Working Papers of the University of Vaasa, Department of Mathematics and Statistics 3

Shiga-Watanabe's time inversion property for self-similar diffusion processes
Juha Vuolle-Apiala

Preprint, December 2002

University of Vaasa
Department of Mathematics and Statistics
P.O. Box 700, FIN-65101 Vaasa, Finland

Preprints are available at: http://www.uwasa.fi/julkaisu/sis.html

SHIGA-WATANABE's TIME INVERSION PROPERTY FOR SELF-SIMILAR DIFFUSION PROCESSES

Juha Vuolle-Apiala
Department of Mathematics and Statistics, University of Vaasa, P. O. Box 700, 65101 Vaasa, Finland e-mail: jmva@uwasa.fi

Summary: Assume $\left(\mathrm{X}_{\mathrm{t}}, \mathrm{P}^{0}\right)$ is $1 / 2$-self-similar, rotation invariant diffusion on $\mathrm{R}^{\mathrm{d}}, \mathrm{d} \geq 2$, starting at 0 and assume $\{0\}$ is a polar set. We will show, using the corresponding well-known result for the radial process, that Shiga-Watanabe's time inversion property holds for $\left(\mathrm{X}_{\mathrm{t}}, \mathrm{P}^{0}\right)$. The generalization for an α -self-similar, rotation invariant diffusion, $\alpha>0$, is also given.

Key words: time inversion, self-similar, diffusion, rotation invariant, skew product, radial process, spherical process

AMS Mathematics Subject Classification (2000): 60G18, 60J60, 60J25

0. Introduction. Theorem.

The following time inversion property is well known for Brownian motion in $\mathrm{R}^{\mathrm{d}}, \mathrm{d} \geq 1$, and Bessel diffusions on $[0, \infty$), starting at 0 (see Shiga, Watanabe (1973) and Watanabe (1975)):
$\left(\mathrm{X}_{\mathrm{t}}\right)$ has the same finite dimensional distributions as $\left(\mathrm{t} \mathrm{X}_{1 / \mathrm{t}}\right)$ under P^{0}, for all $\mathrm{t}>0$.
This was in Graversen, Vuolle-Apiala (2000) shown to be true also for symmetrized Bessel processes on R , starting at 0 , in the case of the index $\nu \in(-1,0)$, that is, $\left(\mathrm{X}_{\mathrm{t}}\right)$ can both hit 0 and can be started at 0 . Symmetrized Bessel processes form the class of one dimensional rotation invariant $1 / 2$-self similar diffusions (see the definition below). If the index $\nu \leq-1$ then 0 is an exit boundary point, that is, $\left(\mathrm{X}_{\mathrm{t}}\right)$ can hit 0 but it cannot be started there. If $\nu \geq 0$ then 0 is an entrance boundary point, that is, (X_{t}) can be started there and it will never come back. Thus in this case $\left(\mathrm{X}_{\mathrm{t}}\right)$ in fact lives either on $[0, \infty)$ or on $(-\infty$, $0]$ and $\{0\}$ is a polar set. Obviously, (0.1) is valid. (0.1) has been generalized for α-self-similar diffusions on $[0, \infty$) and for symmetric α-self-similar diffusions on $\mathrm{R}, \alpha>0$, in Graversen, VuolleApiala (2000). The corresponding generalization of (0.1) is then
(0.2) $\quad\left(\mathrm{X}_{\mathrm{t}}\right)$ has the same finite dimensional distributions as $\left(\mathrm{t}^{2 \alpha} \mathrm{X}_{1 / t}\right)$ under P^{0}, for all $\mathrm{t}>0$.

In this note we will show that (0.2) holds for all rotation invariant, d -dimensional, α - self-similar diffusions (that is, strong Markov processes with continuous paths), $\mathrm{d} \geq 2, \alpha>0$, for which $\{0\}$ is a polar set. Our main tool is a skew product representation for rotation invariant diffusions starting at 0 ; see Itô, Mc Kean Jr., 1974, p. 274-276.

