. Mutation, 
referring to adding randomness in crossover operation, helps the algorithm not to converge 
too soon. 

GA represents a good solution possibility when dealing with this type of problem because of its 
flexibility and the ability to transform and apply the algorithm into real problem easily. 
Optimization objective may be changed and modified for different production lines and situations. 
There are various types of heuristics and metaheuristics algorithms which can be used to optimize 
the production scheduling problem, yet evolutionary algorithm seems to be persuasive and suitable 
due to the fact that the learning curve of genetic algorithm is much shorter and it does not require 
much mathematical background about the optimization problem.  



3. Problem formulation 

Flow shop scheduling problems are considered to be NP-hard (Non-deterministic Polynomial-time 
hard), which, in computational complexity theory, is defined as “at least as hard as the hardest 

problem in NP”. Therefore, finding the best optimal solution would be impractical in this type of 

problem due to the fact that it would require a vast amount of time to find such a solution (Reeves, 
1995). In practical production planning, it is more rational to find a local optimal solution within 
a reasonably small computer time. Local search is applied enable a straightforward way to 
determine optimal solutions after a limited computational effort. However, the solution is good but 
not necessarily optimal (Verlinden et al., 2007).  
Scheduling task for sheet metal line is a variant from flow shop problem and it includes certain 
specific characteristics. The problem can be modelled in several ways depending on company or 
production line based requirements. The presented case is an example of possible model. In reality 
each manufacturer or production line can have different type of problem formulation and the 
generic purpose cloud GA solver can use the model needed. 
The problem model can be parametrized into cloud solver by using data from the production 
planning table and up to date information retrieved directly from the machinery. The following 
approach aims to show a simple example which includes several parameters typical for the domain 
and could work as a template for company or production line specific scheduling principles 
Assume a list of jobs {J1, J2, …, Jn} are having the following parameters, (1) processing cycle time 
and (2) tool related setup-time for each machine {M1, M2, …, Mm}, (3) due date for each job, (4) 
material type and thickness to describe the raw material type needed for each order. Figure 4 
illustrates the details data of jobs for problem:  
 Processing time and setup-time: the format will be x-x-x according to the number of machine 

in predefined flow sequence. 
 Material related setup time: the amount of time needed when changing material type or 

thickness on the first punching and cutting machine. For example, if the first job is Steel 0.5 
and the second one is Steel 0.6 or Aluminium 0.5, we would need an additional this amount of 
"unit of time" to change that on the first machine. Combining same material types together 
would reduce the setup-time. This time will be also included in the calculation of makespan. 



 Due Date: the amount of "unit of time" before the job becomes invalid. This due date is 
calculated from the beginning when first job is scheduled on first machine. This will effect on 
the final makespan as well as the order of jobs and can be used as priority parameter as well. 
Value "0" means that no due date has been defined and any other value refers to exact minute.   

 Material type: value can describe the type of sheet "stainless steel", "steel" or "aluminium". 
 Material thickness: any numeric value describing the sheet thickness in mm. 
 Grouping (nesting): indicates whether a job related to part is nested to another job (sheet metal). 

This will have major impact on the formula to calculate final make span as well as the 
visualization of job sequence on Gantt chart. 

 Quantity: the amount of child job in the group. This parameter is used together with Grouping 
one to help identify how many child jobs are nested into the parent one. 

In addition to above parameters, a job can also include the setup for tools configuration for each 
machine. Below illustrates how tools and child jobs are configured in detail for each machine: 
 Tool stations: describes list of tools needed for each job in each machine. For example, a typical 

turret punch which is mostly used in punching machine in sheet metal manufacturing can have 
up to 60 slots that can be rotated to bring any tool to punching position. The list will affect the 
setup time if required to change any tool on certain machine. 

 Detail child jobs: Each job can be divided into many child jobs. Each child jobs can have its 
own setup time and processing time on each machine. The accumulated setup time and 
processing time will be added to the parent job as shown in figure 4. 



 
Figure 4. Detail job with tool configuration and detail job with child jobs configuration. 
 
Setup mechanism is machine type dependent. For example, assuming in one production line there 
are punching and bending machines. For punching machine, there will be predefined tool stations 
setup, while for bending machine there will be simply basic setup times as illustrated in figure 5. 

 
Figure 5. Setup comparison between punching and bending machines (tool configuration). 



