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ABSTRACT 

Speech recognition systems have been extensively improved over the years. However, 

accent classification remains a highly challenging task. Accent classification technology 

can be a great benefit to automatic speech recognition applications, telephony based 

service centres, immigration offices and in military operations. The application of con-

volutional neural networks has been an efficient and effective way to solve the accent 

recognition problem.  

In this thesis the accent classification task is approached by the application of two con-

volutional neural networks. The difference between them can be seen at their activation 

functions. The work includes a dataset of native speakers of four different languages 

(Chinese, Spanish, English, Arabic) who read a certain elicitation paragraph in English. 

The chosen paragraph contains common English words which cover in majority the 

sounds of English language. The feature extraction is based on the Mel-Frequency Cep-

stral Coefficients, in particular the first 13 coefficients are used. The MFCC has proved 

to be one of the best representations of human voice in terms of audio signal processing. 

The convolutional neural networks manipulate the audio signals of the speakers in the 

form of 2 dimensional images, making them an effective approach for accent classifica-

tion. The thesis contains an extensive presentation of the accuracy, validation loss and 

confusion matrices of each cases between training and test samples and the results of 

each model for the reader to compare and decide which model to apply for a similar ap-

plication. Appendix 1 contains the original and modified source code for the implemen-

tation of the proposed convolutional neural networks in order to solve the accent classi-

fication problem.  

KEYWORDS: Accent Classification, CNN, Machine Learning, MFCC, Python.  
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1. INTRODUCTION 

Speech is one of the most important media of communication between humans. Humans 

use it to express their opinions as well as their feelings and moods. The adaptation, us-

age, processing and understanding of human speech by computers can be considered a 

significant challenge in modern societies. Although many achievements and improve-

ments have been made in the automatic speech recognition (ASR) application area, and 

more specific with its application in Apple’s Siri, Google’s Assistant and Amazon’s Al-

exa, the issue of accent recognition seems to be a problem for these programs as they 

can only understand the American English accent. Specifically the above applications 

can recognise speakers of American English with high accuracy but may fail in recog-

nising speakers of English with Scottish or Irish accent (Najafian, Safavi, Hanani & 

Russell 2014). The problem seems to be more apparent when the speakers are not native 

English. 

The problem of distinguishing the accent of the speaker can be called accent recognition 

and the applications of using the technology to identify the origin of a speaker are im-

plementing algorithms in order to achieve the accent classification of the speakers. The 

accent classification task is quite challenging because each speaker has his own speak-

ing style, for example depending on the place where the speaker was born and his envi-

ronment, and his accent would have the same characteristics with the citizens living in 

the same region.  

The application of accent classification systems is significant and quite useful in speech 

technology and can be seen in other areas including speech recognition systems. This 

technology can be applied in telephone centre systems and services; by identifying the 

origin of the speaker, a certain employee with a similar accent can provide his services 

to the caller. Another area that can benefit from accent classification systems is at 

boarders of countries and immigration offices; the agencies will be able to recognise in 

high accuracy the origins of the immigrants by their speech. 
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The main purpose of this thesis is to tackle a part of the above problem, being the accent 

recognition and the estimation of the origin of the speaker, who reads a specific text in 

English. A system using machine learning algorithms and more specific two convolu-

tional neural network architectures was implemented and it is proposed in this thesis in 

order to classify and accomplish as accurately as possible the accent recognition of a 

speaker. There have been implemented different approaches during the implementation 

of the accent recognition system, concerning mainly the tuning of parameters of the 

network and adjusting the percentage between the training and test samples. Each of the 

above approaches follows a certain systematic way with their advantages and disadvan-

tages and they will be presented and discussed in this work. 

It is noteworthy mentioning that the proposed system is text dependent and it can rec-

ognise speakers whose native language is Chinese, Spanish, English or Arabic. There-

fore, the type of the classification that is used in this thesis is multi-classification. In ad-

dition, the approach of supervised learning is applied, where each input sample of a 

speaker has a certain output label which corresponds to his accent. Besides, feature ex-

traction seemed to be an important process in order to represent in the best possible way 

the human voice.  

The approach to solve the accent classification problem was based on two different 

convolutional neural networks. One may be confused by the above approach because 

convolutional neural networks are efficient and effective in image classification. The 

interesting part of the thesis is that the audio signals of each speaker in the system are 

treated like a two-dimensional image. 

Moreover, for each approach experiments and their results are discussed. The accuracy, 

validation and confusion matrices of every possible combination between the training 

and test samples are presented. The reader can focus on each case and have a general 

idea of the effectiveness of the current case. 

The thesis is organised as follows: In Chapter 2 various machine learning applications 

are presented and the role of machine learning and its techniques are discussed. The fea-
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ture extraction process and the Mel-Frequency Cepstral Coefficients that have been 

used are examined. The chapter also contains the usage of a confusion matrix, the terms 

of generalisation, memorisation and overfitting. In Chapter 3, neural networks and con-

volutional neural networks are discussed. In particular, the chapter contains theory 

about feed-forward neural networks, multilayer perceptrons, back-propagation and acti-

vation functions. Terms of consisting a convolutional neural network are also presented. 

Topics such as the convolutional layer, the 2D convolutional layer, the receptive field, 

the pooling layer and the fully connected layer are analysed. The chapter also contains 

the terms of dropout, loss functions in CNNs and the soft-max loss. The system archi-

tecture and the implementation are presented in Chapter 4. Specifically, the reader can 

find information about the architecture of the proposed system, the dataset that is used 

and the stages of pre-processing and feature extraction. Moreover, the architecture of 

the convolutional neural networks that are used and the program implementation are 

explained. Chapter 5 consists of the experiments and the results of the proposed system. 

The experiment setup is discussed while the experiments of the two different CNNs for 

each case of training and test samples are presented in detail. Finally, the conclusion and 

the future work are considered in Chapter 6 and the source code of the project is in-

cluded in Appendix 1. 
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2. MACHINE LEARNING 

Machine learning is a term used in the broader area of Artificial Intelligence and it is 

referred to the usage of algorithms and statistical techniques of a system in order to 

"learn" or acquire knowledge through mapping inputs and outputs of a series of data 

without explicitly being programmed (Bishop 2006:2). The term was conceived by the 

American pioneer in computer gaming and artificial intelligence Arthur Lee Samuel in 

1959.  

Machine learning can be described as the process of finding the best possible approxi-

mation that can be used as a solution to a problem. Based on a model defined by an ex-

pert human the aim of machine learning is to propose as much as accurately solutions to 

given problems. The system using machine learning algorithms is provided with inputs 

as datasets and desired outputs. Examples of using machine learning techniques can be 

found in everyday life such as recommender systems for online shopping, e-mail filter-

ing such as defining which e-mail is spam and which is not, fraud detection in transac-

tions bank systems, speech recognition, hand written recognition, computer vision, 

medical diagnosis, smart systems and more. In this thesis the area of machine learning 

concerned the ability of a computer program to recognize and classify the four different 

accents of speakers reading a certain text written in English. 

One of the key elements of machine learning is the information and its capacity con-

cerning each problem field. Almost any material in this world can be represented as a 

series of numbers which contains information in fields such as economic, social and 

biological informatics, thermodynamics and quantum information, etc. Information the-

ory is an important term in machine learning area. Cloud Shannon proposed that the in-

formation content could be considered as a function in its uncertainty in 1948. More 

specific the information content of an event is estimated to be high if the event has a 

low probability to occur. 
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According to Flach (2012: 3) "machine learning is the systematic study of algorithms 

and systems that improve their knowledge or performance with experience". The ex-

perience is referred to the correct labelled input data of the system and the term per-

formance to the ability of the system to classify the data in a classification problem for 

instance.  

Figure 1 depicts an overview of the process that is used from machine learning to ad-

dress a task. The objects in this thesis are represented by the audio files of the speakers 

reading a certain text in English. Each speaker has its own accent and the features of the 

speeches can be represented by taking the Mel-Frequency Cepstral Coefficients 

(MFCC). Next, the training data are fed to the system and into the learning algorithm 

which then produce the model. The model addresses the task of the system and this is 

the place where a mapping between the features and the desired output will be achieved. 

 

Figure 1. Machine Learning process to address a task (Flach 2012: 11).  

2.1. Machine learning applications 

The range of the applications of machine learning is wide. In this section a part of the 

applications is presented. Firstly, machine learning algorithms can be applied in banking 
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processes. Banks refer to their data to build models in order to use them in fraud detec-

tion, loan plans for customers, credit application as well as stock market.  

