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ABSTRACT 

Engine Data Sandbox is a data repository containing sensor data measured from over 

1000 different Wärtsilä engines, which have been operating in marine and power plant 

applications throughout several years. The Engine Data Sandbox comprehends over 10 

terabytes of raw sensor data, when data is uncompressed. Considering this huge amount 

of data, Engine Data Sandbox potentially contains a lot of hidden, valuable information. 

In this thesis, Engine Data Sandbox content is described and mapped.  Furthermore, uti-

lizing contained raw data, four different data-driven approaches were developed in order 

to support engine performance characterization and reliability engineering analysis. In 

addition, during the development of these approaches, comprehensive set of different data 

preparation functionalities were developed in order to preprocess the raw data of Engine 

Data Sandbox.  

Thesis author developed the data-driven approaches relying on the R programming lan-

guage. Developed data-driven methodologies are: 

• Load distribution analysis. 

• Automatic shutdown analysis. 

• Main feature extraction for relevant sensor signals. 

• Anomaly detection of sensor signals.  

Obtained results provided the possibility to characterize engines behaviour on field. Fur-

thermore, they allowed to preliminary investigate engines health over the operating life-

time.  

The potential usages and limitations, for the data of Engine Data Sandbox, were also 

identified in this thesis. 

KEYWORDS: Reliability engineering, internal combustion engines, big data analysis 

machine learning, engine health monitoring 
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TIIVISTELMÄ 

Engine Data Sandbox on tietovarasto, joka sisältää sensoridataa yli 1000:sta eri Wärtsilän 

valmistamasta moottorista. Tätä sensoridataa on kerätty eri laiva- ja voimalaitossovelluk-

sista usean eri vuoden ajalta. Engine Data Sandbox käsittää yli 10 teratavua dataa, kun 

data on pakkaamattomassa muodossa. Ottaen huomion tämän suuren datamäärän, Engine 

Data Sandbox sisältää potentiaalisesti paljon arvokasta, piilotettua tietoa. Tässä diplomi-

työssä esitellään Engine Data Sandboxin sisältö sekä tutkielman aikana neljä kehitettyä 

datavetoista sovellusta, jotka hyödyntävät Engine Data Sandboxin raakadataa. Näide da-

tavetoisten sovellusten tarkoituksena on tukea Wärtsilän moottoreiden luotettavuuden 

analysointia sekä käyttäytymisen karakterisointia. Näiden sovellusten lisäksi tutkimuksen 

aikana kehitettiin huomattava määrä erilaisia toiminnallisuuksia Engine Data Sandboxin 

raakadatan preprosessointiin.  

Tutkielman aikan kehitettiin R-ohjelmointikielen avulla seuraavat neljä datavetoista so-

vellusta: 

• Sovellus analysoimaan moottorin kuorman jakautumista. 

• Sovellus analysoimaan moottorin automaattisten poiskytkentöjen syitä. 

• Sovellus merkityksellisten sensorisignaalien pääpiirteiden määrittämiseen. 

• Sovellus sensorisignaalien poikkeavan käytöksen löytämiseksi.  

Saadut tulokset mahdollistavat käytössä olevien moottoreiden käyttäytymisen karakteri-

soinnin. Lisäksi tulokset mahdollistavat alustavan moottoreiden kunnon estimoinnin nii-

den eliniän aikana. 

Myöskin Engine Data Sandboxin potentiaalinen käyttötarkoitus sekä rajoitteet tunnistet-

tiin tutkielman aikana. 

AVAINSANAT: Luotettavuustiede, polttomoottorit, big data -analyysi, koneoppimi-

nen, moottorin kunnonvalvonta 
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1 INTRODUCTION 

Engine Data Sandbox is a data repository containing sensor data measured from over 

1000 different Wärtsilä engines, which have been operating in marine and power plant 

applications throughout several years. The Engine Data Sandbox (EDS) comprehends 

over 10 terabytes of raw sensor data, when data is uncompressed. Considering this huge 

amount of data, Engine Data Sandbox potentially contains a lot of hidden, valuable infor-

mation. Currently, the EDS data is stored in the Amazon Web Services (AWS) infrastruc-

ture. 

Wärtsilä has a wide engine portfolio and provides solutions to several applications and 

for different segments. Data available in EDS grants the opportunity to investigate oper-

ating performance of different engines in order to look for peculiar characteristics and to 

investigate differences in behavior during operations. 

EDS data analysis was performed relying both on analytic and machine learning ap-

proaches.  

1.1 Objective of the Thesis 

Main objective of this Master’s Thesis can be summarized as follow: 

- Characterization of Engine Data Sandbox: 

o Accessibility to data repository. 

o Description of contents.  

-  Engine performance profiling relying on Engine Data Sandbox: 

o Theoretical approaches. 
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o Test case developments. 

o Test case results. 

- Investigation of innovative solutions to treat Engine Data Sandbox contents, such 

as main feature extraction of relevant sensor signals and anomaly detection of 

sensor signals. 

- Definition of potential development and next steps. 

Developed approaches and extracted results within this Thesis are limited to dual fuel 

(DF) and spark-ignited gas (SG) engines. DF and SG engines were selected since they 

are latest products provided by Wärtsilä in order to reduce emissions levels and they can 

be seen as a technology-bridge towards hydrogen utilization as main fuel and, therefore, 

zero carbon emissions. 

1.2 Thesis Contributions 

All the presented data-driven approaches in this thesis were implemented with R pro-

gramming language by the thesis author. All the results presented in this thesis were de-

rived from the raw EDS data and the all functionalities required to derive these results 

were also implemented by the thesis author. 

1.3 Structure of the Thesis 

This Thesis consists of 6 different chapters: 

- Chapter 2 presents relevant foundations and background information related to 

this Thesis.  
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- Chapter 3 introduces EDS: the EDS content is overviewed, and accessibility is 

described.  

- Chapter 4 presents the implementation of data-driven approaches and the rules 

and definitions, which are required to be followed during the implementation of 

algorithms, for the extraction of information from the raw EDS data.  

- Chapter 5 collects the results produced by developed data-driven approaches. 

- Chapter 6 concludes the Thesis with discussion about conclusions and possible 

future developments.  
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2 FOUNDATIONS 

2.1 Reliability engineering 

Reliability engineering is an engineering field, which objectives consists of preventing 

failures or minimizing probability and quantity of those failures in products, identifying 

causes of occurring failures, defining means to cope with occurring failures in the situa-

tions when the cause of failure has not been fixed, and utilizing different approaches to 

estimate the reliability of new products and designs (O’Connor & Kleyner 2012: 2). Re-

liability engineering is required to ensure high reliability of different products and equip-

ment during their product lifecycle in addition to high confidence and competitive costs. 

(Kececioglu 2002: 3). Reliability engineering should be included to support different pro-

ject activities, concurrent engineering and quality assurance, in order it to be time and 

cost effective. (Birolini 2013: 1) 

In the following subchapter, essential concepts related to reliability engineering are pre-

sented. 

2.1.1 Concepts of reliability engineering 

Before presenting the reliability concepts, differences between non-repairable and repair-

able systems must be defined.  

Non-repairable systems are discarded and replaced, and repairable systems are repaired, 

when the failure occurs. This does not necessarily mean that non-repairable systems are 

unrepairable, rather that repairing those systems is not economically reasonable. Repair-

able systems are repaired when the failure occurs, if replacing or repairing the failed com-

ponents of the system is economically feasible. (Topuz 2009: 234) 

Below, reliability concepts are presented. 
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Reliability: probability for the event, that during a certain time interval and under certain 

operating conditions a service will be provided, or product will operate, without a failure 

(Elsayed 2012: 3). For non-repairable system, when the failure is allowed to occur only 

once, reliability is the probability for system to survive over its estimated lifetime. For 

repairable system, when the failure is allowed to occur more than once, reliability is the 

probability for the event that failure does not occur within certain time interval. (O’Con-

nor & Kleyner 2012: 8) 

Failure rate is applicable for both non-repairable and repairable systems. Failure rate is 

number of occurring failures per certain time unit, when failure is allowed to occur once 

or more in time continuum. (O’Connor & Kleyner 2012: 8) 

Mean time to failure (MTTF), Mean time to repair (MTTR) and Mean time between fail-

ures (MTBF): 

1. MTTF: Mean time to failure, is applicable for non-repairable systems. MTTF 

indicates the average operating time of system before failure. (Gnedenko & 

Ushakov 1995: 87) 

2. MTTR: Mean time to repair, is applicable for repairable systems. MTTR in-

forms the needed time to replace or repair the failed hardware module. (Topuz 

2009: 234) 

3. MTBF: Mean time between failures, is applicable for repairable systems. Can 

be defined as MTTF of repairable system. In this case, MTBF indicates the 

average operating time of system before failure. MTBF can also be defined as 

average time between failures. With this definition, MTBF consist of the av-

erage operating time of system before failure (MTTF) and time needed to re-

pair the system (MTTR) (Lazzaroni, Cristaldi, Peretto, Rinaldi & Catelani 

2011: 87). Mathematically this can be expressed as:  

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅 
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Availability: probability for the event, that the system or unit is operational (Topuz 2009: 

234). Mathematically this can be expressed as: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 

In the formula above, MTBF is considered as the average operating time of system before 

the failure. 