 
In addition to tool configuration, setup for punching and bending machine will be also much 
different when the output of the first machine includes many parts and each individual one will be 
the input for the second one. For instance, figure 6 illustrates how such a hierarchy can be setup 
for machine M1 and M2. Job J1.1 and J1.2 are the output of job J1 on first machine and they are 
input to second machine individually (they will also have separated processing time and setup 
time). 

 
Figure 6. Setup comparison between punching and bending machines (child jobs configuration) 
 
Given a job permutation {J1, J2, …, Jn}, a set of machine {M1, M2, …, Mm} and processing times p(i, j), 
set up times s(i, j) for job i on machine j, we calculate the completion times C(Ji, j)  - of job Ji on machine 
j - as follows: 
C(J1,1) = p(J1,1) + s(J1,1)      (1) 

C(Ji,1) = C(Ji-1,1) + p(Ji,1) + s(Ji,1)    (2) 

C(J1,j) = C(J1,j-1) + p(J1,j) + s(J1,j)    (3) 

C(Ji,j) = max{ C(Ji-1,j), C(Ji,j-1) } + p(Ji,j) + s(Ji,j) (4) 

for i=2,…,n; j=2,…,m 



Cmax    = C(Jn, m)       (5) 

Where the makespan Cmax is the time at which the last job Jn is completed on machine Mm. 
The formula for setup time s(i, j) is defined as below: 
s(Ji,j) = (basic setup time of job Ji on machine j) + (extra setup time 

of job Ji on machine j)      (6) 

where (extra setup time) is dynamic and calculated based on set of problem’s constraints (e.g. material 

type, material size, material thickness, and tools change) 
If C(Ji,m) (the complete time of job Ji on last machine) is exceeds the “Due date” of Job Ji, the order will 
become invalid and a penalty is put on Cmax (the makespan is assigned to a very large double value so that 
its fitness becomes very small and is likely not possible to be selected in next generation)  
When a job is nested into another one or when the output of first machine is the input of second machine 
separately, the final makespan is calculated using the formula for nesting: 
Given a job permutation {J1, J2, …, Jn}, a set of machine {M1, M2, …, Mm} and processing times p(i, j), 
set up times s(i, j), a set of child job {Ji.1, Ji.2, …, Ji.k} for job i on machine j, we calculate the completion 
times C(Ji, j)  - of job Ji on machine j - as follows: 
C(J1,1) = p(J1,1) + s(J1,1)       (7) 

C(Ji,1) = C(Ji-1,1) + p(Ji,1) + s(Ji,1)     (8) 

C(J1,j) = ∑{C(J1.h,j-1) + p(J1.h,j) + s(J1.h,j)} where h=1…k (9) 

C(Ji,j) = max{ C(Ji-1,j), C(Ji,j-1) } + ∑{p(Ji.h,j) + s(Ji.h,j)} where 

h=1…k  (4) 

for i=2,…,n; j=2,…,m 

Cmax    = C(Jn, m)        (10) 

 



There is also distinction when visualizing the sequence of jobs and nested ones. For example, the 
makespan is shorten or the idling time between jobs is shorten because it has shorter processing 
time in grouping/nesting case (figure 7). This case could be related to with the assumption that the 
capacity of stacking robot (the robot machine between the first and second one in case a job is 
nested which acts as a small storage) is indefinitely or very large. 

 
Figure 7. Distinction between normal single level job and a nested one (the latter chart) 
This is an example of layout specific time calculation. In case of limited buffering capacity on 
this stacking robot, the situation would be slightly different as seen in figure 8 latter chart. 

 
Figure 8. Distinction between normal case and nesting one with limited stacking capacity 



 
Heuristic techniques could be used to solve some versions of the scheduling problem, but 
challenges are great when multiple interdependent setups are introduced as well as complicated 
rules for maximum line storage capacity, line blocking or robot behavior is introduced. For this 
reason, a metaheuristic approach is very suitable and flexible for multi-tenant cloud based solvers. 