Secondly, machine learning techniques can be used in fields of manufacturing, medical 

and autonomy machines. Specifically in manufacturing, processes can be optimized, 

controlled and can be used in troubleshooting. In medicine, medical diagnosis and drug 

manufacturing can be applied. Concerning autonomy machines, the application of 

autonomous cars is popular nowadays as well as  air drones.  

Last but not least, there are applications of machine learning with smart systems such as 

smart building, smart cities and smart grids as well as in telecommunication networks 

where patterns are analysed for network and quality of service optimization. The appli-

cations in pattern recognition are also important which include speech recognition, 

handwritten recognition, biometric recognition, etc. 

2.2. The role of big data 

The term big data can be considered as a large capacity of data or more specific infor-

mation generated from different sources such as mobile devices, microphones, cameras, 

radio-frequency identification readers, wireless sensor networks, software logs, etc 

(Hellerstein 2008). The acquisition of big data and its appropriate usage and analysis of 

the owners can be powerful. More specific, companies that hold big data use machine 

learning algorithms to analyse consumer behaviour and in extension to adapt their pro-

duction plans in order to maximise their profits.  

An example could be the data collected by a supermarket chain about its customers' 

needs and information. At first customers’ behaviour in general may seem random but 

on a second thought it can be predicted, on the basis of past purchases. Through this 

phase the company can have valuable information about its customers concerning their 

preferences, which may have correlations between specific products. On the other hand, 

customers find the recommendations of the companies’ systems about products that 
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were bought from other customers with similar preferences helpful. The above exam-

ples show that both producers and consumers can benefit from machine learning appli-

cations. The process of applying machine learning algorithms on big datasets is called 

data mining. 

In conventional computer programs the programmer should build and follow a certain 

algorithm and program in order to solve the given problem. In contrast, in the machine 

learning field a programmer cannot follow a certain algorithm to solve a problem, but 

he or she has to find as much data as possible and create a system, which uses the data 

as inputs that correspond to a specific labelled output. This method is used mainly in 

supervised learning and in the proposed system in this thesis. The various machine 

learning techniques will be presented in following section.  

Following the above logic, the most important ingredient of a successful classification 

system is the number of the input data. Given sufficient input data and the mapping be-

tween input and output, a system can be modelled and trained in order to predict as ac-

curately as possible a good approximation answer or output for a given input. The ap-

proximation of the system is usually not 100% accurate, depending on the field of the 

problem, but a rule of thumb is that the system will be able to detect specific patterns 

and regularities (Alpaydin 2014: 2). These patterns can give the programmer some hints 

of the elements of the algorithm used by the system. If the model under training pro-

vides high accuracy then it can be assumed that depending on the input data gathered 

from the near past, a good approximation and prediction can be made from the system 

for future input data. 

2.3. Types of machine learning techniques 

There are a few machine learning techniques that are used in various domains to solve 

specific problems. In this section these machine learning techniques will be presented. 
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2.3.1. Supervised Learning 

Supervised learning is a machine learning technique in which the desired outcome is to 

find a function that maps specific inputs with outputs with the use of labelled training 

data. For example if the input is X and the output is Y, then the aim of supervised learn-

ing is to learn the mapping from the input X to the output Y. Usually the model that is 

followed has the form: 

)|( θxgy = , (1) 

g is the model and θ are its parameters. It is important to note that regression and classi-

fication belong to this type of machine learning. Y is a class if classification is used or a 

number if regression is used. The machine learning application should optimize the pa-

rameters theta in such way that the approximation error is minimised and the estima-

tions are close enough to the correct values of the training set (Alpaydin 2014: 9). An 

example of a regression problem is represented in Figure 2 where the fitted function has 

the form: 

0wwxy += , (2) 

the training dataset corresponds to used cars where the input attribute is the mileage of 

the car and the output is its price. 
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Figure 2. Dataset of used cars and their mileage (Alpaydin 2014: 10).  

Supervised learning with classification is the type of machine learning technique that is 

used in the current thesis.  

2.3.2. Unsupervised Learning 

Unsupervised learning on the other hand is a machine learning technique that learns 

from data that has no labels. The supervisor in this learning is the input data and the 

goal is to find similarities and regularities in the input. Usually the term of density esti-

mation is used and there can be identified a structure in the input space that contains 

certain patterns. In this technique the term of clustering is used. The aim is to find clus-

ters or groupings of input. Clustering can be applied in many fields such as customer 

segmentations in companies, customer relationship management, image compression, 

document clustering as well as in bioinformatics (Alpaydin 2014: 11–13). 
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2.3.3. Reinforcement Learning 

Reinforcement learning is the type of machine learning applications where the output of 

the system is a sequence of actions and a policy with sequence of correct actions is de-

sired to be followed. The machine learning applications can learn from previous good 

policies and try to adapt their policies in that manner. 

The application of reinforcement learning is wide and it can be seen in game theory, 

control theory, information technology, multi-agents systems, genetic algorithms, etc. 

For example in chess the number of rules are small but the number of possible moves of 

each player is large. Another example could be the navigation of a robot in an environ-

ment in order to search for a goal location. The robot can move to any direction, but the 

selection of the policy of the sequence of moves that accomplish this goal as quickly as 

possible is important (Alpaydin 2014: 13).    

2.4. Inductive and deductive learning 

Humans can learn or be taught based on two types of methods, induction and deduction. 

Induction can be observed when a person has in his possession training examples, labels 

or terms of a certain event and then construct an outcome. For example when a parent 

wants to teach to his kid that playing with the fire is very dangerous, he can show it and 

use photographs, videos or any evidence of fire accidents or burnt persons in order for 

the kid to understand the danger of playing with the fire. 

On the other hand, the deductive learning can be achieved in the opposite way of induc-

tion. In deduction the person can learn an outcome of an event through his own experi-

ence. In the same example with the parent and the kid that was mentioned before, in 

case of deduction the parent would not act as a supervisor but he would let the kid to 

play with the fire and get burnt. When the kid will experience the outcome of its action 

it will learn and remember that playing with fire is dangerous and should be avoided. 
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In most machine learning applications, especially the ones that apply supervised learn-

ing, the type of learning that is used is inductive learning. The systems have training 

examples as input data with labelled and specific output. 

2.5. Feature Extraction 

Features in machine learning applications are considered to be one of the essential parts 

of a system and they can contribute to a large extent to the accuracy and successful pre-

diction of the applications. The features of a system represent the measurements of the 

input data and these measurements in the proposed machine learning application are 

numerical and more specific real numbers. 

Therefore, the process of feature extraction is a fundamental part of the application and 

the decision to use the correct feature extraction, or the most representative measure-

ment of the input data, was a challenging task.  

2.5.1. Mel-Frequency Cepstral Coefficients (MFFCs) 

The input data of the proposed system consists of wave audio files of speakers reading a 

certain text in English. It was known that the wave audio signals could be analysed in 

time or in frequency domain. The analysis in time domain produces a high dimensional-

ity in feature terms while the analysis in frequency domain with the help of feature ex-

traction through Mel-Frequency Cepstral Coefficients can achieve a significant reduc-

tion in feature extraction of the input data. 

A more detailed explanation that the dimensionality in time frequency is high is fol-

lowed. If one can consider a 4 seconds of wave audio file sampled at 8kHz then it will 

contain 32000 samples which correspond to the number of variables that will be used in 

the input nodes representing the features of the current signal. The usage of MFCC is 

considered to be a useful feature extraction algorithm for human voice in speech recog-

nition applications (Huang, Acero & Hon 2001: 423–426). Besides, the MFCCs can be 
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used to map as close as possible the human auditory perception with frequencies and 

they are essential elements for speech recognition systems (Elminir, Abu ElSoud & 

Abou El-Maged 2012). 

In addition, according to Valaki & Jethva (2016), the advantages of MFCC include the 

good levels of discrimination and low correlation between the coefficients. They are not 

based on linear characteristics, which ensure the common characteristics with the hu-

man auditory system. It is significant to note also that the MFCCs can capture the im-

portant phonetic characteristics of humans.  

It is known from psychological research that the human hearing does not correspond to 

a linear scale and each tone with a frequency f can be mapped to a scale in Hz which is 

called the Mel scale. The Mel-frequency scale is linear frequency spacing below 1 kHz 

and logarithmic spacing above 1 kHz. The idea of using MFCCs is that it can approxi-

mate closely the frequency response of human auditory system and the MFCCs contain 

the important phonetic features of human speech (Lokhande, Nehe & Vikhe 2012). Fig-

ure 3 depicts the computation process of the MFCC. 

 

Figure 3. MFCC computation process.  