Maintainability: probability for the event, that for a certain item, repair or preventive 

maintenance will be performed during a certain time interval with a certain resources and 

procedures. (Birolini 2013: 8) 

2.2 Internal combustion engines 

Internal combustion engines (ICE) are engines, which are designed to produce mechani-

cal power from the chemical energy. The chemical energy is released from the fuel resid-

ing inside the engine, either by oxidizing or burning the fuel. Required power output is 

produced by work, which occurs between mechanical components of engine and the 

working fluids. In the ICE, the working fluids are the burned products following the com-

bustion and the mixture of air and fuel prior the combustion. Design and operating char-

acteristics in ICEs are essentially differing from other engine types due to combustion 

occurs inside the ICE. (Heywood 1988: 1-2)  

ICEs are usually considered to be reciprocating internal combustion engines, which are 

categorized in two main types: compression-ignition (CI) engines and spark-ignition (SI) 

engines. Principle of the CI engines is to compress the air to a high pressure and temper-

ature. This supports the combustion to occur spontaneously when the fuel is injected. 

Operation of SI engines is based on spark plug, which ignites the mixture of air and fuel 

in the engine. (Foanene 2016: 166)  

2.2.1 Classification 
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Different ICEs can be classified by different means. Below, some of the means listed by 

John Heywood (1988: 7), are presented: 

1. Applications: different applications, in which ICEs are designed to operate, are 

for instance power generation, marine, locomotive, automobile and light aircraft 

applications.  

2. Basic engine design: different basic engine designs for ICEs are reciprocating en-

gines and rotary engines. Reciprocating engines are classified according to ar-

rangement of engine cylinders, and rotary engines are categorised according to 

different designs, one of which is, for instance, Wankel design. 

3. Working cycle: different working cycles for ICEs include, for instance, four-

stroke cycle and two-stroke cycle.  

4. Fuel: different fuels for ICEs include fuel oil, diesel oil, gasoline, petrol, natural 

gas, dual fuel, hydrogen, alcohols (ethanol, methanol) and liquid petroleum gas.     

5. Method of ignition: different ignition methods for ICEs include spark ignition and 

compression ignition.  

2.2.2 Four-stroke and two-stroke operating cycles  

Both SI engines and CI engines can be designed to operate in two-stroke or in four-stroke 

operating cycles. (Stone 1999: 1) 

Four-stroke operating cycle consists of 4 different phases: in the first phase, which is 

called the induction stroke, air is drawn in cylinder by the piston traveling down the cyl-

inder while the inlet valve is open. In the second phase (the compression stroke), ignition 

occurs in the end of the phase, when the piston, which is traveling up the cylinder at this 

point, reaches the top dead centre (TDC) position, while the both valves are closed. In the 

third phase, (the working, power or expansion stroke) combustion, which occurs due to 

ignition, raises temperature and pressure, and forces piston to bottom dead centre (BDC) 
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position from TDC, creating mechanical energy in the process. In the end of the third 

phase, the exhaust valve opens. In the fourth and last phase (the exhaust stroke), piston 

travels back from BDC to TDC while the exhaust valve remains open, expelling remain-

ing gases. (Stone 1999: 1-2) 

Two-stroke operating cycle consists of 2 different phases (the compression stroke and the 

power stroke), excluding induction and exhaust strokes, which are included in four-stroke 

operating cycle. When comparing two-stroke operating cycle to four-stroke operating cy-

cle, two-stroke engines are more powerful, due to two-stroke engines have two times 

more power strokes than four-stroke engines per unit time. However, the efficiency in 

four-stroke engines is likely higher. (Stone 1999: 2-3)  

2.2.3 Spark-ignition engines 

As mentioned before, combustion process in SI engines is based on spark plug, which 

ignites the mixture of fuel and air. In this subchapter, additional information considering 

the ignition occurring in SI engines and also some alternatives as fuels for SI engines are 

presented.  

Externally supplied ignition is responsible for starting the combustion process in SI en-

gines by igniting the mixture of fuel and air at the correct time. Ignition is generated by 

producing electric spark in combustion chamber between electrodes of a spark plug. Re-

liable ignition under all conditions is required to secure engine operation without faults. 

Misfiring could lead to low engine output, high consumption or poor exhaust emission 

figures. By selecting the moment of ignition, the start of the combustion can be controlled 

in SI engines. Knock limit determines the earliest possible moment of ignition and the 

latest possible moment of ignition is determined by the maximum allowed exhaust gas 

temperature. Fuel consumption, exhaust gas emissions and delivered torque are all influ-

enced by moment of ignition. In order to deliver maximum combustion and engine torque, 

maximum combustion pressure should occur shortly after piston has reached TDC, and 

this is achieved by timing the ignition to occur before piston reaches TDC and therefore 

the moment of ignition should be advanced. Advanced moment of ignition reduces fuel 
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consumption and increases power, but also increases nitrogen-oxide and hydrocarbon 

emissions. Too advanced moment of ignition could cause engine knocking which can 

damage the engine and too late moment of ignition results higher exhaust gas tempera-

tures which could also damage the engine. (Bosch 2011: 570-572) 

SI engine fuels include gasoline, methanol, ethanol, natural gas and hydrogen. Engines 

operating with gaseous fuels (which include natural gas and hydrogen), are considered to 

have advantages (which include reduced emissions for instance) over engines operating 

with gasoline. Natural gas can be used either as compressed natural gas or as liquid natural 

gas and from these two, compressed natural gas is more common since liquid natural gas 

is more expensive and more difficult to handle. Major disadvantage related to natural gas 

is the fact that the gas must be stored in heavy high-pressure tank, which reduces the 

payload. Hydrogen has many advantages related to combustion process. These ad-

vantages include wide flammability limits and high flame speed. However, as in the case 

of natural gas, major disadvantage is the heavy, expensive tank required to contain the 

hydrogen. (Najjar 2009: 1-3) 

2.2.4 Dual fuel engines 

Although the diesel engines are used widely throughout the world, due to their cost-ef-

fectiveness, adaptability, reliability and efficiency, they are considered to be one of the 

main contributors for the environmental pollution. At the same time, the energy demand 

is increasing, and oil resources are decreasing. When considering the reduction of emis-

sions, increasing energy demand and decreasing oil resources, the usage of alternative 

fuels is considered as one of the solutions for these challenges. One of these alternative 

fuels is natural gas, however due to low cetane number and high autoignition temperature 

compared to diesel fuel, ignition source is required to ignite the natural gas in the cylinder 

of diesel engine. The way to apply natural gas in diesel engine, is to utilize dual fuel 

technology (Wei & Geng 2016: 265-266). In this subchapter, three different dual fuel 

engine concepts are briefly presented and operating principles of one of these concepts, 

conventional dual fuel combustion engine, is described in more specific. 
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Compressed natural gas can be utilized in both SI and CI engines. When comparing CI 

engine and SI engine, CI engine has higher compression ratio which means better thermal 

efficiency. Due to the high autoignition temperature of natural gas, it will not ignite in 

conventional CI engines, hence the dual fuel combustion process must be implemented. 

