

This is a self-archived – parallel published version of this article in the
publication archive of the University of Vaasa. It might differ from the original.
TTADF : Power Efficient Dataflow-Based
Multicore Co-Design Flow

Author(s): Hautala, Ilkka; Boutellier, Jani; Silvén Olli
Title: TTADF : Power Efficient Dataflow-Based Multicore Co-Design
Flow
Year: 2019
Version: Accepted manuscript
Copyright Institute of Electrical and Electronics Engineers (IEEE)
© 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Please cite the original version:
 Hautala, I., Boutellier, J., & Silvén, O., (2019). TTADF : Power
Efficient Dataflow-Based Multicore Co-Design Flow. IEEE
Transactions on Computers online 27 April, 1–14.
https://doi.org/10.1109/TC.2019.2937867

IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 1
TTADF: Power Efficient Dataflow-Based
Multicore Co-Design Flow
Ilkka Hautala, Jani Boutellier, Senior Member, IEEE, and Olli Silve´n, Member, IEEE
Abstract—The era of mobile communications and the Internet of Things (IoT) has introduced numerous challenges for mobile
processing platforms that are responsible for increasingly complex signal processing tasks from different application domains. In recent
years, the power efficiency of computing has been improved by adding more parallelism and workload-specific computing resources to
such platforms. However, programming of parallel systems can be time-consuming and challenging if only low-level programming
methods are used. This work presents a dataflow-based co-design framework TTADF that reduces the design effort of both software
and hardware design for mobile processing platforms. The paper presents three application examples from the fields of video coding,
machine vision, and wireless communications. The application examples are mapped and profiled both on a pipelined and a
shared-memory multicore platform that is generated by TTADF. The results of the TTADF co-design-based solutions are compared
against previous manually created designs and a recent dataflow-based design flow, showing that TTADF provides very high energy
efficiency together with a high level of automation in software and hardware design.
Index Terms—Dataflow, application specific processor, design flow, low power.
F
1 INTRODUCTION
RAPIDLY evolving technology has been shrinking thetime-to-market window of mobile software and com-
puting platforms. To this extent, the design time should be
as short as possible and the lifetime of a design should
be maximized [1]. To meet these requirements, automated
design flows are needed, and the resulting system should
be programmable by high-level programming languages,
enabling fixes and inclusion of additional functionality after
deployment. Consequently, software has a significant role in
contemporary mobile computing platforms.
Advances in semiconductor manufacturing processes
have continuously increased the efficiency of programmable
processing platforms. Therefore, software programmable
off-the-shelf digital signal processors (DSPs) and general
purpose processors (GPP) have increasingly replaced appli-
cation specific integrated circuits (ASIC) in mobile comput-
ing platforms. However, application requirements, includ-
ing power consumption, throughput, and latency, have led
to the trend where multiprocessor System-on-Chips (MP-
SoC) have become mainstream [2]. A heterogeneous MP-
SoC can integrate for example a multicore GPP, a graphics
processing unit (GPU), DSPs, a field programmable gate
array (FPGA) and multiple ASICs or application-specific
instruction processors (ASIP) for wireless communications,
computer vision, and security.
ASIPs have been used for applications where low power
consumption and high performance are essential, but also
programmability is needed [3]. The energy efficiency of
• I. Hautala and Olli Silve´n are with the Center for Machine Vision and
Signal Analysis Research Group, University of Oulu, Oulu, Finland
E-mail: {ilkka.hautala, olli.silven}@oulu.fi
• Jani Boutellier is with the School of Technology and Innovations, Univer-
sity of Vaasa, Finland, and with the Faculty of Information Technology
and Communications, Tampere University, Finland.
E-mail: jani.boutellier@univaasa.fi
Manuscript received –, –, 2018; revised –, –, 2019.
ASIPs has usually been achieved by tailoring the instruction
set for a single application domain, which enables sim-
plifying the architecture compared to GPPs. Compared to
ASICs, ASIPs have a time-to-market advantage thanks to
programmability and highly automated ASIP design tools
[4]. ASIP design tools commonly include a retargetable com-
piler, which automatically adapts to the ASIP architecture,
and enables machine code generation from a high-level
language without compiler redesign.
Programming of MPSoCs is challenging due to the lack
of high-productivity programming environments that can
compile application descriptions into useful implementa-
tions for parallel and heterogeneous target platforms [5].
Also, existing legacy code has hindered the adoption of
more intuitive and suitable methods for software develop-
ment for these platforms. Utilizing the potential of MPSoCs
is a complex task requiring correct specification, implemen-
tation, decomposition, and mapping of applications [5].
Dataflow [6], a well-known and widely used program-
ming paradigm for expressing the functionality of signal
processing and streaming applications, has been proposed
as a next-generation programming solution for heteroge-
neous MPSoCs [7] [8] [9] [10] [11]. Dataflow programming
is an intuitive approach for describing the parallelism of
application software, while at the same time increasing its
modularity, flexibility and re-usability.
In this paper, the dataflow-based design framework for trans-
port triggered architectures (TTADF1) is presented. The main
contributions of this work are as follows:
• TTADF integrates ASIP development and C-
language based dataflow programming for the de-
sign of power-efficient and high-performance multi-
core ASIPs and their software.
1. The source code of TTADF is available for download at
http://github.com/ithauta/ttadf
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 2
Instruction memory
Instruction fetch
Instruction decode
FU FU LSU
Bypass network
RF
Data memory
TTA
Instruction memory
Instruction fetch
Instruction decode
FU FU LSU
Data memory
VLIW
RF
Bypass network
Fig. 1. Comparison between TTA and VLIW architectures
• TTADF has tools for both rapid and accurate simula-
tion of multicore ASIPs and their software.
• The outcome of the TTADF design flow is a synthe-
sizable register transfer level (RTL) description of the
designed platform and executable program binaries.
Hardware synthesis for an FPGA or using a standard
cell library can be done using existing Electronic
Design Automation (EDA) tools.
• Comprehensive experiments confirm high energy ef-
ficiency. Example applications from three different
domains, including new dataflow representations of
High Efficiency Video Coding (HEVC) in-loop filters
and stereo depth estimation.
This paper is organized as follows: Section 2 presents
the theory of the dataflow paradigm and the Transport Trig-
gered Architecture, whereas Section 3 reviews related work.
In Section 4 implementation details of the proposed TTADF
framework are described. In Section 5 experimental results
of the designs produced using the proposed framework are
shown, and later compared to related work in Section 6.
Finally, a brief discussion and the conclusion of the achieved
results can be found in Sections 7 and 8.
2 BACKGROUND
First we present a brief introduction to transport triggered
architectures and after that basic concepts of dataflow pro-
gramming.
2.1 Transport Triggered Architecture
Transport Triggered Architecture (TTA) processors resemble
VLIW processors concerning the fetching, decoding and
execution of multiple instructions each clock cycle, and
by providing instruction level parallelism [12]. Fig. 1 shows
the fundamental differences between datapaths of TTA and
VLIW architectures. In the case of TTA, each FU and RF
is connected to the bypass network, whereas in VLIW
each FU is directly connected to the RF. The fully exposed
datapath of TTAs allows direct control of data transfer for
the programmer (or compiler), in contrast to VLIWs that are
programmed by operations.
In TTA, operations take place as side effects of data
transfers, controlled by move instructions that are the only
FU
ADD
FU
MUL
RF
Instruction
fetch
&
decode
0
1
2
FU
LSU
Instruction
memory
Data
memory
Fig. 2. A simple TTA processor
instruction of TTA processors. Using move, data is trans-
ferred between function units (FU) and register files (RF) via
the bypass network that can consist of multiple transport buses.
FUs are logic blocks that implement different operations,
such as additions or multiplications. Depending on the set
of operations included in FUs, the FU has one or more input
ports and registered output ports. In every single FU, one
input port is a triggering port and a data move to it triggers
an operation of the FU in question. If an operation has
multiple operands, it is assumed that all the other operands
are transferred to FU input ports before or at the same time
as the operand, which is going to be written to the trigger
port. After triggering an operation, the operation result can
be moved from an FU output port to the input ports of
one or more FUs/RFs, which makes TTAs exposed datapath
processors, enabling many compiler optimizations.
Fig. 2 presents a simple TTA processor, which has three
transport buses (black horizontal lines), a load store unit
(LSU), an adder, a multiplier, and one RF. Small squares
are FU ports, and a cross inside the square indicates the
triggering port. The instruction fetch and decode unit is
responsible for loading one instruction per bus from the
instruction memory and executing them. Three transport
buses enable executing three instructions in parallel each
clock cycle.