As it can be seen from the Figure 3 the speech signal is going into a framing and win-

dowing (usually a Hamming window) process and into a pre-emphasis filter. The next 

step is to take the Fast Fourier transform, which converts each frame of the input signal 

from time domain to frequency domain. Next follows the conversion of the scale fre-

quency from linear to Mel scale and the logarithm of the results is calculated. The last 
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step is to take the discrete cosine transform of the log auditory spectrum in time domain 

and the result is the MFCC. 

2.5.2. Mathematical representation of feature extraction 

This section includes the mathematical representation of the feature extraction used in 

the proposed system with the help of MFCC. Firstly, it can be said that the pre-emphasis 

filtering in the previous section can be described by a kind of finite impulse response 

(FIR) that is used to provide an improvement in the energy of the high frequencies of 

the input signal and the following equation derives: 

Nnnxnxns ,...,2,1],1[][][ =−−= α , (3) 

where x[n] is the input signal at sample n, s[n] is the signal after the filtering and α is a 

parameter that adjusts the amount of filtering of the signal. 

Secondly, the signal is converted from the time domain to frequency domain by using 

short time Fourier transform assuming that the signal over a short period of time is sta-

tionary and can be transferred to frequency domain. This can be achieved by the follow-

ing expression: 
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where wα [n] represents the window function and i an imaginary number. The window 

function in this case is a Hamming window and it can be expressed by the following 

equation: 
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Besides, the human auditory system is more sensitive to sounds between 20 and 1000 

Hz, which means that one cannot assign a signal the same scale at high frequencies as at 

lower frequencies. Thus, the conversion from Hertz scale to Mel scale can be achieved 

by the following formula: 
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and from Mel scale to Hertz scale: 

( ) 1000,1700 2595/ >−= melef mel
. (7) 

The next step is to define a filter bank with M filters (m =1,2,...,M) from the input win-

dow frame  xα [k]. The filters are linear on Mel scale but non linear on Hertz scale and 

can be represented by the following expression: 
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where N is the length of the filter.  

In addition the log-energy of each filter can be computed by: 
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Finally, to get the Mel-frequency cepstrum coefficients the discrete cosine transform of 

the M filter outputs is used: 
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The value of M is between 24 and 40 and the first 13 MFCCs are computed, the value of 

n is the number of window frames and q is the number of MFCCs (Ma & Fokoue 2014). 

2.6. Classification 

The term classification refers to the identification of a number of categories that an ob-

servation belongs to. The classification is based on the training data and their mapping 

to the corresponding category they belong to. In machine learning the common classifi-

cation types are the binary classification and the multiclass classification. 

In binary classification there are examples of objects or data that are either belonging to 

the class or not. In this approach there are positive examples which means that the data 

belongs to a certain class and negative examples when the data does not belong to the 

class. On the other hand, in multiclass classification each data is mapped to a specific 

class. But in the same manner there are positive examples when the data (speaker’s ac-

cent) belongs to a class and negative examples belonging to all other accents. The pro-

posed system in this thesis represents a machine learning problem based on a multiclass 

classification. For instance, there are speakers that belong to one of four classes. The 

four classes consist of the four accents that are used (Chinese, Spanish, English and 

Arabic). 

It is worth mentioning that the key element that describes the classification in both types 

of classification is the features of the data, which are derived from the feature extraction 

process that presented in the previous section. The features of each audio file is a matrix 

with 13 rows and 30 columns, which can be represented by the following matrix:  
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There are 4 classes denoted by Ci = 1,2,3,4. Each input instance belongs only to one of 

them and the training set is: 
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(Aplaydin 2014: 22, 33) 

Another approach of defining the model of accent classification is proposed by Chu, Lai 

& Le (2017) where "a speaker s who has a native language ls in the set of all non-

English languages L, given his n-second clip in the set of all clips C." The aim is to find 

a mapping Φ:C → L such that the occurrence of prediction Φ(Cs,n) ≠ ls is minimized. 

The next step is to define a function f that represents the number of prediction misses 

for all Cs,n ∈  Cn, for a subset Cn ⊆  Cn : 

( ) ∑
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nns Cc

nsn scCf
,

)),((, ,δ , (14) 

where δ (x,y) = 1 if x ≠ y or 0 otherwise. 
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According to Chu et al. (2017) the accent classification is an optimization problem 

where the objective is to find the mapping Φ* for the clip set Cn so that 

Φ
*
 = argΦmin f(Φ,Cn) (15) 

In the content of the proposed system given the audio clips of a speaker s, the goal is to 

classify the native language ls of the speaker s to one of the four languages: Chinese, 

Spanish, English or Arabic. 

2.7. Confusion matrix 

There are cases where the accuracy of classification of a model is not a sufficient fea-

ture that indicates the real accuracy. In these cases the number of the observations in the 

input data is not an equal number in each class and also there may be more than two 

classes in the application. This can hold true sometimes in the proposed system. For the 

above reason a confusion matrix can be helpful which can show the performance of the 

classification used in the application.  

In the case of binary classification a confusion matrix should have two rows and two 

columns. However, in this thesis a multiclass classification with four classes is used. 

Therefore, the structure of the confusion matrix consists of four rows and four columns. 

The confusion matrix lets the designer of a machine learning application check in detail 

if the algorithm used is giving good or bad results and extract information about his 

model. High values on the diagonal of the confusion matrix signals a successful classi-

fier. Besides, if there are high off-diagonal elements in the matrix then this is a sign that 

mistakes are being made regularly in the dataset (Rogers & Girolami 2017: 200). 

Each row of a confusion matrix corresponds to a predicted class and each column to an 

actual class. It is important to note that the total number of correct predictions regarding 

a class is included in the expected row for this class value and the predicted column. 
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Similarly, the total number of incorrect predictions for a class is included in the ex-

pected row for that class value and the predicted column. 

In the section of presenting the results of the experiments of the proposed model, confu-

sion matrices will be used in order to check the performance of the classification.  

2.8. Generalisation, memorisation and overfitting 

A system using machine learning algorithms must achieve great accuracy over the train-

ing and validating data in order to reach a good generalisation. The generalisation of the 

system means that the system successfully can map various inputs to correct outputs 

without memorisation. It is crucial for machine learning algorithms to offer high accu-

racy of a given model and acquire generalisation for a large and different input data. 

On the other hand, the process of training a model is to aim reducing the loss function 

by adjusting the weights of the network and acquiring the best accuracy and generalisa-

tion. If the generalisation cannot be achieved, memorisation will take its place. Memori-

sation means that the system memorises the mappings between the inputs and outputs 

for a given set and when a different set of inputs is applied then the outputs will not be 

accurate. This event will result in wrong prediction and approximation of the output and 

overfitting of the data. In machine learning applications generalisation and avoiding 

overfitting are essential.  
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3. NEURAL NETWORKS 

Neural networks are used in many fields of science for problem solving and their appli-

cations can be seen in translations of text, facial recognition, hand-written and speech 

recognition, controlling of robots, etc. Haykin (1999) has made the following definition 

of neural networks:  

 A neural network is a massively parallel processor made up of simple processing 

 units, which has a natural propensity for storing experiential knowledge and 

 making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired from the environment through a learning process run 

in the network. 

2. Interneuron connection strengths, known as synaptic weights, are used to 

store the acquired knowledge. 

It is important to note the connection of biological neural networks with artificial neural 

networks (ANN). ANNs have many similarities with the structure of the human brain. 

More specific a human brain contains neurons, which are connected with each other and 

their purpose is to process information. Figure 4 represents the neural network of two 

human neurons.  

 

Figure 4. Representation of biological neural network (Deb & Dixit 2008). 
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Parts of a neuron are the soma, which is a cell body, the dendrites, which consist of sev-

eral fibres and the axon, which is a single fibre. Dendrites are receivers of electrical sig-

nals that come from the axons of other neurons and the axon acts as a transmitter of 

electrical signals from one neuron to another through the dendrites. A synapse is used to 

connect an axon with a dendrite and it represents the place where an electrical signal is 

modulated by various amounts. Changes in the electrical potential in the soma can be 

achieved by the release of chemical substances of the synapses. An action potential is 

sent via the axon, which is nothing else than an electrical pulse created when the poten-

tial crosses a threshold (Deb & Dixit 2008). 

The modelling of human neural networks can be achieved by artificial neural networks. 

In Figure 5, a diagram of an artificial neuron is represented.  

 

Figure 5. An artificial neuron (Deb & Dixit 2008). 

