
UNIVERSITY OF VAASA

SCHOOL OF TECHNOLOGY AND INNOVATIONS

WIRELESS INDUSTRIAL AUTOMATION

Stavros Grigoriadis

CONVOLUTIONAL NEURAL NETWORKS FOR ACCENT CLASSIFICATION

Master’s thesis for the degree of Master of Science in Technology; left for assessment

on 1 Feb. 2019 in Vaasa.

Supervisor Professor Mohammed Elmusrati

Instructor Professor Mohammed Elmusrati

 2

ACKNOWLEDGEMENTS

First of all, I would like to thank deeply Professor Mohammed Elmusrati of the School

of Technology and Innovations at the University of Vaasa for his guidance in choosing

the topic of my thesis, his motivation and for being one of my mentors during my stud-

ies.

Secondly, I want to express my gratitude to the University of Vaasa for believing in me

and giving me the chance to study again after so many years and expand my horizons. It

was really an honour to me.

Last, but not least, I want to thank my partner and my parents for providing me with

support and continuous encouragement throughout my years of study. This accom-

plishment would not have been possible without them. From the bottom of my heart,

thank you.

 3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 2

TABLE OF CONTENTS 3

TABLE OF FIGURES AND TABLES 6

ABBREVIATIONS 10

ABSTRACT 11

1. INTRODUCTION 12

2. MACHINE LEARNING 15

2.1. Machine learning applications 16

2.2. The role of big data 17

2.3. Types of machine learning techniques 18

2.3.1. Supervised Learning 19

2.3.2. Unsupervised Learning 20

2.3.3. Reinforcement Learning 21

2.4. Inductive and deductive learning 21

2.5. Feature Extraction 22

2.5.1. Mel-Frequency Cepstral Coefficients (MFFCs) 22

2.5.2. Mathematical representation of feature extraction 24

2.6. Classification 26

2.7. Confusion matrix 28

2.8. Generalisation, memorisation and overfitting 29

 4

3. NEURAL NETWORKS 30

3.1. Feed-forward neural network (FNN) 32

3.2. Multilayer perceptrons (MLP) and Back-Propagation (BP) 32

3.3. Activation Functions 34

3.4. Convolutional Neural Networks (CNN) 38

3.4.1. Convolutional Layer 39

3.4.2. 2D Convolutional Layer 42

3.4.3. Receptive field 43

3.4.4. Pooling Layer 44

3.4.5. Fully Connected Layers 46

3.4.6. Dropout 48

3.4.7. Loss Functions in CNNs 48

3.4.8. Soft-max Loss / Cross-Entropy Loss 49

4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 50

4.1. System architecture 50

4.2. Dataset 52

4.3. Pre-processing 54

4.4. Feature Extraction 55

4.5. Convolutional Neural Networks Architecture 56

4.6. Program Implementation 59

5. EXPERIMENTS AND RESULTS 63

5.1. Setup of the experiments 63

5.2. Experiments with the first CNN architecture (ReLU activation functions) 64

5.3. Experiments with the second CNN architecture (Sigmoid activation function

on 3rd layer) 92

 5

6. CONCLUSION AND FUTURE WORK 122

REFERENCES 124

APPENDIX 1. SOURCE CODE 129

 6

TABLE OF FIGURES AND TABLES

Figure 1. Machine Learning process to address a task (Flach 2012: 11). 16

Figure 2. Dataset of used cars and their mileage (Alpaydin 2014: 10). 20

Figure 3. MFCC computation process. .. 23

Figure 4. Representation of biological neural network (Deb & Dixit 2008). 30

Figure 5. An artificial neuron (Deb & Dixit 2008). ... 31

Figure 6. A fully connected feed forward neural network (Haykin 2004). 33

Figure 7. Sigmoid function. ... 35

Figure 8. Threshold function. ... 36

Figure 9. ReLU function. ... 37

Figure 10. Hyperbolic Tangent function. ... 37

Figure 11. A 2x2 filter. .. 39

Figure 12. Stages of a 2D convolution operation (Khan et al. 2018: 47). 40

Figure 13. Convpool layer including three neurons (Venkatesan & Li 2018: 94)... 42

Figure 14. Max pooling operation with a 2x2 pool region and stride 1 (Khan et al.

2018: 53). .. 45

Figure 15. Complete convolutional network architecture (Venkatesan & Li 2018:

98). .. 47

Figure 16. Processes of the proposed system. .. 51

Figure 17. CNN architecture of the proposed system. ... 58

Figure 18. Diagram of the main program trainmodel.py. .. 62

Figure 19. Accuracy of 1st CNN 90-10 model over epochs. 64

Figure 20. Validation loss of 1st CNN 90-10 model over epochs. 65

Figure 21. Confusion matrix of 1st CNN 90-10 model for 2 languages. 65

Figure 22. Confusion matrix of 1st CNN 90-10 model for 3 languages. 66

Figure 23. Confusion matrix of 1st CNN 90-10 model for 4 languages. 66

Figure 24. Accuracy of 1st CNN 80-20 model over epochs. 67

Figure 25. Validation loss of 1st CNN 80-20 model over epochs. 68

Figure 26. Confusion matrix of 1st CNN 80-20 model for 2 languages. 68

Figure 27. Confusion matrix of 1st CNN 80-20 model for 3 languages. 69

Figure 28. Confusion matrix of 1st CNN 80-20 model for 4 languages. 69

 7

Figure 29. Accuracy of 1st CNN 70-30 model over epochs. 70

Figure 30. Validation loss of 1st CNN 70-30 model over epochs. 71

Figure 31. Confusion matrix of 1st CNN 70-30 model for 2 languages. 71

Figure 32. Confusion matrix of 1st CNN 70-30 model for 3 languages. 72

Figure 33. Confusion matrix of 1st CNN 70-30 model for 4 languages. 72

Figure 34. Accuracy of 1st CNN 60-40 model over epochs. 73

Figure 35. Validation loss of 1st CNN 60-40 model over epochs. 74

Figure 36. Confusion matrix of 1st CNN 60-40 model for 2 languages. 74

Figure 37. Confusion matrix of 1st CNN 60-40 model for 3 languages. 75

Figure 38. Confusion matrix of 1st CNN 60-40 model for 4 languages. 75

Figure 39. Accuracy of 1st CNN 50-50 model over epochs. 76

Figure 40. Validation loss of 1st CNN 50-50 model over epochs. 77

Figure 41. Confusion matrix of 1st CNN 50-50 model for 2 languages. 77

Figure 42. Confusion matrix of 1st CNN 50-50 model for 3 languages. 78

Figure 43. Confusion matrix of 1st CNN 50-50 model for 4 languages. 78

Figure 44. Accuracy of 1st CNN 40-60 model over epochs. 79

Figure 45. Validation loss of 1st CNN 40-60 model over epochs. 80

Figure 46. Confusion matrix of 1st CNN 40-60 model for 2 languages. 80

Figure 47. Confusion matrix of 1st CNN 40-60 model for 3 languages. 81

Figure 48. Confusion matrix of 1st CNN 40-60 model for 4 languages. 81

Figure 49. Accuracy of 1st CNN 30-70 model over epochs. 82

Figure 50. Validation loss of 1st CNN 30-70 model over epochs. 83

Figure 51. Confusion matrix of 1st CNN 30-70 model for 2 languages. 83

Figure 52. Confusion matrix of 1st CNN 30-70 model for 3 languages. 84

Figure 53. Confusion matrix of 1st CNN 30-70 model for 4 languages. 84

Figure 54. Accuracy of 1st CNN 20-80 model over epochs. 85

Figure 55. Validation loss of 1st CNN 20-80 model over epochs. 86

Figure 56. Confusion matrix of 1st CNN 20-80 model for 2 languages. 86

Figure 57. Confusion matrix of 1st CNN 20-80 model for 3 languages. 87

Figure 58. Confusion matrix of 1st CNN 20-80 model for 4 languages. 87

Figure 59. Accuracy of 1st CNN 10-90 model over epochs. 88

Figure 60. Validation loss of 1st CNN 10-90 model over epochs. 89

 8

Figure 61. Confusion matrix of 1st CNN 10-90 model for 2 languages. 89

Figure 62. Confusion matrix of 1st CNN 10-90 model for 3 languages. 90

Figure 63. Confusion matrix of 1st CNN 10-90 model for 4 languages. 90

Figure 64. Accuracy of 2nd CNN 90-10 model over epochs. 93

Figure 65. Validation loss of 2nd CNN 90-10 model over epochs. 94

Figure 66. Confusion matrix of 2nd CNN 90-10 model for 2 languages. 94

Figure 67. Confusion matrix of 2nd CNN 90-10 model for 3 languages. 95

Figure 68. Confusion matrix of 2nd CNN 90-10 model for 4 languages. 95

Figure 69. Accuracy of 2nd CNN 80-20 model over epochs. 96

Figure 70. Validation loss of 2nd CNN 80-20 model over epochs. 97

Figure 71. Confusion matrix of 2nd CNN 80-20 model for 2 languages. 97

Figure 72. Confusion matrix of 2nd CNN 80-20 model for 3 languages. 98

Figure 73. Confusion matrix of 2nd CNN 80-20 model for 4 languages. 98

Figure 74. Accuracy of 2nd CNN 70-30 model over epochs. 99

Figure 75. Validation loss of 2nd CNN 70-30 model over epochs. 100

Figure 76. Confusion matrix of 2nd CNN 70-30 model for 2 languages. 100

Figure 77. Confusion matrix of 2nd CNN 70-30 model for 3 languages. 101

Figure 78. Confusion matrix of 2nd CNN 70-30 model for 4 languages. 101

Figure 79. Accuracy of 2nd CNN 60-40 model over epochs. 102

Figure 80. Validation loss of 2nd CNN 60-40 model over epochs. 103

Figure 81. Confusion matrix of 2nd CNN 60-40 model for 2 languages. 103

Figure 82. Confusion matrix of 2nd CNN 60-40 model for 3 languages. 104

Figure 83. Confusion matrix of 2nd CNN 60-40 model for 4 languages. 104

Figure 84. Accuracy of 2nd CNN 50-50 model over epochs. 105

Figure 85. Validation loss of 2nd CNN 50-50 model over epochs. 106

Figure 86. Confusion matrix of 2nd CNN 50-50 model for 2 languages. 106

Figure 87. Confusion matrix of 2nd CNN 50-50 model for 3 languages. 107

Figure 88. Confusion matrix of 2nd CNN 50-50 model for 4 languages. 107

Figure 89. Accuracy of 2nd CNN 40-60 model over epochs. 108

Figure 90. Validation loss of 2nd CNN 40-60 model over epochs. 109

Figure 91. Confusion matrix of 2nd CNN 40-60 model for 2 languages. 109

Figure 92. Confusion matrix of 2nd CNN 40-60 model for 3 languages. 110

 9

Figure 93. Confusion matrix of 2nd CNN 40-60 model for 4 languages. 110

Figure 94. Accuracy of 2nd CNN 30-70 model over epochs. 111

Figure 95. Validation loss of 2nd CNN 30-70 model over epochs. 112

Figure 96. Confusion matrix of 2nd CNN 30-70 model for 2 languages. 112

Figure 97. Confusion matrix of 2nd CNN 30-70 model for 3 languages. 113

Figure 98. Confusion matrix of 2nd CNN 30-70 model for 4 languages. 113

Figure 99. Accuracy of 2nd CNN 20-80 model over epochs. 114

Figure 100. Validation loss of 2nd CNN 20-80 model over epochs. 115

Figure 101. Confusion matrix of 2nd CNN 20-80 model for 2 languages. 115

Figure 102. Confusion matrix of 2nd CNN 20-80 model for 3 languages. 116

Figure 103. Confusion matrix of 2nd CNN 20-80 model for 4 languages. 116

Figure 104. Accuracy of 2nd CNN 10-90 model over epochs. 117

Figure 105. Validation loss of 2nd CNN 10-90 model over epochs. 118

Figure 106. Confusion matrix of 2nd CNN 10-90 model for 2 languages. 118

Figure 107. Confusion matrix of 2nd CNN 10-90 model for 3 languages. 119

Figure 108. Confusion matrix of 2nd CNN 10-90 model for 4 languages. 119

Table 1. Languages and number of audio files used in the system. 53

Table 2. CSV files with the corresponding supported languages. 60

Table 3. Results from the experiments of the first CNN (languages, accuracy,

epochs). ... 91

Table 4. Results from the experiments of the second CNN (languages, accuracy,

epochs). ... 120

 10

ABBREVIATIONS

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BP Back-Propagation

CNN Convolutional Neural Network

FIR Finite Impulse Response

FNN Feed-forward Neural Network

GPU Graphics Processing Unit

MFCC Mel-Frequency Cepstral Coefficient

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

WAV Windows Wave Audio Format

 11

UNIVERSITY OF VAASA

School of Technology and

Innovations

Author: Stavros Grigoriadis

Topic of the Thesis: Convolutional Neural Networks for Accent

 Classification

Supervisor: Professor Mohammed Elmusrati

Instructor: Professor Mohammed Elmusrati

Degree: Master of Science in Technology

Major of Subject: Wireless Industrial Automation

Year of Entering the University: 2016

Year of Completing the Thesis: 2019 Pages: 143

ABSTRACT

Speech recognition systems have been extensively improved over the years. However,

accent classification remains a highly challenging task. Accent classification technology

can be a great benefit to automatic speech recognition applications, telephony based

service centres, immigration offices and in military operations. The application of con-

volutional neural networks has been an efficient and effective way to solve the accent

recognition problem.

In this thesis the accent classification task is approached by the application of two con-

volutional neural networks. The difference between them can be seen at their activation

functions. The work includes a dataset of native speakers of four different languages

(Chinese, Spanish, English, Arabic) who read a certain elicitation paragraph in English.

The chosen paragraph contains common English words which cover in majority the

sounds of English language. The feature extraction is based on the Mel-Frequency Cep-

stral Coefficients, in particular the first 13 coefficients are used. The MFCC has proved

to be one of the best representations of human voice in terms of audio signal processing.

The convolutional neural networks manipulate the audio signals of the speakers in the

form of 2 dimensional images, making them an effective approach for accent classifica-

tion. The thesis contains an extensive presentation of the accuracy, validation loss and

confusion matrices of each cases between training and test samples and the results of

each model for the reader to compare and decide which model to apply for a similar ap-

plication. Appendix 1 contains the original and modified source code for the implemen-

tation of the proposed convolutional neural networks in order to solve the accent classi-

fication problem.

KEYWORDS: Accent Classification, CNN, Machine Learning, MFCC, Python.