Let ($\mathrm{X}_{\mathrm{t}}, \mathrm{P}^{\mathrm{x}}$) be a rotation invariant (RI) α-self-similar (α-ss) diffusion on $\mathrm{R}^{\mathrm{d}}, \mathrm{d} \geq 2, \alpha>0$, such that $\{0\}$ is a polar set. By α-self-similarity we mean that
(0.3) $\quad\left(\mathrm{X}_{\mathrm{t}}\right)$ under P^{x} has the same finite dimensional distributions as $\left(\mathrm{a}^{-\alpha} \mathrm{X}_{\mathrm{at}}\right)$ under $\mathrm{P}^{\mathrm{a}^{\alpha} \mathrm{x}}$ for all $x \in R^{d}, a>0$
and by (RI) that

Self-similar diffusions on R or on $[0, \infty)$ are defined similarly. Brownian motion fullfills both (0.3) and (0.4). See more about processes fullfilling (0.3) and (0.4) in Graversen, Vuolle-Apiala (1986), Lamperti (1972) and Vuolle-Apiala, Graversen (1986). According to Graversen, Vuolle-Apiala (1986) and Vuolle-Apiala (2002), when $X_{0} \neq 0$ the diffusion processes which fullfill (0.3) and (0.4) can be represented as skew products

$$
\begin{equation*}
\left[\left|\mathrm{X}_{\mathrm{t}}\right|, \theta_{\mathrm{A}_{\mathrm{t}}}\right] \tag{0.5}
\end{equation*}
$$

where $\mathrm{A}_{\mathrm{t}}=\lambda \int_{0}^{\mathrm{t}}\left|\mathrm{X}_{\mathrm{s}}\right|^{-1 / \alpha}$ ds for some $\lambda>0$, the radial part $\left(\left|\mathrm{X}_{\mathrm{t}}\right|\right)$ is an α-ss diffusion on $(0, \infty)$, and $\left(\theta_{\mathrm{t}}\right)$ is a spherical Brownian motion on S^{d-1} independent of $\left(\left|X_{t}\right|\right)$.

Remark: As showed in Graversen, Vuolle-Apiala (1986), (0.5) is valid for all strong Markov processes with cadlag paths fullfilling (0.3) and (0.4). However, as showed by a counterexample by J. Bertoin, W. Werner (1996), the independence between $\left(\left|X_{t}\right|\right)$ and $\left(\theta_{t}\right)$ is not necessarily true if the paths are only right continuous. There is an error in the proof of Proposition 2.4, p.19-20 in Graversen, Vuolle-Apiala (1986). It was showed in Vuolle-Apiala (2002), Lemma 2.1, that $\left(\left|X_{t}\right|\right)$ and $\left(\theta_{t}\right)$ are independent in the case of continuous paths.

We want to prove the following:

Theorem: Let $\left(\mathrm{X}_{\mathrm{t}}, \mathrm{P}^{0}\right)$ be an (RI) α-ss diffusion on $\mathrm{R}^{\mathrm{d}}, \alpha>0, \mathrm{~d} \geq 2$, starting at 0 , having $\{0\}$ as a polar set. Then the time inversion property (0.2) is valid.

1. The Proof of the Theorem

The proof will be based on

Proposition: Let $\left(\mathrm{r}_{\mathrm{t}}\right)$ be an α-ss diffusion on $[0, \infty), \alpha>0$, such that 0 is an entrance, non-exit boundary point. Then the skew product

$$
\begin{equation*}
\left[\mathrm{r}_{\mathrm{t}}, \theta_{\substack{\lambda \int_{0}^{\mathrm{t}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}}}\right], \mathrm{t}>0, \mathrm{r}_{0}>0, \quad \text { where } \tag{0.6}
\end{equation*}
$$