It can be seen that the artificial neuron receives signals (x1,x2,.. xn) from other neurons 

and produces signals (o1, o2, …,ok) that are going to be transmitted to other neurons. An 

artificial neural network uses numerical values for its signals rather than electricity used 

in human neural network. Each input signal is multiplied by a certain weight w and this 

process represents the action of the artificial synapses. 
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In the human brain an output signal is produced by a neuron when the input signal 

reaches a specific threshold. In terms of artificial neurons a summation of the inputs is 

calculated and an activation function, like the threshold mentioned in human neurons, is 

applied to the sum in order to generate the outputs of the neuron (Deb & Dixit 2008). 

The simplest form of a neural network can be represented by the following summation: 

∑
=

+
N

i

ii Bxw
1

, (16) 

where xi is the input signal, wi is the weight and B is a bias. 

3.1. Feed-forward neural network (FNN) 

Feed-forward neural networks are artificial neural networks where the connections be-

tween the nodes do not have the shape of a circle. They are the simplest form of artifi-

cial neural networks and the information travels in one direction from the input nodes 

(input layer) through the hidden layer to the output layer. Feed-forward neural networks 

can be divided into single layer and multilayer perceptrons. The single layer perceptron 

is the simplest kind of a neural network and consists of a single layer and output layer. 

In multilayer perceptrons there are multiple input and hidden layers that are intercon-

nected in a feed-forward way. The type of neural network that is used in the proposed 

system is a multilayer perceptron. 

3.2. Multilayer perceptrons (MLP) and Back-Propagation (BP)  

The multilayer perceptron is a specific type of a layered feed-forward network, which 

consists of multiple input nodes in the input layer, multiple hidden layers (one or more 

hidden layers) and an output layer. The neurons in the hidden layers have the ability of 
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extracting important features included in the input signals. In each neuron a non-linear 

activation function is used. The neuron can achieve the efficient distinction of data that 

is not linearly separable (Cybenko 1989). The following figure depicts a fully connected 

feed-forward neural network with ten nodes at the input layer, one hidden layer and two 

nodes at the output layer. 

 

Figure 6. A fully connected feed forward neural network (Haykin 2004). 
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According to Werbos (1974) and Rumerlhart, Hinton & Williams (1986) the training of 

a multilayer perceptron can be achieved by a back-propagation algorithm that contains 

two phases: 

1. Forward Phase: In this phase the free parameters of the network are fixed and 

the input signal is propagated through the network layer by layer. The phase is 

completed with computing the error signal: 

iii yde −= , (17) 

 where di corresponds to the desired response, y to the actual output created from 

the network in response to the input x. 

2. Backward Phase: In this phase, the error signal ei, is propagated through the 

network following a backward direction. This phase ensures that the appropriate 

modification will be applied to the free parameters of the network in order to 

minimize the error ei (Haykin 2004). 

3.3. Activation Functions  

The activation functions are applied at the output of each node of an artificial neural 

network. The output of each node is used as an input to the next layer of nodes of the 

network. The main goal of the usage of an activation function in an ANN is to apply 

non-linear properties to the neural network. Non-linear properties are highly useful and 

beneficial in learning non-linear and complex mappings between the input and output. 

They can also ensure the decrease of the processing power of the system and time 

needed in order to find good approximations to the given problems. Similar to the func-

tion of the human brain, an activation function is used to define when a neuron should 

be fired / activated or not. 
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There are different types of activation functions used in neural networks. Some of them 

are presented next: 

• Sigmoid function: It has a shape curve of the letter S and it is responsible to cre-

ate real values between 0 and 1 that are used as the output of the nodes (Graupe 

2013: 19). Sigmoid function is sometimes referred to as the logistic function and 

it is defined by the formula: 
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 Figure 7 represents the shape of the sigmoid function. 

 

Figure 7. Sigmoid function. 
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• Threshold function: It refers to the function that takes the value 1 if the argument 

of the function exceeds a given threshold and otherwise the value 0. It is also 

known as the step function. It can be expressed by the following formula: 
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Figure 8. Threshold function. 

• Rectified Linear Unit (ReLU) function: This function is used in ANNs to pro-

duce the value x as the output if x is positive and otherwise 0. It is highly rec-

ommended to use ReLU activation functions in deep neural networks because of 

their simplicity and efficiency. It can be expressed by the following formula: 

),0max()( xx =ϕ . (20) 

 

Figure 9 shows the rectified linear unit function. 
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Figure 9. ReLU function. 

• Hyperbolic Tangent function: The tanh function is similar to the sigmoid func-

tion. It is a non-linear function and its output values are in the range of -1 and 1. 

It has an s-shape curve and is smoother than the sigmoid curve (Graupe 2013: 

20). It is not entirely flat and can ensure changes in its outputs depending the 

values of its inputs. It can be represented with the following expression: 
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 Figure 10 depicts the tanh function. 

 

Figure 10. Hyperbolic Tangent function. 
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This section introduced some of the most important activation functions used in artifi-

cial neural networks. Their application depends on the given problem, for example the 

usage of sigmoid and tanh are useful and efficient, being non-linear functions, but their 

drawback is that they require a big amount of computation and time from the system. 

The ReLU function is also non-linear and it is often applied in many deep learning neu-

ral networks because of its simple form ensuring that the computations will not be a 

very demanding task for the system, but at the same time being able to produce useful 

results in the problem solving process. 

It is worth noting that in this thesis the approach of achieving a good accuracy for the 

accent classification problem was to train two models; one model with only the Recti-

fied linear unit activation functions and another model with combination of ReLU and 

sigmoid activation function at the third layer of the convolutional neural network. 

3.4. Convolutional Neural Networks (CNN)  

Convolutional Neural Networks (CNN) are a type of deep feed-forward artificial net-

works, which are used in deep learning applications such as image and video recogni-

tion, image classification, recommender systems, medical image analysis, natural lan-

guage processing and speech recognition. Deep learning is a part of machine learning 

algorithms based on learning data representation and it is used mainly in supervised and 

unsupervised learning applications. 

In this thesis the application of a convolutional neural network compared to a deep neu-

ral network architecture achieved better results and accuracy of the model for the accent 

classification problem. One reason for the difference in the results from the proposed 

approach using convolutional neural network may be the fact that the input audio wave 

files are represented by their Mel-Frequency Cepstral Coefficients and are processed 

like features of a two-dimensional images. Convolutional neural networks being highly 

efficient in the field of image recognition, can also be beneficial and useful in achieving 
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high accuracy and performance in the domain of accent classification compared to mod-

ern deep neural network architectures. 

A CNN has input layer, hidden layers and an output layer. The hidden layer of a convo-

lutional neural network consists of basic building blocks – layers such as the convolu-

tion layers, the pooling layers and the fully connected layers. These layers and their 

functions will be covered in the next sections of this chapter. 

3.4.1. Convolutional Layer 

The convolutional layer can be considered one of the most important layers of a convo-

lutional neural network. In the convolutional layer a set of filters is applied and is con-

volved with the input in order to create an output. In this way the mapping between the 

input of the system and the output is achieved. 

A filter in this layer can be seen as a matrix of numbers, which corresponds to the 

weights of the network. The weights are being set randomly in the beginning of the 

training of the CNN and after some time during training the filter weights are fine-

tuned. A 2x2 filter is presented in Figure 11. 

 

Figure 11. A 2x2 filter. 

The most significant function in a convolutional layer is the convolution operation. The 

convolutional layer implements a convolution between the input and the filters. The 

function of the convolution operation can be seen with the help of Figure 12 where a 2D 
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convolution is shown. Specifically, a 2D input feature map size of 4x4 and a convolu-

tion filter of matrix size 2x2 are considered. The aim of the convolutional layer is to 

multiply the filter (matrix size 2x2) with a section of size 2x2 of the input feature map, 

which is highlighted. The next step is to make a summation of all the values to create 

one value in the output. It is important to note that the filter has to slide through all 

width and height of the input (Khan, Rahmani, Shah & Mohammed 2018: 46). 

 

Figure 12. Stages of a 2D convolution operation (Khan et al. 2018: 47). 

The operation described above is called cross correlation and in the convolution the fil-

ter is flipped before multiplication and sum-pooling. This distinction is important in the 

signal processing domain, but in machine learning applications both terms are used in-

terchangeably. In the convolutional layer the correlation operation is applied in the ma-

jority of the deep learning libraries and algorithms. The main reason of following this 

convention is that the convergence of the network optimization will be achieved on cer-

tain weights of the filters either the operation of the correlation or convolution is used. 