 12

1. INTRODUCTION

Speech is one of the most important media of communication between humans. Humans

use it to express their opinions as well as their feelings and moods. The adaptation, us-

age, processing and understanding of human speech by computers can be considered a

significant challenge in modern societies. Although many achievements and improve-

ments have been made in the automatic speech recognition (ASR) application area, and

more specific with its application in Apple’s Siri, Google’s Assistant and Amazon’s Al-

exa, the issue of accent recognition seems to be a problem for these programs as they

can only understand the American English accent. Specifically the above applications

can recognise speakers of American English with high accuracy but may fail in recog-

nising speakers of English with Scottish or Irish accent (Najafian, Safavi, Hanani &

Russell 2014). The problem seems to be more apparent when the speakers are not native

English.

The problem of distinguishing the accent of the speaker can be called accent recognition

and the applications of using the technology to identify the origin of a speaker are im-

plementing algorithms in order to achieve the accent classification of the speakers. The

accent classification task is quite challenging because each speaker has his own speak-

ing style, for example depending on the place where the speaker was born and his envi-

ronment, and his accent would have the same characteristics with the citizens living in

the same region.

The application of accent classification systems is significant and quite useful in speech

technology and can be seen in other areas including speech recognition systems. This

technology can be applied in telephone centre systems and services; by identifying the

origin of the speaker, a certain employee with a similar accent can provide his services

to the caller. Another area that can benefit from accent classification systems is at

boarders of countries and immigration offices; the agencies will be able to recognise in

high accuracy the origins of the immigrants by their speech.

 13

The main purpose of this thesis is to tackle a part of the above problem, being the accent

recognition and the estimation of the origin of the speaker, who reads a specific text in

English. A system using machine learning algorithms and more specific two convolu-

tional neural network architectures was implemented and it is proposed in this thesis in

order to classify and accomplish as accurately as possible the accent recognition of a

speaker. There have been implemented different approaches during the implementation

of the accent recognition system, concerning mainly the tuning of parameters of the

network and adjusting the percentage between the training and test samples. Each of the

above approaches follows a certain systematic way with their advantages and disadvan-

tages and they will be presented and discussed in this work.

It is noteworthy mentioning that the proposed system is text dependent and it can rec-

ognise speakers whose native language is Chinese, Spanish, English or Arabic. There-

fore, the type of the classification that is used in this thesis is multi-classification. In ad-

dition, the approach of supervised learning is applied, where each input sample of a

speaker has a certain output label which corresponds to his accent. Besides, feature ex-

traction seemed to be an important process in order to represent in the best possible way

the human voice.

The approach to solve the accent classification problem was based on two different

convolutional neural networks. One may be confused by the above approach because

convolutional neural networks are efficient and effective in image classification. The

interesting part of the thesis is that the audio signals of each speaker in the system are

treated like a two-dimensional image.

Moreover, for each approach experiments and their results are discussed. The accuracy,

validation and confusion matrices of every possible combination between the training

and test samples are presented. The reader can focus on each case and have a general

idea of the effectiveness of the current case.

The thesis is organised as follows: In Chapter 2 various machine learning applications

are presented and the role of machine learning and its techniques are discussed. The fea-

 14

ture extraction process and the Mel-Frequency Cepstral Coefficients that have been

used are examined. The chapter also contains the usage of a confusion matrix, the terms

of generalisation, memorisation and overfitting. In Chapter 3, neural networks and con-

volutional neural networks are discussed. In particular, the chapter contains theory

about feed-forward neural networks, multilayer perceptrons, back-propagation and acti-

vation functions. Terms of consisting a convolutional neural network are also presented.

Topics such as the convolutional layer, the 2D convolutional layer, the receptive field,

the pooling layer and the fully connected layer are analysed. The chapter also contains

the terms of dropout, loss functions in CNNs and the soft-max loss. The system archi-

tecture and the implementation are presented in Chapter 4. Specifically, the reader can

find information about the architecture of the proposed system, the dataset that is used

and the stages of pre-processing and feature extraction. Moreover, the architecture of

the convolutional neural networks that are used and the program implementation are

explained. Chapter 5 consists of the experiments and the results of the proposed system.

The experiment setup is discussed while the experiments of the two different CNNs for

each case of training and test samples are presented in detail. Finally, the conclusion and

the future work are considered in Chapter 6 and the source code of the project is in-

cluded in Appendix 1.

 15

2. MACHINE LEARNING

Machine learning is a term used in the broader area of Artificial Intelligence and it is

referred to the usage of algorithms and statistical techniques of a system in order to

"learn" or acquire knowledge through mapping inputs and outputs of a series of data

without explicitly being programmed (Bishop 2006:2). The term was conceived by the

American pioneer in computer gaming and artificial intelligence Arthur Lee Samuel in

1959.

Machine learning can be described as the process of finding the best possible approxi-

mation that can be used as a solution to a problem. Based on a model defined by an ex-

pert human the aim of machine learning is to propose as much as accurately solutions to

given problems. The system using machine learning algorithms is provided with inputs

as datasets and desired outputs. Examples of using machine learning techniques can be

found in everyday life such as recommender systems for online shopping, e-mail filter-

ing such as defining which e-mail is spam and which is not, fraud detection in transac-

tions bank systems, speech recognition, hand written recognition, computer vision,

medical diagnosis, smart systems and more. In this thesis the area of machine learning

concerned the ability of a computer program to recognize and classify the four different

accents of speakers reading a certain text written in English.

One of the key elements of machine learning is the information and its capacity con-

cerning each problem field. Almost any material in this world can be represented as a

series of numbers which contains information in fields such as economic, social and

biological informatics, thermodynamics and quantum information, etc. Information the-

ory is an important term in machine learning area. Cloud Shannon proposed that the in-

formation content could be considered as a function in its uncertainty in 1948. More

specific the information content of an event is estimated to be high if the event has a

low probability to occur.

 16

According to Flach (2012: 3) "machine learning is the systematic study of algorithms

and systems that improve their knowledge or performance with experience". The ex-

perience is referred to the correct labelled input data of the system and the term per-

formance to the ability of the system to classify the data in a classification problem for

instance.

Figure 1 depicts an overview of the process that is used from machine learning to ad-

dress a task. The objects in this thesis are represented by the audio files of the speakers

reading a certain text in English. Each speaker has its own accent and the features of the

speeches can be represented by taking the Mel-Frequency Cepstral Coefficients

(MFCC). Next, the training data are fed to the system and into the learning algorithm

which then produce the model. The model addresses the task of the system and this is

the place where a mapping between the features and the desired output will be achieved.

Figure 1. Machine Learning process to address a task (Flach 2012: 11).

2.1. Machine learning applications

The range of the applications of machine learning is wide. In this section a part of the

applications is presented. Firstly, machine learning algorithms can be applied in banking

 17

processes. Banks refer to their data to build models in order to use them in fraud detec-

tion, loan plans for customers, credit application as well as stock market.

Secondly, machine learning techniques can be used in fields of manufacturing, medical

and autonomy machines. Specifically in manufacturing, processes can be optimized,

controlled and can be used in troubleshooting. In medicine, medical diagnosis and drug

manufacturing can be applied. Concerning autonomy machines, the application of

autonomous cars is popular nowadays as well as air drones.

Last but not least, there are applications of machine learning with smart systems such as

smart building, smart cities and smart grids as well as in telecommunication networks

where patterns are analysed for network and quality of service optimization. The appli-

cations in pattern recognition are also important which include speech recognition,

handwritten recognition, biometric recognition, etc.

2.2. The role of big data

The term big data can be considered as a large capacity of data or more specific infor-

mation generated from different sources such as mobile devices, microphones, cameras,

radio-frequency identification readers, wireless sensor networks, software logs, etc

(Hellerstein 2008). The acquisition of big data and its appropriate usage and analysis of

the owners can be powerful. More specific, companies that hold big data use machine

learning algorithms to analyse consumer behaviour and in extension to adapt their pro-

duction plans in order to maximise their profits.

An example could be the data collected by a supermarket chain about its customers'

needs and information. At first customers’ behaviour in general may seem random but

on a second thought it can be predicted, on the basis of past purchases. Through this

phase the company can have valuable information about its customers concerning their

preferences, which may have correlations between specific products. On the other hand,

customers find the recommendations of the companies’ systems about products that

 18

were bought from other customers with similar preferences helpful. The above exam-

ples show that both producers and consumers can benefit from machine learning appli-

cations. The process of applying machine learning algorithms on big datasets is called

data mining.

In conventional computer programs the programmer should build and follow a certain

algorithm and program in order to solve the given problem. In contrast, in the machine

learning field a programmer cannot follow a certain algorithm to solve a problem, but

he or she has to find as much data as possible and create a system, which uses the data

as inputs that correspond to a specific labelled output. This method is used mainly in

supervised learning and in the proposed system in this thesis. The various machine

learning techniques will be presented in following section.

Following the above logic, the most important ingredient of a successful classification

system is the number of the input data. Given sufficient input data and the mapping be-

tween input and output, a system can be modelled and trained in order to predict as ac-

curately as possible a good approximation answer or output for a given input. The ap-

proximation of the system is usually not 100% accurate, depending on the field of the

problem, but a rule of thumb is that the system will be able to detect specific patterns

and regularities (Alpaydin 2014: 2). These patterns can give the programmer some hints

of the elements of the algorithm used by the system. If the model under training pro-

vides high accuracy then it can be assumed that depending on the input data gathered

from the near past, a good approximation and prediction can be made from the system

for future input data.

2.3. Types of machine learning techniques

There are a few machine learning techniques that are used in various domains to solve

specific problems. In this section these machine learning techniques will be presented.

 19

2.3.1. Supervised Learning

Supervised learning is a machine learning technique in which the desired outcome is to

find a function that maps specific inputs with outputs with the use of labelled training

data. For example if the input is X and the output is Y, then the aim of supervised learn-

ing is to learn the mapping from the input X to the output Y. Usually the model that is

followed has the form:

)|(θxgy = , (1)

g is the model and θ are its parameters. It is important to note that regression and classi-

fication belong to this type of machine learning. Y is a class if classification is used or a

number if regression is used. The machine learning application should optimize the pa-

rameters theta in such way that the approximation error is minimised and the estima-

tions are close enough to the correct values of the training set (Alpaydin 2014: 9). An

example of a regression problem is represented in Figure 2 where the fitted function has

the form:

0wwxy += , (2)

the training dataset corresponds to used cars where the input attribute is the mileage of

the car and the output is its price.

 20

Figure 2. Dataset of used cars and their mileage (Alpaydin 2014: 10).

Supervised learning with classification is the type of machine learning technique that is

used in the current thesis.

2.3.2. Unsupervised Learning

Unsupervised learning on the other hand is a machine learning technique that learns

from data that has no labels. The supervisor in this learning is the input data and the

goal is to find similarities and regularities in the input. Usually the term of density esti-

mation is used and there can be identified a structure in the input space that contains

certain patterns. In this technique the term of clustering is used. The aim is to find clus-

ters or groupings of input. Clustering can be applied in many fields such as customer

segmentations in companies, customer relationship management, image compression,

document clustering as well as in bioinformatics (Alpaydin 2014: 11–13).

 21

2.3.3. Reinforcement Learning

Reinforcement learning is the type of machine learning applications where the output of

the system is a sequence of actions and a policy with sequence of correct actions is de-

sired to be followed. The machine learning applications can learn from previous good

policies and try to adapt their policies in that manner.

The application of reinforcement learning is wide and it can be seen in game theory,

control theory, information technology, multi-agents systems, genetic algorithms, etc.

For example in chess the number of rules are small but the number of possible moves of

each player is large. Another example could be the navigation of a robot in an environ-

ment in order to search for a goal location. The robot can move to any direction, but the

selection of the policy of the sequence of moves that accomplish this goal as quickly as

possible is important (Alpaydin 2014: 13).

2.4. Inductive and deductive learning

Humans can learn or be taught based on two types of methods, induction and deduction.

Induction can be observed when a person has in his possession training examples, labels

or terms of a certain event and then construct an outcome. For example when a parent

wants to teach to his kid that playing with the fire is very dangerous, he can show it and

use photographs, videos or any evidence of fire accidents or burnt persons in order for

the kid to understand the danger of playing with the fire.

On the other hand, the deductive learning can be achieved in the opposite way of induc-

tion. In deduction the person can learn an outcome of an event through his own experi-

ence. In the same example with the parent and the kid that was mentioned before, in

case of deduction the parent would not act as a supervisor but he would let the kid to

play with the fire and get burnt. When the kid will experience the outcome of its action

it will learn and remember that playing with fire is dangerous and should be avoided.

 22

In most machine learning applications, especially the ones that apply supervised learn-

ing, the type of learning that is used is inductive learning. The systems have training

examples as input data with labelled and specific output.

2.5. Feature Extraction

Features in machine learning applications are considered to be one of the essential parts

of a system and they can contribute to a large extent to the accuracy and successful pre-

diction of the applications. The features of a system represent the measurements of the

input data and these measurements in the proposed machine learning application are

numerical and more specific real numbers.

Therefore, the process of feature extraction is a fundamental part of the application and

the decision to use the correct feature extraction, or the most representative measure-

ment of the input data, was a challenging task.

2.5.1. Mel-Frequency Cepstral Coefficients (MFFCs)

The input data of the proposed system consists of wave audio files of speakers reading a

certain text in English. It was known that the wave audio signals could be analysed in

time or in frequency domain. The analysis in time domain produces a high dimensional-

ity in feature terms while the analysis in frequency domain with the help of feature ex-

traction through Mel-Frequency Cepstral Coefficients can achieve a significant reduc-

tion in feature extraction of the input data.

A more detailed explanation that the dimensionality in time frequency is high is fol-

lowed. If one can consider a 4 seconds of wave audio file sampled at 8kHz then it will

contain 32000 samples which correspond to the number of variables that will be used in

the input nodes representing the features of the current signal. The usage of MFCC is

considered to be a useful feature extraction algorithm for human voice in speech recog-

nition applications (Huang, Acero & Hon 2001: 423–426). Besides, the MFCCs can be

 23

used to map as close as possible the human auditory perception with frequencies and

they are essential elements for speech recognition systems (Elminir, Abu ElSoud &

Abou El-Maged 2012).

In addition, according to Valaki & Jethva (2016), the advantages of MFCC include the

good levels of discrimination and low correlation between the coefficients. They are not

based on linear characteristics, which ensure the common characteristics with the hu-

man auditory system. It is significant to note also that the MFCCs can capture the im-

portant phonetic characteristics of humans.

It is known from psychological research that the human hearing does not correspond to

a linear scale and each tone with a frequency f can be mapped to a scale in Hz which is

called the Mel scale. The Mel-frequency scale is linear frequency spacing below 1 kHz

and logarithmic spacing above 1 kHz. The idea of using MFCCs is that it can approxi-

mate closely the frequency response of human auditory system and the MFCCs contain

the important phonetic features of human speech (Lokhande, Nehe & Vikhe 2012). Fig-

ure 3 depicts the computation process of the MFCC.