$\left(\theta_{\mathrm{t}}, \mathrm{Q}^{\theta}\right)$ is a spherical Brownian motion on $\mathrm{S}^{\mathrm{d}-1}$ independent of $\left(\mathrm{r}_{\mathrm{t}}\right)$, such that $\mathrm{Q}^{\theta}\left(\theta_{0}=\theta\right)=1 \forall \theta \in \mathrm{~S}^{\mathrm{d}-1}$, can be completed to be an α-ss diffusion on R^{d} by defining

$$
\begin{equation*}
\left[\mathrm{r}_{\mathrm{t}}, \nu \underset{\lambda \int_{1}^{\mathrm{t}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}}{ }\right], \mathrm{t}>0, \text { when } \mathrm{r}_{0}=0 \tag{0.7}
\end{equation*}
$$

where $\left(\nu_{\mathrm{t}}, \mathrm{Q}\right)$ is an independent, spherical Brownian motion defined for $-\infty<\mathrm{t}<+\infty$ and the law of $\left(\nu_{0}\right)$ is the uniform spherical distribution $\mathrm{m}(\mathrm{d} \theta)$.

Remark 1: Because of a uniquenness result of RI measures on $\mathrm{S}^{\mathrm{d}-1}$ there is at most one way to complete (0.6) to be RI on the whole R^{d}.

Remark 2: It is obvious that ($\nu_{\mathrm{t}}, \mathrm{Q}$) in fact is a stationary process and ν_{t} is uniformly distributed for all $t \in R$ (see Kuznetsov, 1973).

We have

$$
\begin{equation*}
\mathrm{Q}\left\{\nu_{\mathrm{t}_{1}} \in \mathrm{~d} \theta_{1}, \ldots, \nu_{\mathrm{t}_{\mathrm{n}}} \in \mathrm{~d} \theta_{\mathrm{n}}\right\}=\mathrm{m}\left(\mathrm{~d} \theta_{1}\right) \mathrm{Q}^{\theta_{1}}\left(\theta_{\mathrm{t}_{2}-\mathrm{t}_{1}} \in \mathrm{~d} \theta_{2}\right) \ldots \mathrm{Q}^{\theta_{\mathrm{n}-1}}\left(\theta_{\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}} \in \mathrm{~d} \theta_{\mathrm{n}}\right) \tag{0.8}
\end{equation*}
$$

for $-\infty<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{n}}<+\infty$.
In order to prove Proposition we need
Lemma 1: $\left(\nu_{\mathrm{t}_{1}}, \ldots, \nu_{\mathrm{t}_{\mathrm{n}}}\right)$ under Q has the same distribution as $\left(\nu_{-\mathrm{t}_{1}}, \ldots, \nu_{\mathrm{t}_{\mathrm{n}}}\right)$.
Proof: Follows immediately from (0.8) and the fact that $\left(\theta_{\mathrm{t}}, \mathrm{Q}^{\theta}\right)$ has a symmetric density with respect to the uniform measure $\mathrm{m}(\mathrm{d} \theta)$ on $\mathrm{S}^{\mathrm{d}-1}$ (see Vuolle-Apiala, Graversen, 1986, Lemma 3, p.329).

In the proof of Proposition we will use the result of Itô-McKean (1974), p. 275, which says that the skew product (0.6) can be completed to be a diffusion (which obviously is RI) on the whole R^{d} having the skew product (0.7) when $\mathrm{r}_{0}=0$ iff $\mathrm{A}_{0+}=\infty$ a.s P^{0}. Here we need

Lemma 2: Let $\left(\mathrm{r}_{\mathrm{t}}\right)$ be an α-ss diffusion on $[0, \infty)$ such that 0 is an entrance, non-exit boundary point. Then

$$
\mathrm{P}^{0}\left\{\int_{0}^{\epsilon} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}=1 \quad \forall \epsilon>0 .
$$