There are three different dual fuel engine concepts which are derived from three types of 

dual fuel combustions. First engine concept is high pressure direct injection dual fuel 

engine, where both fuels are directly injected into the cylinder. In second engine concept, 

referred as conventional duel fuel engine, diesel is injected through the injector, directly 

into the cylinder while natural gas is injected into the intake manifold. The third combus-

tion process, which is called dual fuel homogeneous charge compression ignition, both 

fuels are premixed, and port injected. In this approach, phasing and combustion intensity 

are controlled by fuel blending, intake conditions (pressure and temperature) and equiv-

alence ratio. (Taritaš, Sremec, Kozarac, Blažić & Lulić 2017: 2-3) 

Combustion process in conventional dual fuel engine is a combination of flame propaga-

tion (usual in SI engines) and mixing-controlled combustion process (usual in CI en-

gines). Conventional dual fuel process consists of three different phases: premixed com-

bustion of the diesel (1), mixing-controlled combustion of the diesel (2) and flame prop-

agation through the premixed mixture of natural gas and air (3). In conventional dual fuel 

engine, natural gas, which is injected in the intake manifold, and air, are mixed. This 

mixture of natural gas and air is directed to cylinder during the induction stroke and com-

pressed during the compression stroke. Due to the high autoignition temperature of natu-

ral gas, it does not ignite at the end of the compression stroke and due to this, small amount 

of diesel fuel is injected in the cylinder. The diesel evaporates, and multiple ignition 

sources are created by the ignited mixture of evaporated diesel and charge, for the mixture 

of natural gas and air to be utilized. Finally, when the suitable conditions in combustion 

chamber are achieved, multiple flames propagate through the mixture of natural gas and 

air. (Taritaš, Sremec, Kozarac, Blažić & Lulić 2017: 3-4) 

2.3 Big data  
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Big data is a term that is mainly used to describe the huge amount of data in the era when 

the volume of data has increased considerably. When comparing big data with traditional 

datasets, big data frequently includes unstructured data which requires more real-time 

analysis. Also, big data provides new possibilities to discover new information from the 

data and helps to gain understanding of the new information. In addition to this, big data 

creates new challenges which include for instance, how to efficiently manage and process 

these large datasets. (Chen, Mao & Liu 2014: 171)  

In this subchapter, big data characteristics are briefly described, and opportunities and 

challenges generated by big data are reviewed.  

2.3.1 Characteristics 

Different individuals, organisations and researchers have given various definitions for big 

data and these definitions include multiple big data characteristics. Below are presented 

some characteristics listed by Gayatri Kapil, Alka Agrawal and R. A. Khan (2016: 111): 

1. Volume (size of the data): describes the quantity of collected and stored data. 

2. Velocity (speed of the data): describes the transfer rate of data between the source 

and the destination. 

3. Value (importance of the data): describes the business value to be derived from 

the data. 

4. Variety (type of the data): describes the different types and formats of the data. 

5. Veracity (data quality): describes the quality of the data. If data is not trustworthy 

enough, the data is virtually worthless to be accurately analysed. 

6. Validity (data authenticity): describes the correctness of the data which is used to 

extract information. 
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7. Volatility (duration of usefulness): describes how long the stored data is useful 

for the user. 

2.3.2 Opportunities and challenges 

For the current enterprises, utilization of the valuable information extracted from the big 

data is a basic competitive strategy. By utilizing the valuable information extracted from 

the big data, enterprises have possibility to gain multiple advantages, which include im-

proved customer service, improved operational efficiency and new markets. In addition 

to new possibilities and opportunities, the big data also provides new challenges. These 

challenges are related to data management: for instance, data storing, sharing, searching, 

visualization and analysing are challenges that must be overcome in order to maximize 

the benefits that correct utilization of big data can provide. When considering big data 

analysis, challenges include data incompleteness, inconsistency, scalability, timeliness 

and security. Before the data can be analysed, the data must be well constructed. This can 

be achieved via proper data preprocessing in order to improve data quality. Since the data 

can be highly incomplete, noisy and inconsistent, various different data preprocessing 

methods, which include data cleaning, transformation, reduction and integration, should 

be applied to data preprocessing process in order to remove noise and inconsistencies 

from the data. (Khan, Yaqoob, Hashem, Inayat, Ali, Alam, Shiraz & Gani 2014: 14)      

2.4 Machine learning 

Machine learning is an application of artificial intelligence which provides the means for 

system or machine to learn and improve its performance by utilizing the example or his-

torical data. In the machine learning, execution of the computer program, which utilizes 

the data, is the learning that optimizes the parameters of the predefined model. This model 

can be either descriptive to gain information and knowledge from the data or predictive 

to make predictions after learning from the data. The model can also be predictive and 

descriptive at the same time. Since the main objective is to make inferences from the data, 
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models mentioned before are mathematical and build by utilizing the theory of statistics. 

(Alpaydin 2010: 3-4) 

In the following subchapters, different machine learning techniques are briefly presented, 

and concepts of anomaly detection and linear regression are overviewed.    

2.4.1 Reinforcement learning 

Reinforcement learning (RL) is a machine learning technique that utilizes agents, which 

learn how to act according to punishments or rewards they receive from the certain envi-

ronment. This way RL agent learns what is good action and what is bad action in the 

environment. The goal of these agents is to perform actions which maximizes the amount 

of rewards and minimizes the amount of punishments (Ravishankar & Vijayakumar 2017: 

1). RL algorithms are utilized in applications where the system output is sequence of 

actions and in these systems the important matter is to execute correct sequence of actions 

in order to accomplish the objective. For instance, in a game playing, the objective is 

accomplished with the correct sequence of actions hence one single action is not im-

portant by itself. (Alpaydin 2010: 13) 

2.4.2 Supervised learning 

Supervised learning (SL) is a machine learning technique which utilizes labelled training 

data set, which consist of input and output values. SL estimates the unknown function of 

the system, which has provided the values in a training set, and provides the hypothesis 

function that approximates the true, unknown function. The accuracy of the hypothesis 

function is estimated with a test data set, which is distinct from the training set but is also 

provided by the same, true unknown function which has provided the values of the train-

ing set. The learning problem is a classification problem when the output value is one of 

the values in the finite set, and when the output value is a number, the learning problem 

is called regression. (Russel & Norvig 2010: 695-696)  

2.4.3 Semi-supervised learning 
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Semi-supervised learning (SSL) is a machine learning technique which can be considered 

as technique between supervised learning and unsupervised learning. SSL uses data 

which is unlabelled, but also has some labelled information included. For instance, the 

data set which is utilized by the SSL algorithm could consist of some observations which 

labels are provided (for example: both input and output values are provided for the obser-

vation) and some observations which labels are not provided (for example: only input 

values are provided for the observation). (Chapelle, Schölkopf & Zien 2006: 2) 

2.4.4 Unsupervised learning 

Unsupervised learning (UL) is a machine learning technique which utilizes the data which 

only has input values, excluding the output values. The objective of the UL is to discover 

regularities from the input values, while the objective of the SL is to learn from the data 

which has both input and output values, in order to map the output values from the input 

values. In the input space, there is a structure where certain patterns appear often and 

finding these patterns can be done with density estimation. One of the methods of density 

estimation is called clustering, where the objective is to discover groupings or clusters of 

input values. (Alpaydin 2010: 11) 

2.4.5 Anomaly detection 

Anomaly detection is the concept to discover patterns from the data that do not follow the 

expected behaviour, and these patterns are often called as anomalies or outliers. Anomaly 

detection is crucial since the anomalies in the data can be interpreted as critical infor-

mation. Anomaly detection is utilized in various different applications, including for in-

stance: fraud detection, fault detection and cyber-security. The formulation of a specific 

anomaly detection problem is affected by multiple factors, which include the nature of 

the data and the type of anomalies that have to be detected. Different concepts from the 

fields such as statistics, data mining, information theory, machine learning and spectral 

theory, have been applied to these specific anomaly detection problems. (Chandola, 

Banerjee & Kumar 2009: 15:1-15:4) 
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2.4.6 Linear regression 

Linear regression is an approach to modelling the linear relationship between one or mul-

tiple response variables (also called dependent variables and are representing outputs) and 

one or multiple predictor variables (also called independent variables and are representing 

inputs). Linear regression is utilized to relate response variables to predictor variables and 

is considered as estimation of the parameters of the model in a certain system. (Rencher 

2002: 322) 

Linear regression can be subdivided into three different cases according to number of 

response and predictor variables. Below, these 3 cases listed by Alvin C. Rencher (2002: 

322) are presented: 

1. Simple linear regression: includes one response variable and one predictor varia-

ble. In this case, the objective is to predict one response variable based on one 

predictor variable. 

2. Multiple linear regression: includes one response variable and multiple predictor 

variables. In this case, the objective is to predict one response variable based on 

multiple predictor variables. 

3. Multivariate multiple linear regression: multiple response variables and multiple 

predictor variables, in this case, the objective is to predict multiple response vari-

ables based on multiple predictor variables. 
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3 ENGINE DATA SANDBOX 

3.1 EDS description 

EDS is a data repository which contains measured sensor data from over 1000 different 

Wärtsilä engines. The data has been collected from several different engine types, includ-

ing both marine and power plant applications. Period, for which the data has been col-

lected, is engine specific and could vary from few days to several years. Currently, the 

EDS data repository is stored in Amazon Web Services (AWS) environment. 