Figure 3. MFCC computation process.

As it can be seen from the Figure 3 the speech signal is going into a framing and win-

dowing (usually a Hamming window) process and into a pre-emphasis filter. The next

step is to take the Fast Fourier transform, which converts each frame of the input signal

from time domain to frequency domain. Next follows the conversion of the scale fre-

quency from linear to Mel scale and the logarithm of the results is calculated. The last

 24

step is to take the discrete cosine transform of the log auditory spectrum in time domain

and the result is the MFCC.

2.5.2. Mathematical representation of feature extraction

This section includes the mathematical representation of the feature extraction used in

the proposed system with the help of MFCC. Firstly, it can be said that the pre-emphasis

filtering in the previous section can be described by a kind of finite impulse response

(FIR) that is used to provide an improvement in the energy of the high frequencies of

the input signal and the following equation derives:

Nnnxnxns ,...,2,1],1[][][=−−= α , (3)

where x[n] is the input signal at sample n, s[n] is the signal after the filtering and α is a

parameter that adjusts the amount of filtering of the signal.

Secondly, the signal is converted from the time domain to frequency domain by using

short time Fourier transform assuming that the signal over a short period of time is sta-

tionary and can be transferred to frequency domain. This can be achieved by the follow-

ing expression:

NkenwnsenwnskX
N

n

N

n

kiNkni <≤⋅⋅=⋅⋅=∑ ∑
−

=

−

=

−− 0,][][][][][
1

0

1

0

/2 ω
α

π
αα , (4)

where wα [n] represents the window function and i an imaginary number. The window

function in this case is a Hamming window and it can be expressed by the following

equation:

46.01,54.0,0,
1

2
cos][=−==<≤








−

−= aNn
N

n
nw βα

π
βαα . (5)

 25

Besides, the human auditory system is more sensitive to sounds between 20 and 1000

Hz, which means that one cannot assign a signal the same scale at high frequencies as at

lower frequencies. Thus, the conversion from Hertz scale to Mel scale can be achieved

by the following formula:

1000,
700

1log2595 10 >






 += f
f

mel , (6)

and from Mel scale to Hertz scale:

() 1000,1700 2595/ >−= melef mel
. (7)

The next step is to define a filter bank with M filters (m =1,2,...,M) from the input win-

dow frame xα [k]. The filters are linear on Mel scale but non linear on Hertz scale and

can be represented by the following expression:

2

1
2

1

1][
−

−
−

−=
N

N
k

kM m , (8)

where N is the length of the filter.

In addition the log-energy of each filter can be computed by:

MmkMkXmS
N

k

m ≤<







= ∑

−

=

0,][][ln][
1

0

2

α . (9)

Finally, to get the Mel-frequency cepstrum coefficients the discrete cosine transform of

the M filter outputs is used:

 26

Mm
M

mq

mSqc
M

m

≤<











































 −
=∑

−

=

0,
2

1

cos][][
1

0

π

. (10)

The value of M is between 24 and 40 and the first 13 MFCCs are computed, the value of

n is the number of window frames and q is the number of MFCCs (Ma & Fokoue 2014).

2.6. Classification

The term classification refers to the identification of a number of categories that an ob-

servation belongs to. The classification is based on the training data and their mapping

to the corresponding category they belong to. In machine learning the common classifi-

cation types are the binary classification and the multiclass classification.

In binary classification there are examples of objects or data that are either belonging to

the class or not. In this approach there are positive examples which means that the data

belongs to a certain class and negative examples when the data does not belong to the

class. On the other hand, in multiclass classification each data is mapped to a specific

class. But in the same manner there are positive examples when the data (speaker’s ac-

cent) belongs to a class and negative examples belonging to all other accents. The pro-

posed system in this thesis represents a machine learning problem based on a multiclass

classification. For instance, there are speakers that belong to one of four classes. The

four classes consist of the four accents that are used (Chinese, Spanish, English and

Arabic).

It is worth mentioning that the key element that describes the classification in both types

of classification is the features of the data, which are derived from the feature extraction

process that presented in the previous section. The features of each audio file is a matrix

with 13 rows and 30 columns, which can be represented by the following matrix:

 27



















=

3013213113

3022212

3012111

...

............

...

...

xxx

xxx

xxx

x
. (11)

There are 4 classes denoted by Ci = 1,2,3,4. Each input instance belongs only to one of

them and the training set is:

{ }N

t

tt rxX 1, == , (12)

where r has 4 dimensions and













≠∈

∈
=

ijCx

Cx
r

j

t

i

t

t

i
,,0

,1
 (13)

(Aplaydin 2014: 22, 33)

Another approach of defining the model of accent classification is proposed by Chu, Lai

& Le (2017) where "a speaker s who has a native language ls in the set of all non-

English languages L, given his n-second clip in the set of all clips C." The aim is to find

a mapping Φ:C → L such that the occurrence of prediction Φ(Cs,n) ≠ ls is minimized.

The next step is to define a function f that represents the number of prediction misses

for all Cs,n ∈ Cn, for a subset Cn ⊆ Cn :

() ∑
∈

Φ=Φ
nns Cc

nsn scCf
,

)),((, ,δ , (14)

where δ (x,y) = 1 if x ≠ y or 0 otherwise.

 28

According to Chu et al. (2017) the accent classification is an optimization problem

where the objective is to find the mapping Φ* for the clip set Cn so that

Φ
*
 = argΦmin f(Φ,Cn) (15)

In the content of the proposed system given the audio clips of a speaker s, the goal is to

classify the native language ls of the speaker s to one of the four languages: Chinese,

Spanish, English or Arabic.

2.7. Confusion matrix

There are cases where the accuracy of classification of a model is not a sufficient fea-

ture that indicates the real accuracy. In these cases the number of the observations in the

input data is not an equal number in each class and also there may be more than two

classes in the application. This can hold true sometimes in the proposed system. For the

above reason a confusion matrix can be helpful which can show the performance of the

classification used in the application.

In the case of binary classification a confusion matrix should have two rows and two

columns. However, in this thesis a multiclass classification with four classes is used.

Therefore, the structure of the confusion matrix consists of four rows and four columns.

The confusion matrix lets the designer of a machine learning application check in detail

if the algorithm used is giving good or bad results and extract information about his

model. High values on the diagonal of the confusion matrix signals a successful classi-

fier. Besides, if there are high off-diagonal elements in the matrix then this is a sign that

mistakes are being made regularly in the dataset (Rogers & Girolami 2017: 200).

Each row of a confusion matrix corresponds to a predicted class and each column to an

actual class. It is important to note that the total number of correct predictions regarding

a class is included in the expected row for this class value and the predicted column.

 29

Similarly, the total number of incorrect predictions for a class is included in the ex-

pected row for that class value and the predicted column.

In the section of presenting the results of the experiments of the proposed model, confu-

sion matrices will be used in order to check the performance of the classification.

2.8. Generalisation, memorisation and overfitting

A system using machine learning algorithms must achieve great accuracy over the train-

ing and validating data in order to reach a good generalisation. The generalisation of the

system means that the system successfully can map various inputs to correct outputs

without memorisation. It is crucial for machine learning algorithms to offer high accu-

racy of a given model and acquire generalisation for a large and different input data.

On the other hand, the process of training a model is to aim reducing the loss function

by adjusting the weights of the network and acquiring the best accuracy and generalisa-

tion. If the generalisation cannot be achieved, memorisation will take its place. Memori-

sation means that the system memorises the mappings between the inputs and outputs

for a given set and when a different set of inputs is applied then the outputs will not be

accurate. This event will result in wrong prediction and approximation of the output and

overfitting of the data. In machine learning applications generalisation and avoiding

overfitting are essential.

 30

3. NEURAL NETWORKS

Neural networks are used in many fields of science for problem solving and their appli-

cations can be seen in translations of text, facial recognition, hand-written and speech

recognition, controlling of robots, etc. Haykin (1999) has made the following definition

of neural networks:

 A neural network is a massively parallel processor made up of simple processing

 units, which has a natural propensity for storing experiential knowledge and

 making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired from the environment through a learning process run

in the network.

2. Interneuron connection strengths, known as synaptic weights, are used to

store the acquired knowledge.

It is important to note the connection of biological neural networks with artificial neural

networks (ANN). ANNs have many similarities with the structure of the human brain.

More specific a human brain contains neurons, which are connected with each other and

their purpose is to process information. Figure 4 represents the neural network of two

human neurons.

Figure 4. Representation of biological neural network (Deb & Dixit 2008).

 31

Parts of a neuron are the soma, which is a cell body, the dendrites, which consist of sev-

eral fibres and the axon, which is a single fibre. Dendrites are receivers of electrical sig-

nals that come from the axons of other neurons and the axon acts as a transmitter of

electrical signals from one neuron to another through the dendrites. A synapse is used to

connect an axon with a dendrite and it represents the place where an electrical signal is

modulated by various amounts. Changes in the electrical potential in the soma can be

achieved by the release of chemical substances of the synapses. An action potential is

sent via the axon, which is nothing else than an electrical pulse created when the poten-

tial crosses a threshold (Deb & Dixit 2008).

The modelling of human neural networks can be achieved by artificial neural networks.

In Figure 5, a diagram of an artificial neuron is represented.

Figure 5. An artificial neuron (Deb & Dixit 2008).

It can be seen that the artificial neuron receives signals (x1,x2,.. xn) from other neurons

and produces signals (o1, o2, …,ok) that are going to be transmitted to other neurons. An

artificial neural network uses numerical values for its signals rather than electricity used

in human neural network. Each input signal is multiplied by a certain weight w and this

process represents the action of the artificial synapses.

 32

In the human brain an output signal is produced by a neuron when the input signal

reaches a specific threshold. In terms of artificial neurons a summation of the inputs is

calculated and an activation function, like the threshold mentioned in human neurons, is

applied to the sum in order to generate the outputs of the neuron (Deb & Dixit 2008).

The simplest form of a neural network can be represented by the following summation:

∑
=

+
N

i

ii Bxw
1

, (16)

where xi is the input signal, wi is the weight and B is a bias.

3.1. Feed-forward neural network (FNN)

Feed-forward neural networks are artificial neural networks where the connections be-

tween the nodes do not have the shape of a circle. They are the simplest form of artifi-

cial neural networks and the information travels in one direction from the input nodes

(input layer) through the hidden layer to the output layer. Feed-forward neural networks

can be divided into single layer and multilayer perceptrons. The single layer perceptron

is the simplest kind of a neural network and consists of a single layer and output layer.

In multilayer perceptrons there are multiple input and hidden layers that are intercon-

nected in a feed-forward way. The type of neural network that is used in the proposed

system is a multilayer perceptron.

3.2. Multilayer perceptrons (MLP) and Back-Propagation (BP)

The multilayer perceptron is a specific type of a layered feed-forward network, which

consists of multiple input nodes in the input layer, multiple hidden layers (one or more

hidden layers) and an output layer. The neurons in the hidden layers have the ability of

 33

extracting important features included in the input signals. In each neuron a non-linear

activation function is used. The neuron can achieve the efficient distinction of data that

is not linearly separable (Cybenko 1989). The following figure depicts a fully connected

feed-forward neural network with ten nodes at the input layer, one hidden layer and two

nodes at the output layer.

Figure 6. A fully connected feed forward neural network (Haykin 2004).

 34

According to Werbos (1974) and Rumerlhart, Hinton & Williams (1986) the training of

a multilayer perceptron can be achieved by a back-propagation algorithm that contains

two phases:

1. Forward Phase: In this phase the free parameters of the network are fixed and

the input signal is propagated through the network layer by layer. The phase is

completed with computing the error signal:

iii yde −= , (17)

 where di corresponds to the desired response, y to the actual output created from

the network in response to the input x.

2. Backward Phase: In this phase, the error signal ei, is propagated through the

network following a backward direction. This phase ensures that the appropriate

modification will be applied to the free parameters of the network in order to

minimize the error ei (Haykin 2004).

3.3. Activation Functions

The activation functions are applied at the output of each node of an artificial neural

network. The output of each node is used as an input to the next layer of nodes of the

network. The main goal of the usage of an activation function in an ANN is to apply

non-linear properties to the neural network. Non-linear properties are highly useful and

beneficial in learning non-linear and complex mappings between the input and output.

They can also ensure the decrease of the processing power of the system and time

needed in order to find good approximations to the given problems. Similar to the func-

tion of the human brain, an activation function is used to define when a neuron should

be fired / activated or not.

 35

There are different types of activation functions used in neural networks. Some of them

are presented next:

• Sigmoid function: It has a shape curve of the letter S and it is responsible to cre-

ate real values between 0 and 1 that are used as the output of the nodes (Graupe

2013: 19). Sigmoid function is sometimes referred to as the logistic function and

it is defined by the formula:

xe
x −+

=
1

1
)(ϕ . (18)

 Figure 7 represents the shape of the sigmoid function.

Figure 7. Sigmoid function.

 36

• Threshold function: It refers to the function that takes the value 1 if the argument

of the function exceeds a given threshold and otherwise the value 0. It is also

known as the step function. It can be expressed by the following formula:









<

>=
=

0,0

0,1
)(

x

x
xϕ . (19)

Figure 8. Threshold function.

• Rectified Linear Unit (ReLU) function: This function is used in ANNs to pro-

duce the value x as the output if x is positive and otherwise 0. It is highly rec-

ommended to use ReLU activation functions in deep neural networks because of

their simplicity and efficiency. It can be expressed by the following formula:

),0max()(xx =ϕ . (20)

Figure 9 shows the rectified linear unit function.

 37

Figure 9. ReLU function.

• Hyperbolic Tangent function: The tanh function is similar to the sigmoid func-

tion. It is a non-linear function and its output values are in the range of -1 and 1.

It has an s-shape curve and is smoother than the sigmoid curve (Graupe 2013:

20). It is not entirely flat and can ensure changes in its outputs depending the

values of its inputs. It can be represented with the following expression:

x

x

e

e
x

2

2

1

1
)(

−

−

+
−

=ϕ . (21)

 Figure 10 depicts the tanh function.

Figure 10. Hyperbolic Tangent function.

 38

This section introduced some of the most important activation functions used in artifi-

cial neural networks. Their application depends on the given problem, for example the

usage of sigmoid and tanh are useful and efficient, being non-linear functions, but their

drawback is that they require a big amount of computation and time from the system.

The ReLU function is also non-linear and it is often applied in many deep learning neu-

ral networks because of its simple form ensuring that the computations will not be a

very demanding task for the system, but at the same time being able to produce useful

results in the problem solving process.