For example, in one clock cycle, we can simultaneously
move a result from the LSU to the input port of the adder
unit using bus 0, move the mul result to the adder’s trig-
gering port using bus 2 and move the result of the previous
add operation to the RF using bus 3. The previous example
can be presented by one TTA assembly instruction word that
executes in a single clock cycle:
LSU.out1 -> ADD.in2,
MUL.out1 -> ADD.in1t.add,
ADD.out1 -> RF.1;
FUs and RFs are connected to transport buses via sock-
ets (rectangular vertical blocks), and arrows above sockets
indicate the input/output direction of a socket. Black dots
on sockets indicate where FUs/RFs are connected to the
transport buses.
Similar to DSPs, also TTAs use the Harvard architecture
that has separate program and data memories. More than
that, TTAs can have multiple data memories, each of them
appearing as a different address space to the programmer.
Implementing full context switch support to TTAs is
regarded as unfeasible due to the high number of reg-
isters within (pipelined) TTA FUs. Hence, interrupts and
pre-emptive multitasking are commonly unsupported, and
TTAs are used as slave co-processors of a master GPP
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 3
that runs control-intensive software, such as the operating
system [13].
TTA processors can be designed using the open source
TTA-based Co-design Environment (TCE) [14]. By using
the TCE compiler tcecc, programs written in high-level pro-
gramming languages (C/C++, OpenCL) can be compiled to
TTA machine code. Tcecc is a retargetable compiler, adapt-
ing itself to the designed architecture and automatically tak-
ing advantage of added processing resources, which allows
fast experimentation with different processor designs and
design space exploration. TCE also offers a cycle-accurate
simulator for program execution analysis on a given TTA
processor. Moreover, a synthesizable RTL description of
the given processor design can be created using the TCE
processor generator tool. TCE currently supports the design
and simulation of single-core and GPU-style data parallel
multicores. TTADF builds on TCE and adds a design and
simulation framework for task-parallel streaming applications.
2.2 Dataflow paradigm
The dataflow programming paradigm is used in this work
for top-level application descriptions. The dataflow pro-
gramming paradigm started forming in the end of the 1960s
inspired by highly parallel computer architectures [15].
Dataflow applications are represented as directed graphs,
which consist of actors as vertices and unidirectional first-
in-first-out (FIFO) channels as edges. The data, transferred
between actors via channels, is quantized to tokens of ar-
bitrary size. Dataflow description of an application en-
sures application modularity, re-usability and exposes its
concurrency, which simplifies distributing the application
execution across multiple processing elements.
Several different formal dataflow Models of Compu-
tation (MoC) have been proposed, including synchronous
dataflow [16] (SDF) and dataflow process networks [17]
(DPN). Dataflow MoCs can be classified to static or dynamic
depending on whether data can affect the behavior of ac-
tors. In a static MoC, the token production and the token
consumption rate of actors are statically defined whereas
in dynamic MoCs production and consumption rates can
be data-dependent. Static MoCs enable more compile-time
optimizations than dynamic MoCs and can therefore lead
to more efficient machine code. However, the limited ex-
pressiveness of static MoCs reduces the set of applications
that can be described compared to dynamic MoCs. Thus,
different dataflow MoCs offer a tradeoff between efficiency
and expressiveness.
The dataflow framework used in this work is designed to
support the DPN MoC [17] that is very dynamic. However,
it also allows using more restricted MoCs such as SDF.
3 RELATED WORK
In [18], Park et al. review different MPSoC design methods
and categorize them to four approaches: compiler-based,
language-extension (OpenMP, OpenCL), model-based and
platform-based approaches. In this paper we focus on the
model-based approach, where the designer utilizes a MoC
for implementing applications. There are several works,
which are based on the dynamic dataflow programming
paradigm, and some of them also target TTA architectures.
The most relevant works considering this paper are briefly
presented below.
Ptolemy [19], a simulation and prototyping framework
for heterogeneous systems, was the pioneering software
development framework for dataflow-based design. In ad-
dition to dataflow, Ptolemy also supports a variety of non-
dataflow MoCs.
Orcc [20] is a recent open source dataflow development
environment that is based on the DPN MoC. Orcc appli-
cations are written using the RVC-CAL language, to be
translated to software and hardware code. By using Orcc,
various video coding applications such as High Efficiency
Video Coding have been implemented for various target
platforms [21] [22] [23].
Distributed Application Layer (DAL) [24] is a scenario-
based design flow, which can map Kahn Process Network
(KPN) applications onto heterogeneous many-core systems.
Differing from many other frameworks, DAL offers support
for OpenCL capable platforms, which enables the use of
GPUs [25].
PRUNE [11] is an open source framework for design and
execution of dynamic and decidable dataflow applications
on heterogeneous platforms. The PRUNE framework de-
fines its own dynamic MoC, which is developed specifically
for the requirements of heterogeneous platforms. PRUNE al-
lows the execution of dynamic actors on OpenCL platforms,
which is not possible in DAL.
Dardaillon [10] et al. proposed an LLVM based compila-
tion flow that can compile parameterized dataflow graphs
to a heterogeneous MPSoC platform. They use actor based
C++ for expressing dataflow graphs. Their framework is
dedicated to software-defined radio applications that re-
quire parallel processing and fast dynamic reconfiguration.
In [9] Bezati et al. introduce a tool that compiles RVC-
CAL dataflow programs into RTL descriptions, targeting
MPSoCs. They translate the RVC-CAL description to C and
feed it to the Xilinx Vivado High-Level Synthesis compiler
with automatically generated constraints and directives to
get RTL descriptions.
PREESM [26] is a dataflow-based framework for mul-
ticore DSP programming. PREESM exploits the Parameter-
ized and Interfaced Synchronous Dataflow (PiSDF) MoC.
The behavior of PREESM actors is described using C lan-
guage, while XML is used for describing the target architec-
ture, the algorithm graph, and the scenario. In [26], PREESM
is used to execute a stereo image matching application [27].
In [28] and [8], the authors present automatic synthesis of
TTA processor networks from dynamic dataflow programs
using the Orcc framework. They propose a design flow
where the RVC-CAL dataflow language is used to describe
an actor network. Orcc [20] compiles the actor network into
LLVM (Low Level Virtual Machine) [29] assembly code in
the case of [8], or into C code in the case of [28]. In both
works, TCE is then used to generate RTL descriptions of
processor cores and the machine code for each core. In both
works, a dedicated TTA processor is generated for each
actor, and inter-processor communication is implemented
via hardware FIFOs between TTA cores. In [8], the authors
define three TTA processor configurations: standard, custom
and huge with different numbers of function units and
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 4
General
Purpose
Processor
Interface Shared
Memory
TTA
Cores
TTA
Cores
Memory
TTA Coprocessing system
Memory
Host
General
Purpose
Processor
GPP
Cores
Fig. 3. An example of a TTA co-processing system
transport buses. Finally, the work of [28] is generalized in
[30] by allowing an arbitrary number of actors to be mapped
to a TTA core.
Similarly, Yviquel et al. [23] refine the basic ideas pre-
sented in [8] by introducing a hybrid memory architecture
designed for dataflow programs. Instead of using hardware
FIFOs for inter-processor communication the authors ex-
ploit shared memories. As in [28], RVC-CAL is used as the
input language, which is first transformed into the LLVM in-
termediate representation and then into binary code, which
is suitable for the target TTA processor. In [23], Yviquel et
al. demonstrate their work by implementing HEVC and
MPEG-4 video decoders on top of custom, fast and huge TTA
processors. Currently, their work is a part of Orcc [20], and
it is named the Orcc TTA Backend.
4 TTA DATAFLOW FRAMEWORK
This section describes the proposed TTADF framework.
First, a brief overview of the framework is given, followed
by a high-level description of its usage. Finally, the central
framework components are explained in detail.
In the proposed framework, TTAs are used as co-
processors, which are communicating with the host proces-
sor using shared memory, as shown in Fig. 3. TTA cores
and the memories connected to them form the TTA co-
processing system. The host architecture encompasses all other
processing cores, which have a memory address space in
common with the TTA co-processing system.
By using TTADF, the designer can specify both the host
architecture and the TTA co-processing system and syn-
thesize a unified dataflow program of the whole host-co-
processing ensemble. A dataflow program, which is de-
scribed using the TTADF API can be executed on numer-
ous different target platforms without modifications to the
software code, but by merely switching the architecture
description. TTADF also allows automatic RTL generation
of the TTA co-processing system, which can be imported to
EDA tools for hardware synthesis.
4.1 Design flow
The proposed design flow is presented in Fig. 4, and starts
by the application design step (Actor Descriptions and Actor
Network items). As explained in Section 2.2, the dataflow
application consists of actors and FIFO communication chan-
nels between them. In the proposed framework the actor net-
work is the top-level description of the dataflow application,
and it defines the actors and the FIFO connections, creating
No
Compiler inputs
Yes
Compiler
Outputs
Yes
TTA DATAFLOW FRAMEWORK
Actor
Mapping
Actor
Descriptions
Actor
Network
Processor
De�nitions
System
Architecture
VHDL
Model
of System
Performance
requirements
ok ?
