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Abstract: Needed new cost-efficient, reliable, standardised and redundant solutions for future resilient smart grids must utilise
possibilities of advanced ICT technologies (such as wireless fifth generation and cloud servers with smart big data analytics)
and have cyber-security integrated into all solutions. In this study, resilient, future-proof, grid-code compatible combined
islanding detection scheme for medium-voltage (MV) and low-voltage network-connected distributed generation units during
grid-connected operation is simulated. The utilisation of active network management functionality at the MV level enables to
control the reactive power unbalance continuously in order to ensure reliable islanding detection without a non-detection zone.

The combined scheme also prevents maloperations due to other disturbances.

1 Introduction

In the future, active utilisation of controllable, flexible, distributed
energy resources (i.e. flexibilities such as distributed generation
(DG), energy storages, controllable loads/demand response,
intelligent charging of electric vehicles) will be in key role to
enable more resilient power system. Electricity distribution
network areas with flexibilities, i.e. FlexZones [1] or nested
microgrids could be seen as resilient power system building blocks.
Intelligent and coordinated use of microgrids’ flexibilities between
distribution and transmission system operators (DSOs and TSOs)
for different technical services enables the realisation of improved
local and system-wide grid resiliency in the future during grid-
connected operation mode. During transmission or distribution
network downtimes due to storms, natural disasters or external
attacks (physical or cyber) microgrid with flexibilities can still
continue electricity supply to customers in islanded operation
mode. However, this also creates needs for future network
management and protection methods and solutions which have to
be adapted and developed in order to enable utilisation of intended
island operation as well as active control and utilisation flexibilities
during grid-connected and islanded operation modes [2-5].
Already today and also in the future, the use of frequency (f),
voltage (U) and rate-of-change-of-frequency for defining DG units’
fault-ride-through (FRT) requirements in the new gridcodes are on
the rise. In addition, in European ENTSO-E grid-code
requirements for generators (RfG) [6], it has been stated that
islanding detection should not be based only on the network
operator's switchgear position signals. Therefore, combined
islanding detection schemes [e.g. high-speed communication-based
transfer trip through optical fibre/wireless fifth generation (5G)
such as [EC, 61850-based GOOSE or routable R-GOOSE message
and fault detection/direction + voltage vector shift (VVS)] (Fig. 1)
are needed in the future. With resilient combined scheme
maloperation due to other network events can be avoided, non-
detection zone (NDZ) can be minimised, prioritisation issues with
DG unit grid-code requirements can be avoided and ENTSO-E
RfG requirement (not only status position detection) can be
fulfilled. Utilisation of active network management (ANM)
functionality at medium-voltage (MV) level enables to control the
reactive power unbalance Q,,, continuously in order to ensure
islanding detection of the passive method (such as VVS with
sensitive settings) in the combined scheme without NDZ (Fig. 1).
Realisation of future-proof and grid-code compatible schemes
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requires studies regarding dependencies between protection,
islanding detection and ANM functionalities [1, 5-13].

In this paper, combined islanding detection schemes (Fig. 1) for
both MV and low-voltage (LV) network-connected DG units
during grid-connected operation are studied by power systems
computer-aided design (PSCAD) simulations with a model from
Sundom smart grid (SSG), which is a local smart grid pilot in
Vaasa, Finland. The focus is on such scheme (Fig. 1) which, in
addition to other simultaneous Qo and U -management targets
(Fig. 1), utilises reactive power unbalance control-based Oy, and

U-management ANM scheme to ensure reliable islanding
detection. The purpose is also, as part of the combined islanding
detection scheme, that the fault location could be taken
intelligently into account by fault detection/direction information
from primary and secondary substations so that depending on the
fault location, DG units inside faulted network section will be
disconnected (faulty island) and DG units outside faulted section
would not be unnecessarily disconnected (Fig. 1). The DG units
outside the faulted section could then be used for improving local
or system-wide grid resiliency through FRT, P/f- or Q/U-control or
intentional island operation depending on the fault location, power
balance situation etc. before fault, prioritisation as well as
allowance of intended island operation (Fig. 1).