It is worth noting that in this thesis the approach of achieving a good accuracy for the

accent classification problem was to train two models; one model with only the Recti-

fied linear unit activation functions and another model with combination of ReLU and

sigmoid activation function at the third layer of the convolutional neural network.

3.4. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are a type of deep feed-forward artificial net-

works, which are used in deep learning applications such as image and video recogni-

tion, image classification, recommender systems, medical image analysis, natural lan-

guage processing and speech recognition. Deep learning is a part of machine learning

algorithms based on learning data representation and it is used mainly in supervised and

unsupervised learning applications.

In this thesis the application of a convolutional neural network compared to a deep neu-

ral network architecture achieved better results and accuracy of the model for the accent

classification problem. One reason for the difference in the results from the proposed

approach using convolutional neural network may be the fact that the input audio wave

files are represented by their Mel-Frequency Cepstral Coefficients and are processed

like features of a two-dimensional images. Convolutional neural networks being highly

efficient in the field of image recognition, can also be beneficial and useful in achieving

 39

high accuracy and performance in the domain of accent classification compared to mod-

ern deep neural network architectures.

A CNN has input layer, hidden layers and an output layer. The hidden layer of a convo-

lutional neural network consists of basic building blocks – layers such as the convolu-

tion layers, the pooling layers and the fully connected layers. These layers and their

functions will be covered in the next sections of this chapter.

3.4.1. Convolutional Layer

The convolutional layer can be considered one of the most important layers of a convo-

lutional neural network. In the convolutional layer a set of filters is applied and is con-

volved with the input in order to create an output. In this way the mapping between the

input of the system and the output is achieved.

A filter in this layer can be seen as a matrix of numbers, which corresponds to the

weights of the network. The weights are being set randomly in the beginning of the

training of the CNN and after some time during training the filter weights are fine-

tuned. A 2x2 filter is presented in Figure 11.

Figure 11. A 2x2 filter.

The most significant function in a convolutional layer is the convolution operation. The

convolutional layer implements a convolution between the input and the filters. The

function of the convolution operation can be seen with the help of Figure 12 where a 2D

 40

convolution is shown. Specifically, a 2D input feature map size of 4x4 and a convolu-

tion filter of matrix size 2x2 are considered. The aim of the convolutional layer is to

multiply the filter (matrix size 2x2) with a section of size 2x2 of the input feature map,

which is highlighted. The next step is to make a summation of all the values to create

one value in the output. It is important to note that the filter has to slide through all

width and height of the input (Khan, Rahmani, Shah & Mohammed 2018: 46).

Figure 12. Stages of a 2D convolution operation (Khan et al. 2018: 47).

The operation described above is called cross correlation and in the convolution the fil-

ter is flipped before multiplication and sum-pooling. This distinction is important in the

signal processing domain, but in machine learning applications both terms are used in-

terchangeably. In the convolutional layer the correlation operation is applied in the ma-

jority of the deep learning libraries and algorithms. The main reason of following this

convention is that the convergence of the network optimization will be achieved on cer-

tain weights of the filters either the operation of the correlation or convolution is used.

In the example used to describe the operation in the convolutional layer, the filter occu-

pies a step of 1 through the horizontal and vertical axis in order to compute the value of

 41

the output. The number of the step used is called the stride of the convolutional filter. It

can have different values and a rule of thumb is that when the stride is increasing the

dimension of the output feature map is decreasing. Given a filter of size f x f, an input of

size h x w and a stride of s, the dimensions of the output are computed by the following

expressions (Khan et al. 2018: 49):

s

sfh
h

+−
=' , (22)

s

sfw
w

+−
=' . (23)

Sometimes in order to achieve deeper networks and acquire better accuracy and per-

formance zero-padding around the input of the network can be applied. The application

of zero-padding can be effective in increasing the dimension of the output feature map

and accomplishing flexibility in the process of designing the architecture of the CNN.

The aim in this situation is to increase the size of the input in order to achieve an output

with specific dimensions. Therefore the output feature map dimensions can be repre-

sented by:

s

psfh
h

++−
=' , (24)

s

psfw
w

++−
=' , (25)

(Khan et al. 2018: 49)

where the parameter p indicates the increase in the input in each dimension.

 42

3.4.2. 2D Convolutional Layer

The difference between a 2D convolution layer and a 1D convolution layer is that in the

case of a 2D the filter weights are handled in two dimensions. A 2D convolutional layer

may contain a 2D signal such as image which in this thesis the audio signal is treated as

an image of size 13x30. The following figure depicts a 2D convolutional layer. In the

figure a neuron begins from a corner of the signal, strides in one direction and ends at

the opposite region. It may follow the way from the top left corner and end at the bot-

tom-right. The next step is to apply a convolution of each neuron with every channel

and feature map of the input. Concerning the outputs, they can be included in a location-

wise addition in order for neuron to contain one averaged output response (Venkatesan

& Li 2018: 94).

Figure 13. Convpool layer including three neurons (Venkatesan & Li 2018: 94).

Given the input of the layer α has I channels and the layer has L kernels with k and l

corresponding to the element-wise activation function, the output activations of the

layer can be represented by the following expression (Venkatesan & Li 2018: 95):

 43

],...,2,1[
1

)(Ljkz
I

i

j

ij =∀







∗= ∑

=

αλ . (26)

The symbol * corresponds to the operation of convolution. The filter used in a CNN is

learned by the convolutional layers from the input and the filter often detects edges or

blobs. In CNNs the input in the current project represented by images are separated into

small components of images that contain information in smaller parts that are mapped to

the label space with the help of the neural network (Venkatesan & Li 2018: 95).

3.4.3. Receptive field

The inputs of convolutional neural networks in many applications are characterised by

high dimensionality. In image processing and consequently in the accent classification

task used in the proposed system, it is important to apply convolutional filters that have

smaller size compared to the size of the input. In the current system the size of the con-

volutional filters are 3x3, which are smaller than the input size of 13x30.

Through the above approach the number of parameters to be learned from the model is

decreased when the size of the kernels applied is small. In addition, the usage of small

size filters can improve the learning of the system from specific patterns from the input.

The term receptive field is referred to the size of the filter, which corresponds to a spe-

cific region that is modified at each convolution step. The receptive field is related to

the dimensions of the input and in the cases of convolutional layers stacked on top of

each other, the effective receptive field of each layer acts as a function of the receptive

fields of all the previous convolutional layers (Khan et al. 2018: 50). The effective re-

ceptive field of a stack of N convolutional layers, with a kernel size of f each can be ex-

pressed by the following formula (Khan et al. 2018: 50):

],1[),1(NnfnfRF n

eff ∈−+= . (27)

 44

3.4.4. Pooling Layer

Pooling layers refer to the combination of a region of the output layer into a single value

of the next layer of the network (Ciresan, Meier, Masci, Gambardella & Jurgen 2011).

A pooling layer can be represented as a combination operation on block of the input of

the network and the feature activations. Usually this operation is defined by the average

or the max function. For example if the max pooling operation is selected, then the

maximum activation is also selected for the certain block of values in the layer. The op-

eration will be applied to the input feature map by sliding this window to the input with

a step size. The step size is generated by the stride. It is crucial to define the size of the

pooled region and the stride that is going to be applied in the network. The output of the

feature map, considering the size of the pooled region f x f and a stride s, is calculated

by the following formulas:

s

sfh
h

+−
=' , (28)

s

sfw
w

+−
=' . (29)

(Khan et al. 2018: 53)

Figure 14, on the next page, depicts the operation of a max pooling layer with the pool-

ing region being of size 2x2 and the stride being 1. The steps from (a) to (i) represent

the computations at each step while the pooled region in the input (the orange region) is

slid in order to calculate the value in the output (the blue value) at each step.

 45

Figure 14. Max pooling operation with a 2x2 pool region and stride 1 (Khan et al.

2018: 53).

The main operation of the pooling layer is to down-sample the input feature map.

According to Venkatesan & Li (2018: 96) the operation of pooling reduces the data en-

tropy by reducing the size of the activations. The reduction of size is a useful feature in

a CNN because although there is a reduction in spatial information and frequency in an

activation, there is a gain in activation responses. Pooling can be seen as an operation of

achieving invariances among features spatially. As the neural network becomes deeper,

the number of the activations increases and therefore the computations become demand-

ing. The operation of pooling is useful in keeping the tractability in the network.

The preferred type of pooling in the domain of convolutional neural networks is that of

max pool. In the case of implementing a max pool by p, then a sliding window and a

stride of pxp is considered a suitable option. In each window, the maximum value is se-

lected, which represents the entire window with this value. The max pool operation is

often used because it contains the strongest response, which is an important term in the

context of image processing (Venkatesan & Li 2018: 97).

 46

3.4.5. Fully Connected Layers

In fully connected layers each neuron in the previous layer is connected to every neuron

in the current layer. These layers can be expressed by convolution layers having filters

of the size 1x1. Most convolutional neural networks with this type of layers are placed

at the end of the architecture. The operation of a fully connected layer can be expressed

by a matrix multiplication and an addition of a vector of bias, implementing an element-

wise nonlinear function f as the following:

()bxWfy T += , (30)

where x is the vector of the input and y the vector of output activations, W is the matrix

of weights of the connections in the layer units, and b is the bias vector (Khan et al.

2018: 56).

Having covered the basic elements of a CNN in the previous section it is important to

include a figure of a complete CNN. Figure 15 depicts a complete convolutional neural

network architecture:

 47

Figure 15. Complete convolutional network architecture (Venkatesan & Li 2018: 98).

 48

3.4.6. Dropout

According to Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdivon (2014) one of

the favoured approaches for neural network regularization is the technique of dropout.

During the training process of the network each neuron is activated and contains a prob-

ability. The above process is characterized by randomness in the sampling of the net-

work, which produces an ensemble effect in the testing process of the network. The

dropout activation is an essential term for regularization and it is responsible for im-

provements in the performance on unseen data in the testing process.

Given a CNN consisting of L weight layers with index l ∈{1...L} and output activa-

tions al-1 from the previous layer, the a fully connected layer implements a transforma-

tion followed by a element-wise nonlinearity which can be represented by the follow-

ing:

()lll baWfa +∗= −1 , (31)

where al-1
nℜ∈ indicates the activations and b

mℜ∈ corresponds to biases. The input

and output dimension of the fully connected layer are represented by n and m, the

weight matrix is represented by W
mxnℜ∈ and the function f(.) by the ReLU activation

function. (Khan et al. 2018: 75).

3.4.7. Loss Functions in CNNs

The last layer in a common CNN architecture is used in the training process of the

model. In order to approximate the quality of the prediction generated by the neural

network on the training data, the last layer of the network utilities a loss function. The

role of the loss function is to calculate the difference between the approximated output

of the model and the real output.

 49

There are different loss functions that are used in neural networks depending on the

characteristic of the problem to be solved. The generic set of problems and the loss

functions used can be divided into the next categories:

1. Binary Classification (SVM hinge loss, Squared hinge loss)

2. Identity Verification (Constrastive loss)

3. Multi-class Classification (Softmax loss, Expectation loss)

4. Regression (SSIM, l
t
 error, Euclidean loss)

3.4.8. Soft-max Loss / Cross-Entropy Loss

The topic of the current thesis is associated with the multi-class classification therefore

in the next section the Softmax loss or the cross-entropy loss will be presented.

The cross-entropy can be represented by the following formula:

∑ ∈−=
n

nn NnpyypL],1[),log(),(, (32)

where y is the desired output and p indicates the probability for each output category. N

represents the total number of neurons in the output layer, and p,y
nℜ∈ . By using the

soft-max function
)exp(

)exp(

kk

n
n

p

p
p)

)

∑
= , the probability of each class can be com-

puted. np
)

 indicates the unnormalised output from the previous layer in the network

(Khan et al. 2018: 66).

 50

4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

This section includes the details of the system architecture and the implementation of

the accent classification project using convolutional neural networks. The system has

been developed on a laptop equipped with a dual Intel Core i5 2nd generation processor

at 2.30 GHz each, Windows 7 64-bit operating system and 8 GB of RAM.

The programming language that was selected for the implementation of the project was

Python 3.6 with the Integrated Development Environment of PyCharm (PyCharm). The

pre-processing of the audio files was implemented with the open source audio process-

ing software of Audacity 2.1.1 (Audacity) and Winamp 5.666 (Winamp). In addition,

this chapter covers all the information about the dataset that was used, the architecture

of the neural network, the feature extraction method, the design of the system and the

explanation of the programs of the project.

4.1. System architecture

The system architecture consists of the processes of collecting the voice signals, pre-

processing, feature extraction, classification and output in order to identify the accent of

the voice signal.

The process of the acquisition of the audio files was done by a Java program created by

the author. The purpose of this program was to download the audio files of selected ac-

cents from the website of "The speech accent archive". The audio files were collected

by the George Mason University Department of English Speech Accent Archive

(Weinberger 2015). The website contains 2775 samples of different speakers reading a

certain text in English. The speakers are from around the world and the website contains

accents from more than 200 languages.

 51

The process of pre-processing was necessary because it could affect the results of the

experiments. In every machine learning project the need of using clean data is crucial in

order to acquire a good result and output from the system. The pre-processing procedure

is divided into two stages. The first stage is to convert each mp3 audio file downloaded

from the website to a WAV file of 16kHz, mono channel and 16-bit. The second stage

is to normalise the maximum amplitude of each WAV file to -1.0 dB. The aim of the

second stage is to ensure as much possible a universal volume level of each audio file.

Figure 16 depicts the diagram of the proposed system:

Figure 16. Processes of the proposed system.

The feature extraction process as it was presented in Chapter 2 is essential for the accent

classification project because it can differentiate and characterise each input signal into

 52

the convolutional neural network. It is presented in more detail also in this chapter in

section 4.4.

The processes of classification and generation of output is connected with the architec-

ture and procedures of the convolutional neural network. In this thesis two different

convolutional neural networks have been examined and their structure and accuracies

will be discussed in section 4.5 of this chapter.

The chapter continues with the coverage of the above elements and terms of the system

in more detail.

4.2. Dataset

The dataset of the proposed system was downloaded from the website of "The speech

accent archive" (Weinberger 2015). It consists of speakers who read an elicitation para-

graph written in English, which contains common English words and difficult English

sounds and sound sequences. The elicitation paragraph consists of English words that

cover almost all the sounds of English language and contains as many as possible con-

sonants, vowels and clusters of the standard American English. The paragraph spoken

in the audio files of the system is the following:

"Please call Stella. Ask her to bring these things with her from the store: Six spoons of

fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob.

We also need a small plastic snake and a big toy frog for the kids. She can scoop these

things into three red bags, and we will go meet her Wednesday at the train station."