Proof of Lemma 2: (0.3) implies that

$$
\mathrm{P}^{0}\left\{\int_{0}^{\epsilon} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}=\mathrm{P}^{0}\left\{\int_{0}^{\epsilon}\left(\mathrm{a}^{-\alpha} \mathrm{r}_{\mathrm{as}}\right)^{-1 / \alpha} \mathrm{ds}=\infty\right\}=\mathrm{P}^{0}\left\{\int_{0}^{\mathrm{a} \mathrm{\epsilon}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\} .
$$

So it suffices to show that

$$
\mathrm{P}^{0}\left\{\int_{0}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}=1 .
$$

The Markov property gives

$$
\mathrm{P}^{0}\left\{\int_{0}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\} \geq \mathrm{P}^{0}\left\{\int_{\mathrm{t}}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}=\mathrm{E}^{0}\left\{\mathrm{P}^{\mathrm{r}_{\mathrm{t}}}\left\{\int_{0}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}\right\} \quad \forall \mathrm{t}>0 .
$$

Because 0 is an entrance, non-exit boundary point, $\mathrm{r}_{\mathrm{t}}>0$ a.s. $\left(\mathrm{P}^{0}\right)$. Now, according to Lamperti (1972),

$$
\mathrm{P}^{\mathrm{r}}\left\{\int_{0}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}=1 \quad \text { for all } \mathrm{r}>0
$$

and thus

$$
\mathrm{E}^{0}\left\{\mathrm{P}^{\mathrm{r}_{\mathrm{t}}}\left\{\int_{0}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}\right\}=1
$$

which implies

$$
\mathrm{P}^{0}\left\{\int_{0}^{\infty} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}=\infty\right\}=1
$$

$\underline{\text { Proof of }} \underline{\text { Proposition: }}$ It only remains to prove that the skew product

$$
\begin{equation*}
\left[\mathrm{r}_{\mathrm{t}}, \nu \underset{\substack{\lambda \int_{1}^{\mathrm{t}} \mathrm{r}_{\mathrm{s}}^{1 / \alpha} \mathrm{ds}}}{ }\right] \quad \text { when } \mathrm{r}_{0}=0 \tag{0.7}
\end{equation*}
$$

fullfills the α-self-similarity condition (0.3) under P^{0}. Let $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ be Borel subsets of $[0, \infty)$ and $\mathrm{J}_{1}, \ldots, \mathrm{~J}_{\mathrm{n}}$ Borel subsets of $\mathrm{S}^{\mathrm{d}-1}$. We will show

$$
\begin{align*}
& \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \ldots, \mathrm{r}_{\mathrm{t}_{\mathrm{n}}} \in \mathrm{I}_{\mathrm{n}}, \nu \underset{\lambda}{\nu \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}} \in \mathrm{~J}_{1}, \ldots, \nu \underset{\lambda}{\nu \int_{1}^{\mathrm{t}_{\mathrm{s}}} \mathrm{r}_{\mathrm{s}}^{1 / \alpha} \mathrm{ds}} \in \mathrm{~J}_{\mathrm{n}}\right\}= \tag{*}\\
& \mathrm{P}^{0}\left\{\mathrm{a}^{-\alpha} \mathrm{rat}_{\mathrm{at}_{1}} \in \mathrm{I}_{1}, \ldots, \mathrm{a}^{-\alpha} \mathrm{rat}_{\mathrm{at}_{\mathrm{n}}} \in \mathrm{I}_{\mathrm{n}}, \nu_{\lambda \int_{1}^{a t_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} d \mathrm{ds}} \in \mathrm{~J}_{1}, \ldots, \nu_{\lambda \int_{1}^{\mathrm{atn}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}} \in \mathrm{~J}_{\mathrm{n}}\right\}
\end{align*}
$$