2 SSG and studied ANM scheme

SSG in Vaasa, Finland (Fig. 2) is a smart grid pilot of ABB Oy,
Vaasan Sdhkd (local DSO), Elisa (telecommunication company,
previously Anvia) and University of Vaasa. SSG serves as Finnish
Innovation Cell (IC) in demonstration of coordinated ancillary
services (DeCAS covering different voltage levels and the
integration in future markets) project. IC Finland concentrates on
research and development of (i) future ANM scheme (Fig. 1) and
(ii) related technical flexibility service market structures as well as
on the development of (iii) future-proof islanding detection
functionalities (Fig. la). In SSG IEEE 1588 time-synchronised,
more accurate IEC 61850-9-2 sampled values and less accurate
GOOSE values based, measurement data from multiple points is
collected and stored in servers (Fig. 2) to enable research and
development of ANM (Fig. 1b), protection and islanding detection
functionalities (Fig. la) [10]. Today there are two DG units
connected to SSG (Fig. 2). One full-power-converter-based wind
turbine (3.6 MW) connected to MV network with own MV feeder
JO8 (Fig. 2) and another LV network-connected inverter-based PV
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(a) Combined islanding detection scheme, (b) Grid-code compatible ANM scheme able to fulfil multiple targets simultaneously, (¢) Dependencies between network status,

protection, islanding detection and ANM functionalities and issues related to intended islanding (microgrid operation) prioritisation

unit (33 kW) at MV/LV substation TR4318 (Fig. 2). Islanding
detection (Fig. 1a) is one of the multiple targets of the studied and
developed ANM scheme (Fig. 15). The ANM scheme target limits
which need to be fulfilled can be studied in two different cases
(Fig. 3).

In case 1, Fingrid's (Finnish TSO) ‘reactive power window’
(which is a requirement today) is used to set the limits for reactive
power exchange between distribution network and transmission
network at SSG HV/MV substation (Fig. 3a). The ENTSO-E
network code for demand connection (DC) [14] (future
requirement) is used to set these same limits in case 2 (Fig. 3b).

Fig. 4 presents DeCAS target schematics of IC Finland (SSG)
regarding  ANM scheme (Fig. 1b) mapped to smart grid
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architecture model (i.e. SGAM that shows the different layers of
interoperability.). In Fig. 5, also the developed web interface
(Fig. 4) in the DeCAS project for IC Finland GOOSE values based
measurement data real-time (RT) viewing, storing and
downloading developed by Jubic (https://www.jubic.fi/en/) is
presented.

Fig. 6 shows that based on real-life GOOSE measurements
from SSG (Figs. 2 and 5), operation in active (P) and reactive (Q)
power balance (i.e. in NDZ of most passive islanding detection
methods) is possible in the studied substation.
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Fig. 3 ANM scheme target limits

(a) In case 1, Fingrid's ‘reactive power window’, (b) In case 2 ENTSO-E NC for DC
[14] is used to set the limits for reactive power exchange between distribution network
and transmission network at SSG HV/MV substation (Fig. 2) as part of the studied
ANM scheme (Fig. 15)

3 Simulation study cases and results

In this section, PSCAD simulation results from islanding detection
simulations in SSG (Fig. 2) during grid-connected operation are
presented. The simulation studies purpose for this paper was to
focus on the development of primarily combined islanding
detection schemes [10] shown in Fig. 1 (i.e. high-speed
communication-based transfer trip and fault detection/direction +
VVS).

The fault detection logic, either centralised or decentralised,
requires information from multiple locations as well as from other
network status related issues. Therefore, in the future, for example,
centralised islanding detection logic at HV/MV and MV/LV
substation protection and control unit level utilising high-speed
communication (cost-efficient, low-latency wireless 5G and R-
GOOSE in the future) would be very potential way to realise these
future schemes which have dependencies with protection and
ANM functionalities (Fig. 1) [10]. Utilised islanding detection
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at Sundom HV/MYV substation (Fig. 2)

scheme should be coordinated with used protection scheme during
normal grid-connected operation as well as with distributed energy
resourced (DER) unit P/f'and Q/U-control grid-code requirements
as stated in [10]. In addition, both islanding detection and
protection (e.g. in [4, 16, 17]) schemes during normal operation
should be compatible with DER unit voltage and frequency FRT
requirements which are set by gridcodes or which enable the stable
transition to islanded operation (such as extended FRT
requirements).

In general, from combined islanding detection (Fig. 1)
operation speed point of view, it matters to some extent
(communication latency) in which point VVS detection is made
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Fig. 8 Frequency, positive sequence voltage and VVS of MV network DG
unit (wind turbine) and LV network DG unit (PV) primary islanding
detection scheme during grid-connected operation of SSG (Fig. 2) in five
different healthy islanding detection cases without fault (see Fig. 7),
islanding att=3.6 s

(see Fig. 2). Islanding can be detected most rapidly if VVS is
detected at the connection point of the DG unit. Also from a back-
up islanding detection scheme point of view, local VVS and fault
detection [10] at connection point is beneficial. However, fault
detection information from the opened circuit breaker (CB) (which
sends an islanding detection transfer trip signal) should include
also healthy or faulty island detection information (Fig. 1) [10].
Many different islanding detection scenarios were simulated with
and without fault before islanding (fault locations are shown in
Fig. 2). In the following, some chosen healthy and faulty islanding
detection cases are presented. In all simulations MV islanding
occurs at = 3.6 s by the opening of CB JO5 (Fig. 2).