4. Solution approach 

Each production system can have an own objective function and constraints. The scheduling task 
is sent by using Service Oriented Architecture (SOA) for solver located in the cloud and serving 
several lines on demand. The structure of GA allows separating the calculation into several parallel 
processors to boost the calculation speed and divide the computing capacity between different 
clients. 
4.1 Computation 
There are many factors which can be used to measure the performance of job shop sequencing 
problem. Nevertheless, in this particular flow shop scheduling problem, the objective is to find the 
permutation of jobs which have the minimum makespan (Reeves, 1995). Applying the traditional 
GA with binary encoding into sequencing problems is obviously practically difficult. Hence, in 
this typical one, permutation encoding is used to represent the chromosome, which is the sequence 
of jobs. In order to do illustrate this, we denote Ji as the unique identification for job i and in case 
the amount of jobs is 6, a valid chromosome can be presented as following:  
Chromosome A = {J1, J5, J6, J2, J3, J4} => {0, 4, 5, 1, 2, 3}, where i=0, …, n is the index of job in 
the job’s list 
Chromosome B = {J2, J3, J6, J1, J4, J5} => {1, 2, 5, 0, 3, 4} 
 
The traditional GA operators cannot be applied directly into this type of problem because of its 
legitimate representation. For instance, the following crossover would produce “illegitimate” 

offspring: {0, 4, 5, 0, 3, 4} and {1, 2, 5, 1, 2, 3} - the problem would be that here jobs J1 and J5 
appear twice in the first offspring and not all jobs are visible in the chromosome. 



Different representations are possible, but in this case it seems easier to modify the idea of 
crossover and keep the permutation representation (see Reeves, 1995). For example, for one-point 
crossover, we firstly select the crossover point randomly. The offspring will be filled up with the 
index string from beginning of chromosome to the crossover point from one parent, and the rest 
will be filled up by taking each “legitimate” gene from the second parent, for example: 
Chromosome A  X Chromosome B 
Offspring 1 = {0, 4, 5, 1, 2, 3} 
Offspring 2 = {1, 2, 5, 0, 4, 3} 
 
Next, mutation will be applied on the offspring with a small probability. The purpose of mutation 
is to reduce the rate of convergence. However, a modified version of mutation operator will be 
used instead of the traditional one, in which the positions of two random jobs will be exchanged 
in the chromosome: 
Offspring 1 Mutation = {0, 4, 2, 1, 5, 3} 
Offspring 2 No mutation 
 
The algorithm is continued with new generated population after going through the evaluation and 
selection phase again if the end condition is not satisfied yet. Otherwise, the best result 
(chromosome) in current population will be returned and the algorithm will stop. In case of 
production scheduling, the best results and the winning job sequence vector, can be returned to 
user to see how solutions improve by time. 
 
4.2 Technology architecture for cloud manufacturing 
Cloud computing presents a centralized process to handle the distributed data of cloud 
manufacturing. By using service oriented architecture in software, several clients including 
production planners, factory managers but also smart machinery using IoT connectors to request 
new solutions for changes in shop floor. Cloud manufacturing principles offer real-time 



availability of the production and material related information for all the participants. It has the 
potential enables new possibilities to offer production scheduling as a service and competitive 
advantage. To solve the problems mentioned above, cloud based system need to be designed to 
fulfil the requirements. This cloud architecture provides the following features: 

(1) A standardized interface for exchanging production order and event information – 
machines updating actual processing and setup times, production planning updating the 
planned and released schedules; 

(2) Communication with customers and supplier about the status notifications and queries by 
using SOA and REST API (REpresentational State Transfer Application Programming 
Interface); 

(3) Centralized scheduling service for production planning and control serving several 
factories, production lines and machinery; 

(4) Local graphical user interface for the production line manager 
 

Capacity, labour, material, tools and other resources can be scheduled as an input for the system. 
When the scheduling is requested as a service, the GA can be executed in the grid of cloud servers. 
Then based on demand data, each part of the production line may request schedule information or 
feedback any deviation from the planned processing times as output of the cloud manufacturing. 
The output is generated in real-time based on manufacturing situation. This is the advantage by 
using cloud-based technology architecture which is totally different comparing with traditional 
operation process.   
 



 
 
Figure 9.  Cloud architecture for production scheduling as a service. 
 