for all $\mathrm{t}>0$.
For simplicity, assume $n=2$, the general case is analogeous.
Now the right hand side of $(*)$ for $n=2$ is equal to
$\mathrm{P}^{0}\left\{\mathrm{a}^{-\alpha} \mathrm{r}_{\mathrm{at}} \mathrm{I}_{1} \in \mathrm{I}_{1}, \mathrm{a}^{-\alpha} \mathrm{rat}_{\mathrm{a}_{2}} \in \mathrm{I}_{2}, \nu_{\lambda \int_{1 / \mathrm{a}}^{\mathrm{t}_{1}}\left(\mathrm{a}^{\left.-\alpha \mathrm{ras}_{\mathrm{as}}\right)^{-1 / \alpha} \mathrm{ds}}\right.} \in \mathrm{J}_{1}, \nu_{\lambda \int_{1 / \mathrm{a}}^{\mathrm{t}_{2}}\left(\mathrm{a}^{-\alpha} \mathrm{r}_{\mathrm{s}}\right)^{-1 / \alpha} \mathrm{ds}} \in \mathrm{J}_{2}\right\}=$
$\mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \nu \underset{\lambda \int_{1 / \mathrm{a}}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}}{ } \in \mathrm{J}_{1}, \nu \underset{\lambda \int_{1 / \mathrm{a}}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds}}{ } \in \mathrm{J}_{2}\right\}$
because $\left(\mathrm{r}_{\mathrm{t}}\right)$ fullfills (0.3) and because of independence between (r.) and (ν.).
This is further equal to

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \lambda \int_{1 / \mathrm{a}}^{1} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dv}, \lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dw}\right. \\
\left.\nu_{\mathrm{u}+\mathrm{v}} \in \mathrm{~J}_{1}, \nu_{\mathrm{u}+\mathrm{w}} \in \mathrm{~J}_{2}\right\}=
\end{gathered}
$$

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{r}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \lambda \int_{1 / \mathrm{a}}^{1} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dv}, \lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dw}\right\} \\
\mathrm{Q}\left(\nu_{\mathrm{u}+\mathrm{v}} \in \mathrm{~J}_{1}, \nu_{\mathrm{u}+\mathrm{w}} \in \mathrm{~J}_{2}\right)
\end{gathered}
$$

because of independence between (r.) and (ν. . Now $(\nu$.$) is a stationary process and thus this is equal to$

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \lambda \int_{1 / \mathrm{a}}^{1} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dv}, \lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dw}\right\} \\
& \mathrm{Q}\left(\nu_{\mathrm{v}} \in \mathrm{~J}_{1}, \nu_{\mathrm{w}} \in \mathrm{~J}_{2}\right)= \\
& \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{r}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \lambda \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dv}, \lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-1 / \alpha} \mathrm{ds} \in \mathrm{dw}\right\} \mathrm{Q}\left(\nu_{\mathrm{v}} \in \mathrm{~J}_{1}, \nu_{\mathrm{w}} \in \mathrm{~J}_{2}\right)= \\
& \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \nu_{\substack{\lambda \int_{1} \mathrm{r}_{\mathrm{s}}^{1 / / d s}}} \in \mathrm{~J}_{1}, \nu_{\lambda \int_{i}^{\mathrm{t}_{\mathrm{s}}} \mathrm{r}_{\mathrm{s}}^{1 / 2} \mathrm{ds}} \in \mathrm{~J}_{2}\right\} .
\end{aligned}
$$

Now we can prove Theorem:
Proof of Theorem: $\left(\mathrm{X}_{\mathrm{t}}\right)$ has according to Graversen, Vuolle-Apiala (1986), Vuolle-Apiala (2002) and Proposition a skew product representation

$$
\begin{equation*}
\left[\mathrm{r}_{\mathrm{t}}, \theta_{\substack{\lambda \int_{0}^{\mathrm{t} \mathrm{r}_{\mathrm{s}} / \mathrm{lds}^{2}}}}\right] \quad \text { as } \mathrm{X}_{0} \neq 0 \tag{0.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\mathrm{r}_{\mathrm{t}}, \nu_{\substack{\lambda \int_{1} \mathrm{r}_{\mathrm{s}}^{1 / \alpha d}}}^{\mathrm{t}}\right] \quad \text { as } \mathrm{X}_{0}=0, \tag{0.7}
\end{equation*}
$$

