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Summary: Assume (X , P ) is  1/2-self-similar, rotation invariant diffusion on R , d 2, starting at 0t
0 d �

and assume {0} is a polar set. We will show, using the corresponding well-known result for the radial
process,  that Shiga-Watanabe's time inversion property holds for (X , P ). The generalization for an -t

0
�

self-similar, rotation invariant  diffusion, >0,  is also given.�
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                                 0. Introduction. Theorem.

The following time inversion property is well known for Brownian motion in R , d 1, and Besseld �

diffusions on [0, ), starting at 0 (see Shiga, Watanabe (1973) and Watanabe (1975)):�

(0.1)          (X )   has the same finite dimensional distributions as  (tX ) under P , for all t>0.t 1/t
0

This was in Graversen, Vuolle-Apiala (2000) shown to be true also for symmetrized Bessel processes on
R, starting at 0, in the case of the index (-1,0), that is, (X ) can both hit 0 and can be started at 0.� � t
Symmetrized Bessel processes form the class of one dimensional rotation invariant 1/2-self similar
diffusions (see the definition below). If the index -1 then 0 is an exit boundary point, that is, (X )� � t
can hit 0 but it cannot be started there. If 0 then 0 is an entrance boundary point, that is, (X ) can be� � t
started there and it will never come back. Thus in this case (X ) in fact lives either on [0, ) or on (- ,t � �

0] and {0} is a polar set. Obviously, (0.1) is valid. (0.1) has been generalized for -self-similar�

diffusions on [0, ) and for symmetric -self-similar diffusions on R, >0, in Graversen, Vuolle-� � �

Apiala (2000). The corresponding generalization of (0.1) is then

(0.2)      (X )   has the same finite dimensional distributions as  (t X ) under P , for all t>0.t 1/t
2 0�

   In this note we will show that (0.2) holds for all rotation invariant, d-dimensional, - self-similar�

diffusions (that is, strong Markov processes with continuous paths), d 2, >0, for which {0} is a� �

polar set. Our main tool is a skew product representation for rotation invariant diffusions starting at 0;
see Ito, Mc Kean Jr., 1974, p. 274 - 276.^
    Let (X , P ) be a rotation invariant (RI) -self-similar ( -ss) diffusion on R , d 2, >0, such thatt

x d
� � ��

{0} is a polar set. By -self-similarity we mean that�

(0.3)        (X ) under P  has the same finite dimensional distributions as  (a X ) under P  for allt at
x - a x�

�

x R , a>0� d

and by (RI) that



(0.4)       (X ) under P  has the same finite dimensional distributions as (T (X )) under P  for allt t
x -1 T(x)

T O(d).�

Self-similar diffusions on R or on [0, ) are defined similarly. Brownian motion fullfills both (0.3) and�

(0.4). See more about processes fullfilling (0.3) and (0.4) in Graversen, Vuolle-Apiala (1986), Lamperti
(1972) and Vuolle-Apiala, Graversen (1986). According to Graversen, Vuolle-Apiala (1986) and
Vuolle-Apiala (2002), when X  0  the diffusion processes which  fullfill (0.3) and (0.4) can be0 �

represented as skew products

(0.5)           [|X |, ],t A� t

where  A  = |X | ds  for some >0, the radial part (|X |) is an -ss diffusion on (0, ), and ( ) is at s t t
0

t
-1/

� � � �� � �

spherical Brownian motion on S  independent of (|X |).d-1
t

Remark: As showed in Graversen, Vuolle-Apiala (1986), (0.5) is valid for all strong Markov processes
with cadlag paths fullfilling (0.3) and (0.4). However, as showed by a counterexample by J. Bertoin, W.
Werner (1996), the independence between (|X |) and ( ) is not necessarily true if the paths are only rightt t�

continuous. There is an error in the proof of Proposition 2.4, p.19-20 in Graversen, Vuolle-Apiala
(1986). It was showed in Vuolle-Apiala (2002), Lemma 2.1, that (|X |) and ( ) are independent  in thet t�

case of continuous paths.

      We want to prove the following:

Theorem: Let (X , P ) be an (RI) -ss diffusion on R , >0, d 2, starting at 0, having {0} as a polart
0 d

� � �

set. Then the time inversion property (0.2) is valid.