EDS was developed in order to provide framework, which allows possibility to learn and 

test different approaches of big data analytics, with large amount of engine data. Main 

details of EDS can be summarized as follow: 

1. Data available: sensor signals are available for relevant systems and main oper-

ating parameters of engine. For instance, available signals include engine speed, 

engine load and different temperatures, pressures and flow rates measured within 

the engine. However, the amount of measurements is engine specific. At the be-

ginning of this thesis development process, EDS contained installation specific 

daily files, engine specific raw data files, and also 2-minute aggregated files and 

running log files for certain engines. These files are covered more in detail in 

subchapter 3.2.2. 

2. Sampling frequency: in order to reduce the amount of collected and measured data 

from the engines, data collection systems of the engines followed the dead band-

ing approach. This means that a value of the signal is only recorded when it varies 

a certain, predefined amount from last recorded value. Also, signal value is rec-

orded when there has been approximately 10 minutes since the last signal value 

recording. Sampling frequency and dead banding are covered more in detail in 

subchapter 3.2.3.    
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3. Accessibility: EDS data can be accessed through S3 Browser (software that is used 

to interact with AWS data repositories) and Amazon EC2 instance (virtual server 

in Amazon’s Elastic Compute Cloud that is used to run applications in AWS in-

frastructure). Personal credentials are required in both cases in order to access 

EDS data. Accessibility is covered more in detail in subchapter 3.4.     

3.2 EDS content 

This subchapter provides an overview of properties of EDS installations and engines as 

well as different data files located in EDS. In addition, it presents the structure of the 

available raw data. 

3.2.1 Installations and engines  

EDS contains data for 222 different installations. 208 of these installations are identified 

and the rest 14 installations are unidentified. Reason for inability to identify some of the 

installations in EDS is covered more in detail in subchapter 3.3.  

Out of 208 identified installations, 166 are operating in power plant applications and 42 

are operating in marine applications. These 208 installations include 1112 engines (925 

in power plant applications and 187 in marine applications).  

All identified engines are 4-stroke engines. Following list provides main features of en-

gines whose operating data are collected in the EDS: 

- Bore sizes (in millimetres from smallest to largest): 200, 220, 250, 260, 280, 320, 

340, 380, 400, 460 and 500.    

- Engine configurations: Inline cylinder configuration (L), radial cylinder configu-

ration (R), V-cylinder configuration (V). 

- Engine Extensions: Dual Fuel (DF), Spark Gas (SG), etc. 
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- Number of cylinders per engine: 6, 8, 9, 12, 16, 18 and 20. 

- Fuel types: gas, heavy fuel oil, light fuel oil, marine diesel oil and liquid biofuel.  

Due to the significant amount of available data, investigated engines in this thesis were 

limited to engines using either spark-ignition gas (SG) of dual fuel (DF) technology. DF 

and SG engines were selected since they are latest products provided by Wärtsilä in order 

to reduce emissions levels and they can be seen as a technology-bridge towards hydrogen 

utilization as main fuel and, therefore, zero carbon emissions. Total combined number of 

SG and DF engines in EDS is 473, which comprehends total of 105 installations. 

From now on, engines are referred by their respective engine platforms, for instance: 

W50DF engine. In the abbreviation, W is for Wärtsilä (is included every time in abbrevi-

ation as prefix), 50 is bore size of engine in centimetres (2 digits after constant “W”) and 

last two letters (in this case DF, i.e. Dual Fuel) provide details about engine extension.  

3.2.2 Data files 

EDS contains 4 main types of data files: installation specific daily files, engine specific 

raw data files, 2-minute aggregated files and running log files.  

Installation specific daily files, which are in .csv format, contain all signal data from sin-

gle specific day for every engine of the installation. Number of daily files per installation 

could vary from couple of days to over 1000 days. Also, daily file size could vary since 

it depends on different features, for instance, the number of engines in the installation, 

and the number of engine specific signals. 

Engine specific raw data files (also in .csv format) were derived from the installation 

specific daily files. Per each engine within each installation, the engine specific signals 

from every daily file were extracted, and saved in one, single engine specific raw data 

file. Below, is the simple figure to describe the process. 
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Figure 1. Signal data from N daily files of a certain installation divided into M en-

gine specific raw data files. Here, N and M are the natural numbers with 

the exception N, M ≠ 0. 

2-minute aggregated files (.csv format) were enriched from the engine specific raw data 

files. In these files, for each signal present in the engine specific raw data file, there are 

mean, maximum, minimum and median values calculated for every consecutive 2-minute 

time period. Figure below presents the data sample from 2-minute aggregated data file. 

 

Figure 2. Data sample taken from 2-minute aggregated file.  

The example above shows 5 different columns: in the first column there are time stamps 

between every two minutes, and columns from 2 to 5 are mean, minimum, maximum and 

median values of single signal for corresponding 2-minute period. 

Like the 2-minute aggregated files, also the running log files (.csv format) were enriched 

from the engine specific raw data files. Running log file informs the time periods when 

the engine has been running or has not been running, or there has not been any data con-

cerning engine performance. The running log file also informs duration of each engine 
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mission both in seconds and in hours, cumulative running hours and cumulative amount 

of engine missions. Figure below presents the data sample from running log file. 

 

Figure 3. Data sample taken from running log file. 

3.2.3 Raw data 

In this subchapter, structure of the raw data is overviewed. Installation specific daily files 

and engine specific raw data files have this raw data structure. Figure below presents the 

data sample from engine specific raw data file. 

 

Figure 4. Data sample taken from engine specific raw data file. 

In the figure above, every row presents unique sample measured from the engine. First 

column “tag” displays the sensor tag, which provided the signal, second column “ts” 

presents the time when the measurement has taken place, and third column “v” displays 

the value of the measurement.  

In the control system, latest output value of the signal is compared to current signal value, 

by the deadband controller. If the absolute value, taken from difference of these two val-

ues, is smaller than predefined value (which defines how much signal value has to change 
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from the latest output value before latest output value is updated), then the current signal 

value is not updated as latest output value. Otherwise the current value is updated as the 

latest output value of the signal (Hirche, Hinterseer, Steinbach & Buss 2005: 72). As 

mentioned before, there is no fixed sampling frequency for the raw data. Data collection 

systems follow dead band approach, so sampling frequencies of measured signals are 

defined by dead banding. Figure below presents an example concerning sampling fre-

quency of the engine speed signal. 

 

Figure 5. 15 measurements from engine speed signal.  

Time intervals between measurements in above figure show that the sampling frequency 

is higher when the value of the signal is changing. When engine reaches nominal speed 

(in this case 749 rpm) and the value is not changing, new measurement is updated ap-

proximately in every 10 minutes.   

3.3 EDS exceptions and limitations 

As mentioned before, out of all 222 installations present in EDS, 14 installations are un-

identified. Reason for inability to identify these installations is that their names cannot be 

found from Wärtsilä master data. 
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EDS is also practically completely lacking signals registered by automation (e.g. alarms, 

internal operating modes, etc.). This means, that identifying certain events, which include 

for instance load reductions and shutdowns, have to be done based on the behavior of 

analog signals present in the EDS data. Lack of digital signals is a drawback when con-

sidering usage of EDS data in big data analytics.   

There are also issues related to the quality of data. For instance, there could be signals 

present in the engine specific raw data files which have incorrect values and signal data 

present in raw data could be affected by noise. 

It is worth highlighting that amount of engine specific signals could vary from couple of 

dozens to couple of hundreds. In the raw data, these signals are presented in encoded 

format. Some of these signal codes are mapped and identified, but there are also encoded 

signals present in the raw data which are not mapped, and this means that these signals 

cannot be correlated to any sensor tag being useless for data analytics purposes.  

3.4 EDS accessibility  

All the EDS data is currently stored in Amazon S3. Amazon Simple Storage Service 

(Amazon S3) is object storage service which provides high scalability, security, data 

availability and performance opportunities (AWS 2019b). The EDS data can be accessed, 

for instance, by using Amazon EC2 instances or S3 Browser.  