In the example used to describe the operation in the convolutional layer, the filter occu-

pies a step of 1 through the horizontal and vertical axis in order to compute the value of 
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the output. The number of the step used is called the stride of the convolutional filter. It 

can have different values and a rule of thumb is that when the stride is increasing the 

dimension of the output feature map is decreasing. Given a filter of size f x f, an input of 

size h x w and a stride of s, the dimensions of the output are computed by the following 

expressions (Khan et al. 2018: 49): 
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Sometimes in order to achieve deeper networks and acquire better accuracy and per-

formance zero-padding around the input of the network can be applied. The application 

of zero-padding can be effective in increasing the dimension of the output feature map 

and accomplishing flexibility in the process of designing the architecture of the CNN. 

The aim in this situation is to increase the size of the input in order to achieve an output 

with specific dimensions. Therefore the output feature map dimensions can be repre-

sented by: 
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(Khan et al. 2018: 49) 

where the parameter p indicates the increase in the input in each dimension. 
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3.4.2. 2D Convolutional Layer 

The difference between a 2D convolution layer and a 1D convolution layer is that in the 

case of a 2D the filter weights are handled in two dimensions. A 2D convolutional layer 

may contain a 2D signal such as image which in this thesis the audio signal is treated as 

an image of size 13x30. The following figure depicts a 2D convolutional layer. In the 

figure a neuron begins from a corner of the signal, strides in one direction and ends at 

the opposite region. It may follow the way from the top left corner and end at the bot-

tom-right. The next step is to apply a convolution of each neuron with every channel 

and feature map of the input. Concerning the outputs, they can be included in a location-

wise addition in order for neuron to contain one averaged output response (Venkatesan 

& Li 2018: 94). 

 

Figure 13. Convpool layer including three neurons (Venkatesan & Li 2018: 94). 

Given the input of the layer α has I channels and the layer has L kernels with k and l 

corresponding to the element-wise activation function, the output activations of the 

layer can be represented by the following expression (Venkatesan & Li 2018: 95): 
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The symbol * corresponds to the operation of convolution. The filter used in a CNN is 

learned by the convolutional layers from the input and the filter often detects edges or 

blobs. In CNNs the input in the current project represented by images are separated into 

small components of images that contain information in smaller parts that are mapped to 

the label space with the help of the neural network (Venkatesan & Li 2018: 95). 

3.4.3. Receptive field 

The inputs of convolutional neural networks in many applications are characterised by 

high dimensionality. In image processing and consequently in the accent classification 

task used in the proposed system, it is important to apply convolutional filters that have 

smaller size compared to the size of the input. In the current system the size of the con-

volutional filters are 3x3, which are smaller than the input size of 13x30. 

Through the above approach the number of parameters to be learned from the model is 

decreased when the size of the kernels applied is small. In addition, the usage of small 

size filters can improve the learning of the system from specific patterns from the input. 

The term receptive field is referred to the size of the filter, which corresponds to a spe-

cific region that is modified at each convolution step. The receptive field is related to 

the dimensions of the input and in the cases of convolutional layers stacked on top of 

each other, the effective receptive field of each layer acts as a function of the receptive 

fields of all the previous convolutional layers (Khan et al. 2018: 50). The effective re-

ceptive field of a stack of N convolutional layers, with a kernel size of f each can be ex-

pressed by the following formula (Khan et al. 2018: 50): 

],1[),1( NnfnfRF n
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3.4.4. Pooling Layer 

Pooling layers refer to the combination of a region of the output layer into a single value 

of the next layer of the network (Ciresan, Meier, Masci, Gambardella & Jurgen 2011). 

A pooling layer can be represented as a combination operation on block of the input of 

the network and the feature activations. Usually this operation is defined by the average 

or the max function. For example if the max pooling operation is selected, then the 

maximum activation is also selected for the certain block of values in the layer. The op-

eration will be applied to the input feature map by sliding this window to the input with 

a step size. The step size is generated by the stride. It is crucial to define the size of the 

pooled region and the stride that is going to be applied in the network. The output of the 

feature map, considering the size of the pooled region f x f and a stride s, is calculated 

by the following formulas: 

s

sfh
h

+−
=' , (28) 

s

sfw
w

+−
=' . (29) 

(Khan et al. 2018: 53) 

Figure 14, on the next page, depicts the operation of a max pooling layer with the pool-

ing region being of size 2x2 and the stride being 1. The steps from (a) to (i) represent 

the computations at each step while the pooled region in the input (the orange region) is 

slid in order to calculate the value in the output (the blue value) at each step. 
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Figure 14. Max pooling operation with a 2x2 pool region and stride 1 (Khan et al. 

2018: 53). 

The main operation of the pooling layer is to down-sample the input feature map.  

According to Venkatesan & Li (2018: 96) the operation of pooling reduces the data en-

tropy by reducing the size of the activations. The reduction of size is a useful feature in 

a CNN because although there is a reduction in spatial information and frequency in an 

activation, there is a gain in activation responses. Pooling can be seen as an operation of 

achieving invariances among features spatially. As the neural network becomes deeper, 

the number of the activations increases and therefore the computations become demand-

ing. The operation of pooling is useful in keeping the tractability in the network.   

The preferred type of pooling in the domain of convolutional neural networks is that of 

max pool. In the case of implementing a max pool by p, then a sliding window and a 

stride of pxp is considered a suitable option. In each window, the maximum value is se-

lected, which represents the entire window with this value. The max pool operation is 

often used because it contains the strongest response, which is an important term in the 

context of image processing (Venkatesan & Li 2018: 97).   
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3.4.5. Fully Connected Layers 

In fully connected layers each neuron in the previous layer is connected to every neuron 

in the current layer. These layers can be expressed by convolution layers having filters 

of the size 1x1. Most convolutional neural networks with this type of layers are placed 

at the end of the architecture. The operation of a fully connected layer can be expressed 

by a matrix multiplication and an addition of a vector of bias, implementing an element-

wise nonlinear function f as the following: 

( )bxWfy T += , (30) 

where x is the vector of the input and y the vector of output activations, W is the matrix 

of weights of the connections in the layer units, and b is the bias vector (Khan et al. 

2018: 56). 

Having covered the basic elements of a CNN in the previous section it is important to 

include a figure of a complete CNN. Figure 15 depicts a complete convolutional neural 

network architecture: 
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Figure 15. Complete convolutional network architecture (Venkatesan & Li 2018: 98). 
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3.4.6. Dropout 

According to Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdivon (2014) one of 

the favoured approaches for neural network regularization is the technique of dropout. 

During the training process of the network each neuron is activated and contains a prob-

ability. The above process is characterized by randomness in the sampling of the net-

work, which produces an ensemble effect in the testing process of the network. The 

dropout activation is an essential term for regularization and it is responsible for im-

provements in the performance on unseen data in the testing process. 

Given a CNN consisting of L weight layers with index l ∈{1...L} and output activa-

tions al-1 from the previous layer, the a fully connected layer implements a transforma-

tion followed by a element-wise nonlinearity which can be represented by the follow-

ing: 

( )lll baWfa +∗= −1 , (31) 

where al-1 
nℜ∈ indicates the activations and b 

mℜ∈ corresponds to biases. The input 

and output dimension of the fully connected layer are represented by n and m, the 

weight matrix is represented by W 
mxnℜ∈ and the function f(.) by the ReLU activation 

function. (Khan et al. 2018: 75). 

3.4.7. Loss Functions in CNNs 

The last layer in a common CNN architecture is used in the training process of the 

model. In order to approximate the quality of the prediction generated by the neural 

network on the training data, the last layer of the network utilities a loss function. The 

role of the loss function is to calculate the difference between the approximated output 

of the model and the real output. 
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There are different loss functions that are used in neural networks depending on the 

characteristic of the problem to be solved. The generic set of problems and the loss 

functions used can be divided into the next categories: 

1. Binary Classification (SVM hinge loss, Squared hinge loss) 

2. Identity Verification (Constrastive loss) 

3. Multi-class Classification (Softmax loss, Expectation loss) 

4. Regression (SSIM, l
t
 error, Euclidean loss) 

 

3.4.8. Soft-max Loss / Cross-Entropy Loss 

The topic of the current thesis is associated with the multi-class classification therefore 

in the next section the Softmax loss or the cross-entropy loss will be presented. 

The cross-entropy can be represented by the following formula: 

∑ ∈−=
n

nn NnpyypL ],1[),log(),( , (32) 

where y is the desired output and p indicates the probability for each output category. N 

represents the total number of neurons in the output layer, and p,y 
nℜ∈ . By using the 

soft-max function 
)exp(

)exp(

kk

n
n

p

p
p )

)

∑
= , the probability of each class can be com-

puted. np
)

 indicates the unnormalised output from the previous layer in the network 

(Khan et al. 2018: 66). 
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4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

This section includes the details of the system architecture and the implementation of 

the accent classification project using convolutional neural networks. The system has 

been developed on a laptop equipped with a dual Intel Core i5 2nd generation processor 

at 2.30 GHz each, Windows 7 64-bit operating system and 8 GB of RAM.  