SystemC
Toplevel
Testbench
C++/SystemC
Simulation
Model
No
FPGA / ASIC
Synthesis &
Place and Route
Tools
CHIP
Timing,
area,
power etc
ok?
TTA
Based
Co-Design
Environment
TTADF
Compiler
Fig. 4. The proposed TTADF design flow
the application datapath. The detailed behavior of each actor
is defined in the actor description.
In the proposed framework, the system architecture file
defines all computational resources available for the execu-
tion of software. Similarly as the actor network defines con-
nections between different actors, the system architecture file
defines processing resources and their interconnections. The
system architecture file can refer to the processor definition that
is the detailed specification of a TTA processor architecture.
These five description files are inputs for the TTADF
Compiler, which analyses the inputs and generates a consis-
tent description of the software and the hardware. By using
that description, the compiler creates necessary inputs for
the TCE tools to produce TTA machine code and processor
RTL descriptions. The TTADF compiler produces C++ and
SystemC simulation code, which can be compiled using
GCC. The SystemC simulation model is cycle-accurate,
whereas the C++ simulation model uses a simplified mem-
ory model for faster simulation. TTADF generates all needed
VHDL models for the TTA co-processing system synthesis
and a SystemC testbench to ease simulation and verification.
4.2 Actor network
The dataflow application is specified using the actor network
file, which lists all actors and FIFOs used in the dataflow
software. Fig. 5 presents the actor network of a simple
dataflow program that generates numbers (Source), multi-
plies them by a constant factor (CMultiply) and then prints
the values (Sink). The corresponding actor network presen-
tation of the constant multiply application is presented in
Listing 1 as pseudocode.
Each actor is defined by its name and has a behavior
description written in C. Actor descriptions, including the
number of input and output ports can be parameterized.
For example, in Listing 1 the constant FACTOR is defined
for the actor CMultiply.
The FIFO descriptions of the actor network define the
token size (in bytes) and the token capacity of each FIFO.
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 5
CMultiply
(factor=2)
Sink
i32_o i32_i
�fo_0
size=4*10
�fo_1
size=4*10
m_i32_om_i32_i
Source
Fig. 5. The constant multiply dataflow application example
NETWORK mult iply
DEFINE p a r a l l e l i s m =1
ACTOR source 0
MODELNAME source
MODELSOURCE a c t o r s /source . c
PARAMETER PARALLELISM= p a r a l l e l i s m
GENERATE i TO p a r a l l e l i s m
OUTPUTPORT p o r t $ i
END GENERATE
STOPNETWORK 1
END ACTOR
GENERATE i TO p a r a l l e l i s m
ACTOR cmul t ip ly $ i
MODELNAME cmult iply
MODELSOURCE a c t o r s /cmult iply . c
PARAMETER FACTOR=2
INPUTPORT in por t
OUTPUTPORT out port
END ACTOR
END GENERATE
ACTOR sink 0
. . .
END ACTOR
GENERATE i TO p a r a l l e l i s m
FIFO f i f o 1 $ i
TOKENSIZE 4
CAPACITY 10
SOURCE source 0 p o r t $ i
TARGET cmul t ip ly $ i in por t
END FIFO
FIFO f i f o 2
. . .
END FIFO
END GENERATE
END NETWORK
Listing 1. An example of a parameterized actor network description of
the constant multiply dataflow program
For each FIFO, a source and a target port of an actor is
determined by using an actor id and a port name.
Parameterization can be used for fast adaptation of the
actor network to the system architecture. Considering Fig. 5
as an example, the degree of parallelism can be adjusted
by adding more input and output ports to the Source and
Sink actors, and by replicating the CMultiply actor. To
implement that, the TTADF compiler supports a compiler
pragma for static code generation, presented in Listing 1.
4.3 Actor description
TTADF provides a high-level template that has to be used
for describing actors, as well as an API (TTADF API) for
implementing framework specific behavior such as FIFO
I/O. The detailed behavior of actors is described using the
C language, which also allows the use of legacy code and
C compiler tools. In the case of TTA processors, using C
provides the designer the possibility for efficient use of
special function units (SFUs) of TTA processors, by using TCE
C macro calls for custom operations.
As can be seen from Listing 2 of the Source actor,
the actor description file contains four different structural
elements that are defined by the actor description name and
source code:
• ACTORSTATE is a structural element that contains in-
formation about the actor state. The designer defines
all actor state variables, which need to be maintained
between actor firings into this structure.
• INIT is a function, which is executed once before the
actor is fired for the first time by the TTADF runtime.
The function is useful for opening input and output
file streams.
• FIRE is an element that defines a function, which is
executed whenever the actor is fired. A pointer to the
ACTORSTATE structure is passed to the FIRE func-
tion so that the actor can preserve its state between
firings.
• FINISH is an element that defines a function, which
is called once when the execution of the actor net-
work is terminated.
A similar INIT / FIRE / FINISH approach has also been
used in other dataflow flavored frameworks (e.g. [24]).
Inside these three functions it is possible to use TTADF
API function calls or macros. The TTADF API offers basic
FIFO I/O operations including reading, writing, peeking
and querying the number of tokens in a FIFO. Pragma
commands for static code generation are supported in the
actor description source files, for enabling parameterized
actor specification.
4.4 System architecture model
This work proposes a system architecture model (SAM)
to specify the ensemble of the host system and the TTA
cores. The SAM can be divided into the host architecture and
the TTA Co-processing architecture parts, as shown in Fig. 3
(below, host in italics refers the host architecture). In TTADF,
the host architecture is required to have a) memory-mapped
access to the co-processing architecture, and b) a global
shared memory architecture, where all cores can access the
same address space.
In practice, the host can be connected to the shared
memory through a memory interface such as AMBA (Ad-
vanced Microcontroller Bus Architecture), PCI-E (Peripheral
Component Interconnect Express), Ethernet, etc.
The TTA Co-processing system comprises all TTA cores,
memory components and other components that are directly
connected to them. The memory architecture of the TTA Co-
processing system resembles the hybrid memory architecture
presented in [23]. In the hybrid memory architecture, each
TTA core has its own private data memory and instruction
memory. Inter-core communication is performed through
shared memories that form a communication network be-
tween cores. This kind of a memory architecture is natural
for dataflow programs since the local data of actors can be
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 6
// Library inc ludes here
include <s t d i o . h>
ACTORSTATE source{
//Actor s t a t e v a r i a b l e d e c l a r a t i o n s
in t number ;
#PRAGMA GENERATE i to PARALLELISM)
TTADF PORT VAR(” p o r t $ i ” , data $i , ” i n t ”) ;
#PRAGMA END GENERATE
}
INIT source (source STATE ∗ s t a t e) {
//All i n i t i a l i z a t i o n setup here
s t a t e−>number = 0 ;
}
FIRE source (source STATE ∗ s t a t e) {
#PRAGMA GENERATE(i =0 , i ++ , i< PARALLELISM)
s t a t e−>number ++;
TTADF PORT WRITE START(” p o r t $ i ” , s t a t e−>data $ i)
;
∗ s t a t e−>data $ i$ = s t a t e−>number ;
TTADF PORT WRITE END(” p o r t $ i ”) ;
#PRAGMA END GENERATE
// After 12 generated numbers
// stop execut ion of a c t o r network
i f (s t a t e−>number > 12){
TTADF STOP () ;
}
}
FINISH source (source STATE ∗ s t a t e) {
//Cleanup things here
return 0 ;
}
Listing 2. The behaviour model of the Source actor
stored in the private memory and incoming and outgoing
tokens can reside in shared memory. The memory organiza-
tion also divides memory components into subcomponents,
which reduces memory pressure, provides simultaneous
R/W access and reduces power consumption when com-
pared to a global shared memory architecture used in many
GPPs [23].
An example of a generated system can be seen as a
block diagram in Fig. 6. The designer can set a core of
the host architecture to be of type X86-64, ARM or ARM64,
whereas for the TTA co-processing system all cores will be
of the type TTA. Additionally, the clock frequency and all
memory connections are defined for each core. A core can be
connected to a memory component directly or via a memory
arbiter. The capacity of each memory component is defined
in bytes. Memory arbiters can be used to connect multiple
cores to one single port memory.
For each TTA core, a TTA Architecture Definition File
(ADF) needs to be provided. The ADF describes all re-
sources of the TTA core instance, including FUs, RFs, etc.
Prode, a TCE tool, can be used to design TTA cores and
produce their ADFs for the coprocessing system. For en-
abling RTL generation, also an Implementation Definition
File (IDF) needs to be provided for each TTA. The IDF file
defines which RTL description is used for each processor
component.