Amazon Elastic Compute Cloud (Amazon EC2) is a web service which provides scalable 

computing capacity in the AWS cloud. Amazon EC2 provides virtual computing envi-

ronments known as Amazon EC2 instances. These instances can have various configura-

tions for memory, CPU, storage and networking capacity. These instances can be inte-

grated with various different software, (AWS 2019a). In this thesis for example, Amazon 

EC2 instances integrated with RStudio (integrated development environment for R pro-

gramming language) were used to access and process the EDS data.  
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Other example how to access the EDS data, is the usage of S3 Browser. S3 Browser is 

freeware for Windows which provides interface for interaction with Amazon S3 and Am-

azon CloudFront. S3 Browser provides possibility to interact with Amazon S3 data stor-

ages by storing and retrieving data. (S3 Browser 2018) 

Both of these, Amazon EC2 and S3 Browser, require credentials for the specific Amazon 

S3 data storages, which user wishes to interact with. Difference between these approaches 

is that when using Amazon EC2, the data transmission occurs between Amazon S3 and 

Amazon EC2, in other words, the data resides in the AWS cloud the whole time. In the 

case of S3 Browser, data transmission occurs between AWS cloud and local computer of 

the user. 
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4 IMPLEMENTATION OF RESEARCH 

All presented research in this thesis was implemented by utilizing algorithms created with 

R programming language via RStudio integrated development environment (IDE).  

R is programming language for statistical computation and graphics. It is interpreted pro-

gramming language which allows modular programming using functions, looping and 

branching (R Project 2018). RStudio is IDE for R. It includes syntax-highlighting editor 

which supports direct code execution, console, tools for plotting, debugging and work-

space management. (RStudio 2018)     

Since 2-minute aggregated files and running log files are not available for all the engines 

within EDS, data-driven approaches were developed relying only on the engine specific 

raw data files. 

4.1 Rules and definitions 

In order to extract useful information from EDS data, set of experimental rules and defi-

nitions were developed and tested. In the following subchapters, definitions for different 

events, are overviewed. 

4.1.1 Detection of monitoring periods 

Analysis was focused on investigation of engine operations through the investigation of 

time intervals when the value of monitored signal is either above or below predefined 

limit. For instance, the period when the engine is running, the period when the deviation 

in exhaust gas temperature occurs due to low temperature and the period when the engine 

is running in certain load interval.  

In order to extract desired data and results it is necessary to extract from the whole time 

series only the desired time intervals. Two different approaches were used to calculate 
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these monitoring periods. In the first approach, when the end point of monitoring period 

is unknown, start and end points of monitoring periods are marked to the raw EDS data 

based on certain conditions. In the second approach, when the end point of monitoring 

period and length of time interval are known, monitoring period is defined by the known 

information. 

In the first approach, to identify start and end points of monitoring periods, proper detec-

tion rules were developed. These rules were utilized in following identification cases. 

1. Monitoring period - identification of start point (Case 1) 

This identification case identified start points of monitoring periods, when moni-

tored signal actually reaches value above or below predefined limit. The moment 

is considered as start point when following conditions are fulfilled: 

A) Monitored signal (i.e. speed signal) reaches the value that is above/below pre-

defined limit (current value above/below predefined limit and previous value not 

above/below predefined limit, i.e. current value of speed signal > 0 rpm and pre-

vious value of speed signal = 0 rpm). 

B) Time difference between the moment considered as a start point, and the time 

stamp of the next sample is below or equal to 3700 seconds. 

C) Previous sample is not marked as the start point of monitoring period. 

 

Figure 6. Row 3 defined as the start point of monitoring period by marking it 

with value 3 in column “start” (Case 1 for start point identification) 

2. Monitoring period – identification of end point (Case 1). 
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This identification case identified end points of monitoring periods, when moni-

tored signal is not anymore above or below predefined limit but previous sample 

is. The moment is considered as end point when following conditions are fulfilled: 

A) Monitored signal (i.e. speed signal) is not anymore above/below predefined 

limit but previous sample is (current value of speed signal = 0 rpm and previous 

value of speed signal > 0 rpm). 

B) Time difference between the moment considered as an end point, and the time 

stamp of the previous sample is below or equal to 3700 seconds. 

C) Previous sample is not marked as the end point of monitoring period. 

 

Figure 7. Row 6 defined as the end point of monitoring period by marking it 

with value -3 in column “start” (Case 1 for end point identification). 

3700 seconds was set as the boundary between time stamps of consecutive samples. If 

the time difference between time stamps of consecutive samples is greater than the 3700 

seconds, period between those time stamps is deemed as period when there is no data. 

Periods of no data were not included in monitoring periods. 

3. Monitoring period - identification of start point (Case 2) 

This identification case identified start points of monitoring periods, when value 

of monitored signal is already above or below predefined limit but the time dif-

ference to last sample is over 3700 seconds. The moment is considered as start 

point when following conditions are fulfilled: 
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A) Value of monitored signal is already above/below predefined limit (current and 

previous samples have value above/below predefined limit). 

B) Time difference between moment considered as a start point, and the time 

stamp of the previous sample is above 3700 seconds. 

C) Time difference between the moment considered as a start point and the time 

stamp of the next sample is below or equal to 3700 seconds. 

D) Previous sample is not marked as the start point of monitoring period. 

4. Monitoring period - identification of end point (Case 2) 

This identification case identified end points of monitoring periods, when value 

of monitored signal is already above or below predefined limit but the time dif-

ference to next sample is over 3700 seconds. The moment is considered as start 

point when following conditions are fulfilled: 

A) Value of monitored signal is already above/below predefined limit (current and 

previous samples have value above/below predefined limit). 

B) Time difference between the moment considered as an end point, and the time 

stamp of the next sample is above 3700 seconds. 

C) Previous sample is not marked as the end point of monitoring period. 

Following figure shows an application of this case. Precisely, row 3 is identified as the 

end point of monitoring period. It is worth highlighting that row 4 is identified as the start 

point of the following period since it fulfils the conditions for identification of start point 

(Case 2). 
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Figure 8. Start and end points (Case 2). 

Second approach was used when the end of period of interest and length of time interval 

were known already (i.e. shutdown and 30 second time interval before shutdown). In this 

approach, all the samples within the defined time interval were selected to the period of 

interest. However, due to the dead banding, also the last sample, prior selected samples, 

must be considered. Following figure shows an example of this case. 

If only samples within time interval (from 30 seconds before shutdown to the moment 

when shutdown occurs) are selected, rows 2-7 are only considered. Also row 1 must be 

considered but starting only from moment 02:50:48.088. 

 

Figure 9. Example of second approach to identify monitoring period. 

4.1.2 Shutdown definition 

Once rules were defined to properly detect monitoring periods, an approach was devel-

oped to separate unplanned shutdowns from normal stops. In the case of automatic shut-

down (SHD), engine control system detects deviation in engine behaviour and causes the 

SHD to occur. For instance, deviation in exhaust gas temperature could cause engine SHD 

if it exceeds acceptable thresholds.  
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In experimental approach to separate SHDs from normal stops, engine load signal, which 

measures the engine load in kilowatts, was selected as an indicator. In picture below, 

behaviours of engine load (kW) and engine speed (rpm) signals are plotted as a function 

of time when engine mission ends with a planned stop. 

 

Figure 10. Engine load (kW) and engine speed (rpm), when engine mission is con-

sidered to finish with planned stop.  

Picture above consist of two plots: first plot has engine load signal (kW) as a function of 

time (s) and second plot has engine speed (rpm) as a function of time (s). From the first 

plot it can be observed, that the engine load starts decreasing from nominal load approx-

imately 500 seconds before engine stops, reaching 0 value approximately in 400 seconds. 

The second plot shows that approximately same time when engine load reaches 0 kW, 

engine speed starts decreasing from nominal speed, reaching eventually 0 value as well. 

The main observation from engine load signal behavior is that the time period to reach 0 

kW from nominal load takes some minutes in the case of normal stop. In the next picture, 



 38 

behaviours of engine load (kW) and engine speed (rpm) signals are plotted as a function 

of time again, but in this case, the engine mission is considered to conclude in SHD. 

  

 

Figure 11. Engine load (kW) and engine speed (rpm) when, engine mission is con-

sidered to finish with SHD.  

From the load behavior it can observed, that engine load drops instantly from nominal 

load to 0 kW and approximately at the same time, when the engine load reaches 0 kW, 

the engine speed starts decreasing from nominal speed to 0. 