Figure 9 shows the cloud architecture for production scheduling as a service. Client-server 
architecture allows separation of user interfaces and the computation engine and the databases. A 
multi-tenant server software can balance computing resource load and adjust needed calculation 
power on demand from the cloud resources. User interfaces can be developed on local machine 
level or production line level. Production planners can send queries to the centralized server by 



using asynchronous communication. The information required to run each machine is always 
stored at the local level. From architecture point the cloud system provides a centralized service 
for the machines of the line and transparency/visibility for system wide effects. In case of Internet 
communication problems, the actual production should not be endangered.  
The prototype system was implemented by using Microsoft Visual Studio development tools and 
C# programming language. The server system was installed into Microsoft Azure private cloud 
system. Each user of a company can customize their system based on their manufacturing working 
environment. A web application with Gantt chart has been implemented to illustrate the different 
solutions visually, as shown in Figure 10. Gantt chart as a user interface is used to visualize the 
job orders, in which user can see the gap or waiting time between jobs. In the perspective of 
engineering, this waiting time needs to be minimized in order to minimize the makespan of 
problem. The algorithm will stop when user triggers “stop” button or when the current iteration 
reaches the pre-defined level. This interface can be visualized on different devices depends on 
users’ preferences, such as web browser. 
 

 
Figure 10.  User interface - local Gantt chart visualizing the proposed schedule. 
 
Most of the real world industrial problems have to find the global optimum based on the different 
layers of the operations. Because in separated layers local optimized of the same variable could be 



found, the real challenge is to find global optimum in multi-objective optimization problem.  
Optimization of production is a complex task with multiple simultaneous objectives. Each of the 
production line maintains information of the released production orders. As a service the cloud 
system can propose alternative schedules. The objective function can be a make span minimization 
problem, taking into account parameters such as: due date of orders; duration and possible setups 
for each machines; tool change including wearing; setup-times related to material, manual tool 
changes and operator; priorities and blocking situations.  
 
4.3 Implementing genetic algorithm on cloud 
A genetic algorithm solves the scheduling problems given by the production lines. In case of 
blockage of production or maintenance, the production can be rescheduled or alternative scenarios 
can be developed. Centralized cloud based system allows separation of optimization problem and 
the solution generation part. Different production lines may use different principles. For example 
– make-to-stock type of production may put higher priority to sheet utilization and less emphasis 
on lead-time performance. In case of sub-contractor operating make-to-order production, the 
objective should be weighed the other way around. A good flexible feature of GA is that the fitness 
function may be tailored for different needs and the solving part can remain similar. The domains 
of problem formulation and problem solution are not linked heavily which allows flexibility. 
In cloud manufacturing, all the production lines are constantly monitored at runtime, so the 
scheduling should be dynamically coordinate with the real situation of production lines. Figure 11 
shows the major elements of scheduling service: 

(1) The users of cloud manufacturing can select the production lines they want to schedule and 
simulate. Then the user requests will send to the cloud manufacturing to facilitate the 
optimization and simulation task.  

(2) The information regarding the real-time status of particular production lines are streamed 
back to the cloud manufacturing used as another essential input of simulation task. 

(3) The desired algorithms are input into the scheduling. When the input data are received by 
the simulation task, then new optimization results can be created. 



(4) Once the output is completed, the optimized results will send back to users. When the users 
accept the plan, it can be initiated by the particular production line.  

(5) Smart IoT machinery can request new schedule based on event triggered in the production 
line.  

 
Additionally, as planned and actual processing and setup times are updated close to real-time in 
centralized cloud, re-scheduling can be evoked automatically. The role of the production planner 
is to approve the suggested changes according to new situation. 
 

 
Figure 11.  The main elements of scheduling service in cloud manufacturing. 
 



5. Results 

In order to demonstrate the validity and reliability of the implemented cloud based GA, we have 
compared the value of make span which is calculated using GA on a single processor and the one 
which is calculated using the normal “for…loop”  operation in simple cases. 
For example, if the number of jobs is 8, and the number of machines is 3, we would need to 
calculate maximum 8! = 40320 permutations of jobs in order to find the best optimized value. This 
amount of calculation is quite small and it can be completed within few seconds in a standard 
computer. Using the same set of machines, jobs and processing times, the best optimal value of 
make span can be obtained by both solutions and in nearly most of the cases in Genetic Algorithm, 
the best value can be reached after 100 iterations. To analyse the performance of the system a 
randomized dataset was developed for 100, 200 and 300 jobs, which refer to typical problem size. 
Table 1 shows the performance of the implemented GA measured by the makespan and the 
execution time in “more likely NP-hard” cases. The make span is recorded by executing the same 
GA setting three times continuously and the best value is returned. It is also noted that the more 
jobs we have, the more time we need to complete one single iteration because more calculation 
needs to be executed for each iteration proportionally. 
 