The programming language that was selected for the implementation of the project was 

Python 3.6 with the Integrated Development Environment of PyCharm (PyCharm). The 

pre-processing of the audio files was implemented with the open source audio process-

ing software of Audacity 2.1.1 (Audacity) and Winamp 5.666 (Winamp). In addition, 

this chapter covers all the information about the dataset that was used, the architecture 

of the neural network, the feature extraction method, the design of the system and the 

explanation of the programs of the project. 

4.1. System architecture  

The system architecture consists of the processes of collecting the voice signals, pre-

processing, feature extraction, classification and output in order to identify the accent of 

the voice signal.  

The process of the acquisition of the audio files was done by a Java program created by 

the author. The purpose of this program was to download the audio files of selected ac-

cents from the website of "The speech accent archive". The audio files were collected 

by the George Mason University Department of English Speech Accent Archive 

(Weinberger 2015). The website contains 2775 samples of different speakers reading a 

certain text in English. The speakers are from around the world and the website contains 

accents from more than 200 languages. 
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The process of pre-processing was necessary because it could affect the results of the 

experiments. In every machine learning project the need of using clean data is crucial in 

order to acquire a good result and output from the system. The pre-processing procedure 

is divided into two stages. The first stage is to convert each mp3 audio file downloaded 

from the website to a WAV file of 16kHz, mono channel and 16-bit. The second stage 

is to normalise the maximum amplitude of each WAV file to -1.0 dB. The aim of the 

second stage is to ensure as much possible a universal volume level of each audio file. 

Figure 16 depicts the diagram of the proposed system: 

 

Figure 16. Processes of the proposed system. 

The feature extraction process as it was presented in Chapter 2 is essential for the accent 

classification project because it can differentiate and characterise each input signal into 



 52 

the convolutional neural network. It is presented in more detail also in this chapter in 

section 4.4. 

The processes of classification and generation of output is connected with the architec-

ture and procedures of the convolutional neural network. In this thesis two different 

convolutional neural networks have been examined and their structure and accuracies 

will be discussed in section 4.5 of this chapter. 

The chapter continues with the coverage of the above elements and terms of the system 

in more detail. 

4.2. Dataset  

The dataset of the proposed system was downloaded from the website of "The speech 

accent archive" (Weinberger 2015). It consists of speakers who read an elicitation para-

graph written in English, which contains common English words and difficult English 

sounds and sound sequences. The elicitation paragraph consists of English words that 

cover almost all the sounds of English language and contains as many as possible con-

sonants, vowels and clusters of the standard American English. The paragraph spoken 

in the audio files of the system is the following: 

"Please call Stella. Ask her to bring these things with her from the store: Six spoons of 

fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob. 

We also need a small plastic snake and a big toy frog for the kids. She can scoop these 

things into three red bags, and we will go meet her Wednesday at the train station." 

Therefore, the approach of accent classification used in this thesis is text dependent. The 

number of speakers used in the proposed system is 1004 and the speakers are native 

speakers of Chinese, Spanish, English and Arabic. The table on the next page shows the 

number of audio files used in the system for each native language and the number of 

audio files used for prediction. 
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Table 1. Languages and number of audio files used in the system. 

Language # of audio files # of files for prediction 

Chinese 137 35 

Spanish 166 42 

English 376 94 

Arabic 125 30 

It is worth to note that each speaker was allowed to read the paragraph for some time 

and after the recoding was applied. The quality of the recordings is good and according 

to the website of "The speech accent archive" (Weinberger 2015) the recording equip-

ment included a Sony TC-D5M with a Radio Shack 33-3001 unidirectional dynamic 

microphone and a Sony minidisk recorder MDR-70 with a Sony ECM-MS907 stereo 

microphone. 

In addition, the speakers were asked to answer seven demographic questions which in-

clude the place of their birth, their native language, what other languages besides Eng-

lish do they know, their age, when they first began to study English, the way they 

learned English (academically or naturalistically) and the period they have lived in an 

English speaking country if applicable. All this information is included in a CSV format 

file. The next text represents a part of the CSV file data_info2L.csv used for the accent 

classification of Chinese and Spanish speakers: 

href,language_num,sex,birth_place,native_language,other_languages,
age_sex,age_of_english_onset,english_learning_method,english_resid
ence,length_of_english_residence,age 

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=45,chinese1,female,"['kong,', 'china']",chinese,"['mandarin', 
'']","['22,', 'female', '']",12.0,academic,['usa'],1.0,  22 



 54 

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=46,chinese2,male,"['kong,', 'china']",chinese,"['mandarin', 
'']","['20,', 'male', '']",13.0,academic,['usa'],0.3,  20 

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=47,chinese3,male,"['kong,', 'china']",chinese,"['french', 'man-
darin', '']","['22,', 'male', '']",6.0,academic,['uk'],0.1,  22 

.................................................................. 

.................................................................. 

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=2230,spanish164,female,"['zacatecas,', 'mex-
ico']",spanish,['none'],"['35,', 'female', 
'']",27.0,naturalistic,['usa'],19.0,  35 

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=2235,spanish165,male,"['puerto', 'rico']",spanish,"['german', 
'italian', '']","['62,', 'male', '']",4.0,academic,['usa'],11.0,  
62 

http://accent.gmu.edu/browse_language.php?function=detail&speakeri
d=2238,spanish166,female,"['dominican', 'repub-
lic']",spanish,['none'],"['26,', 'female', 
'']",11.0,academic,['usa'],5.0,  26 

4.3. Pre-processing  

The pre-processing procedure was a significant process although the dataset from the 

website was of a good quality. First of all, the downloaded dataset from "The speech 

accent archive" (Weinberger 2015) was in mp3 format. The proposed system uses audio 

file of the form of WAV files, sampled at 16kHz, mono and 16-bit. Winamp was used 

in order to convert the dataset in mp3 format to the desired format. The process is easy 

as one can load all the audio files in the playlist of the program and set its audio output 

to Nullsoft Disk Writer and its conversion to PCM 16.000 kHz; 16 Bit: Mono. 

The second step of the pre-processing was to normalise the maximum amplitude of each 

WAV files of the speakers. Most of the audio files were quite good concerning their 

normalisation but some of them had low amplitude, which may result in inefficient us-
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age of inputs for the neural network. The program used for the normalisation of the au-

dio files was Audacity 2.1.1. and the normalisation was also not difficult to implement 

as one can load all the audio files and apply normalisation of the maximum amplitude to 

-1.0 dB using the batch programming mode of the software. 

The importance of using clean data in the neural network is high. If clean input data is 

used, then it is most likely that a clean output can be achieved, in this case meaning a 

good approximation and accuracy of the model of the convolutional neural network. 

Usually a satisfactory sampling rate for human voice is at 16kHz and mono. But the fact 

of existing unnormalised audio signals is dangerous and it is an alert for the engineer to 

apply normalisation for the maximum amplitude of the signal. The value of -1.0 dB is 

the default in Audacity and often it is so in order to leave some headroom for a possible 

final editing of the audio signal.  

4.4. Feature Extraction  

The process of feature extraction in the proposed system consists of applying the Mel-

Frequency Cepstral Coefficients as it was presented in Chapter 2, section 2.5.1. The 

main reason for this approach is to achieve a reduction in the dimensionality of the in-

put. Besides, the representation of the sound signals is more useful by applying the 

MFCCs. By using MFCCs the audio samples are divided into small windows and 

chunks of time (Watanaprakornkul, Eksombatchai & Chien 2010). Furthermore, the 

Mel cepstrum provides a way to categorise the frequencies of the audio files in terms of 

effective phoneme distinction (Bryant, Chow & Li 2014). 

In this thesis the first 13 coefficients were used for the feature extraction. Each audio 

WAV file of the speakers is divided into segments and the MFFC of the current seg-

ment is taken. The dimension of each segment is 13x30 and it is feed into the network in 

a way as a two-dimensional image could be represented.  
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There are additional features that can be used for the process of feature extraction such 

as Fbank and Delta (Chu et al. 2017), but the dimension of the input increases ex-

tremely. Under the current situations, using an ordinary computer and not a GPU, the 

strategy of following just the MFCCs suggested to be appropriate in terms of dimen-

sionality.  

4.5. Convolutional Neural Networks Architecture  

The accent classification problem presented in this thesis was solved by the implemen-

tation of two convolutional neural networks. The difference between them is found in 

the activation functions of their layers. 