Therefore, the approach of accent classification used in this thesis is text dependent. The

number of speakers used in the proposed system is 1004 and the speakers are native

speakers of Chinese, Spanish, English and Arabic. The table on the next page shows the

number of audio files used in the system for each native language and the number of

audio files used for prediction.

 53

Table 1. Languages and number of audio files used in the system.

Language # of audio files # of files for prediction

Chinese 137 35

Spanish 166 42

English 376 94

Arabic 125 30

It is worth to note that each speaker was allowed to read the paragraph for some time

and after the recoding was applied. The quality of the recordings is good and according

to the website of "The speech accent archive" (Weinberger 2015) the recording equip-

ment included a Sony TC-D5M with a Radio Shack 33-3001 unidirectional dynamic

microphone and a Sony minidisk recorder MDR-70 with a Sony ECM-MS907 stereo

microphone.

In addition, the speakers were asked to answer seven demographic questions which in-

clude the place of their birth, their native language, what other languages besides Eng-

lish do they know, their age, when they first began to study English, the way they

learned English (academically or naturalistically) and the period they have lived in an

English speaking country if applicable. All this information is included in a CSV format

file. The next text represents a part of the CSV file data_info2L.csv used for the accent

classification of Chinese and Spanish speakers:

href,language_num,sex,birth_place,native_language,other_languages,
age_sex,age_of_english_onset,english_learning_method,english_resid
ence,length_of_english_residence,age

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=45,chinese1,female,"['kong,', 'china']",chinese,"['mandarin',
'']","['22,', 'female', '']",12.0,academic,['usa'],1.0, 22

 54

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=46,chinese2,male,"['kong,', 'china']",chinese,"['mandarin',
'']","['20,', 'male', '']",13.0,academic,['usa'],0.3, 20

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=47,chinese3,male,"['kong,', 'china']",chinese,"['french', 'man-
darin', '']","['22,', 'male', '']",6.0,academic,['uk'],0.1, 22

..

..

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=2230,spanish164,female,"['zacatecas,', 'mex-
ico']",spanish,['none'],"['35,', 'female',
'']",27.0,naturalistic,['usa'],19.0, 35

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=2235,spanish165,male,"['puerto', 'rico']",spanish,"['german',
'italian', '']","['62,', 'male', '']",4.0,academic,['usa'],11.0,
62

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=2238,spanish166,female,"['dominican', 'repub-
lic']",spanish,['none'],"['26,', 'female',
'']",11.0,academic,['usa'],5.0, 26

4.3. Pre-processing

The pre-processing procedure was a significant process although the dataset from the

website was of a good quality. First of all, the downloaded dataset from "The speech

accent archive" (Weinberger 2015) was in mp3 format. The proposed system uses audio

file of the form of WAV files, sampled at 16kHz, mono and 16-bit. Winamp was used

in order to convert the dataset in mp3 format to the desired format. The process is easy

as one can load all the audio files in the playlist of the program and set its audio output

to Nullsoft Disk Writer and its conversion to PCM 16.000 kHz; 16 Bit: Mono.

The second step of the pre-processing was to normalise the maximum amplitude of each

WAV files of the speakers. Most of the audio files were quite good concerning their

normalisation but some of them had low amplitude, which may result in inefficient us-

 55

age of inputs for the neural network. The program used for the normalisation of the au-

dio files was Audacity 2.1.1. and the normalisation was also not difficult to implement

as one can load all the audio files and apply normalisation of the maximum amplitude to

-1.0 dB using the batch programming mode of the software.

The importance of using clean data in the neural network is high. If clean input data is

used, then it is most likely that a clean output can be achieved, in this case meaning a

good approximation and accuracy of the model of the convolutional neural network.

Usually a satisfactory sampling rate for human voice is at 16kHz and mono. But the fact

of existing unnormalised audio signals is dangerous and it is an alert for the engineer to

apply normalisation for the maximum amplitude of the signal. The value of -1.0 dB is

the default in Audacity and often it is so in order to leave some headroom for a possible

final editing of the audio signal.

4.4. Feature Extraction

The process of feature extraction in the proposed system consists of applying the Mel-

Frequency Cepstral Coefficients as it was presented in Chapter 2, section 2.5.1. The

main reason for this approach is to achieve a reduction in the dimensionality of the in-

put. Besides, the representation of the sound signals is more useful by applying the

MFCCs. By using MFCCs the audio samples are divided into small windows and

chunks of time (Watanaprakornkul, Eksombatchai & Chien 2010). Furthermore, the

Mel cepstrum provides a way to categorise the frequencies of the audio files in terms of

effective phoneme distinction (Bryant, Chow & Li 2014).

In this thesis the first 13 coefficients were used for the feature extraction. Each audio

WAV file of the speakers is divided into segments and the MFFC of the current seg-

ment is taken. The dimension of each segment is 13x30 and it is feed into the network in

a way as a two-dimensional image could be represented.

 56

There are additional features that can be used for the process of feature extraction such

as Fbank and Delta (Chu et al. 2017), but the dimension of the input increases ex-

tremely. Under the current situations, using an ordinary computer and not a GPU, the

strategy of following just the MFCCs suggested to be appropriate in terms of dimen-

sionality.

4.5. Convolutional Neural Networks Architecture

The accent classification problem presented in this thesis was solved by the implemen-

tation of two convolutional neural networks. The difference between them is found in

the activation functions of their layers.

Specifically, the first CNN consists of a 2D convolution layer with an output filter of

dimension 32 in the convolution, an input shape of 13x30x1 and a ReLU activation

function. The data format is set to channels_last which means that the ordering of the

dimensions in the inputs has the form of (batch, height, width, channels). This includes

the number of segmented audio files in batch, the shape of audio files after applying the

MFCC with 13 coefficients and the number of channels, which is 1 in the current case.

In the domain of image processing this could be seen as an image of dimension 13x30.

Next a max pooling operation with a pool size of 2x2 is applied in order to down scale

the spatial dimension. The pool size refers to the vertical and horizontal factors of the

process of downscaling.

Next a second 2D convolutional layer is applied with the output filter of dimension 64

and the same input shape and activation function as the first convolutional layer. The

following step is to apply the same max pooling operation and a dropout operation with

a rate of 0.25 in order to avoid overfitting of the network. Next an operation of flatten-

ing takes place and the input is flattened into 1 dimension without affecting the batch

size. Next a regularly densely-connected layer is added with 128 units and the activation

function of ReLU. Another dropout operation is applied next with a 0.5 factor in order

 57

to avoid the cases of overfitting. The last layer is a fully connected layer with the num-

ber of accent classes used for the model and a softmax activation function.

The second CNN is almost the same as the first with the difference that on the third

layer (fully connected) with 128 units instead of ReLU the sigmoid activation function

was used. In addition, several other configurations have been tested. These configura-

tions did not result in a better accuracy. However, the two proposed models gave good

approximations.

Figure 17 in the next page represents the architecture of the two convolutional neural

networks that were used in this thesis.

 58

Figure 17. CNN architecture of the proposed system.

 59

4.6. Program Implementation

The program used in the accent classification problem is based on an implementation by

Yatharth Garg (2018) and it was modified and parameter tuned by the author for the re-

quirements of the thesis. The program was created using the programming language of

Python 3.6 with the help of the free version of PyCharm. The important libraries in-

cluded in the program consist of Numpy, Pandas, Keras and Librosa. The implementa-

tion of the CNNs were done using Keras, which is a neural network library in Python,

running on top of TensorFlow. The user friendliness, modularity, extensibility and most

important being open source make it ideal for working and experimenting with deep

neural networks and CNN projects.

The main python file used in the project is trainmodel.py. The subprograms used are

getsplit.py, accuracy.py and predict.py. The source code of the project is included in

Appendix 1.

In trainmodel.py the user must set the number of the MFCCs, the number of epochs for

the training of each model, the CSV file that contains the data of the speakers and the

name of the model that will be saved after the training of the network. The following

table shows the CSV files used in the project.

 60

Table 2. CSV files with the corresponding supported languages.

CSV file Languages

data_info2L Chinese, Spanish

data_info3L Chinese, Spanish, Arabic

data_info4L Chinese, Spanish, English, Arabic

Chinese language includes Cantonese, Mandarin, Taiwanese, Wu, and Xiang varieties

of Chinese spoken language.

The training and test samples are split with the help of the getsplit.py program. In gets-

plit.py the user can specify the percentage of test sample size. The percentage of training

sample is calculated automatically. The next step is to convert the outputs of train and

test sample into a binary representation of the total number of classes using the function

to_categorical. This conversion is essential because the loss function of the convolu-

tional neural network is set to categorical_crossentropy.

Then the audio files are loaded and the MFCC for each one is calculated. The segmenta-

tion of the audio files from the MFCCs is taking place next, and the process of random-

izing the training segments follows. In the next step the function of the training of the

model is called with the arguments of training input and output samples and validation

input and output samples. This function is called train_model and its purpose is to de-

fine and train the 2D CNN. The function contains an early stop of the training in case of

the accuracy does not change at least 0.005 over 10 epochs.

An object of ImageDataGenerator is created next; it is used to fit the model on batches

with real-time data augmentation and train the CNN. The following procedure is to cal-

culate the accuracy of the predictions by calling the predict_class_all function and pass-

 61

ing the arguments of the test segmented samples and the model. At the end of the train-

model.py program some statistics are printed to the output for the user to see the number

of training samples, testing samples, the confusion matrix and the accuracy of the cur-

rent model. The model is saved on the disk and the final step is to output the total time

needed for the program to execute and a sound is played to indicate that the program has

been executed.

Finally, the prediction and classification of an audio signal can be achieved by running

the program predict.py. The user must place the audio file for classification in the folder

"Prediction_File" and run the above python program. The file name of the CSV file

must be set by the user and then the MFCC of the input audio signal is taken. Next the

output of the signal variable takes the return value from the calling of the function pre-

dict_class_all from the program accuracy.py. The last step is to check the value of the

output of the signal and print out the predicted accent.

Figure 18 shows the diagram of the program trainmodel.py.

 62

Figure 18. Diagram of the main program trainmodel.py.

 63

5. EXPERIMENTS AND RESULTS

In this chapter the experiments of the two different convolutional neural networks that

have been discussed in Chapter 4 are presented as well as the results of the experiments.

In addition, the achieved accuracies in the form of percentage of each model and the

number of epochs are discussed and shown in comparative figures.

5.1. Setup of the experiments

The experiments presented in this chapter refer to two convolutional neural network ar-

chitectures that have been presented in the section 4.5. The difference between the pro-

posed networks is that the first CNN uses ReLU activation functions, while the second

CNN uses a sigmoid activation function on the 3rd convolutional layer.

The dataset used in the experiments includes the four languages of Chinese, Spanish,

English and Arabic. The detailed structure of the dataset can be seen in section 4.2 in

the previous chapter. In the case with two languages Chinese and Spanish were used, in

the case with three languages Chinese, Spanish and Arabic were used and in the case

with four languages Chinese, Spanish, English and Arabic were used. The experiments

cover all the accuracies and the performance of the models with training and test sam-

ples of percentage from 90-10, 80-20 to 10-90 respectively.

The computer used for the training the models, as described in Chapter 4, was a laptop

with a dual Intel Core i5 at 2.30Ghz each, running Windows 7 64-bit operating system

and having 8 GB of RAM. In addition, the programming language of Python 3.6 was

selected and the implementation of CNN was done with Keras.

The next sections of this chapter present the performance, the confusion matrix of each

model with the different amount of percentage between training and testing samples,

and the comparison between them.

 64

5.2. Experiments with the first CNN architecture (ReLU activation functions)

In the case of 90-10 (percentages of training-test samples) the highest accuracy of the

model achieved 96.72% after 83 epochs for the 2 languages. In terms of 3 languages the

model scored 84.88% accuracy after 88 epochs and with 4 languages the best accuracy

is at 74.27% after 35 epochs. Figures 19–23 show the accuracies for the case of 90%

training samples and 10% test samples, the value of the loss function on validation sam-

ples and the confusion matrices accordingly.

Figure 19. Accuracy of 1st CNN 90-10 model over epochs.

 65

Figure 20. Validation loss of 1st CNN 90-10 model over epochs.

Figure 21. Confusion matrix of 1st CNN 90-10 model for 2 languages.

 66

Figure 22. Confusion matrix of 1st CNN 90-10 model for 3 languages.

Figure 23. Confusion matrix of 1st CNN 90-10 model for 4 languages.

 67

Continuing with the case of 80-20, the model for 2 languages achieved 93.44% accu-

racy at the 98th epoch. For 3 languages it scored the accuracy of 87.2% after 104 epochs

and in the case of 4 languages it scored 75.77% accuracy after 35. The next figures rep-

resent the results for the case of 80-20 of the model.

Figure 24. Accuracy of 1st CNN 80-20 model over epochs.

 68

Figure 25. Validation loss of 1st CNN 80-20 model over epochs.

Figure 26. Confusion matrix of 1st CNN 80-20 model for 2 languages.

 69

Figure 27. Confusion matrix of 1st CNN 80-20 model for 3 languages.

Figure 28. Confusion matrix of 1st CNN 80-20 model for 4 languages.

 70

Concerning training and test samples of 70-30, in the case of 2 languages the model

achieved 92.85% accuracy after 35 epochs. In the case of 3 languages the model scored

80.15% after 92 and for 4 languages the score achieved was 76.19% at the 35th epoch.

Figure 29. Accuracy of 1st CNN 70-30 model over epochs.

 71

Figure 30. Validation loss of 1st CNN 70-30 model over epochs.

Figure 31. Confusion matrix of 1st CNN 70-30 model for 2 languages.

 72

Figure 32. Confusion matrix of 1st CNN 70-30 model for 3 languages.

Figure 33. Confusion matrix of 1st CNN 70-30 model for 4 languages.

 73

In terms of 60-40 of the current CNN, the model scored 90.53% accuracy after 35 ep-

ochs. The best accuracy for 3 languages in this category was 74.92% after 87 epochs

and for 4 languages 65.06% accuracy at the 35th epoch.

Figure 34. Accuracy of 1st CNN 60-40 model over epochs.

 74

Figure 35. Validation loss of 1st CNN 60-40 model over epochs.

Figure 36. Confusion matrix of 1st CNN 60-40 model for 2 languages.

 75

Figure 37. Confusion matrix of 1st CNN 60-40 model for 3 languages.

Figure 38. Confusion matrix of 1st CNN 60-40 model for 4 languages.

 76

In the case of 50% training and 50% test samples the best accuracy for 2 languages is

89.43% at the 92nd epoch. The accuracy achieved for 3 languages is 71.96% after 81

epochs and 73.63% after 35 epochs for the case of 4 languages.

Figure 39. Accuracy of 1st CNN 50-50 model over epochs.

 77

Figure 40. Validation loss of 1st CNN 50-50 model over epochs.