Memory and arbiter instances are connected to dedi-
cated LSUs of TTA cores. Therefore, the ADF of each TTA
Memory
"shared0"
arbiter arbiter
ARM
"core_0"
TTA
"core_2"
Memory
"shared1"
I D I D
Source
CONSTANT
MULTIPLY_0
CONSTANT
MULTIPLY_1
Sink
TTA Coprocessing System
Host
TTA
"core_1"
Fig. 6. System architecture model and actor mapping
instance has to include an LSU for each memory or arbiter
instance that is connected to the TTA core. The TTADF
framework automatically sets the address spaces for these
LSUs.
The designer can also define a SAM that does not include
any TTA cores at all. An example of this is presented later
on in Section 5, where the ARM-based embedded ODROID
XU3-platform is used to execute TTADF applications.
4.5 FIFO communication channels
In this work, FIFO channels are implemented using a lock-
free circular buffer structure that is placed into addressable
memory. Each FIFO must be connected to exactly one input
port and exactly one output port of an actor. Each FIFO
has user-defined token size and capacity, which define the
maximum number of tokens the FIFO can hold. Token size
can be freely chosen with the accuracy of one byte.
For synchronizing FIFO-read and FIFO-write transac-
tions, the writing actor has write access to the FIFO-write
pointer, and the reading actor has write access to the FIFO-
read pointer. Both, the reading actor and the writing actor
have read access to the pointers, which enables querying
(peeking) of the FIFO state.
Each FIFO operation is started by requesting a pointer
to the token buffer for reading or writing. If the requested
FIFO operation is feasible (FIFO has room / FIFO has
tokens), a pointer to the token is returned. The actor can read
data from the port, process it and simultaneously write the
processed data directly to another port without additional
data copying. After all needed data has been read or written,
the FIFO access is ended.
Choosing a suitable FIFO buffer size is essential for
reaching high performance. The buffer capacity should be
two or more tokens since single buffering prevents simulta-
neous execution of the producer and consumer actor. With
the set of applications used to test TTADF, no significant
performance increase was observed when increasing FIFO
capacity beyond three.
4.5.1 Blocking and non-blocking communication
The proposed framework supports blocking FIFO commu-
nication channels where actor execution is halted until the
required number of tokens for reading, or suitable space
for writing to the FIFO is available. The implementation
of blocking communication is not straightforward because
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 7
when multiple actors have to be executed on the same core,
there has to be a mechanism for transferring execution from
a blocked actor to another actor to prevent system deadlock.
Since TCE does not offer support for preemptive mul-
titasking, the proposed framework addresses the problem
by using protothreads (PT) [31], which is a non-preemptive
multitasking concept that does not rely on context switches.
The idea of using protothreads in graph-based processing
has previously been presented in [24].
The proposed framework implements actor firing func-
tions so that blocking FIFO operations are labeled, and can
be seen as entry points for the function. The actor state holds
the current entry point, and when the actor is fired, execu-
tion jumps to the current entry point. If a FIFO operation
blocks, the FIFO operation in question is stored as the entry
point.
In some cases blocking communication can be used to
reduce overhead caused by checking actor firing rules. If
firing rules are independent, it is not necessary to check all
rules, but start directly with the blocking one [32]. As TTA
processors generally do not have branch predictors, this is a
considerable advantage.
The framework also supports non-blocking communi-
cation where actor firing also continues in the case when
a FIFO cannot provide enough tokens or free space. Non-
blocking communication is especially needed for supporting
the DPN MoC.
4.5.2 Hardware accelerated FIFO operations
Low-level FIFO access operations are suitable to be acceler-
ated by custom instructions. The TTADF default FIFO access
SFU includes two custom operations:
• get population for calculating the token population of
a FIFO.
• update fifo pointer – an operation for finishing FIFO
access.
TTADF detects if a TTA core is equipped with the FIFO
access SFU that includes hardware accelerated FIFO oper-
ations, and automatically makes use of the custom opera-
tions. The speedup advantage of the FIFO operation SFU is
case dependent, however use of the FIFO SFU can signif-
icantly improve code density in cases where the compiler
would inline a high number of software-based FIFO access
functions.
4.6 Mapping and scheduling
In the TTADF framework, the actor mapping file defines for
each actor, which core takes responsibility for the execution
of that actor. The actor mapping influences the actions of
the TTADF compiler, and therefore actor mapping is static,
unmodifiable at runtime. Based on the actor to core map-
ping, the TTADF compiler automatically maps FIFOs from
the actor network to the memory components. If connected,
actors are assigned to different cores, and a FIFO is mapped
to the shared memory component. If two (or more) actors
are mapped to the same TTA core, the TTADF compiler
maps the FIFO to the private data memory of that core.
For each core, a dedicated actor firing scheduler is cre-
ated. The actor firing scheduler handles all actors that are
assigned to the core in question. Currently, actor firings
are scheduled in a round-robin fashion. In round-robin
scheduling, each actor attempts to fire, and regardless of
success (token availability / free FIFO space), the scheduler
proceeds to fire the next actor until an actor triggers a stop
condition. Michalska et al. [33] show that despite its sim-
plicity, round-robin scheduling is a very efficient scheduling
methodology for TTA processors, whereas more complex
scheduling methodologies can provide only minimal im-
provements or even degrade performance.
4.7 The TTADF Compiler
The TTADF Compiler is the main component of the frame-
work, and it is written in the Python programming lan-
guage. The TTADF Compiler deserializes the actor network,
actor mapping and system model files, and constructs a unified
object representation which is used to generate C software
code for the cores and hardware synthesizable VHDL code
of the TTA co-processing system including the SystemC
testbench.
One of the main tasks of the compiler is to translate the
behavior model of the actors into plain C code so that it
can be compiled to binary code for the target processor: the
compiler processes ACTORSTATE, INIT, FIRE, and FINISH
elements and TTADF API calls, translating them to the
unified object representation. For each core in the system,
the TTADF compiler generates runtime code, which has the
responsibility for initialization, scheduling and cleaning up
of actors that are mapped to the core in question.
4.7.1 Simulation and testing
The TTADF Compiler can generate three different simula-
tion models with different accuracy and speed tradeoffs:
• C/C++ simulation - TTA cores run on top of a cycle-
accurate simulator by sharing a memory with GPP
core threads, which are running on the host com-
puter. This model assumes that memory instances
are ideal in the sense that the core can always access
them in constant time, and it is the fastest simulation
model of the framework. This model is targeted
towards performance evaluation in cases where only
a few TTA cores are connected to the same shared
memory.
• SystemC simulation - System-level simulation of the
design. TTA cores are instantiated as a SystemC
model and host GPP cores are running as threads on
the host machine of the framework. Memory and ar-
biter instances have generic cycle-accurate SystemC
simulation models. This simulation model is primar-
ily intended for cases where the designer needs to
accurately know how simultaneous memory accesses
influence the TTA co-processor performance.
• HDL simulation - a SystemC testbench where the
TTA co-processing system is instantiated in RTL
level. The simulation needs mixed language support
from the HDL tools. The testbench can be used
for RTL, gate-level and post-layout verification, and
power estimation of the TTA co-processing system.
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 8
DF-VE DF-HE SAO
Sink
DF-VE DF-HE SAO
DF-VE DF-HE SAO
DF-VE DF-HE SAOSource
tile 0 tile 0 tile 0
tile n tile n tile n
Fig. 7. HEVC Inloop filtering dataflow application
4.7.2 Actor mapping in testing and analysis
The TTADF feature that allows assigning actors to the host
cores, and simulating these actors rapidly on the host system
can be exploited in many ways in testing. At the beginning
of application development, it is useful to map all actors
to the host machine, since it allows application debugging
using conventional C/C++ debuggers. When the applica-
tion prototype works on the host machine, the designer can
proceed by mapping actors to TTA cores. Finally, tailoring
the TTA processor for a specific actor is an iterative process,
where the designer modifies the processor and profiles
actor performance repeatedly. The possibility of mapping
actors to the host accelerates testing, as these actors do not
need to be run on slow cycle-accurate simulators. Finally,
the ease of actor-to-host mapping also speeds up design
space exploration: discovering the best execution core type
for each actor can be performed merely by changing the
mapping, without code modifications.
5 EXPERIMENTS
In this section, three test case workloads from different
application domains are presented. After that, the TTA co-
processing architectures which are used to execute the work-
loads are introduced. Finally, the experimental test results
are presented.