Specifically, the first CNN consists of a 2D convolution layer with an output filter of 

dimension 32 in the convolution, an input shape of 13x30x1 and a ReLU activation 

function. The data format is set to channels_last which means that the ordering of the 

dimensions in the inputs has the form of (batch, height, width, channels). This includes 

the number of segmented audio files in batch, the shape of audio files after applying the 

MFCC with 13 coefficients and the number of channels, which is 1 in the current case. 

In the domain of image processing this could be seen as an image of dimension 13x30. 

Next a max pooling operation with a pool size of 2x2 is applied in order to down scale 

the spatial dimension. The pool size refers to the vertical and horizontal factors of the 

process of downscaling.  

Next a second 2D convolutional layer is applied with the output filter of dimension 64 

and the same input shape and activation function as the first convolutional layer. The 

following step is to apply the same max pooling operation and a dropout operation with 

a rate of 0.25 in order to avoid overfitting of the network. Next an operation of flatten-

ing takes place and the input is flattened into 1 dimension without affecting the batch 

size. Next a regularly densely-connected layer is added with 128 units and the activation 

function of ReLU. Another dropout operation is applied next with a 0.5 factor in order 
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to avoid the cases of overfitting. The last layer is a fully connected layer with the num-

ber of accent classes used for the model and a softmax activation function. 

The second CNN is almost the same as the first with the difference that on the third 

layer (fully connected) with 128 units instead of ReLU the sigmoid activation function 

was used. In addition, several other configurations have been tested. These configura-

tions did not result in a better accuracy. However, the two proposed models gave good 

approximations.  

Figure 17 in the next page represents the architecture of the two convolutional neural 

networks that were used in this thesis.  
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Figure 17. CNN architecture of the proposed system. 
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4.6. Program Implementation  

The program used in the accent classification problem is based on an implementation by 

Yatharth Garg (2018) and it was modified and parameter tuned by the author for the re-

quirements of the thesis. The program was created using the programming language of 

Python 3.6 with the help of the free version of PyCharm. The important libraries in-

cluded in the program consist of Numpy, Pandas, Keras and Librosa. The implementa-

tion of the CNNs were done using Keras, which is a neural network library in Python, 

running on top of TensorFlow. The user friendliness, modularity, extensibility and most 

important being open source make it ideal for working and experimenting with deep 

neural networks and CNN projects. 

The main python file used in the project is trainmodel.py. The subprograms used are 

getsplit.py, accuracy.py and predict.py. The source code of the project is included in 

Appendix 1.  

In trainmodel.py the user must set the number of the MFCCs, the number of epochs for 

the training of each model, the CSV file that contains the data of the speakers and the 

name of the model that will be saved after the training of the network. The following 

table shows the CSV files used in the project. 
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Table 2. CSV files with the corresponding supported languages. 

CSV file Languages 

data_info2L Chinese, Spanish 

data_info3L Chinese, Spanish, Arabic 

data_info4L Chinese, Spanish, English, Arabic 

Chinese language includes Cantonese, Mandarin, Taiwanese, Wu, and Xiang varieties 

of Chinese spoken language. 

The training and test samples are split with the help of the getsplit.py program. In gets-

plit.py the user can specify the percentage of test sample size. The percentage of training 

sample is calculated automatically. The next step is to convert the outputs of train and 

test sample into a binary representation of the total number of classes using the function 

to_categorical. This conversion is essential because the loss function of the convolu-

tional neural network is set to categorical_crossentropy.  

Then the audio files are loaded and the MFCC for each one is calculated. The segmenta-

tion of the audio files from the MFCCs is taking place next, and the process of random-

izing the training segments follows. In the next step the function of the training of the 

model is called with the arguments of training input and output samples and validation 

input and output samples. This function is called train_model and its purpose is to de-

fine and train the 2D CNN. The function contains an early stop of the training in case of 

the accuracy does not change at least 0.005 over 10 epochs.  

An object of ImageDataGenerator is created next; it is used to fit the model on batches 

with real-time data augmentation and train the CNN. The following procedure is to cal-

culate the accuracy of the predictions by calling the predict_class_all function and pass-
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ing the arguments of the test segmented samples and the model. At the end of the train-

model.py program some statistics are printed to the output for the user to see the number 

of training samples, testing samples, the confusion matrix and the accuracy of the cur-

rent model. The model is saved on the disk and the final step is to output the total time 

needed for the program to execute and a sound is played to indicate that the program has 

been executed.  

Finally, the prediction and classification of an audio signal can be achieved by running 

the program predict.py. The user must place the audio file for classification in the folder 

"Prediction_File" and run the above python program. The file name of the CSV file 

must be set by the user and then the MFCC of the input audio signal is taken. Next the 

output of the signal variable takes the return value from the calling of the function pre-

dict_class_all from the program accuracy.py. The last step is to check the value of the 

output of the signal and print out the predicted accent.  

Figure 18 shows the diagram of the program trainmodel.py. 
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Figure 18. Diagram of the main program trainmodel.py. 
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5. EXPERIMENTS AND RESULTS 

In this chapter the experiments of the two different convolutional neural networks that 

have been discussed in Chapter 4 are presented as well as the results of the experiments. 

In addition, the achieved accuracies in the form of percentage of each model and the 

number of epochs are discussed and shown in comparative figures. 

5.1. Setup of the experiments  

The experiments presented in this chapter refer to two convolutional neural network ar-

chitectures that have been presented in the section 4.5. The difference between the pro-

posed networks is that the first CNN uses ReLU activation functions, while the second 

CNN uses a sigmoid activation function on the 3rd convolutional layer. 

The dataset used in the experiments includes the four languages of Chinese, Spanish, 

English and Arabic. The detailed structure of the dataset can be seen in section 4.2 in 

the previous chapter. In the case with two languages Chinese and Spanish were used, in 

the case with three languages Chinese, Spanish and Arabic were used and in the case 

with four languages Chinese, Spanish, English and Arabic were used. The experiments 

cover all the accuracies and the performance of the models with training and test sam-

ples of percentage from 90-10, 80-20 to 10-90 respectively.  

The computer used for the training the models, as described in Chapter 4, was a laptop 

with a dual Intel Core i5 at 2.30Ghz each, running Windows 7 64-bit operating system 

and having 8 GB of RAM. In addition, the programming language of Python 3.6 was 

selected and the implementation of CNN was done with Keras.  

The next sections of this chapter present the performance, the confusion matrix of each 

model with the different amount of percentage between training and testing samples, 

and the comparison between them.  
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5.2. Experiments with the first CNN architecture (ReLU activation functions)  

In the case of 90-10 (percentages of training-test samples) the highest accuracy of the 

model achieved 96.72% after 83 epochs for the 2 languages. In terms of 3 languages the 

model scored 84.88% accuracy after 88 epochs and with 4 languages the best accuracy 

is at 74.27% after 35 epochs. Figures 19–23 show the accuracies for the case of 90% 

training samples and 10% test samples, the value of the loss function on validation sam-

ples and the confusion matrices accordingly.   

 

Figure 19. Accuracy of 1st CNN 90-10 model over epochs. 



 65 

 

Figure 20. Validation loss of 1st CNN 90-10 model over epochs. 

 

Figure 21. Confusion matrix of 1st CNN 90-10 model for 2 languages. 
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Figure 22. Confusion matrix of 1st CNN 90-10 model for 3 languages. 

 

Figure 23. Confusion matrix of 1st CNN 90-10 model for 4 languages. 
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Continuing with the case of 80-20, the model for 2 languages achieved 93.44% accu-

racy at the 98th epoch. For 3 languages it scored the accuracy of 87.2% after 104 epochs 

and in the case of 4 languages it scored 75.77% accuracy after 35. The next figures rep-

resent the results for the case of 80-20 of the model. 

 

Figure 24. Accuracy of 1st CNN 80-20 model over epochs. 



 68 

 

Figure 25. Validation loss of 1st CNN 80-20 model over epochs. 

 

Figure 26. Confusion matrix of 1st CNN 80-20 model for 2 languages. 
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Figure 27. Confusion matrix of 1st CNN 80-20 model for 3 languages. 

 

Figure 28. Confusion matrix of 1st CNN 80-20 model for 4 languages. 
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Concerning training and test samples of 70-30, in the case of 2 languages the model 

achieved 92.85% accuracy after 35 epochs. In the case of 3 languages the model scored 

80.15% after 92 and for 4 languages the score achieved was 76.19% at the 35th epoch. 

 

Figure 29. Accuracy of 1st CNN 70-30 model over epochs. 
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Figure 30. Validation loss of 1st CNN 70-30 model over epochs. 