3.1 SSG healthy islanding detection simulations without fault

In Fig. 7, MV and LV network primary islanding detection
schemes for wind turbine and PV unit (Fig. 2) during grid-
connected operation of SSG in healthy islanding detection cases

J. Eng., 2018, Vol. 2018 Iss. 15, pp. 1054-1060
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Fig. 9 MV network DG unit (wind turbine) primary islanding detection
scheme with

(a) HIGH prioritisation, () NORMAL prioritisation (Fig. 1¢) during grid-connected
operation of SSG (Fig. 2) in healthy islanding detection case with HV fault

without fault are presented. Fig. 8 shows frequency, positive
sequence voltage (Ul) and VVS seen by the primary islanding
detection scheme of MV network DG unit (wind turbine) and LV
network DG unit (PV) during grid-connected operation of SSG
(Fig. 2) in five different healthy islanding detection cases without
fault (see Fig. 7).

From simulation results (Fig. 8), it can be seen that rapid
enough (<100 ms) islanding detection can be achieved with the
proposed combined scheme (Fig. 1) in all cases, except in case 1
near active and reactive power unbalances.

3.2 SSG healthy islanding detection simulations with HV fault

In Fig. 9, MV network primary islanding detection schemes for a
wind turbine (Fig. 2) with HIGH or NORMAL prioritisation during
grid-connected operation of SSG in healthy islanding detection
cases with HV fault are shown. Figs. 10 and 11 present the
simulation results from cases with HIGH prioritisation.

In Fig. 9, cases of wind turbine control mode (from grid-
connected to islanded control mode) are changed after healthy
islanding detection (and 2° VVS) with JO5 fault detection (U<) and
no fault detection (DOC) from J06, JO7, JO8, JO9 and reclosers
(islanding prioritised HIGH or NORMAL). In these cases with
HIGH prioritisation (Figs. 10 and 11) islanding happens rapidly in
50 ms after detected undervoltage due to three-phase HV fault
(cases 1 and 4). However, VVS setting 2" would not be enough in
two-phase HV fault cases 2, 3 and 5 for fast islanding detection
(Fig. 10). To enable islanding detection in these cases with HIGH
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— Casel:Pu KW, Qunb = +100 kVAr, HV 3-phase fault

— Case2:Pu KW, Qunb = +100 kVAr, HV 2-phase fault

—— Case 3: Punb ~ 0 KW, Qunb = +100 kVAT, HV 2-phase fault,
with negative sequence current injection

= Case 4: Punb ~ 0 KW, Qunb = +400 VAT, HV 3-phase fault

~—— Case 5: Punb ~ 0 KW, Qunb = +400 kVAT, HV 2-phase fault

- Inall cases prioritization (HIGH) => U< at JOS operates in 50 ms,
control mode change after 2 deg VVS (min. 20 ms after islanding)
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(wind turbine) primary islanding detection scheme and U apgle=1] angle

(J05), Uz _angle™12_angle (J05) and U} _angle=11_angle (JO8) with HIGH prioritisation during grid-connected operation of SSG (Fig. 2) in five different healthy

islanding detection cases with HV fault 50 ms before islanding at t = 3.6 s (see Fig.

— Case 1: Punb = 0 kW, Qunb = +100 kVAr, HV 3-phase fault

— Case 2: Punb ~ 0 kW, Qunb = +100 kVAr, HV 2-phase fault

— Case 3: Punb ~ 0 kW, Qunb = +100 kVAr, HV 2-phase fault,

with negative sequence current injection

— Case 4: Punb ~ 0 kW, Qunb = +400 kVAr, HV 3-phase fault
Case 5: Punb ~ 0 kW, Qunb = +400 kVAr, HV 2-phase fault

-In all cases prioritization (HIGH) => U< at JOS operates in 50 ms,

control mode change after 2 deg VVS min. 20 ms after islanding)
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Fig. 11 Positive and negative sequence current magnitudes (I1_mag and
12_mag) at JO5 and JO8 with HIGH prioritisation during grid-connected
operation of SSG (Fig. 2) in five different healthy islanding detection cases
with HV fault 50 ms before islanding at t = 3.6 s (see Fig. 9)

prioritisation even more sensitive (e.g. 1) setting should be used
(Fig. 9). Fault direction can be detected in all HV fault cases based
on positive and negative sequence current magnitudes and angle
differences (Figs. 10 and 11).