5.1 HEVC inloop filtering
The High Efficiency Video coding standard [34] introduces
two inloop filters for reducing coding artifacts caused by
image transforms and quantizations. These filters are the
deblocking filter (DF) [35] and the sample adaptive offset
filter (SAO) [36]. The dataflow description of the inloop
filters is based on the authors’ prior work [37], and it
consists of five actors in the simplest case, where only one
tile is used. As shown in Fig. 7. the DF filter is divided into
two actors: vertical edges filtering (DF-VE) and horizontal
edges filtering (DF-HE). SAO is performed in the SAO actor
after the DF-VE and DF-HE filters. In the case where the
video is coded using multiple tiles and filtering over tiles is
not allowed, the filtering pipeline can be parallelized up to
the number of tiles. In the experiments, one, two and four
tiles are used for the video size of 1920 × 1080 pixels. The
actor network processes the video in a coding tree block
(CTB) basis, and the token sizes of FIFOs are selected based
on the size of the CTB. In the case of a 64 × 64 CTB, the
token size is about 5 kB depending on the needed coding
parameters, which are explained in detail in [37]. The HEVC
Inloop Filtering application uses TTA special function units,
which is not the case for the other test applications.
Imageread Imageread
SAD
Sobel Sobel
Grayscale Grayscale
Imagewrite
Block 0
Block n
Block 0
Block n
Block 0
Block n
Fig. 8. SAD based depth estimation dataflow application network and a
resulting depth map image
5.2 Stereo depth estimation
The dataflow implementation of Stereo Depth Estima-
tion (SDE) is based on the open-source computer vision
(OpenCV) implementation of block matching for camera
calibration and 3D reconstruction. The dataflow implemen-
tation of SDE includes five different actors for the reading of
image (imageread), image grayscaling (grayscale), So-
bel filtering (sobel), Sum of Absolute Differences (SAD) [38]
calculating, and image writing (imagewrite). As shown
in Fig. 8, image reading, grayscaling and Sobel filtering is
performed for both the left and right images before the
SAD is calculated between the images, to determine the
depth map. The SDE dataflow application processes the
images line-by-line or multiple lines at a time, depending
on available memory. Because of memory constraints, all
experiments presented in the paper use line-by-line process-
ing. In the experiments, stereo images with a size of 450 ×
375 pixels are used. The search window size is set to 9, and
the maximum disparity is limited to 64 pixels. The token
size of the FIFO is set to be the same as the input image
width, and the FIFO capacity is defined as one.
5.3 Dynamic predistortion filter
Dynamic Predistortion Filter (DPD) is a wireless commu-
nications application tailored to suppress the most harmful
spurious emissions at the mobile transmitter power ampli-
fier output [39]. The DPD dataflow application mainly con-
sists of parallel 10-tap complex valued FIR filters, which are
implemented using fixed-point arithmetic. The configure
actor controls at runtime, which set of FIR filters is used for
processing the input signal by notifying the poly and the
add actors. There can be two to ten active filters at each time
instant, depending on the adaptive runtime configuration.
Since an external input controls the configuration, the net-
work behavior is truly dynamic. The dataflow network for
the DPD is presented in Fig. 9. The fixed point DPD dataflow
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 9
SRC-I
CONFIGURE
FIR 0
FIR 1
FIR 2
FIR 3
FIR 4
FIR 5
FIR 6
FIR 7
FIR 8
FIR 9
POLY
SRC-Q
ADD
SINK-I
SINK-Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
I+Q
Fig. 9. Dataflow network of the dynamic predistortion filter application
network has been designed for TTADF from a floating point
version of DPD network presented in PRUNE [11]. In the
experiments, the token size is set to 256 bytes, which equals
to 64 32-bit integer numbers. The FIFO capacity is also set
to two to enable double buffering. The DPD is a dynamic
dataflow application, containing actors that have dynamic
token rates, whereas in other test applications only fixed
token rate actors are used.
5.4 TTA co-processing system architectures
For the experiments, eight different TTA co-processing sys-
tem configurations are defined. The configurations can be
divided into two categories based on the TTA processor
core architecture which they use. The first category of co-
processing systems is referred to as Inloop, and consists
of TTA cores tailored for HEVC Inloop filtering. This core
type is presented in detail in [37] 2. In the second category,
referred to as Shared, the co-processing system is based on
one of the predefined TTA core architectures from [23],
where it is called custom 2. Both categories include different
configurations concerning the core count with 1, 3, 6 and 12
TTA cores. From here on, when some specific configuration
is referred to, the notation is the name of the category, fol-
lowed by the number of cores, such as Inloop3, for example.
Inloop1 and Shared1 are simple system configurations,
where only a single TTA core is connected to the host
processor using shared SRAM memory. Shared3, Shared6,
Shared12, Inloop6 and Inloop12 consist of clusters of three
TTA cores. Each cluster is connected to the host via a shared
SRAM, which is also used for inter-cluster communication.
Each TTA core is connected to the shared memory through
a memory arbiter. In Fig. 10, a four-cluster Shared12 TTA
coprocessing system is presented.
Inloop3, presented in Fig. 11, is a special case, and it is
initially tailored for HEVC Inloop filtering [40]. The TTA
cores are connected using shared SRAM memories so that
a three-stage pipeline is formed. Since the host is connected
to the SRAMs at both ends of the pipeline, the architecture
2. For this work the processor endianness has been changed from
big-endian to little-endian and the SFU for FIFO operations (Sec-
tion 4.5.2) has been added.
arbiter
Shared
TTA Core
GPP
Host processor
dmem
imem
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
shared
memory
arbiter
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
s
h
a
re
d
m
e
m
o
ry
a
rb
it
e
r
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
shared
memory
s
h
a
re
d
m
e
m
o
ry
a
rb
it
e
r
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
Shared
TTA Core
dmem
imem
Fig. 10. The four-cluster triple-TTA core architecture (shared12)
arbiter arbiter
Inloop
TTA Core
0
GPP
Host processor
shared
memory
shared
memory
shared
memory
shared
memory
dmem
imem
Inloop
TTA Core
1
dmem
imem
Inloop
TTA Core
2
dmem
imem
Fig. 11. The pipelined triple-core Inloop TTA architecture (Inloop3)
follows a ring topology, where data can be moved into both
directions. In [40], the authors show that the Inloop TTA co-
processing system can achieve a 1.2 GHz clock frequency
(1.0 V operating voltage) when placed and routed using 28
nm standard cell technology. Based on that result, in the
experiments, a clock frequency of 1.2 GHz is assumed in all
Inloop system configurations.
In all system configurations, each core has a 32 kB
private data memory and a 64 kB instruction memory.
Shared memory blocks are of the size 64 kB except for
Inloop3 which has four 16 kB shared memory blocks. All test
case dataflow applications are configured to fit these tight
memory constraints. The size of memory blocks has been
minimized for keeping on-chip SRAM size realistic and for
improving power efficiency. The authors of this paper have
already shown in [40] that the power consumption of a TTA
co-processing system such as Inloop3 is between 66 mW and
207 mW when the clock frequency is ranges between 530
MHz and 1.2 GHz.
To get power estimates for the Shared system configura-
tions, Shared3 was placed and routed using a 28 nm standard
cell library, which yielded a power consumption of 154 mW
for the 1.0 V operating voltage and 1.0 GHz clock frequency.
In the experiments, a 1.0 GHz clock is assumed in all Shared
system configurations.
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 10
TABLE 1
Comparison of Inloop and Shared TTA cores
Processor Inloop [37] Shared [23]
Bitwidth 32 32
ALUs 0 2
Adders 3 0
Relational ops fu 1 0
Logic ops fu 2 0
Bitwise ops fu 2 0
Multipliers 1 1
LSUs 3 2
Int RFs 5×16 3×12
Bool RFs (1 bit) 1×2 1×2
Special Ops 9 0
Buses 5 6
Connectivity Partial Full
Instruction Width 131 258
Gate count (NAND2) 106K [40] 66K
SRC-I
POLY
FIR3 FIR4
FIR5 FIR6 DR IQ 1 FIR0 FIR1 FIR2
CONFIGURE
ADD
SRC-Q
FIR7 FIR8 FIR9 DR IQ 0
SINK-I SINK-QTTA CORE 2
TTA CORE 1
TTA CORE 0
Host GPP
Fig. 12. The DPD application mapped to the triple-core TTA using data
repeater (DR) actors
5.5 Mappings
In the case of the HEVC Inloop application, Source and
Sink actors are always mapped to the host processor. For
architectures Inloop1 and Shared1, actors DF-VE, DF-HE and
SAO are mapped to the same TTA core. In the triple-TTA core
cases (Inloop3 and Shared3), actors are mapped in a pipelined
manner: DF-VE to core 0, DF-HE to core 1 and SAO to core
2. In the case of two and four triple-TTA clusters, the actor
pipeline is replicated so that the input video is divided to 2
or 4 tiles, respectively (see Fig. 7).
The SDE application has two Imageread actors and an
Imagewrite actor, which are mapped to the host processor
in all cases. In the single TTA core cases, the input images
are processed by two Grayscale actors, two Sobel actors
and one SAD actor, which are all mapped to the same core.
In the multicore cases the input images are divided to blocks
so that the block number matches the number of TTA cores
(see Fig. 8), and each core gets the same (but replicated)
TABLE 2
Performance and power measurements
Application
HEVC INLOOP SDE DPD
Platform Perf.(fps)
Power
(W)
Perf.