Figure 41. Confusion matrix of 1st CNN 50-50 model for 2 languages.

 78

Figure 42. Confusion matrix of 1st CNN 50-50 model for 3 languages.

Figure 43. Confusion matrix of 1st CNN 50-50 model for 4 languages.

 79

Concerning the approach of 40-60 the best accuracies are: 77.19% after 107 epochs for

2 languages; 70.81% at the 106th epoch for 3 languages and 69.53% after 96 epochs for

4 languages.

Figure 44. Accuracy of 1st CNN 40-60 model over epochs.

 80

Figure 45. Validation loss of 1st CNN 40-60 model over epochs.

Figure 46. Confusion matrix of 1st CNN 40-60 model for 2 languages.

 81

Figure 47. Confusion matrix of 1st CNN 40-60 model for 3 languages.

Figure 48. Confusion matrix of 1st CNN 40-60 model for 4 languages.

 82

The best accuracies for the 30-70 case are: 76.94% at the 84th epoch for 2 languages;

63.66% after 129 epochs for 3 languages and 62.61% after 35 epochs for 4 languages.

Figure 49. Accuracy of 1st CNN 30-70 model over epochs.

 83

Figure 50. Validation loss of 1st CNN 30-70 model over epochs.

Figure 51. Confusion matrix of 1st CNN 30-70 model for 2 languages.

 84

Figure 52. Confusion matrix of 1st CNN 30-70 model for 3 languages.

Figure 53. Confusion matrix of 1st CNN 30-70 model for 4 languages.

 85

In terms of 20-80, the best accuracy for 2 languages is 73.81% after 35 epochs, for 3

languages is 56.49% at the 92nd epoch and for 4 languages 57.42% after 35 epochs.

Figure 54. Accuracy of 1st CNN 20-80 model over epochs.

 86

Figure 55. Validation loss of 1st CNN 20-80 model over epochs.

Figure 56. Confusion matrix of 1st CNN 20-80 model for 2 languages.

 87

Figure 57. Confusion matrix of 1st CNN 20-80 model for 3 languages.

Figure 58. Confusion matrix of 1st CNN 20-80 model for 4 languages.

 88

In the last case 10-90 the results are: 68.49% accuracy after 58 epochs for 2 languages;

49.28% after 35 epochs for 3 languages and 54.55% at the 110th epoch for 4 languages.

Figure 59. Accuracy of 1st CNN 10-90 model over epochs.

 89

Figure 60. Validation loss of 1st CNN 10-90 model over epochs.

Figure 61. Confusion matrix of 1st CNN 10-90 model for 2 languages.

 90

Figure 62. Confusion matrix of 1st CNN 10-90 model for 3 languages.

Figure 63. Confusion matrix of 1st CNN 10-90 model for 4 languages.

 91

Table 3. Results from the experiments of the first CNN (languages, accuracy, ep-

ochs).

90-10 80-20 70-30

2L: 96.72% epochs = 83 2L: 93.44% epochs = 98 2L: 92.85% epochs = 35

3L: 84.88% epochs = 88 3L: 87.2% epochs = 104 3L: 80.15% epochs = 92

4L: 74.27% epochs = 35 4L: 75.77% epochs = 35 4L: 76.19% epochs = 35

60-40 50-50 40-60

2L: 90.53% epochs = 35 2L: 89.43% epochs = 92 2L: 77.19% epochs = 107

3L: 74.92% epochs = 87 3L: 71.96% epochs = 81 3L: 70.81% epochs = 106

4L: 65.06% epochs = 35 4L: 73.63% epochs = 35 4L: 69.53% epochs = 96

30-70 20-80 10-90

2L: 76.94% epochs = 84 2L: 73.81% epochs = 35 2L: 68.49% epochs = 58

3L: 63.66% epochs = 129 3L: 56.49% epochs = 92 3L: 49.28% epochs = 35

4L: 62.61% epochs = 35 4L: 57.42% epochs = 35 4L: 54.55% epochs = 110

 92

As it can be seen the best accuracy for 2 languages (Chinese and Spanish) was achieved

in the case of 90-10 with the value of 96.72%. The optimal accuracy for 3 languages

(Chinese, Spanish and Arabic) can be seen in the case of 80-20 having a value of

87.2%. Concerning 4 languages (Chinese, Spanish, English and Arabic) the best accu-

racy is in the case of 70-30 with 76.19%.

The above results show that the English accents of native speakers of two different lan-

guages (Chinese and Spanish) are quite different and this difference can be seen quickly

in the training of the model, achieving high accuracy in the beginning (90-10 case).

While more native languages are added the difference between them seems to be a diffi-

cult task even for the computer to detect.

Concerning the statistics of the models running on the current computer it can be said

that the average time for loading the WAV files is around 8 minutes for 2 languages, 11

minutes for 3 languages and 20 minutes for 4 languages. The time needed for convert-

ing the WAV files to MFCCs is 41 seconds for 2 languages, 1 minute for 3 languages

and 1:39 minutes for 4 languages. Lastly, the average time needed for training the mod-

els is 55 minutes for 2 languages, 1 hour and 18 minutes for 3 languages and 2 hours for

4 languages. It must be noted that the time needed for training a model depends mainly

on the number of languages it contains and the number of epochs.

5.3. Experiments with the second CNN architecture (Sigmoid activation function on

3rd layer)

The results of the second CNN are slightly different from the first architecture. Specifi-

cally, in the case of 90-10 the model scored the best accuracy of 95.08% after 69 epochs

for 2 languages. For 3 languages the model scored 81.39% accuracy at the 100th epoch

and for 4 languages 75.77% accuracy after 50 epochs. The next figures represent the

accuracies for each case with 90% training samples and 10% test samples, the value of

the loss function and the confusion matrices accordingly as it was shown in the previous

section.

 93

Figure 64. Accuracy of 2nd CNN 90-10 model over epochs.

 94

Figure 65. Validation loss of 2nd CNN 90-10 model over epochs.

Figure 66. Confusion matrix of 2nd CNN 90-10 model for 2 languages.

 95

Figure 67. Confusion matrix of 2nd CNN 90-10 model for 3 languages.

Figure 68. Confusion matrix of 2nd CNN 90-10 model for 4 languages.

 96

Concerning the case of 80-20 the best accuracy is 95.05% after 100 epochs for 2 lan-

guages; 84.3% accuracy after 87 epochs for 3 languages and 74.22% at the 50th epoch

for 4 languages.

Figure 69. Accuracy of 2nd CNN 80-20 model over epochs.

 97

Figure 70. Validation loss of 2nd CNN 80-20 model over epochs.

Figure 71. Confusion matrix of 2nd CNN 80-20 model for 2 languages.

 98

Figure 72. Confusion matrix of 2nd CNN 80-20 model for 3 languages.

Figure 73. Confusion matrix of 2nd CNN 80-20 model for 4 languages.

 99

In terms of 70% training samples and 30% test samples the model scored the best accu-

racy of 92.85% after 77 epochs for 2 languages. For 3 languages the best accuracy can

be seen at the 85th epoch with 83.65%. The model achieved accuracy of 70.39% after

41 epochs for 4 languages.

Figure 74. Accuracy of 2nd CNN 70-30 model over epochs.

 100

Figure 75. Validation loss of 2nd CNN 70-30 model over epochs.

Figure 76. Confusion matrix of 2nd CNN 70-30 model for 2 languages.

 101

Figure 77. Confusion matrix of 2nd CNN 70-30 model for 3 languages.

Figure 78. Confusion matrix of 2nd CNN 70-30 model for 4 languages.

 102

The case of 60-40 includes 84.77% accuracy at the 74th epoch for 2 languages. In the

case of 3 languages the best accuracy is 83.67% after 100 epochs. For 4 languages the

accuracy is low at 19.87% after 50 epochs.

Figure 79. Accuracy of 2nd CNN 60-40 model over epochs.

 103

Figure 80. Validation loss of 2nd CNN 60-40 model over epochs.

Figure 81. Confusion matrix of 2nd CNN 60-40 model for 2 languages.

 104

Figure 82. Confusion matrix of 2nd CNN 60-40 model for 3 languages.

Figure 83. Confusion matrix of 2nd CNN 60-40 model for 4 languages.

 105

Continuing to the case of 50-50, the best accuracy of 2 languages is 85.47% after 98 ep-

ochs; 73.36% accuracy after 100 epochs for 3 languages and 70.52% at the 50th epoch

for 4 languages.

Figure 84. Accuracy of 2nd CNN 50-50 model over epochs.

 106

Figure 85. Validation loss of 2nd CNN 50-50 model over epochs.

Figure 86. Confusion matrix of 2nd CNN 50-50 model for 2 languages.

 107

Figure 87. Confusion matrix of 2nd CNN 50-50 model for 3 languages.

Figure 88. Confusion matrix of 2nd CNN 50-50 model for 4 languages.

 108

Concerning the case of 40-60 the best accuracy for 2 languages is 75.27% at the epoch

of 98; 70.81% accuracy after 100 epochs for 3 languages and 71.70% accuracy after 50

epochs for 4 languages.

Figure 89. Accuracy of 2nd CNN 40-60 model over epochs.

 109

Figure 90. Validation loss of 2nd CNN 40-60 model over epochs.

Figure 91. Confusion matrix of 2nd CNN 40-60 model for 2 languages.

 110

Figure 92. Confusion matrix of 2nd CNN 40-60 model for 3 languages.

Figure 93. Confusion matrix of 2nd CNN 40-60 model for 4 languages.

 111

In the matter of 30-70 the results are: 78.82% accuracy at the 100th epoch for 2 lan-

guages; 65.5% accuracy after 83 epochs for 3 languages and 65.18% accuracy at the

50th epoch for 4 languages.

Figure 94. Accuracy of 2nd CNN 30-70 model over epochs.

 112

Figure 95. Validation loss of 2nd CNN 30-70 model over epochs.

Figure 96. Confusion matrix of 2nd CNN 30-70 model for 2 languages.

 113

Figure 97. Confusion matrix of 2nd CNN 30-70 model for 3 languages.

Figure 98. Confusion matrix of 2nd CNN 30-70 model for 4 languages.

 114

Regarding 20% training samples and 80% test samples the best accuracy for 2 lan-

guages is 74.02% after 93 epochs. For 3 languages the model achieved 60.87% accuracy

at the 90th epoch and only 11.03% accuracy after 50 epochs for 4 languages.

Figure 99. Accuracy of 2nd CNN 20-80 model over epochs.

 115

Figure 100. Validation loss of 2nd CNN 20-80 model over epochs.

Figure 101. Confusion matrix of 2nd CNN 20-80 model for 2 languages.

 116

Figure 102. Confusion matrix of 2nd CNN 20-80 model for 3 languages.

Figure 103. Confusion matrix of 2nd CNN 20-80 model for 4 languages.

 117

Lastly, in the case of 10-90 the model scored 30.76% accuracy after 86 epochs for 2

languages, 48.11% after 98 epochs for 3 languages and 56.35% accuracy at the 50th ep-

och for 4 languages.

Figure 104. Accuracy of 2nd CNN 10-90 model over epochs.

 118

Figure 105. Validation loss of 2nd CNN 10-90 model over epochs.

Figure 106. Confusion matrix of 2nd CNN 10-90 model for 2 languages.

 119

Figure 107. Confusion matrix of 2nd CNN 10-90 model for 3 languages.

Figure 108. Confusion matrix of 2nd CNN 10-90 model for 4 languages.

 120

Table 4. Results from the experiments of the second CNN (languages, accuracy,

 epochs).

90-10 80-20 70-30

2L: 95.08% epochs = 69 2L: 95.08% epochs = 100 2L: 92.85% epochs = 77

3L: 81.39% epochs = 100 3L: 84.3% epochs = 87 3L: 83.65% epochs = 85

4L: 75.77% epochs = 50 4L: 74.22% epochs = 50 4L: 70.39% epochs = 41

60-40 50-50 40-60

2L: 84.77% epochs = 74 2L: 85.47% epochs = 98 2L: 75.27% epochs = 98

3L: 83.67% epochs = 100 3L: 73.36% epochs = 100 3L: 70.81% epochs = 100

4L: 19.87% epochs = 50 4L: 70.52% epochs = 50 4L: 71.70% epochs = 50

30-70 20-80 10-90

2L: 78.82% epochs = 100 2L: 74.02% epochs = 93 2L: 30.76% epochs = 86

3L: 65.5% epochs = 83 3L: 60.87% epochs = 90 3L: 48.11% epochs = 98

4L: 65.18% epochs = 50 4L: 11.03% epochs = 50 4L: 56.35% epochs = 50

 121

Almost similar results can be derived from the second CNN compared to the first one.

The best accuracy for 2 languages can be seen in 90-10 and 80-20 cases being 95.08%,

which is a little lower than the first CNN (96.72%). The best accuracy for 3 languages

was at the case of 80-20 with the value of 84.3%, being a little lower than the first CNN

(87.2%). Concerning 4 languages the best accuracy achieved in this model was seen in

the case of 90-10 with 75.77%, while in the first CNN the accordingly accuracy was

76.19% at 70-30 category.

Again, the results show that in the case of two languages (Chinese and Spanish) the dif-

ference in the English accent is large and can be seen from the first category of 90-10

and even from the 80-20 case. When the user adds more native languages with different

accents then the system is not able to achieve extremely high accuracy.

In terms of the statistics of the models running on the current computer it can be noted

that the average time for loading the WAV files is almost identical to the first CNN:

Specifically the system needed around 8 minutes and 38 second for 2 languages, 12

minutes and 18 seconds for 3 languages and 19 minutes and 44 seconds for 4 languages.

The process of converting the WAV files to MFCCs is 48 seconds for 2 languages, 56

seconds for 3 languages and 1:39 minutes for 4 languages. The average time needed for

training the models is 43 minutes for 2 languages, 1 hour and 30 minutes for 3 lan-

guages and 1 hour and 24 minutes for 4 languages. Similarly to the first neural network,

the time needed for training a model depends mainly on the number of languages it con-

tains and the number of epochs.

 122

6. CONCLUSION AND FUTURE WORK

In conclusion, the process of accent classification using two different convolutional

neural networks and the results of the experiments have been presented in this thesis.

Specifically, the languages used in the projects were Chinese, Spanish, English and

Arabic and the dataset was retrieved by "The speech accent archive" of George Mason

University Department of English Speech Accent Archive. The audio files with the

speakers contain a certain elicitation paragraph in English; therefore the proposed sys-

tem is text dependent.

Moreover, the role of machine learning and the feature extraction using the Mel-

Frequency Cepstral Coefficients have been discussed. The MFCCs proved to be the

most accurate way to represent the energy of a human voice and to capture the charac-

teristics of human tract. It is important to note that the first 13 MFCCs from the audio

files were sufficient to be used in the system and the audio files were in WAV format

sampled at 16kHz, mono channel, 16-bit.