3.3 SSG faulty islanding detection simulations with MV fault

In Fig. 12, MV network primary islanding detection schemes for a
wind turbine (Fig. 2) with NORMAL prioritisation during grid-
connected operation of SSG in faulty islanding detection cases with
MV fault at parallel (JO6) or same (JO8) MV feeder are presented.

When there is MV fault at parallel MV feeder (JO6 in Fig. 12a),
no faulty islanding by the opening of JO5 CB should happen.
Preventing blocking signal should be sent from J06 IED to JOS5. In
general, in both MV fault related cases in Fig. 12 HIGH
prioritisation should be only possible in case of upstream faults, i.e.
no directional over-current (DOC) starting/detection
simultaneously.

In MV fault at the same (JO8) MV feeder (Fig. 12b), MV feeder
protection JO8 should operate and wind turbine control mode
should not be changed (faulty islanding detection). In MV fault at
the same (JO8) MV feeder DG unit connection point CB
disconnects the wind turbine by operating in 70 ms after faulty
islanding detection. Figs. 13 and 14 present the simulation results
from cases with MV fault at the same (JO8) MV feeder.
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Fig. 12 MV network DG unit (wind turbine) primary islanding detection
scheme during grid-connected operation of SSG (Fig. 2) in faulty islanding
detection cases with MV fault (NORMAL prioritisation) at

(a) Parallel (J06), (b) Same (JO8) MV feeder

In Fig. 14, positive and negative sequence current magnitudes
and angle differences seen in different points by respective IEDs
(JOS, J06, JO7 and JO8) during three- or two-phase faults at the
same (JO8) MV feeder in which wind turbine (Fig. 2) is connected
to are shown. To prevent unnecessary operation of JOS5, blocking
signal should be sent from JO8 IED to JO5 IED.
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= Case 1: Punb ~ 0 kW, Qunb = +100 kVAr, HV 3-phase fault
= Case 2: Punb ~ 0 kW, Qunb = +100 kVAr, HV 2-phase fault
=== Case 3: Punb ~ 0 kW, Qunb = +100 kVAr, HV 2-phase fault,
with negative sequence current injection
- In all cases prioritization (NORIMAL) => U< at JO8 operates in 100 ms,
opening of wind turbine connection point CB in 70 ms after faulty
islanding detection
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Fig. 13 Frequency, positive sequence voltage and VVS of MV network DG
unit (wind turbine) primary islanding detection scheme during grid-
connected operation of SSG (Fig. 2) in three different faulty islanding

detection cases with MV fault (NORMAL prioritisation) at the same (JOS)
MYV feeder 100 ms before islanding at t = 3.6 s (see Fig. 12)

Case 1: Punb ~ 0 kW, Qunb = +100 kVAr, HV 3-phase fault

Case 2: Punb = 0 kW, Qunb = +100 kVAr, HV 2-phase fault

— J05 MV feeder = J07 MV feeder

— J06 MV feeder = J08 MV feeder

- Inall cases prioritization (NORMAL) => U< at J08 operates in 100 ms,
opening of wind turbine connection point CB in 70 ms after faulty
islanding detection
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Fig. 14 Positive and negative sequence current magnitudes (I] mqg and
12_mag) as well as Ul angle=11_angle and Uz angle™12 angle during grid-
connected operation of SSG (Fig. 2) in two different faulty islanding
detection cases with MV fault (NORMAL prioritisation) at the same (JOS)
MYV feeder 100 ms before islanding at t = 3.6 s (see Fig. 12)

4 Conclusions

In this paper, combined islanding detection schemes for both MV
and LV network-connected DG units during the grid-connected
operation were successfully simulated. Islanding detection is one of
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Fig. 15 Accurate studied ANM scheme (Fig. 1b) control limits in SSG
(Fig. 2) for

(a) Case 1 Fingrid's ‘reactive power window’, () Case 2 ENTSO-E NC for DC [14]
(see also Fig. 3)

the multiple targets of the studied ANM scheme and Fig. 15 shows
the initial ANM scheme control limits in SSG based on the
islanding detection simulations.

In the future, the target is that the combined islanding detection
scheme simulated in this paper with PSCAD is further verified
with OPAL-RT RT simulator at the University of Vaasa and field
tests at SSG.
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