(Mde/s)
Power
(W)
Perf.
(MS/s)
Power
(W)
Inloop1 60.102 0.068 14.074 0.068 1.816 0.068
Inloop3 148.355 0.211 42.273 0.211 4.280 0.211
Inloop6 271.291 0.422 86.977 0.422 7.458 0.422
Inloop12 536.237 0.843 143.819 0.843 9.031 0.843
Shared1 11.657 0.050 7.314 0.050 1.409 0.050
Shared3 24.013 0.154 21.344 0.154 3.197 0.154
Shared6 49.156 0.309 42.963 0.309 5.252 0.309
Shared12 93.103 0.617 85.783 0.617 7.362 0.617
Odroid1 19.187 2.618 26.836 2.752 3.650 2.702
Odroid2 32.783 4.447 51.933 4.253 6.886 4.042
Odroid3 33.378 5.590 71.349 5.651 9.777 7.119
Odroid4 49.152 5.101 82.692 5.862 6.986 5.866
Odroid6 33.609 5.843 47.786 6.156 5.276 6.112
Odroid8 25.650 5.693 63.920 5.643 6.039 6.041
group of actors, as in the single core case.
When considering Fig. 10 or Fig. 11, it can be seen
that the TTA co-processing system configurations are not
fully connected, meaning that there is no direct connection
between all cores. Therefore, there is a set of actor-to-core
mappings, which are not feasible. (E.g. in the case of actors
that have connections that are mapped to different clusters.)
However, it is possible to reduce the set of unfeasible
mappings by using data repeater actors.
Data repeater actors can be used when there is an in-
direct connection between processors through other proces-
sors. Data repeater actors are added to the actor network
and mapped to the processors just for enabling commu-
nication between specific actors. For example, if actor A
communicates with actor B, and actor A is assigned to the
TTA core 0, and B to the TTA core 2 in Inloop3, there is
no way to transfer data directly from TTA core 0 to TTA
core 2. Due to that, the actor network is changed so that
a new data repeater actor DR is placed between A and B
and it is mapped to TTA core 1. DR actors are needed in
the DPD application when triple-core TTA clusters are used.
The actor-to-core mappings of Inloop3 and Shared3 cases are
shown in Fig. 12.
5.6 Results
The performance and power consumption results of differ-
ent TTA co-processing architectures are presented in Table 2.
The place and route results of Inloop3 and Shared3 are used to
estimate power figures for other Inloop and Shared configu-
rations. Fig. 13, Fig. 14 and Fig. 15 show the energy efficiency
of the architectures for all test applications. As explained in
Section 4, TTADF enables executing applications on the host
cores only. To demonstrate this possibility, the performance
and power consumption results of an Odroid XU3 platform
have been included to the results.
The Odroid XU3 is powered by the mobile Samsung
Exynos 5422 SoC, which includes four ARM Cortex-A15 @
2.0 GHz and four Cortex-A7 cores @ 1.4 GHz, and utilizes
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 11
 0
 2
 4
 6
 8
 10
1 2 3 4 6 8 12
Number of cores
 100
 120
 140
 160
 180
 200
 220
 240
m
Jo
ul
es
 p
er
 F
ul
l H
D
fra
m
es
Shared
Inloop
Odroid XU3
Fig. 13. Energy efficiency of the HEVC Inloop Filter application
 0
 2
 4
 6
 8
 10
1 2 3 4 6 8 12
Number of cores
 70
 80
 90
 100
 110
 120
 130
m
Jo
ul
es
 p
er
 m
illi
on
 d
isp
ar
ity
 e
st
im
at
io
n
Shared
Inloop
Odroid XU3
Fig. 14. Energy efficiency of the Stereo Depth Estimation application
 0
 20
 40
 60
 80
 100
1 2 3 4 6 8 12
Number of cores
 500
 600
 700
 800
 900
 1000
 1100
 1200
m
Jo
ul
es
 p
er
 m
illi
on
 s
am
pl
es
Shared
Inloop
Odroid XU3
Fig. 15. Energy efficiency of the Dynamic Predistortion Filter application
the ARM big.LITTLE heterogeneous multi-processing solu-
tion. The dataflow applications are compiled for the Odroid
using GCC 5.4 with an optimization level of 3. The operating
system of the platform was Ubuntu Mate 16.04. The power
figures of the Odroid XU3 platform contain only the power
consumption of the processor cores, measured by current/-
voltage sensors which are integrated to the platform.
Table 2 and Fig. 13 show the performance and energy
efficiency results with the HEVC Inloop filtering workload.
Thanks to the special function units, the Inloop configu-
rations show superior performance and energy efficiency
when compared to the Odroid-XU3 platform or the Shared
configurations. For example, in the three-core case, Inloop
can filter 148 frames per second, whereas the Odroid-XU3
can filter only 49 frames per second at best. Since HEVC
Inloop filtering can easily be parallelized by using tiles,
speedups are about 2×, 4× or 8× when the number of cores
is increased from 1 to 3, 6 or 12 in the cases of Inloop and
Shared configurations.
In stereo depth estimation the performance advantage
of the Inloop based TTA co-processing system is narrow
when compared to the Shared configurations, but it is still
notable. This was expected since the special instructions of
the Inloop cores cannot be utilized in SDE. On the other
hand, when the same instruction memory size (64 KB) is
used in all TTA cores, more aggressive loop unrolling can
be used in the case of the Inloop core, due to its instruction
width being significantly narrower (131 b) than that of
the Shared core (258 b). When the FIFO SFU is exploited,
instruction memory requirements decrease up to 55% per
core. The dataflow implementation of SDE can easily be
parallelized by processing multiple rows at the same time.
The parallelization enables almost linear speedups when
increasing the core count from single core to 3, 6, or 12 in
the case of Inloop (×3.0, ×6.1 and ×10.2) and Shared (×2.9,
×5.8 and ×11.7) configurations. In single core cases, where
all actors are mapped to the same core, actor scheduling
overhead and conservative loop unrolling (due to program
memory limits) decreases throughput with the consequence
that speedups can become superlinear. The Odroid platform
can utilize four cores efficiently, but going beyond that in the
number of processing cores has only a negative impact. In
the best case, Odroid can compute 82 Mde/s.
Dynamic Predistortion filter performance results are pre-
sented in Table 2 and energy efficiency figures in Fig. 15.
Inloop based TTA co-processing architectures outpace Shared
architectures by a small margin regardless of the number
of cores. Inloop configurations can filter from 1.8 up to
9.0 mega samples per second (MS/s), depending on the
number of cores. Both Inloop and Shared show considerable
speedup when the core count is 3 or 6, but in the case of 12
cores, the DPD application structure limits the achievable
speedup. That is caused by the fact that the workloads of
the cores are varying due to dynamic application behavior:
FIR filters can be switched on and off dynamically. The
workload of the DPD application is more suitable to the
Odroid XU3 than the other test applications. The best result
for the Odroid is 9.8 Ms/s when using three cores. This is
more than double when compared to the Inloop3 or Shared3
configurations. However, increasing the number of cores
over three does not give any performance advantage. As
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 12
with other workloads, TTA-based platforms show over 10×
higher energy efficiency than the Odroid.
6 COMPARISON OF RESULTS
Key figures from related existing TTA based works have
been collected to Table 3 for comparison. Yviquel et al.
[23] use RVC-CAL descriptions of applications, and have
implemented a complete HEVC decoder using 12 Fast TTA
processors. The fast TTA is similar to the Shared TTA, but it
has one additional ALU (arithmetic-logical unit), more reg-
isters and 18 transport buses in total. The implementation
can decode five 720p video frames per second.
As the authors of [23] have observed that inloop filtering
takes about 22% of the total decoding time for Full High
Definition (FHD) frames, it was possible to scale the results
of [23] to match our test case of HEVC inloop filtering: the
scaled performance for inloop filtering in [23] is 14.7 FHD
frames per second, which is about 7.6 times to 36.5 times
slower than with our Shared12 and Inloop12 configurations,
respectively. Although the Fast TTA has more computational
resources than the Shared TTA, the Orcc TTA Backend im-
plementation on 12 Fast TTAs has equal performance as the
proposed TTADF implementation of a single Shared TTA.
That can be a consequence of one or both of the following
issues: 1) the RVC-CAL description of HEVC inloop filtering
is not efficient, or 2) the Orcc TTA backend cannot produce
high-quality LLVM code for TTA processors.
Since the proposed Inloop configuration uses tailored
SFU units for HEVC inloop filtering, it is not surprising that
this configuration is about five times faster than the Shared
configuration. For exposing possible overhead caused by the
TTADF framework, the manually tuned implementation of
[40] was included in the comparison (Table 3, Inloop TTA
× 3). In the case of Inloop3, TTADF has only 3% overhead
which means five frames per second.