Table 1. Performance of GA measured by makespan and execution time (Intel Core i7-3630QM 
CPU 2.4 GHz). 

No. of jobs / No. of iterations I = 1000 I = 5000 I = 10000 

N = 100 2910 
3.13s 

2901 
14.48s 

2901 
29.18s 

N = 200 5550 
5.97s 

5537 
28.06s 

5537 
54.42s 

N = 300 7822 
10.83s 

7819 
61.06s 

7819 
109.98s 

 



 
As it can be seen from the results, a ‘good’ value of makespan can be achieved quite quickly in 

GA and the value does not change much comparing to the number of iterations need to be executed. 
In other words, GA is extremely efficient when dealing with complex problem, in which it is more 
practical to find a ‘good enough’ solution within a reasonable small computer time. The objective 

function can be modified and solving part of the GA system can remain same, which brings 
flexibility needed for solving multi-objective and constraint-driven problems. The more 
complicated the problem is, the more efficient the GA can be comparing to other heuristic search 
methods. However, there is no guarantee of optimality of solution in GA. Table 2 shows 
experimentation of 10, 30 and 50 jobs and number of iterations for 1000, 5000 and 10000. For 
small problem, the optimality can be reached fast, for bigger problems the reaching better solutions 
closer to optimality takes more iterations. 
Table 2. Best solutions and deviation from optimal value in known flow shop scheduling problem 
(Intel Core i7-3630QM CPU 2.4 GHz). 
 

No. of jobs / No. of 
iterations  

I = 1000 I = 5000 I = 10000 

N = 10 (optimal 
makespan=263) 

266  
(+3) 

263  
(0) 

263 
 (0) 

N = 30 (optimal 
makespan=4743) 

4851  
(+108) 

4815 (+72) 4780  
(+37) 

N = 50 (optimal 
makespan=21233) 

21804  
(+571) 

21569  
(+336) 

21410 
 (+177) 

 



6. Conclusions 

In this paper we have presented a concept of genetic algorithm based scheduling system offered 
as part of cloud infrastructure for sheet metal manufacturing. The system has been developed and 
piloted at a sheet metal processing line environment. The advantage of this proposed scheduling 
system is that cloud manufacturing is capable of supporting the close to real-time analysis and 
planning with dynamic requirements and inputs for multiple factories and connecting the actual 
processing times from machinery.  
The innovation of this study has been to develop the cloud-based scheduling as a service 
architecture which can serve several machine lines, factories and companies for continuous 
rescheduling requests. The solution can be implemented by machine builders as a service product. 
The developed system is a pilot in its current form. It is able to offer scheduling jobs from the 
cloud on request for multiple production lines and provide information between entities in the 
supply chains. Traditionally, this type of operations are carried out typically by using separate 
software packages or integrated factory level manufacturing execution systems. Based on the 
piloting the cloud based system enables several possibilities compared to traditional production 
scheduling systems: 

(1) Production scheduling can be done continuously, not daily as the data from machines can 
be fed back to cloud scheduler 

(2) Actual processing times may be updated system real-time from each machine and database 
on job - machine or work phase specific error data could be input directly to PPC system 

(3) Alternative schedules can be adjusted based on feedback and situations by sending new 
queries to scheduling server. 

(4) Distributed user interfaces can show current status to all participants along the supply 
chain. 

 
The presented cloud approach has both business and technical advantages. From the business 
perspective, the implementing scheduling as a service on cloud manufacturing can aggregate the 
optimization problems and provide integrated solution to manage distributed production lines. 
Production line vendors can offer scheduling as a service to support high utilization of lines and 



provide feedback of actual use of the lines. From the technical perspective, the cloud-based 
architecture can deal with multi-objectives optimization problems in a much faster manner and 
absorb the problem of limited computing resources to accomplish the optimization task. Cloud 
based OR systems can provide significant help when embedded close to machinery as “artificial 
intelligence” services.  
Cloud manufacturing concept is still very much evolving. According to Chandrasekaran et al. 
(2013) many issues are confusing since practical applications are few. The present work is a step 
toward demonstrating the applicability of cloud computing concepts to optimization as a service 
and centralized production scheduling services. Production scheduling as a computational 
intensive service could benefit from centralized service. High calculation power is needed 
occasionally and peaks may occur at different times. New approaches on high performance GPU-
processors cloud and new advances in GPU based parallel GA optimization can show good 
potential for future research in industrial applications of production scheduling. 
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