In addition, the theory of neural networks and convolutional neural networks have been

discussed in order for the reader to understand the concepts and the architecture used in

the proposed system. The system architecture and the implementation have been pre-

sented in detail. Particularly the source code of the system is based on the project of

Yatharth Garg and it was modified by the author to suit the purposes of the experiments.

The programming language used was Python 3.6 and the importance of using this lan-

guage was high in terms of extensibility, modularity and being open source. The im-

plementation of the convolutional neural networks in this thesis was based on the open

source neural network library of Keras, which runs on top of the TensorFlow frame-

work.

The experiments with the two proposed CNN architectures using ReLU and Sigmoid

activation functions and their results were presented and discussed in detail. The dia-

grams of the accuracy, validation loss and confusion matrices of the experiments have

 123

shown that the proposed system can acquire relatively good results concerning the size

of the dataset and the computer used to run the models.

In terms of future work and improvements it would be beneficial to use a larger dataset

in order to achieve better results and accuracy of the models. An advantage of the data-

set used is that is free and available to the public. Having in mind that in general data-

sets used for machine learning applications are licensed and expensive to acquire. How-

ever, larger datasets are crucial for achieving a more accurate prediction system.

Another aspect of improving the system would be to work independently of a speaker

reading a certain text. When a system is text independent, the party using its services is

more flexible to predict the origin of the speaker. On the other hand, a text independent

system demands a different implementation using GPUs.

Finally, the application of different neural networks, such as recurrent neural networks

and quantum neural networks, would provide a better way to solve the accent classifica-

tion problem. Recurrent neural networks can be already used, but quantum neural net-

works may take some time to be applied. Future research will determine if recurrent or

quantum neural networks will replace convolutional neural networks in accent classifi-

cation.

 124

REFERENCES

Alpaydin, Ethem (2014). Introduction to Machine Learning. 3rd Ed. Cambridge, Mas-

sachusetts: MIT Press. 613 p. ISBN 978-0-262-02818-9.

Audacity, Free, open source, cross-platform audio software, [cited 14 Dec. 2018].

Available from World Wide Web: <URL: https://www.audacityteam.org/>.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. 1st Ed.

New York: Springer. 738 p. ISBN 978-0387310732.

Bryant, Morgan, Amanda Chow & Sydney Li (2014). Classification of Accents of Eng-

lish Speakers by Native Language [online]. Stanford University [cited 14 Dec.

2018]. Available from World Wide Web: <URL:

http://cs229.stanford.edu/proj2014/Morgan%20Bryant,%20Amanda%20Chow,%2

0Sydney%20Li,%20Classification%20of%20Accents%20of%20English%20Speak

ers%20by%20Native%20Language.pdf>.

Ciresan, Dan C., Ueli Meier, Jonathan Masci, Luca M. Gambardella & Jurgen

Schmidhuber (2011). Flexible, high performance convolutional neural networks for

image classification. In: IJCAI'11 Proceedings of The Twenty-Second international

joint conference on Artificial Intelligence, Vol Two, 1237–1242. Barcelona: AAAI

Press. Available from World Wide Web: <URL:

https://dl.acm.org/citation.cfm?id=2283603>. ISBN 978-1-57735-514-4.

Chu, Albert, Peter Lai & Diana Le (2017). Accent Classification of Non-Native English

Speakers [online]. [cited 22 Nov. 2018]. Available from World Wide Web: <URL:

http://web.stanford.edu/class/cs224s/reports/Albert_Chu.pdf>.

 125

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. In:

Mathematics of Control, Signals and Systems 2:4, 303–314. Springer-Verlag.

Available from World Wide Web: <URL: https://doi.org/10.1007/BF02551274>.

ISBN 0932-4194.

Deb, Sankha & Uday Dixit (2008). Intelligent Machining: Computational Methods and

Optimization. In: Machining, 329–358. London: Springer. Available from World

Wide Web: <URL: https://doi.org/10.1007/978-1-84800-213-5_12>. ISBN 978-1-

84800-212-8.

Elminir, Hamdy K., Mohamed Abu ElSoud & L.M. Abou El-Maged (2012). Evalua-

tion of Different Feature Extraction Techniques for Continuous Speech Recogni-

tion. In: International Journal of Science and Technology, 2:10, 689–695. Avail-

able from World Wide web: <URL:

https://pdfs.semanticscholar.org/2d6b/4e5ae033a117a523a32e8cd8fc2c809897de.p

df>. ISSN 2224-3577.

Flach, Peter (2012). Machine Learning, The Art and Science of Algorithms that Make

Sense of Data. New York: Cambridge University Press. 396 p. ISBN 978-1-107-

42222-3.

Garg, Yatharth (2018). Speech-Accent-Recognition [online]. [cited 14 Nov. 2018].

Available from World Wide Web: <URL: https://github.com/yatharth1908/Speech-

Accent-Recognition>.

Graupe, Daniel (2013). Principles of Artificial Neural Networks [online]. 3rd Ed. Lon-

don: World Scientific [cited 4 Dec. 2018]. Available from Ebook Central <URL:

https://ebookcentral-proquest-com.proxy.uwasa.fi/lib/tritonia-

ebooks/detail.action?docID=1336559>. ISBN 978-981-4522-73-1.

 126

Haykin, Simon (2004). Feedforward Neural Networks: an Introduction. 16 p. Avail-

able from World Wide Web: <URL:

https://pdfs.semanticscholar.org/39b1/c4bf2409ac4fd21c611f732745329e118e0b.p

df>.

Haykin, Simon (1999). Neural Networks: A Comprehensive Foundation. 2nd Ed. Up-

per Saddle River, New Jersey: Prentice Hall. 842 p. ISBN 978-0132733502.

Hellerstein, Joe (2008). Parallel Programming in the Age of Big Data [online]. 9 No-

vember 2008 [cited 19 Nov. 2018]. Available from World Wide Web: <URL:

https://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-

programming/>.

Huang, Xuedong, Alex Acero & Hsiao-Wuen Hon (2001). Spoken Language Process-

ing: A Guide to Theory, Algorithm and System Development. 1st Ed. Upper Saddle

River, New Jersey: Prentice Hall. 380 p. ISBN 978-130-226167.

Khan, Salman, Hossein Rahmani, Syed Afaq Ali Shah & Mohammed Bennamoun

(2018). A Guide to Convolutional Neural Networks for Computer Vision. Morgan

& Claypool. 184 p. ISBN 978-1681730219.

Lokhande, N.N., N.S. Nehe & P.S. Vihke (2012). MFCC based robust features for

English Word Recognition. In: 2012 Annual IEEE India Conference (INDICON),

798–801. IEEE. Available from IEEE Xplore: <URL:

https://doi.org/10.1109/INDCON.2012.6420726>. ISBN 978-130-226167.

Ma, Zichen & Ernerst Fokoue (2014). A Comparison of Classifiers in Performing

Speaker Accent Recognition Using MFCCs. In: Open Journal of Statistics, 258–

266. Rochester: Rochester Institute of Technology. Available from World Wide

Web: <URL: https://arxiv.org/ftp/arxiv/papers/1501/1501.07866.pdf>.

 127

PyCharm, The Python IDE for Professional Developers by JetBrains, [cited 14 Dec.

2018]. Available from World Wide Web: <URL:

https://www.jetbrains.com/pycharm/>.

Najafian, Maryam, Saeid Safavi, Abualsoud Hanani & Martin Russell (2014). Acoustic

model selection using limited data for accent robust speech recognition. In: 2014

22nd European Signal Processing Conference (EUSIPCO), 1786-1790. IEEE. Lis-

bon, Portugal. Available from IEEE Xplore: <URL:

https://ieeexplore.ieee.org/document/6952657>. ISBN 978-0-9928-6261-9.

Rogers, Simon & Mark Girolami (2017). A First Course in Machine Learning. 2nd Ed.

Boca Raton: CRC Press. 397 p. ISBN 978-1-4987-38484.

Rumelhart, D.E., G.E. Hinton & R.J. Williams (1986). Learning internal representa-

tions by error propagation. In: Parallel distributed processing: explorations in the

microstructure of cognition, vol. 1, 318–362. Cambridge, MA: MIT Press. Avail-

able from World Wide Web: <URL:

http://dl.acm.org/citation.cfm?id=104279.104293>. ISBN 0-262-68053-X.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever & Ruslan Salak-

hutdivon (2014). Dropout: a simple way to prevent neural networks from overfit-

ting. In: The Journal of Machine Learning Research, 15:1, 1929–1958. Available

from World Wide Web: <URL: https://dl.acm.org/citation.cfm?id=2670313>.

ISSN 1532-4435.

Valaki, Sanjay A. & Harikrishna B. Jethva (2016). A Survey on Feature Extraction and

Classification Techniques for Speech Recognition. In: International Journal of Ad-

vance Research and Innovative Ideas In Education, 2:6, 830–837. Available from

World Wide web: <URL:

http://ijariie.com/AdminUploadPdf/A_Survey_on_Feature_Extraction_and_Classif

ication_Techniques_for_Speech_Recognition_ijariie3432.pdf>. ISSN 2395-4396.

 128

Venkatesan, Ragav & Baoxin Li (2018). Convolutional Neural Networks in Visual

Computing: A Concise Guide. Phoenix: CRC Press. 168 p. ISBN 978-1-4987-

7039-2.

Watanaprakornkul, Phumchanit, Chantat Eksombatchai & Peter Chien (2010). Accent

Classification [online]. Stanford University [cited 14 Dec. 2018]. Available from

World Wide Web: <URL:

http://cs229.stanford.edu/proj2010/WatanaprakornkulEksombatchaiChien-

AccentClassification.pdf>.

Weinberger, Steven (2015). Speech Accent Archive [online]. George Mason University

[cited 7 Dec. 2018]. Available from World Wide Web <URL:

http://accent.gmu.edu>.

Werbos, Paul J. (1974). Beyond regression: New tools for prediction and analysis in

the behavioral sciences. Harvard University, Cambridge, MA. Available from

World Wide Web: <URL:

https://www.researchgate.net/profile/Paul_Werbos/publication/35657389_Beyond_

regres-

sion_new_tools_for_prediction_and_analysis_in_the_behavioral_sciences/links/57

6ac78508aef2a864d20964/Beyond-regression-new-tools-for-prediction-and-

analysis-in-the-behavioral-sciences.pdf>.

Winamp, [cited 14 Dec. 2018]. Available from World Wide Web: <URL:

https://www.winamp.com/>.

 129

APPENDIX 1. SOURCE CODE

#---
trainmodel.py
#---

original code taken from:
Garg, Yatharth (2018). Speech-Accent-Recognition [online].
[cited 14 Nov. 2018].

Available from World Wide Web:
<URL: https://github.com/yatharth1908/Speech-Accent-Recognition>.
modified by Stavros Grigoriadis

#---

import pandas as pd

from collections import Counter
import sys
sys.path.append('../speech-accent-recognition/src>')

import getsplit
import time
import datetime

from keras import utils
import accuracy

import multiprocessing
import librosa
import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Flatten
from keras.layers.convolutional import MaxPooling2D, Conv2D

from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, TensorBoard

import winsound

DEBUG = True
SILENCE_THRESHOLD = .01
RATE = 16000

N_MFCC = 13
COL_SIZE = 30
EPOCHS = 100

def to_categorical(y):

 '''
 Converts list of languages into a binary class matrix

 130

 :param y (list): list of languages
 :return (numpy array): binary class matrix

 '''
 lang_dict = {}
 for index,language in enumerate(set(y)):

 lang_dict[language] = index
 y = list(map(lambda x: lang_dict[x],y))
 return utils.to_categorical(y, len(lang_dict))

def get_wav(language_num):

 '''
 Load wav file from disk and down-samples to RATE
 :param language_num (list): list of file names

 :return (numpy array): Down-sampled wav file
 '''

 y, sr = librosa.load('../audio/{}.wav'.format(language_num))
 return(librosa.core.resample(y=y,orig_sr=sr,target_sr=RATE,
scale=True))

def to_mfcc(wav):

 '''
 Converts wav file to Mel Frequency Ceptral Coefficients
 :param wav (numpy array): Wav form

 :return (2d numpy array: MFCC
 '''
 return(librosa.feature.mfcc(y=wav, sr=RATE, n_mfcc=N_MFCC))

def remove_silence(wav, thresh=0.04, chunk=5000):

 '''
 Searches wav form for segments of silence. If wav form values are
lower than 'thresh' for 'chunk' samples, the values will be removed

 :param wav (np array): Wav array to be filtered
 :return (np array): Wav array with silence removed
 '''

 tf_list = []
 for x in range(len(wav) / chunk):

 if (np.any(wav[chunk * x:chunk * (x + 1)] >= thresh) or
np.any(wav[chunk * x:chunk * (x + 1)] <= -thresh)):
 tf_list.extend([True] * chunk)

 else:
 tf_list.extend([False] * chunk)

 tf_list.extend((len(wav) - len(tf_list)) * [False])
 return(wav[tf_list])

 131

def normalize_mfcc(mfcc):
 '''

 Normalize mfcc
 :param mfcc:
 :return:

 '''
 mms = MinMaxScaler()
 return(mms.fit_transform(np.abs(mfcc)))

def make_segments(mfccs,labels):

 '''
 Makes segments of mfccs and attaches them to the labels
 :param mfccs: list of mfccs

 :param labels: list of labels
 :return (tuple): Segments with labels
 '''

 segments = []
 seg_labels = []
 for mfcc,label in zip(mfccs,labels):

 for start in range(0, int(mfcc.shape[1] / COL_SIZE)):
 segments.append(mfcc[:, start * COL_SIZE:(start + 1) *
COL_SIZE])

 seg_labels.append(label)
 return(segments, seg_labels)

def segment_one(mfcc):
 '''

 Creates segments from on mfcc image. If last segments is not long
enough to be length of columns divided by COL_SIZE
 :param mfcc (numpy array): MFCC array

 :return (numpy array): Segmented MFCC array
 '''
 segments = []

 for start in range(0, int(mfcc.shape[1] / COL_SIZE)):
 segments.append(mfcc[:, start * COL_SIZE:(start + 1) *
COL_SIZE])

 return(np.array(segments))

def create_segmented_mfccs(X_train):
 '''
 Creates segmented MFCCs from X_train

 :param X_train: list of MFCCs
 :return: segmented mfccs
 '''

 segmented_mfccs = []
 for mfcc in X_train:
 segmented_mfccs.append(segment_one(mfcc))

 return(segmented_mfccs)

 132

def train_model(X_train,y_train,X_validation,y_validation,
batch_size=128): #64
 '''