Nyla¨nden et al. [41] implemented a highly optimized
OpenCL based SAD depth estimation algorithm for a tai-
lored data-parallel SIMD TTA accelerator. In their work,
16-bit floating point arithmetic is used instead of 32-bit
integer arithmetic to decrease memory requirements and
for achieving better energy efficiency by slightly sacrificing
image quality. Compared to the SDE application presented
in this work, their algorithm does not include Sobel fil-
tering or uniqueness thresholding. Their implementation
runs on a single tailored SIMD TTA core clocked at 800
MHz, which can compute 117 Mde/s, whereas Inloop1 can
compute only 14.9 Mde/s, about eight times less. Inloop12
can compute 30% more Mde/s than a single SIMD TTA
core, which shows that the TTADF SDE implementation is
scalable. Because the Inloop architecture is not optimized for
the SDE workload, moderate performance results are not a
surprise. On the other hand, Inloop3 can compete with the
general purpose Intel Core i5-440M mobile processor, while
Inloop6 achieves the performance of the Qualcomm Adreno
330 mobile GPU. Surprisingly, the Odroid XU3, using the
TTADF implementation of SDE, has better performance than
the OpenCL SDE implementation running on an Intel Core
i5-480M.
Finally, the DPD application offers a fair comparison be-
tween the proposed TTADF framework and its closest com-
petitor, the Orcc TTA Backend [23]. The DPD application
was written in the RVC-CAL language, and a multicore TTA
implementation was generated for the application using the
Orcc TTA Backend. Very similar TTA processor cores were
used, as our Shared core is essentially the same as the Custom
core available in the Orcc TTA Backend. Performance results
show that the Orcc TTA Backend based implementation
produces 2.1, 2.9 and 4.0 MS/s per second for 3, 6 and
12 Custom TTA cores, respectively. In comparison, the DPD
implementations produced by TTADF using the Shared TTA
configuration were on average 2× faster. Also, performance
scaling as a function of core count was slightly better for
TTADF, since Shared6 and Shared12 were ×1.9 and ×2.3
faster than Shared3, while the corresponding speedups were
1.4× and 1.6× for the Orcc TTA Backend.
7 DISCUSSION
The TTADF and the Orcc TTA Backend frameworks can
essentially be used for the same purpose, but their design
flows have a substantial difference. In TTADF, the designer
separately specifies the system architecture (TTA core defi-
nition, core connections, and host connections), after which
the dataflow application is mapped to the architecture. In
contrast, in the Orcc TTA backend, the system architecture
(TTA core interconnections) is derived from the dataflow ap-
plication. From this viewpoint, TTADF can be considered to
be more generic. On the other hand, the Orcc TTA Backend
provides more automation due to automatic interconnect
generation and actor mapping features. Besides, Orcc offers
high-level dataflow analysis features which are currently
not available in TTADF.
TTADF enables the possibility to map actors to the host
processor, and in simulations, these actors are executed on
the host system of the framework. Testing of an individual
actor on a particular TTA core is easy and fast since test data
for the actor is created by other actors of the application at
runtime.
A previous paper [40] from the authors of the proposed
work presented a 3-core TTA accelerator for HEVC inloop
filtering with manually optimized C code, which achieved
152 HD frames/s processing performance at 207 mW. Now,
as TTADF has been measured to achieve a throughput
of 148 HD frames/s with practically the same processor
core, but generated from a generic dataflow-based design
framework, it is justified to state that TTADF offers a way to
raise the abstraction level of multicore co-design with negligible
impact on performance. Additionally, the experimental results
suggest that TTADF can outperform the current state of the
art, the Orcc TTA backend, by a clear margin regarding
performance. Especially the possibility of exploiting special
function units gives a substantial competitive advantage for
TTADF over the Orcc TTA backend.
In the future, various new features can be adapted to
TTADF: automatic mapping of actors to cores and automatic
creation of data repeater actors. When considering hard-
ware, the possibility of power saving could be achieved by
observing FIFO fill counts. There are also plans to directly
support SoC FPGAs so that a TTA co-processing system
is placed on the programmable logic, and the host-mapped
actors are executed on hard processor cores.
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 13
TABLE 3
Comparison of different programmable implementations of the test case applications
Application Architecture Framework Tech. Clkf Perf. Power Energy Eff.
(nm) (MHz) (mW) (mJ/ Perf. unit)
HEVC Inloop
[23] Fast TTA × 12 Orcc 40 1000 14.67 fps 1 - -
Shared12 TTADF 28 1200 93.1 fps 617 6.63
Inloop12 TTADF 28 1200 536 fps 843 2 1.57
[40] Inloop TTA × 3 None 28 1200 153 fps 207 1.35
Inloop3 TTADF 28 1200 148 fps 211 2 1.43
Shared3 TTADF 28 1000 24.0 fps 154 6.42
Stereo Depth Estimation
[41] OpenCL SIMD TTA OpenCL 28 800 117 Mde/s 3 33 0.28
[41] Intel Core i5-480M OpenCL 32 2600 30.3 Mde/s 3 35000 1155
[41] Qualcomm Adreno 330 OpenCL 28 578 99.1 Mde/s 3 1800 18.16
Inloop1 TTADF 28 1200 14.9 Mde/s 69 2 4.63
Inloop3 TTADF 28 1200 44.8 Mde/s 211 2 4.71
Inloop12 TTADF 28 1200 152 Mde/s 843 2 5.55
Odroid-XU3 TTADF 28 2000 82.1 Mde/s 5861 71.4
Dynamic Predistortion Filter Shared3 (Orcc TTA Backend) Orcc 28 1000 1.75 Msample/s 154 88.0
Shared6 (Orcc TTA Backend) Orcc 28 1000 2.38 Msample/s 309 135.5
Shared12 (Orcc TTA Backend) Orcc 28 1000 3.31 Msample/s 617 248.79
Shared6 TTADF 28 1000 5.2 Msample/s 309 59.42
Inloop6 TTADF 28 1200 7.46 Msample/s 422 2 56.57
1Estimated assuming that the share of inloop filtering is 22% [23] of total HEVC decoding workload
2Estimate based on work [40], 316-bit floating point, no sobel filtering and uniqueness thresholding
8 CONCLUSION
In this paper, TTADF, a dataflow framework dedicated to
transport triggered architectures is presented. TTADF en-
ables software synthesis of dynamic dataflow applications
to a TTA based co-processing system, which can be co-
designed with the dataflow software. The dataflow descrip-
tions of applications are written using C and XML. The
design flow achieves energy efficient implementation by
offering many design options:
• Special (custom) operations by calls from C code,
• Hybrid memory architecture for reduced congestion
and improved access times,
• Hardware accelerated FIFO access operations that
save instruction memory.
TTADF enables three different simulation approaches
with different accuracy and speed tradeoffs, including C++,
SystemC, and mixed HDL simulations. TTADF was eval-
uated using three applications from different fields, con-
sisting of video coding, machine vision, and wireless com-
munications. The experimental results show that the energy
efficiency of the TTADF-generated system falls within 3% of
a manually designed baseline and that the generated mul-
tiprocessing platform overcomes a commercial multicore by
10× in energy efficiency while providing similar or better
performance.
ACKNOWLEDGMENTS
The work was partially funded by the Academy of Finland
project 309693 UNICODE and Tauno To¨nning Foundation.
REFERENCES
[1] S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software syn-
thesis and code generation for signal processing systems,” IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 47, no. 9, pp. 849–875, 2000.
[2] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-
chip (MPSoC) technology,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 10, pp. 1701–
1713, 2008.
[3] P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens,
“Embedded software in real-time signal processing systems: ap-
plication and architecture trends,” Proceedings of the IEEE, vol. 85,
no. 3, pp. 419–435, 1997.
[4] D. Goodwin and D. Petkov, “Automatic generation of application
specific processors,” in Proceedings of the 2003 international confer-
ence on Compilers, architecture and synthesis for embedded systems.
ACM, 2003, pp. 137–147.
[5] G. Martin, “Overview of the MPSoC design challenge,” in Design
Automation Conference, 2006 43rd ACM/IEEE. IEEE, 2006, pp. 274–
279.
[6] W. M. Johnston, J. Hanna, and R. J. Millar, “Advances in
dataflow programming languages,” ACM Computing Surveys
(CSUR), vol. 36, no. 1, pp. 1–34, 2004.
[7] J. Castrillon, R. Leupers, and G. Ascheid, “Maps: Mapping Con-
current Dataflow Applications to Heterogeneous MPSoCs,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 527–545, 2013.
[8] H. Yviquel, J. Boutellier, M. Raulet, and E. Casseau, “Automated
design of networks of transport-triggered architecture processors
using dynamic dataflow programs,” Signal Processing: Image Com-
munication, vol. 28, no. 10, pp. 1295–1302, 2013.