When comparing the engine speed behavior in both cases (SHD and normal stop), there 

are no significant differences, therefore engine speed signal is not suitable indicator to 

deem if engine mission concludes in SHD or in normal stop. However, engine load be-

havior is significantly different in SHDs than it is in normal stops, hence engine load 

behavior is the main feature which has to be considered when deciding if engine mission 

concludes in SHD.  
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Before defining the conditions, which must be fulfilled in order to classify engine stop as 

SHD, it has to be considered, that there are differences in maximum operating loads be-

tween different engine platforms. Also, the duration for engine load to reach 0 kW from 

nominal load in the case of normal stop could vary depending on the engine platform and 

application. SHD is considered to occur when following conditions are fulfilled: 

1. The engine load reaches value below minimum acceptable load and remains be-

low that threshold at least 30 seconds. This condition is in place in order to neglect 

bias in signals and identify only real SHD cases. Also, this has to be the final 

occasion for engine load to behave this way during the engine mission.  

The engine load is monitored 1-minute-period prior the moment when it reaches 

value below minimum acceptable load. During that monitoring period engine load 

has to fulfil conditions 2 and 3. 

2. Maximum value from the last 10-seconds must be at least 20% from maximum 

operating load of the engine.  

3. Maximum value from the last 10 seconds must be at least 80 percent from the 

mean value from first 10 seconds. 
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Figure 12. 1-minute monitored period prior the moment when engine load reaches 

value below minimum acceptable load. 

Minimum acceptable load (100 kW) was selected as a threshold instead of 0 kW due to 

quality of EDS data. For instance, for some installations, engine load signal could have 

some false values when it is actually 0 kW. These values could be for example small 

integer numbers or even negative numbers. In this approach, it was presumed, that mini-

mum nominal load for engines is 20 percent from the maximum load of the engine. The 

objective of the third condition is to ensure that load drops abruptly from nominal load in 

the end of 1-minute monitoring period. Mean value was selected from first 10 seconds, 

since the objective was to minimize the effect of possible noise. 

This approach also presumes, that engine is running approximately with constant load, 

hence SHD analysis was only applied to power plant applications, excluding marine ap-

plications. This is due to the reason that it is presumed that operating load of marine ap-

plications is varying a lot compared to power plant applications. 
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4.2 Load distribution analysis 

In order to characterize engines operation, a data-driven approach oriented to calculate 

distribution of cumulative running hours of an engine per different load percentage inter-

vals was developed. This solution takes all engine specific raw data files of a certain 

installation as an input and provides results in .csv format as output. Output contains re-

sults for all engines of that specific installation. This solution uses 2 different signals: 

engine speed and engine load (in percentages). Figure below describes the logic used in 

this approach. 

 

Figure 13. Load – Analysis: Approach. 

The solution is designed to process one installation at a time, which means that results for 

each engine of a given installation can be provided with a single execution of the algo-

rithm. This solution was developed in order to investigate how different engines are op-

erating with different load percentages and it was applied to DF and SG engines of EDS 

operating in both power plant and marine applications. Selected load percentage intervals 
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were constant and same for every analysed engine. Load percentage intervals are pre-

sented in figure number 14. 

By utilizing the speed signal, the solution provides information concerning all the engine 

missions by defining start and end moment of each engine mission by utilizing rules de-

fined in subchapter 4.1.1. When the start and end moments of each engine mission are 

defined, that information is used to extract only those engine load percentage signal sam-

ples, which are measured during the engine missions. Finally, cumulative running hours 

for all load percentage intervals are calculated, and the information is stored in installation 

specific csv-file. In the figure below, example concerning results is presented. First col-

umn has installation ID, second column engine ID, third column the load percentage in-

terval and final column cumulative running hours.  

 

Figure 14. Load Analysis – Example of results. 

The solution also works in such a way, that it stops processing the engine specific raw 

data file if the data file is missing either engine speed or load percentage signal or either 

of these signals have only 0-values. The solution also stores information to txt-file during 

the execution of the algorithm. This information includes mean, minimum and maximum 

values of the load percentage signal to indicate if the provided results are reasonable. Txt-

file also includes information for the amounts of engine starts and stops, to express, if the 

logic defined in subchapter 4.1.1 works without flaws, which means that amounts of en-

gine starts, and stops must be equal.  
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4.3 Automatic shutdown analysis 

Once detection rules for isolation of engine operating time and characterization according 

to engine load performance were defined, methodology was developed to investigate au-

tomatic SHDs due to deviations in selected signals. 

This solution detects if engine mission concludes in SHD by following the rules defined 

in subchapter 4.1.2. After all the SHDs are detected from the raw EDS data, the solution 

investigates if there have been any deviations in following signals, 30 seconds prior when 

SHD occurs: 

1. Exhaust gas temperature signals. 

2. Liner temperature signals. 

3. Big end bearing temperature signals. 

4. High temperature water pressure and temperature signals. 

5. Lube oil pressure and temperature signals. 

For all the different engine platforms and engine designs, there are engine specific devi-

ation thresholds and time windows, which indicate how long the signal must exceed or 

remain below the threshold before the engine control system causes the automatic SHD 

to occur. These deviation thresholds and time windows are defined in Wärtsilä’s internal 

document and this solution was built to follow those definitions and rules. Figure below 

describes how automatic SHD is caused by the deviation in monitored signal. 
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Figure 15. Automatic shutdown caused by deviation in monitored signal. 

This solution takes all engine specific raw data files of selected installation, and infor-

mation considering engine platform and engine design of those installation engines, as 

inputs and provides 4 installation specific files and 2 engine specific files as outputs: 

1. Installation specific file #1: it is a csv-file containing information for all engine 

missions of every installation engine. 

2. Installation specific file #2: it is a subset from the first output file, containing only 

information from the engine missions which conclude in SHD. 

Following figure shows structure of the first two installation specific output files. 

Each row represents a unique engine mission. The columns are representing fol-

lowing information: first column is the installation ID, second column is the en-

gine ID, third column is the start moment of the mission, fourth column is the 

moment when the engine load drops under 100 kW last time in that specific mis-

sion, fifth column is the end moment of the mission, sixth column is the period 

how long engine speed remains greater than zero after the load has dropped below 
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100 kW, seventh column is mission duration in seconds and final column is mis-

sion ID. These results are derived from the raw data of a W34SG engine. 

 

Figure 16. Structure of the first two installation specific output files. 

3. Installation specific output file #3: it is a csv-file, which contains information con-

cerning deviations of the signals monitored for the identification of automatic 

SHD. File is stored as a table. Every row represents one deviation of monitored 

parameters. Columns indicate: the code of the signal in which the deviation has 

occurred, deviation type (high (in case the signal has exceeded the higher devia-

tion threshold) or low (in case the signal has fell below the lower deviation thresh-

old)), moment of occurred SHD, deviation start moment, deviation end moment 

and deviation duration prior SHD. In addition, there are columns for installation 

ID, engine ID and mission ID. 

4. Installation specific output file #4: it is a txt-file, which contains information con-

cerning the execution of developed algorithm. The main purpose of txt-file is to 

store information about input information, deviation thresholds and time windows 

algorithm has used for each investigated signal, during the execution. 

5. Engine specific output file #1: it contains load signal information. This file grants 

the opportunity to investigate the engine load behavior prior each engine stop. 

6. Engine specific output file #2: it contains load signal information for those mis-

sions which are labeled as starting failures. Engine missions which last less than 

15 minutes (900 seconds) are considered as starting failures. As mentioned in sub-

chapter 4.1.2, the logic, which is defined to classify if engine mission concludes 
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in SHD or in planned stop, presumes that engine is running with constant load. In 

the cases of starting failures, engine load can be still increasing towards the nom-

inal load, when the SHD occurs and it is possible that engine load has not reached 

the nominal load yet. In other words, logic defined in this thesis is not able to 

detect these SHDs and these output files were stored for the future classification 

and investigation of these cases. 

4.4 Main feature extraction for relevant signals 

In order to retrieve information as much as possible from EDS contents, algorithm was 

developed for extracting features for relevant sensor signals of the engine in order to 

characterize their behaviour to find correlations or trends in data. This activity lays the 

basis for future machine learning applications, for instance by utilizing these extracted 

features in the development of a predictive maintenance algorithm. Main bearing temper-

ature signals were selected as the test case for this solution. 

This solution takes two inputs. The first input comprehends all the engine specific raw 

data files of a selected installation and second input is the installation specific file which 

contains information for all engine missions of every installation engine (i.e. the output 

file produced in temperature and pressure deviation analysis). The solution utilizes the 

inputs and produces output file for each investigated signal per every installation engine. 

The solution extracts set of statistical features for each investigated signal per each se-

lected engine mission (engine mission duration > 15 minutes), and more specifically, only 

from the time period which do not include the transient phases. Phase when engine load 

is increasing from 0 kW towards the nominal load in the beginning of the engine mission 

and phase when engine load is decreasing from nominal load towards 0 kW in the end of 

the engine mission, are filtered out from the feature calculation. 