where $\left(r_{t}\right)$ is the radial process, $\left(\theta_{t}, Q^{\theta}\right)$ is an independent spherical Brownian motion such that $\mathrm{Q}^{\theta}\left(\theta_{0}=\theta\right)=1$ and $\left(\nu_{\mathrm{h}}, \mathrm{Q}\right)$ is an independent, stationary, spherical Brownian motion defined for $-\infty<\mathrm{h}<+\infty$ and the law of $\left(\nu_{\mathrm{h}}\right)$ is the uniform spherical distribution for all $\mathrm{h} \in \mathrm{R}$. To show (0.2) let us consider the distribution of $\left\{\mathrm{t}_{1}^{2 \alpha} \mathrm{X}_{1 / t_{1}}, \ldots, \mathrm{t}_{\mathrm{n}}^{2 \alpha} \mathrm{X}_{1 / \mathrm{n}_{\mathrm{n}}}\right\}$ under P^{0}. Assume for simplicity $\mathrm{n}=2, \alpha=1 / 2$, the general case is analogeous. Let I_{i} and $J_{i}, i=1,2$, be Borel subsets of $(0, \infty)$ and S^{d-1}, respectively. Now

$$
\begin{gathered}
\mathrm{P}^{0}\left\{\mathrm{t}_{1} \mathrm{X}_{1 / \mathrm{t}_{1}} \in\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \mathrm{t}_{2} \mathrm{X}_{1 / \mathrm{t}_{2}} \in\left(\mathrm{I}_{2}, \mathrm{~J}_{2}\right)\right\}= \\
\mathrm{P}^{0}\left\{\mathrm{t}_{1} \mathrm{r}_{1 / \mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{t}_{2} \mathrm{r}_{1 / t_{2}} \in \mathrm{I}_{2}, \nu_{\substack{\lambda \mathrm{h}_{1} \\
i}}^{\mathrm{r}_{s}^{2} \mathrm{ds}} \in \mathrm{~J}_{1}, \nu_{\substack{1 / \int_{2} \\
1 \\
\mathrm{r}_{\mathrm{s}}^{2} \mathrm{ds}}} \in \mathrm{~J}_{2}\right\}=
\end{gathered}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left(\mathrm{t}_{1} \mathrm{r}_{1 / \mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{t}_{2} \mathrm{r}_{1 / t_{2}} \in \mathrm{I}_{2}, \nu_{\mathrm{u}} \in \mathrm{~J}_{1}, \nu_{\mathrm{v}} \in \mathrm{~J}_{2}, \lambda \int_{1}^{1 / t_{1}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{1 / t_{2}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{dv}\right)= \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left(\mathrm{t}_{1} \mathrm{r}_{1 / \mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{t}_{2} \mathrm{r}_{1 / t_{2}} \in \mathrm{I}_{2}, \lambda \int_{1}^{1 / t_{1}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{1 / \mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{dv}\right) \mathrm{Q}\left(\nu_{\mathrm{u}} \in \mathrm{~J}_{1}, \nu_{\mathrm{v}} \in \mathrm{~J}_{2}\right)= \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left(\mathrm{t}_{1} \mathrm{r}_{1 / \mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{t}_{2} \mathrm{r}_{1 / \mathrm{t}_{2}} \in \mathrm{I}_{2},-\lambda \int_{1}^{\mathrm{t}_{1}}\left(\operatorname{sr}_{1 / \mathrm{s}}\right)^{-2} \mathrm{ds} \in \operatorname{du},-\lambda \int_{1}^{\mathrm{t}_{2}}\left(\mathrm{sr}_{1 / s}\right)^{-2} \mathrm{ds} \in \operatorname{dv}\right) \mathrm{Q}\left(\nu_{\mathrm{u}} \in \mathrm{~J}_{1}, \nu_{\mathrm{v}} \in \mathrm{~J}_{2}\right) .
\end{aligned}
$$