[9] E. Bezati, S. Casale-Brunet, M. Mattavelli, and J. W. Janneck,
“High-level synthesis of dynamic dataflow programs on het-
erogeneous MPSoC platforms,” in Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), 2016 International
Conference on. IEEE, 2016, pp. 227–234.
[10] M. Dardaillon, K. Marquet, T. Risset, J. Martin, and H.-P. Charles,
“A new compilation flow for software-defined radio applications
on heterogeneous MPSoCs,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 13, no. 2, p. 19, 2016.
[11] J. Boutellier, J. Wu, H. Huttunen, and S. S. Bhattacharyya,
“PRUNE: Dynamic and Decidable Dataflow for Signal Processing
on Heterogeneous Platforms,” IEEE Transactions on Signal Process-
ing, vol. 66, no. 3, pp. 654–665, 2017.
[12] H. Corporaal, Microprocessor Architectures: From VLIW to TTA.
New York, NY, USA: John Wiley & Sons, Inc., 1997.
[13] P. Ja¨a¨skela¨inen, V. Guzma, A. Cilio, T. Pitka¨nen, and J. Takala,
“Codesign toolset for application-specific instruction set proces-
sors,” in Multimedia on Mobile Devices 2007, vol. 6507. Interna-
tional Society for Optics and Photonics, 2007.
[14] O. Esko, P. Ja¨a¨skela¨inen, P. Huerta, C. S. de La Lama, J. Takala,
and J. I. Martinez, “Customized Exposed Datapath Soft-Core
Design Flow with Compiler Support,” in Proceedings of the 2010
IEEE TRANSACTIONS ON COMPUTERS VOL. XX, NO. XX AUGUST 2019 14
International Conference on Field Programmable Logic and Applications.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 217–222.
[15] J. B. Dennis, “First version of a data flow procedure language,” in
Programming Symposium. Springer, 1974, pp. 362–376.
[16] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.
[17] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceed-
ings of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.
[18] H.-W. Park, H. Oh, and S. Ha, “Multiprocessor SoC design meth-
ods and tools,” IEEE Signal Processing Magazine, vol. 26, no. 6, 2009.
[19] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the Ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.
[20] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and
M. Raulet, “Orcc: Multimedia development made easy,” in Pro-
ceedings of the 21st ACM International Conference on Multimedia,
2013, pp. 863–866.
[21] K. Jerbi, H. Yviquel, A. Sanchez, D. Renzi, D. De Saint Jorre,
C. Alberti, M. Mattavelli, and M. Raulet, “On the Development
and Optimization of HEVC Video Decoders Using High-Level
Dataflow Modeling,” Journal of Signal Processing Systems, vol. 87,
no. 1, pp. 127–138, 2017.
[22] M. Chavarrias, F. Pescador, M. J. Garrido, E. Juarez, and M. Raulet,
“A DSP-Based HEVC decoder implementation using an actor lan-
guage dataflow model,” IEEE Transactions on Consumer Electronics,
vol. 59, no. 4, pp. 839–847, 2013.
[23] H. Yviquel, A. Sanchez, P. Ja¨a¨skela¨inen, J. Takala, M. Raulet, and
E. Casseau, “Embedded multi-core systems dedicated to dynamic
dataflow programs,” Journal of Signal Processing Systems, vol. 80,
no. 1, pp. 121–136, 2015.
[24] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications
onto on-chip many-core systems,” in Proc. International Confer-
ence on Compilers Architecture and Synthesis for Embedded Systems
(CASES), Oct 2012, pp. 71–80.
[25] L. Schor, A. Tretter, T. Scherer, and L. Thiele, “Exploiting the
Parallelism of Heterogeneous Systems using Dataflow Graphs on
Top of OpenCL,” in Proc. IEEE Symposium on Embedded Systems for
Real-time Multimedia (ESTIMedia). Montreal, Canada: IEEE, Oct
2013, pp. 41–50.
[26] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“Preesm: A dataflow-based rapid prototyping framework for
simplifying multicore DSP programming,” in 2014 6th European
Embedded Design in Education and Research Conference (EDERC),,
Sept 2014, pp. 36–40.
[27] J. Zhang, J.-F. Nezan, M. Pelcat, and J.-G. Cousin, “Real-time GPU-
based local stereo matching method,” in 2013 Conference on Design
and Architectures for Signal and Image Processing (DASIP). IEEE,
2013, pp. 209–214.
[28] J. Boutellier, O. Silve´n, and M. Raulet, “Automatic synthesis of
TTA processor networks from RVC-CAL dataflow programs,” in
2011 IEEE Workshop on Signal Processing Systems (SiPS). IEEE,
2011, pp. 25–30.
[29] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.
[30] J. Boutellier and O. Silve´n, “Towards generic embedded multi-
processing for RVC-CAL dataflow programs,” Journal of Signal
Processing Systems, vol. 73, no. 2, pp. 137–142, 2013.
[31] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying Event-Driven Programming of Memory-Constrained
Embedded Systems,” in Proceedings of the Fourth ACM Conference
on Embedded Networked Sensor Systems (SenSys 2006), Boulder,
Colorado, USA, Nov. 2006.
[32] A. Tretter, J. Boutellier, J. Guthrie, L. Schor, and L. Thiele, “Exe-
cuting Dataflow Actors As Kahn Processes,” in Proceedings of the
12th International Conference on Embedded Software, ser. EMSOFT
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 105–114.
[33] M. Michalska, N. Zufferey, J. Boutellier, E. Bezati, and M. Mat-
tavelli, Efficient scheduling policies for dynamic data flow programs
executed on multi-core, ser. 11th International Meeting on Logistics
Research, 2016.
[34] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview
of the High Efficiency Video Coding (HEVC) Standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 12, pp. 1649–1668, Dec. 2012.
[35] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda,
K. Andersson, M. Zhou, and G. Van der Auwera, “HEVC De-
blocking Filter,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1746–1754, Dec. 2012.
[36] C. M. Fu, E. Alshina, A. Alshin, Y. W. Huang, C. Y. Chen, C. Y. Tsai,
C. W. Hsu, S. M. Lei, J. H. Park, and W. J. Han, “Sample Adaptive
Offset in the HEVC Standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1755–1764, Dec.
2012.
[37] I. Hautala, J. Boutellier, J. Hannuksela, and O. Silve´n, “Pro-
grammable low-power multicore coprocessor architecture for
HEVC/H. 265 in-loop filtering,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 25, no. 7, pp. 1217–1230, 2015.
[38] K. Mu¨hlmann, D. Maier, J. Hesser, and R. Ma¨nner, “Calculating
dense disparity maps from color stereo images, an efficient imple-
mentation,” International Journal of Computer Vision, vol. 47, no. 1-3,
pp. 79–88, 2002.
[39] M. Abdelaziz, A. Ghazi, L. Anttila, J. Boutellier, T. La¨hteensuo,
X. Lu, J. R. Cavallaro, S. S. Bhattacharyya, M. Juntti, and
M. Valkama, “Mobile transmitter digital predistortion: Feasibility
analysis, algorithms and design exploration,” in 2013 Asilomar
Conference on Signals, Systems and Computers. IEEE, 2013, pp. 2046–
2053.
[40] I. Hautala, J. Boutellier, and O. Silve´n, “Programmable 28nm
coprocessor for HEVC/H.265 in-loop filters,” in 2016 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), May 2016, pp.
1570–1573.
[41] T. Nyla¨nden, H. Kultala, I. Hautala, J. Boutellier, J. Hannuksela,
and O. Silve´n, “Programmable data parallel accelerator for mobile
computer vision,” in 2015 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). IEEE, 2015, pp. 624–628.
Ilkka Hautala received his M.Sc. (Tech.) degree
from the Department of Electrical and Informa-
tion Engineering at the University of Oulu (Fin-
land) in 2013. He is currently a doctoral student
in the Center for Machine Vision Research at
the University of Oulu. His research interests
include low-power design, multicore processor
architectures and video coding techniques.
Jani Boutellier received the M.Sc. and Ph.D.
degrees from the University of Oulu, Finland, in
2005 and 2009, respectively. Currently he is an
Associate Professor at the School of Technology
and Innovations, University of Vaasa, Finland.
His research interests include dataflow program-
ming, design and implementation of deep learn-
ing algorithms, and heterogeneous computing.
He is a member of the IEEE Signal Processing
Society DISPS Technical Committee.
Olli Silve´n received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Univer-
sity of Oulu, Finland, in 1982 and 1988, respec-
tively. Since 1996, he has been a professor of
signal processing engineering at the University
of Oulu. His main research interests are in em-
bedded signal processing and machine vision
system design. He has contributed to the de-
velopment of numerous solutions from real-time
3-D imaging in reverse vending machines to IP
blocks for mobile video coding.