After the transient phases are removed and monitored signals are given own columns with 

fixed sampling frequency (1 Hz), data is in following format showed in the next figure. 
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First column represents the mission number, second column time stamp, third column 

load value and columns from fourth to the sixth represent the main bearing temperatures. 

 

Figure 17. Example of prepared data for feature extraction. 

Sampling frequencies are fixed for the monitored signals in this solution in order to pro-

vide more accurate results when deriving statistical features for the signals. Deriving fea-

tures from the signals which do not have fixed sampling frequencies could lead to inac-

curate results. When fixing the sampling frequencies, missing values were replaced with 

the previous value of the signal. 

After the data is prepared, statistical features for all the investigated signals are derived 

from each engine mission. Figure below represents the portion about the output file of 

single signal. Every row represents one engine mission. First column is mission ID, sec-

ond column is start moment of the mission, third column is moment when the load has 

reached nominal load first time, fourth column is moment when the load is last time at 

nominal load, fifth column is the end moment of the mission, sixth column is mission 

duration in seconds, seventh column is mission duration excluding transient phases, eight 

column is total time of transient phases and ninth column is cumulative running hours of 

the engine. In addition, there are columns for the following statistical features of the sig-

nal: minimum, maximum, mean, variance, median, standard deviation, standard error, 

skewness, kurtosis, peak to peak and root mean square values for each engine mission. 
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Figure 18. Example of feature extraction results. 

4.5 Anomaly detection of sensor signals  

Finally, methodology was developed for anomaly detection of sensor signal behaviour. 

This solution utilizes linear regression and interquartile range method and it was applied 

to one large bore engine operating in power plant application. Investigated signals in this 

solution were main bearing temperature signals and exhaust gas temperature signals. This 

solution utilizes the information produced by different data-driven approaches which are 

presented earlier in this thesis in addition to raw data.  

First, feature extraction presented in subchapter 4.4 is utilized to derive features for en-

gine load percentage signal. After the features are extracted for this signal, median values 

of this signal from each engine mission, are investigated. 

 

Figure 19. Engine load distribution.  
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From the histogram above, it can be deemed, that the majority of engine missions have 

median value of load percentage signal 100 or higher. Based on this observation, investi-

gated load percentage interval is set to 100-105 percentage. 

After the load percentage interval is set, main bearing temperature, exhaust gas tempera-

ture and load percentage signals are extracted from the raw data file of this engine. When 

extraction of the signals is done, sampling frequencies of the monitored signals are fixed 

to same value (1 Hz in this case). After the sampling frequencies are fixed, only samples, 

that are within selected load percentage interval, are selected. In this case, only samples 

that have been measured when the engine load percentage has been in closed interval 

from 100 to 105, are considered.  

Proposed solution detects anomalies from the behaviours of selected signals. This is done 

by selecting one signal among selected ones at a time and treating it as response variable 

(output). Load percentage signal is treated as predictor variable (input) and simple linear 

regression is utilized to model linear relationship of these variables. The load percentage 

signal was used as predictor variable since it is assumed, that other engine parameters are 

linearly dependent on it. Below, is the equation to model the linear relationship of these 

variables.  

𝑦 = 𝛼𝑥 + 𝛽 

Where y is the value of the response variable, x is the value of the predictor variable and 

α and β are parameters of the regression model. The observed values of predictor and 

response variables are utilized to estimate the regression parameters of the model with 

simple linear regression. Estimation of regression parameters leads to regression model, 

that minimizes the sum of squared differences between observed and predicted values. 

Therefore, the calculated regression model is the model that has the best fit to the given 

data points of observed values. 

After the regression model parameters are calculated, observed values of predictor varia-

ble (load percentage signal), and regression model parameters are used to predict values 
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for selected signal. The differences between predicted and observed values of selected 

signal are then calculated and then they are standardized by calculating z-scores for the 

population with following formula: 

𝑧 =
𝑥 − 𝜇

𝑠
 

Where z is the calculated z-score, x is the sample from the population, μ is mean of the 

population and s is the standard deviation of the population. 

After these z-scores are calculated for each sample, closed interval is defined by utilizing 

interquartile range value of the z-score population. This closed interval is: 

[𝑄1 − 1.5 ∗ 𝐼𝑄𝑅, 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅] 

Where Q1 is the first quartile of z-score population, Q3 is the third quartile of the z-score 

population and IQR is the interquartile range value of z-score population (IQR = Q3-Q1). 

Final phase is to classify samples as inliers (so called normal data points) or as outliers 

(anomalies) with this closed interval: if the z-score value of the sample is within defined 

closed interval, sample is classified as inlier, otherwise sample is classified as outlier.  

This solution provides following information for all monitored signals treated as response 

variable: plot, where monitored signal is plotted as function of engine load percentage. In 

the plot, observations of monitored signal are classified as inliers and outliers and the 

regression line is included as well. 
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5 RESULTS 

5.1 EDS mapping 

First mandatory step to be taken before any data analytics approach, is mapping the avail-

able data in order to understand how data can be used and which kind knowledge could 

be gained from their investigation. This subchapter provides this preliminary investiga-

tion about EDS contents. 

5.1.1 EDS installations: Locations 

Figure below shows how EDS installations are distributed around the world. Green color 

for the country indicates that it has at least one EDS installation operating in it. 

 

Figure 20. Operating countries of EDS installations. 

5.1.2 EDS installations: Applications and segments 

Next figure consists of two different bar charts: 
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1. First bar chart on the left shows how operating and not operating installations have 

distributed for both power plant and marine applications. 

2. Second bar chart on the right shows how different installation segments have dis-

tributed for both power plant and marine applications. 

 

Figure 21. Distributions for operating and not operating installations and installation 

  segments. 

5.1.3 EDS engines: Comissioning years 

Following figure presents distribution for commissioning years of the EDS engines. It is 

worth mentioning that commissioning year of the engine does not mean necessarily that 

EDS holds data for that engine starting from that specific year. 
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Figure 22. Distribution of commissioning years of the EDS engines. 

5.1.4 EDS engines: Cylinder configuration 

Next figure displays final example about how EDS content can be viewed and investi-

gated. The figure presents how engines with specific cylinder number are distributed be-

tween different product reference types. 
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Figure 23. Distributions of product reference types.  

5.2 Engine performance 

Implemented data-driven approaches were applied for the installations which encoded 

signal formats were identified. Load distribution analysis was applied for total of 43 in-

stallations 277 engines and automatic shutdown analysis for 32 installations and 232 en-

gines. It is worth mentioning, that load distribution analysis was implemented for both 

power plant and marine applications but automatic shutdown analysis only for the power 

plant applications. In this subchapter, example results related to performance of EDS en-

gines are presented. 

5.2.1 Engine load profiles 

Load distribution analysis provides the possibility investigate and compare load profiles 

of different engines. Following figure shows consists of two different bar charts: 
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1. Upper bar chart presents distribution of cumulative running hours per different 

load intervals for power plant engines. 

2. Lower bar chart presents distribution of cumulative running hours per differ-

ent load intervals for marine engines. 

From the figure it can be observed, that power plant engines are operating with load close 

to maximum since they are working usually at fixed speed and load request does not 

change consistently over time, unless in case of failure. The other observation is that ma-

rine engines have more variety in their load since they are working more with variable 

speed and wider load request. 

 

Figure 24. Distributions of cumulative running per different load intervals. 

Extracted results allows a load profile comparison between different marine and power 

plant applications as well. In the next figure, for several applications equipped with large 

bore engines, distributions of average cumulative running hours per different load inter-

vals are presented. LNG Carriers, Passenger & Cargo Vessels and Combination Tankers 

are marine applications, whereas Industry, Mining and Power Producer and energy pro-

vider are power plant applications. 
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Figure 25. Average cumulative running hours per different load percentage intervals 

  for application equipped with large bore engines. 

It is worth mentioning that results extracted from EDS allows load profiles analysis also 

at single engine level. This ensures a detailed investigation at engine level for all the 

monitored installations. 

5.2.2 Engine running hours 

By utilizing information provided by automatic shutdown analysis, engine running hours 

can be investigated both at installation and engine platform level. Following figure has 

information about engine running hours for one installation including twelve W34SG en-

gines, and it consists of two different bar charts: 

1. Upper bar chart presents total cumulated running hours for installation engines for 

each monitored year. 
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2. Lower bar chart presents yearly cumulated running hours for installation engines 

per each monitored year. 