Because (0.1) is true for $\left(r_{t}\right)$ this is equal to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left(\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2},-\lambda \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{du},-\lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{dv}\right) \mathrm{Q}\left(\nu_{\mathrm{u}} \in \mathrm{~J}_{1}, \nu_{\mathrm{v}} \in \mathrm{~J}_{2}\right)= \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left(\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \lambda \int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{dv}\right) \mathrm{Q}\left(\nu_{-\mathrm{u}} \in \mathrm{~J}_{1}, \nu_{-v} \in \mathrm{~J}_{2}\right) .
\end{aligned}
$$

Using Lemma 1 we get this equal to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}^{0}\left(\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \lambda \int_{1} \int_{\mathrm{s}}^{\mathrm{t}_{1}} \mathrm{r}^{-2} \mathrm{ds} \in \mathrm{du}, \lambda \int_{1}^{\mathrm{t}_{2}} \mathrm{r}_{\mathrm{s}}^{-2} \mathrm{ds} \in \mathrm{dv}\right) \mathrm{Q}\left(\nu_{\mathrm{u}} \in \mathrm{~J}_{1}, \nu_{\mathrm{v}} \in \mathrm{~J}_{2}\right)= \\
& \mathrm{P}^{0}\left\{\mathrm{r}_{\mathrm{t}_{1}} \in \mathrm{I}_{1}, \mathrm{r}_{\mathrm{t}_{2}} \in \mathrm{I}_{2}, \nu \underset{\substack{\int_{1}^{\mathrm{t}_{1}} \mathrm{r}_{\mathrm{s}}^{2} \mathrm{ds}}}{ } \in \mathrm{~J}_{1}, \nu_{\substack{\lambda \\
1}}^{\mathrm{t}_{\mathrm{s}} \mathrm{r}_{\mathrm{s}}^{2} \mathrm{ds}} \in \mathrm{~J}_{2}\right\}=\mathrm{P}^{0}\left\{\mathrm{X}_{\mathrm{t}_{1}} \in\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \mathrm{X}_{\mathrm{t}_{2}} \in\left(\mathrm{I}_{2}, \mathrm{~J}_{2}\right)\right\} .
\end{aligned}
$$

Remark: It would be interesting to know if the result still is true when $\{0\}$ is not polar.

REFERENCES

Bertoin, J., Werner, W. (1996), Stable windings, Ann. Probab. 24, n:o 3, 1269-1279
Graversen, S.E., Vuolle-Apiala, J (1986), α-self-similar Markov processes, Probab. Th. Related Fields 71, n:o 1, 149-158

Graversen, S.E., Vuolle-Apiala, J (2000), On Paul Lévy's arc sine law and Shiga-Watanabe's time inversion result, Probab. Math. Statist. 20, n:o 1, 63-73

Itô, K., McKean Jr., H.P. (1974), Diffusion Processes and Their Sample Paths (Springer-Verlag Berlin Heidelberg New York)

Kuznetsov, S.E. (1973), Construction of Markov processes with random birth and death times, Theor. Probability Appl. 18, 571-575

Lamperti, J.W. (1972), Semi-stable Markov processes I, Z. Wahrschein. verw. Gebiete 22, 205-225
Shiga, T., Watanabe, S. (1973), Bessel diffusions as one parameter family of diffusion processes, Z. Wahrschein. verw. Gebiete 27, 37-46

Vuolle-Apiala, J., Graversen, S.E. (1986), Duality theory for self-similar processes, Ann. Inst. H. Poincaré Probab. Statist. 22, n:o 3, 323-332

Vuolle-Apiala, J. (2002), On certain extensions of a rotation invariant Markov process, submitted for publication

Watanabe, S. (1975), On time inversion of one-dimensional diffusion process, Z. Wahrscein. verw. Gebiete 31, 115-124