                                1. The Proof of the Theorem

     The proof will be based on

Proposition: Let (r ) be an -ss diffusion on [0, ), >0, such that 0 is an entrance, non-exit boundaryt � ��

point. Then the skew product
(0.6)                   [r , ] , t>0, r >0,   wheret 0

r ds
�
��

0

t

s
-1/�

( , Q ) is a spherical Brownian motion on S  independent of (r ), such that Q ( = ) = 1 S ,� � � �t t 0
d-1 d-1� � � �

can be completed to be an -ss diffusion on R  by defining�
d

(0.7)                 [r , ]   , t>0, when r =0.t 0
r ds

�
��

1

t

s
-1/�

where ( , Q) is an independent, spherical Brownian motion defined for - <t<+  and the law of ( ) is� �t 0� �

the uniform spherical distribution m(d ).�



Remark 1: Because of a uniquenness result of  RI measures on S  there is at most one way to completed-1

(0.6) to be RI on the whole R .d

Remark 2: It is obvious that ( , Q) in fact is a stationary process and  is uniformly distributed for all� �t t
t R (see Kuznetsov, 1973).�

                        We have

(0.8)      Q{ d , ... , d } = m(d )Q ( d ) ... Q ( d )� � � � � � � � �t 1 t n 1 t -t 2 t -t n1 n 2 1 n n-1
1 n-1� � � �� �

for - <t < ... <t <+ .� �1 n

In order to prove Proposition we need

Lemma 1:  ( , ... , ) under Q has the same distribution as ( , ..., ) .� � � �t t -t -t1 n 1 n

Proof: Follows immediately from (0.8) and the fact that ( , Q ) has a symmetric density with respect to�t
�

the uniform measure m(d ) on S (see Vuolle-Apiala, Graversen, 1986, Lemma 3, p.329).  �
d-1

�

      In the proof of Proposition we will use the result of Ito-McKean (1974), p. 275, which says that the^
skew product (0.6) can be completed to be a diffusion (which obviously is RI) on the whole R  havingd

the skew product (0.7) when r =0 iff A  =  a.s P . Here we need0 0+
0�

Lemma 2: Let (r ) be an -ss diffusion on [0, ) such that 0 is an entrance, non-exit boundary point.t � �

Then

                                    P { r ds = } = 1   >0.0 -1/

0
s�

�

� � ��

Proof of Lemma 2:  (0.3) implies that

                   P { r ds = } =  P { (a r ) ds = } = P { r ds = }.0 -1/ 0 - -1/ 0 -1/

0 0 0
s sas

a
� � �
� � �

� � � �� � �

So it suffices to show that

                                   P { r ds = } = 1.0 -1/

0
s�

�

� �

The Markov property gives

                 P { r ds = }   P { r ds = } = E { P { r ds = }}  t>0.0 -1/ 0 -1/ 0 r -1/

0 0
s s s

t
� � �
� � �

� � �� � � � �t

Because 0 is an entrance, non-exit boundary point, r >0 a.s. (P ). Now, according to Lamperti (1972),t
0

                   P { r ds = } = 1   for all r>0r -1/

0
s�

�

� �



and thus

                   E {P { r ds = }} = 10 r -1/

0
s

t �
�

� �

which implies

                  P { r ds = } = 1.    0 -1/

0
s�

�

� � �

Proof of Proposition: It only remains to prove that the skew product

(0.7)                 [r , ]   when r =0,t 0
r ds

�
��

1

t

s
-1/�

fullfills the -self-similarity condition (0.3) under P . Let I , ... ,I  be  Borel subsets of [0, ) and�
0

1 n �

J , ... ,J   Borel subsets of S . We will show1 n
d-1

(*)            P  {r I , ... , r I , J , ... , J } =0
t 1 t n 1 n

r ds r ds
1 n

1

t t1

s
-1/

1

n

s
-1/

� � � �� �
� �� �� �

               P  {a r I , ... , a r I  , J , ... , J }0 - -
at 1 at n 1 n

r ds r ds
� �

� �
1 n

1

at at1

s
-1/

1

n

s
-1/

� � � �� �
� �� �

for all t>0.
For simplicity, assume n=2, the general case is analogeous.
      Now the right hand side of (*) for n=2 is equal to

P  {a r I , a r I , J , J } =0 - -
at 1 at 2 1 2

(a r ) ds (a r ) ds

� �

� �
1 2

1/a 1/a

t t1 2
- -1/ - -1/as s

� � � �� �
� �� � � �

P  {r I , r I , J , J }0
t 1 t 2 1 2

r ds r ds
1 2

1/a 1/a

t t1 2

s s
-1/ -1/

� � � �� �
� �� �� �

because  (r ) fullfills (0.3) and because of independence between (r ) and ( ).t . .�

This is further equal to
P  {r I , r I , J , J } =0

t 1 t 2 1 2
r ds + r ds r ds + r ds

1 2

1/a 1/a

1 1

s s s s
-1/ -1/ -1/ -1/

1 1

t t1 2� � � �� �
� � � �� � � �� � � �

     P {r I , r I , r ds du, r ds dv, r ds dw,� � � � � �
- - -

+ + 1
0 -1/ -1/ -1/

t 1 t 2
1/a

s s s
1 1

t t

� � �

� � �

1 2

1 2

� � � � �� � �
� � �

                                    J , J } =� �u+v 1 u+w 2� �



    P {r I , r I , r ds du, r ds dv, r ds dw}� � � � � �
- - -

+ + 1
0 -1/ -1/ -1/

t 1 t 2
1/a

s s s
1 1

t t

� � �

� � �

1 2

1 2

� � � � �� � �
� � �

                                   Q( J , J )� �u+v 1 u+w 2� �

because of independence between (r ) and ( ). Now ( ) is a stationary process and thus this is equal to. . .� �

    P {r I , r I , r ds du, r ds dv, r ds dw}� � � � � �
- - -

+ + 1
0 -1/ -1/ -1/

t 1 t 2
1/a

s s s
1 1

t t

� � �

� � �

1 2

1 2

� � � � �� � �
� � �

                                 Q( J , J ) =� �v 1 w 2� �

     P {r I , r I , r ds dv, r ds dw}Q( J , J ) =� � � �
- -

+
0 -1/ -1/

t 1 t 2 v 1 w 2
1 1

t t

s s
� �

� �

1 2

1 2

� � � � � �� � � �
� �

              P  {r I , r I , J , J }.                 0
t 1 t 2 1 2

r ds r ds
1 2

1 1

t t1 2

s s
-1/ -1/

� � � �� �
� �� �� �

�

        Now we can prove Theorem:

Proof of Theorem: (X ) has according to Graversen, Vuolle-Apiala (1986), Vuolle-Apiala (2002) andt
Proposition a skew product representation

(0.6)                   [r , ]     as X 0t 0
r ds

�
��

0

t

s
-1/�

�

and

(0.7)                 [r , ]       as X =0,t 0
r ds

�
��

1

t

s
-1/�

where (r ) is the radial process, ( , Q ) is an independent spherical Brownian motion such thatt t�
�

Q ( = )=1 and ( , Q) is an independent, stationary, spherical Brownian motion defined  for�
� � �0 h

- <h<+  and the law of ( ) is the uniform spherical distribution for all h R. To show (0.2) let us� � ��h
consider the distribution of {t X , ... , t X } under P . Assume for simplicity n=2, =1/2, the1

2 2 0
1/t 1/tn

� �

1 n �

general case is analogeous. Let I  and J , i=1,2, be Borel subsets of (0, ) and S , respectively. Nowi i
d-1�

                           P {t X (I , J ) , t X (I , J )} =0
1 1/t 1 1 2 1/t 2 21 2� �

           P  {t r I , t r I , J , J } =0
1 1/t 1 2 1/t 2 1 2

r ds r ds
1 2

1 1

1/t 1/t1 2

s s
-2 -2

� � � �� �
� �� �



  P  (t r I , t r I , J , J , r ds du, r ds dv) =� � � �
- -

0 -2 -2
1 1/t 1 2 1/t 2 u 1 v 2

1 1

1/t 1/t

s s
� �

� �

1 2

1 2

� � � � � �� � � �

  P  (t r I , t r I , r ds du, r ds dv) Q( J , J )=� � � �
- -

0 -2 -2
1 1/t 1 2 1/t 2 u 1 v 2

1 1

1/t 1/t

s s
� �

� �

1 2

1 2

� � � � � �� � � �

  P (t r I ,t r I ,- (sr ) ds du,- (sr ) ds dv)Q( J , J ).� � � �
- -

0 -2 -2
1 1/t 1 2 1/t 2 1/s 1/s u 1 v 2

1 1

t t

� �

� �

1 2

1 2

� � � � � �� � � �

Because (0.1) is true for (r ) this is equal tot

   P  (r I , r I , - r ds du, - r ds dv) Q( J , J ) =� � � �
- -

0 -2 -2
t 1 t 2 u 1 v 2

1 1

t t

s s
� �

� �

1 2

1 2

� � � � � �� � � �

   P  (r I , r I , r ds du, r ds dv) Q( J , J ).� � � �
- -

0 -2 -2
t 1 t 2 -u 1 -v 2

1 1

t t

s s
� �

� �

1 2

1 2

� � � � � �� � � �

Using Lemma 1 we get this equal to

    P  (r I , r I , r ds du, r ds dv) Q( J , J ) =� � � �
- -

0 -2 -2
t 1 t 2 u 1 v 2

1 1

t t

s s
� �

� �

1 2

1 2

� � � � � �� � � �

  P  {r I , r I , J , J } =  P {X (I , J ) , X (I , J )}.0 0
t 1 t 2 1 2 t 1 1 t 2 2

r ds r ds
1 2 1 2

1 1

t t1 2

s s
-2 -2

� � � � � �� �
� �� �

                                                                                                                                            �

Remark: It would be interesting to know if the result still is true when {0} is not polar.
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