 

Figure 26. Total and yearly cumulated running hours for one installation including 

  twelve W34SG engines. 

5.2.3 Engine inertia 

Automatic shutdown analysis also provides information about engine inertia, in other 

words, how long does it take for the engine speed to reach 0 rpm after the engine load has 

dropped to 0 kW. Figure below shows median of inertia in seconds for each investigated 

engine platform, in different scenarios: 

• Exhaust gas temperature deviation, Liner temperature deviation, LO pressure 

deviation in TC and LO temperature deviation in engine inlet are considered as 

automatic shutdowns caused by deviation in that specific monitored signal.  

• Normal stop means planned stop 
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• Starting Failure means stop occurring when engine mission duration is less than 

15 minutes.  

• Unknown means automatic shutdown, which is not caused by any monitored sig-

nal, mentioned in subchapter 4.3. Therefore, the triggering cause is unknown.  

From the figure can be observed, that median of inertia is lower for the platforms (W34DF 

and W34SG) which have smaller bore size than for the platforms (W50DF and W50SG) 

which have larger bore size. Inertia calculation can be used in order to evaluate normal 

friction losses. 

 

Figure 27. Median of inertia in seconds for each investigated engine platform in 

  different stop scenarios. 

5.3 Engine mission analysis 

In this subchapter, all presented results are produced by automatic shutdown analysis 

hence all of them are for power plant engines. 

5.3.1 Starting reliability 

Engine missions lower than 15 minutes were labelled as starting failures. Starting failure 

identification allows the calculation of engine starting reliability. This key performance 
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indicator ensures the assessment of engine performance during the starting phase. Starting 

reliability was calculated for each analysed engine with the following formula: 

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100% ∗ (1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
) 

In the next figure, starting reliability for large bore engines is presented per each moni-

tored year. 

 

Figure 28. Starting reliabilities of large bore engines for each monitored year. 

5.3.2 Automatic shutdown events 

Objective of the automatic shutdown analysis was to find reasons for automatic shut-

downs, and this was done by identifying deviations in monitored signals prior automatic 

shutdowns. Results provided by this analysis can be used to investigate distributions of 

different SHD types at engine, installation and engine platform level. Following figure 
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holds information for one installation with four W34SG engines and consists of two dif-

ferent plots: 

1. Upper plot is bar chart which shows distribution of different SHD types for each 

installation engine. 

2. Lower plot is pie chart which shows distribution of SHD types of all installation 

engines. 

 

Figure 29. Distributions of SHD types both at engine and installation level for 

  single installation. 

As mentioned before, results from automatic shutdown analysis can be investigated also 

at engine platform level. Next figure consists of 4 different pie charts: one for each inves-

tigated engine platform. Each pie chart presents distribution of SHD types for all engines 

with of that specific engine platform.  
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Figure 30. Pie charts of different automatic shutdown events for four different 

  engine platforms. 

In figures 29 and 30, SHD type variable indicates what was the reason for automatic 

shutdown. Planned stops were also included as option Normal stop. Unknown means au-

tomatic shutdown which is not caused by any monitored signal mentioned in subchapter 

4.3, therefore the cause of automatic shutdown is unknown. 

5.4  Sensor data analysis  

5.4.1 Main feature extraction for relevant signals 

In addition to methodologies for the characterization of engine behavior, algorithm was 

developed for main feature extraction of relevant signals. Main bearing temperature sig-

nals were selected as the test case for this solution. The feature extraction was performed 

by filtering out all engine starting failures and all the transient phases of selected missions 
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(i.e. engine start up and shut down). This solution was applied to DF and SG engines of 

EDS operating in power plant applications, precisely 14 installations and 75 engines were 

processed. 

Next figure presents median value of main bearing temperature is changing as a function 

of cumulative running hours. Each point represents the median temperature value during 

a specific engine mission.  

 

Figure 31. Median value of main bearing temperature as function of cumulative 

running hours. 

From the figure above it can be observed, that the usual median value of main bearing 

temperature starts to increase approximately after 13 thousand cumulative running hours. 

The reason for this increasing trend could be faulty sensor, since it was known that mon-

itored engine had some problems with temperature sensors at that time period. In addition 

to identification of trends, the figure helps to identify anomalies in sensor behavior.  

Proposed solution can be modified to derive customized features for any signal present 

in the data. Also, the investigated time periods can be modified according to different 

needs and conditions. Extraction of this information is essential for the development of 

predictive maintenance algorithms and diagnostic tools. 
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5.4.2 Anomaly detection of sensor signals  

EDS data was finally investigated in order to detect anomalies in behaviour of selected 

sensor signals. The anomaly detection application utilizes linear regression and interquar-

tile range method to deem if samples of preprocessed data are inliers or outliers. Proposed 

approach was tested to find anomalies among main bearing temperature and exhaust gas 

temperature signals. The solution was applied to one DF engine of EDS operating in 

power plant application.  

The figure below represents how anomaly detection algorithm has classified samples of 

main bearing temperature as inliers or as outliers. Main bearing temperature is plotted as 

function of engine load percentage. Blue and red dots in the plot represent samples of 

main bearing temperature, and green dots represent the predicted temperature values cal-

culated with regression model, which has been defined by the anomaly detection algo-

rithm. Blue colour for main bearing temperature sample means that sample is classified 

as inlier and red colour means that sample is classified as outlier. 
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Figure 32. Anomaly detection – Example of results. 

Before analyzing the figure above, it should be mentioned, that there are lot of overlap-

ping samples visualized in the figure, hence it is difficult to estimate from the plot their 

density. As it can be observed, the anomaly detection algorithm classifies values in certain 

temperature interval as inliers and other values as outliers. Considering adopted approach, 

this means, that at least 50% of the samples are within this temperature interval in given 

load percentage interval.  
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At the moment, this approach is able to identify from the given sensor data if there is any 

anomaly behavior in a given sensor signal. In the future this approach should be scaled 

up in order to identify correlations between signal anomalies and events taking place in 

the engine in order to perform engine health monitoring and diagnostic. 
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6 CONCLUSIONS AND DISCUSSION 

In this thesis, Wärtsilä Engine Data Sandbox (EDS) was investigated and its content was 

described and mapped. EDS content description and mapping allowed identification of 

the majority of installations as well as retrieving of information related to engine charac-

teristics, such as type, cylinders configuration, etc. Relying on these data, four different 

data-driven approaches were developed to support engine performance characterization 

and analysis. Four developed data-driven approaches were: 

• Load distribution analysis, to be used for engine usage profiling and damage ac-

cumulation models (e.g. Fatigue analysis). 

• Automatic shutdown analysis, for engine health monitoring purposes.   

• Main feature extraction of relevant sensor signals as preparatory activity for the 

development of predictive maintenance algorithm and diagnostic tool. In addition, 

it allowed the identification of trends in signals for investigation of potential fail-

ures. 

• Anomaly detection of sensor signals to perform sensors validation.  

During the implementation of these four different data-driven approaches, many different 

functionalities for data preparation were developed. These functionalities include, for in-

stance, fixing the sampling frequencies of selected signals and extracting the required 

monitoring periods. Therefore, a comprehensive toolbox for data preparation was devel-

oped.  

Finally, limitations and exceptions of EDS contents were described. EDS data can be 

utilized to do characterization of engine behaviour and to find anomalies from that be-

haviour. However, lack of automation system signals is clear disadvantage when trying 

to implement data-driven approaches with EDS data. In addition to this, more information 

related to engines is required in order to utilize EDS data for predictive maintenance. This 
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kind of information includes for example, maintenance information of installations and 

information related to engine operating conditions. 

Future activities after this research include retrieving missing EDS related information, 

creating proper infrastructure for EDS, investigating possible causes for anomalies de-

tected by proposed anomaly detection application and improving the data preparation 

modules. 

The missing EDS information, which should be retrieved, includes installation numbers 

for unidentified installations and signal codes for unidentified signals. After this, proper 

infrastructure for EDS should be created in order to grant possibility for Wärtsilä employ-

ees to investigate EDS content and implement their own data analytics approaches easily. 

At this stage, anomaly detection approach is able to identify from the given sensor data if 

there is any anomaly behavior in a given sensor signal. In the future, this approach should 

be scaled up in order to identify correlations between signal anomalies and events taking 

place in the engine in order to perform engine health monitoring and diagnostic.  

Finally, the data preparation functionalities can be regarded as first version of data pre-

processing toolbox for data of Engine Data Sandbox. Nevertheless, this tool could be 

enhanced by adding new functionalities including, for example, proper noise filtering. 
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