 Trains 2D convolutional neural network
 :param X_train: Numpy array of mfccs
 :param y_train: Binary matrix based on labels

 :return: Trained model
 '''

 # Get row, column, and class sizes
 rows = X_train[0].shape[0]
 cols = X_train[0].shape[1]

 val_rows = X_validation[0].shape[0]
 val_cols = X_validation[0].shape[1]
 num_classes = len(y_train[0])

 print('X_Train shape rows:',rows)
 print('X_train1 shape cols:', cols)

 print('num_classes:',num_classes)

 # input image dimensions to feed into 2D ConvNet Input layer

 input_shape = (rows, cols, 1)
 X_train = X_train.reshape(X_train.shape[0], rows, cols, 1)
 X_validation =

X_validation.reshape(X_validation.shape[0],val_rows,val_cols,1)

 print('X_train shape:', X_train.shape)
 print(X_train.shape[0], 'training samples')

 # Initializing the CNN
 model = Sequential()

 # Add 1st Layer Convolution, input_shape = (13,30,1), MFCCs coming
in 13x30x1
 # input shape matches the data shape coming into the network

 # Output filter of dimension 32 in the convolution,
 # Kernel size: 3x3,
 # Activation ReLU,

 # Data_format = "channels_last" which means that the ordering of
the dimensions
 # in the inputs have the form of (batch, height, width, channels)

 model.add(Conv2D(32, kernel_size=(3,3), activation='relu',
 data_format="channels_last",
 input_shape=input_shape))

 # Max pooling operation with a pool size of 2x2 is applied
 # to down scale the spatial dimension

 model.add(MaxPooling2D(pool_size=(2, 2)))

 133

 # Add 2nd convolutional layer,

 # Output filter of dimension 64 in the convolution,
 # Kernel size: 3x3,
 # Activation ReLU,

 model.add(Conv2D(64,kernel_size=(3,3), activation='relu'))
 #model.add(Conv2D(64, kernel_size=(3, 3), activation='sigmoid'))

 # Max pooling operation with a pool size of 2x2 is applied
 # to down scale the spatial dimension
 model.add(MaxPooling2D(pool_size=(2, 2)))

 # Dropout operation with a rate of 0.25 to avoid overfitting
 model.add(Dropout(0.25))

 # Flattening work in a single array, 1 dimension
 model.add(Flatten())

 # Fully Connected
 # A Regularly densely-connected layer is added with 128 units

 # Activation function of ReLU
 model.add(Dense(128, activation='relu'))
 #model.add(Dense(128, activation='sigmoid'))

 # Dropout operation with a rate of 0.5 to avoid overfitting
 model.add(Dropout(0.5))

 # The last layer is a fully connected layer with the number of ac-
cent classes

 # used for the model and
 # a softmax activation function
 model.add(Dense(num_classes, activation='softmax'))

 # Compiling the CNN
 # optimizer is reverse propagation

 # readjusting the weights
 # loss how to computer the error
 model.compile(loss='categorical_crossentropy',

 optimizer='adadelta',
 metrics=['accuracy'])

 # Stops training if accuracy does not change at least 0.005 over
10 epochs
 es = EarlyStopping(monitor='acc', min_delta=.005, patience=10,

verbose=1, mode='auto')

 # Creates log file for graphical interpretation using TensorBoard

 tb = TensorBoard(log_dir='../logs', histogram_freq=0,
batch_size=32, write_graph=True, write_grads=True,
 write_images=True, embeddings_freq=0, embed-

dings_layer_names=None,

 134

 embeddings_metadata=None)

 # Image shifting
 datagen = ImageDataGenerator(width_shift_range=0.05)

 # Fit model using ImageDataGenerator
 # Training the CNN
 model.fit_generator(datagen.flow(X_train, y_train,

batch_size=batch_size),
 steps_per_epoch=len(X_train) / 32
 , epochs=EPOCHS,

 callbacks=[es,tb], valida-
tion_data=(X_validation,y_validation))

 return (model)

def save_model(model, model_filename):
 '''
 Save model to file

 :param model: Trained model to be saved
 :param model_filename: Filename
 :return: None

 '''
 model.save('../models/{}.h5'.format(model_filename)) # creates a
HDF5 file 'my_model.h5'

if __name__ == '__main__':

 '''
 Console command example:
 python trainmodel.py data_info2L.csv model2l10_9010_relu

 '''

 start = time.time()

 # Load arguments
 file_name = sys.argv[1]

 model_filename = sys.argv[2]

 # Load metadata

 df = pd.read_csv(file_name)

 # Filter metadata to retrieve only files desired

 filtered_df = getsplit.filter_df(df)

 # Train test split

 X_train, X_test, y_train, y_test = gets-
plit.split_people(filtered_df)

 # Get statistics

 135

 train_count = Counter(y_train)
 test_count = Counter(y_test)

 print("Entering main")

 acc_to_beat = test_count.most_common(1)[0][1] /
float(np.sum(list(test_count.values())))

 # To categorical
 y_train = to_categorical(y_train)
 y_test = to_categorical(y_test)

 # Get resampled wav files using multiprocessing
 if DEBUG:

 print('Loading wav files....')
 pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())

 start_loading_wavs = time.time()
 X_train = pool.map(get_wav, X_train)
 X_test = pool.map(get_wav, X_test)

 end_loading_wavs = time.time()
 print("\nTotal time needed for Loading wav files: ",
datetime.timedelta(seconds=(end_loading_wavs - start_loading_wavs)))

 # Convert to MFCC
 if DEBUG:

 print('Converting to MFCC....')

 start_converting_mfcc = time.time()

 X_train = pool.map(to_mfcc, X_train)
 X_test = pool.map(to_mfcc, X_test)

 # Create segments from MFCCs
 X_train, y_train = make_segments(X_train, y_train)
 X_validation, y_validation = make_segments(X_test, y_test)

 # Randomize training segments
 X_train, _, y_train, _ = train_test_split(X_train, y_train,

test_size=0)

 end_converting_mfcc = time.time()

 print("\nTotal time needed for Converting to MFCC: ",
datetime.timedelta(seconds=(end_converting_mfcc -
start_converting_mfcc)))

 start_training_model = time.time()

 # Train model
 model = train_model(np.array(X_train), np.array(y_train),

np.array(X_validation),np.array(y_validation))

 136

 # Make predictions on full X_test MFCCs

 y_predicted = accu-
racy.predict_class_all(create_segmented_mfccs(X_test), model)

 end_training_model = time.time()
 print("\nTotal time needed for Training Model: ",
datetime.timedelta(seconds=(end_training_model -

start_training_model)))

 # Print statistics
 print('Training samples:', train_count)
 print('Testing samples:', test_count)

 print('Accuracy to beat:', acc_to_beat)
 print('Confusion matrix of total samples:\n',
np.sum(accuracy.confusion_matrix(y_predicted, y_test),axis=1))

 print('Confusion matrix:\n',accuracy.confusion_matrix(y_predicted,
y_test))
 print('Accuracy:', accuracy.get_accuracy(y_predicted,y_test))

 # Save model
 save_model(model, model_filename)

 end = time.time()

 print("\nTotal time needed: ", datetime.timedelta(seconds=(end -
start)))

 winsound.PlaySound("Success", winsound.SND_FILENAME)

 137

#---
getsplit.py

#---
original code taken from:
Garg, Yatharth (2018). Speech-Accent-Recognition [online].

[cited 14 Nov. 2018].
Available from World Wide Web:
<URL: https://github.com/yatharth1908/Speech-Accent-Recognition>.

#---

import pandas as pd

import sys
from sklearn.model_selection import train_test_split

def filter_df(df):
 '''

 Function to filter audio files based on df columns
 df column options:
[age,age_of_english_onset,age_sex,birth_place,english_learning_method,

 eng-
lish_residence,length_of_english_residence,native_language,other_langu
ages,sex]

 :param df (DataFrame): Full unfiltered DataFrame
 :return (DataFrame): Filtered DataFrame
 '''

 chinese = df[df.native_language == 'chinese']
 spanish = df[df.native_language == 'spanish']

 english = df[df.native_language == 'english']
 arabic = df[df.native_language == 'arabic']

 #chinese = chinese[chinese.length_of_english_residence < 10]
 #spanish = spanish[spanish.length_of_english_residence < 10]
 #arabic = arabic[arabic.length_of_english_residence < 10]

 df = df.append(chinese)

 df = df.append(spanish)
 df = df.append(english)
 df = df.append(arabic)

 return df

def split_people(df,test_size=0.1):
 '''

 Create train test split of DataFrame
 :param df (DataFrame): Pandas DataFrame of audio files to be split
 :param test_size (float): Percentage of total files to be split

into test

 138

 :return X_train, X_test, y_train, y_test (tuple): Xs are list of
df['language_num'] and Ys are df['native_language']

 test_size = 10% train_size = 90%
 '''

 return
train_test_split(df['language_num'],df['native_language'],test_size=te

st_size,random_state=1234)

if __name__ == '__main__':
 '''
 Console command example:

 python bio_data.csv
 '''

 csv_file = sys.argv[1]
 df = pd.read_csv(csv_file)
 filtered_df = filter_df(df)

 print(split_people(filtered_df))

 139

#---
accuracy.py

#---
original code taken from:
Garg, Yatharth (2018). Speech-Accent-Recognition [online].

[cited 14 Nov. 2018].
Available from World Wide Web:
<URL: https://github.com/yatharth1908/Speech-Accent-Recognition>.

#---

from collections import Counter

import numpy as np

def predict_class_audio(MFCCs, model):
 '''
 Predict class based on MFCC samples

 :param MFCCs: Numpy array of MFCCs
 :param model: Trained model
 :return: Predicted class of MFCC segment group

 '''
 MFCCs =
MFCCs.reshape(MFCCs.shape[0],MFCCs.shape[1],MFCCs.shape[2],1)

 y_predicted = model.predict_classes(MFCCs,verbose=0)
 return(Counter(list(y_predicted)).most_common(1)[0][0])

def predict_prob_class_audio(MFCCs, model):
 '''

 Predict class based on MFCC samples' probabilities
 :param MFCCs: Numpy array of MFCCs
 :param model: Trained model

 :return: Predicted class of MFCC segment group
 '''
 MFCCs =

MFCCs.reshape(MFCCs.shape[0],MFCCs.shape[1],MFCCs.shape[2],1)
 y_predicted = model.predict_proba(MFCCs,verbose=0)
 return(np.argmax(np.sum(y_predicted,axis=0)))

def predict_class_all(X_train, model):

 '''
 :param X_train: List of segmented mfccs
 :param model: trained model

 :return: list of predictions
 '''
 predictions = []

 for mfcc in X_train:
 predictions.append(predict_class_audio(mfcc, model))
 #predictions.append(predict_prob_class_audio(mfcc, model))

 return predictions

 140

def confusion_matrix(y_predicted,y_test):
 '''

 Create confusion matrix
 :param y_predicted: list of predictions
 :param y_test: numpy array of shape (len(y_test), number of

classes). 1.'s at index of actual, otherwise 0.
 :return: numpy array. confusion matrix
 '''

 confusion_matrix =
np.zeros((len(y_test[0]),len(y_test[0])),dtype=int)
 for index, predicted in enumerate(y_predicted):

 confusion_matrix[np.argmax(y_test[index])][predicted] += 1
 return(confusion_matrix)

def get_accuracy(y_predicted,y_test):
 '''

 Get accuracy
 :param y_predicted: numpy array of predictions
 :param y_test: numpy array of actual

 :return: accuracy
 '''
 c_matrix = confusion_matrix(y_predicted,y_test)

 return(np.sum(c_matrix.diagonal()) / float(np.sum(c_matrix)))

if __name__ == '__main__':

 pass

 141

#---
predict.py

#---
original code taken from:
Garg, Yatharth (2018). Speech-Accent-Recognition [online].

[cited 14 Nov. 2018].
Available from World Wide Web:
<URL: https://github.com/yatharth1908/Speech-Accent-Recognition>.

modified by Stavros Grigoriadis
#---

import numpy as np
import accuracy
from keras.models import load_model

import librosa
import pandas as pd
import getsplit

RATE = 16000
N_MFCC = 13

COL_SIZE = 30

def get_pred_wav(language_num):
 '''
 Load wav file from disk and down-samples to RATE

 :param language_num (list): list of file names
 :return (numpy array): Down-sampled wav file
 '''

 y, sr = li-
brosa.load('../Prediction_File/{}.wav'.format(language_num))

 return(librosa.core.resample(y=y,orig_sr=sr,target_sr=RATE,
scale=True))

def create_segmented_mfccs(X_train):
 '''

 Creates segmented MFCCs from X_train
 :param X_train: list of MFCCs
 :return: segmented mfccs

 '''
 segmented_mfccs = []
 for mfcc in X_train:

 segmented_mfccs.append(segment_one(mfcc))
 return(segmented_mfccs)

def to_mfcc(wav):
 '''

 Converts wav file to Mel Frequency Ceptral Coefficients

 142

 :param wav (numpy array): Wav form
 :return (2d numpy array: MFCC

 '''
 return(librosa.feature.mfcc(y=wav, sr=RATE, n_mfcc=N_MFCC))

def segment_one(mfcc):
 '''

 Creates segments from on mfcc image. If last segments is not long
enough to be length of columns divided by COL_SIZE
 :param mfcc (numpy array): MFCC array

 :return (numpy array): Segmented MFCC array
 '''
 segments = []

 for start in range(0, int(mfcc.shape[1] / COL_SIZE)):
 segments.append(mfcc[:, start * COL_SIZE:(start + 1) *
COL_SIZE])

 return(np.array(segments))

def create_segmented_mfccs(X_train):
 '''
 Creates segmented MFCCs from X_train

 :param X_train: list of MFCCs
 :return: segmented mfccs
 '''

 segmented_mfccs = []
 for mfcc in X_train:
 segmented_mfccs.append(segment_one(mfcc))

 return(segmented_mfccs)

Load Model
print("===")
print("Loading Model")

new_model = load_model('../models/model4l82.h5')
print("===")

file_name = 'data_predict.csv'

Load metadata

df = pd.read_csv(file_name)

Filter metadata to retrieve only files desired

filtered_df = getsplit.filter_df(df)

Train test split

X_predict, X_test, y_train, y_test = gets-
plit.split_people(filtered_df)

X_predict = map(get_pred_wav, X_predict)

 143

X_predict = map(to_mfcc, X_predict)
y_predicted = accu-

racy.predict_class_all(create_segmented_mfccs(X_predict), new_model)

if y_predicted == [0]:

 print ("Chinese Accent Found")
if y_predicted == [1]:
 print ("Spanish Accent Found")

if y_predicted == [2]:
 print ("English Accent Found")
if y_predicted == [3]:

 print ("Arabic Accent Found")