 

Figure 31. Confusion matrix of 1st CNN 70-30 model for 2 languages. 
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Figure 32. Confusion matrix of 1st CNN 70-30 model for 3 languages. 

 

Figure 33. Confusion matrix of 1st CNN 70-30 model for 4 languages. 
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In terms of 60-40 of the current CNN, the model scored 90.53% accuracy after 35 ep-

ochs. The best accuracy for 3 languages in this category was 74.92% after 87 epochs 

and for 4 languages 65.06% accuracy at the 35th epoch. 

 

Figure 34. Accuracy of 1st CNN 60-40 model over epochs. 
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Figure 35. Validation loss of 1st CNN 60-40 model over epochs. 

 

Figure 36. Confusion matrix of 1st CNN 60-40 model for 2 languages. 
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Figure 37. Confusion matrix of 1st CNN 60-40 model for 3 languages. 

 

Figure 38. Confusion matrix of 1st CNN 60-40 model for 4 languages. 
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In the case of 50% training and 50% test samples the best accuracy for 2 languages is 

89.43% at the 92nd epoch. The accuracy achieved for 3 languages is 71.96% after 81 

epochs and 73.63% after 35 epochs for the case of 4 languages. 

 

Figure 39. Accuracy of 1st CNN 50-50 model over epochs. 
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Figure 40. Validation loss of 1st CNN 50-50 model over epochs. 

 

Figure 41. Confusion matrix of 1st CNN 50-50 model for 2 languages. 
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Figure 42. Confusion matrix of 1st CNN 50-50 model for 3 languages. 

 

Figure 43. Confusion matrix of 1st CNN 50-50 model for 4 languages. 
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Concerning the approach of 40-60 the best accuracies are: 77.19% after 107 epochs for 

2 languages; 70.81% at the 106th epoch for 3 languages and 69.53% after 96 epochs for 

4 languages. 

 

Figure 44. Accuracy of 1st CNN 40-60 model over epochs. 
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Figure 45. Validation loss of 1st CNN 40-60 model over epochs. 

 

Figure 46. Confusion matrix of 1st CNN 40-60 model for 2 languages. 
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Figure 47. Confusion matrix of 1st CNN 40-60 model for 3 languages. 

 

Figure 48. Confusion matrix of 1st CNN 40-60 model for 4 languages. 
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The best accuracies for the 30-70 case are: 76.94% at the 84th epoch for 2 languages; 

63.66% after 129 epochs for 3 languages and 62.61% after 35 epochs for 4 languages. 

 

Figure 49. Accuracy of 1st CNN 30-70 model over epochs. 
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Figure 50. Validation loss of 1st CNN 30-70 model over epochs. 

 

Figure 51. Confusion matrix of 1st CNN 30-70 model for 2 languages. 
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Figure 52. Confusion matrix of 1st CNN 30-70 model for 3 languages. 

 

Figure 53. Confusion matrix of 1st CNN 30-70 model for 4 languages. 
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In terms of 20-80, the best accuracy for 2 languages is 73.81% after 35 epochs, for 3 

languages is 56.49% at the 92nd epoch and for 4 languages 57.42% after 35 epochs. 

 

Figure 54. Accuracy of 1st CNN 20-80 model over epochs. 
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Figure 55. Validation loss of 1st CNN 20-80 model over epochs. 

 

Figure 56. Confusion matrix of 1st CNN 20-80 model for 2 languages. 
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Figure 57. Confusion matrix of 1st CNN 20-80 model for 3 languages. 

 

Figure 58. Confusion matrix of 1st CNN 20-80 model for 4 languages. 
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In the last case 10-90 the results are: 68.49% accuracy after 58 epochs for 2 languages; 

49.28% after 35 epochs for 3 languages and 54.55% at the 110th epoch for 4 languages. 

 

Figure 59. Accuracy of 1st CNN 10-90 model over epochs. 
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Figure 60. Validation loss of 1st CNN 10-90 model over epochs. 

 

Figure 61. Confusion matrix of 1st CNN 10-90 model for 2 languages. 
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Figure 62. Confusion matrix of 1st CNN 10-90 model for 3 languages. 

 

Figure 63. Confusion matrix of 1st CNN 10-90 model for 4 languages. 
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Table 3. Results from the experiments of the first CNN (languages, accuracy, ep-

ochs). 

90-10 80-20 70-30 

2L: 96.72%  epochs = 83 2L: 93.44%  epochs = 98 2L: 92.85%  epochs = 35 

3L: 84.88%  epochs = 88 3L: 87.2%   epochs = 104 3L: 80.15%  epochs = 92 

4L: 74.27%  epochs = 35 4L: 75.77%  epochs = 35 4L: 76.19%  epochs = 35 

 

60-40 50-50 40-60 

2L: 90.53%  epochs = 35 2L: 89.43%  epochs = 92 2L: 77.19%  epochs = 107 

3L: 74.92%  epochs = 87 3L: 71.96%  epochs = 81 3L: 70.81%  epochs = 106 

4L: 65.06%  epochs = 35 4L: 73.63%  epochs = 35 4L: 69.53%  epochs = 96 

 

30-70 20-80 10-90 

2L: 76.94%  epochs = 84 2L: 73.81%  epochs = 35 2L: 68.49%  epochs = 58 

3L: 63.66%  epochs = 129 3L: 56.49%  epochs = 92 3L: 49.28%  epochs = 35 

4L: 62.61%  epochs = 35 4L: 57.42%  epochs = 35 4L: 54.55%  epochs = 110 
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As it can be seen the best accuracy for 2 languages (Chinese and Spanish) was achieved 

in the case of 90-10 with the value of 96.72%. The optimal accuracy for 3 languages 

(Chinese, Spanish and Arabic) can be seen in the case of 80-20 having a value of 

87.2%. Concerning 4 languages (Chinese, Spanish, English and Arabic) the best accu-

racy is in the case of 70-30 with 76.19%. 

The above results show that the English accents of native speakers of two different lan-

guages (Chinese and Spanish) are quite different and this difference can be seen quickly 

in the training of the model, achieving high accuracy in the beginning (90-10 case). 

While more native languages are added the difference between them seems to be a diffi-

cult task even for the computer to detect. 

Concerning the statistics of the models running on the current computer it can be said 

that the average time for loading the WAV files is around 8 minutes for 2 languages, 11 

minutes for 3 languages and 20 minutes for 4 languages. The time needed for convert-

ing the WAV files to MFCCs is 41 seconds for 2 languages, 1 minute for 3 languages 

and 1:39 minutes for 4 languages. Lastly, the average time needed for training the mod-

els is 55 minutes for 2 languages, 1 hour and 18 minutes for 3 languages and 2 hours for 

4 languages. It must be noted that the time needed for training a model depends mainly 

on the number of languages it contains and the number of epochs. 

5.3. Experiments with the second CNN architecture (Sigmoid activation function on 

3rd layer)  

The results of the second CNN are slightly different from the first architecture. Specifi-

cally, in the case of 90-10 the model scored the best accuracy of 95.08% after 69 epochs 

for 2 languages. For 3 languages the model scored 81.39% accuracy at the 100th epoch 

and for 4 languages 75.77% accuracy after 50 epochs. The next figures represent the 

accuracies for each case with 90% training samples and 10% test samples, the value of 

the loss function and the confusion matrices accordingly as it was shown in the previous 

section.   
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Figure 64. Accuracy of 2nd CNN 90-10 model over epochs. 
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Figure 65. Validation loss of 2nd CNN 90-10 model over epochs. 

 

Figure 66. Confusion matrix of 2nd CNN 90-10 model for 2 languages. 
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Figure 67. Confusion matrix of 2nd CNN 90-10 model for 3 languages. 

 

Figure 68. Confusion matrix of 2nd CNN 90-10 model for 4 languages. 
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Concerning the case of 80-20 the best accuracy is 95.05% after 100 epochs for 2 lan-

guages; 84.3% accuracy after 87 epochs for 3 languages and 74.22% at the 50th epoch 

for 4 languages. 

 

Figure 69. Accuracy of 2nd CNN 80-20 model over epochs. 
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Figure 70. Validation loss of 2nd CNN 80-20 model over epochs. 

 

Figure 71. Confusion matrix of 2nd CNN 80-20 model for 2 languages. 
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Figure 72. Confusion matrix of 2nd CNN 80-20 model for 3 languages. 

 

Figure 73. Confusion matrix of 2nd CNN 80-20 model for 4 languages. 
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In terms of 70% training samples and 30% test samples the model scored the best accu-

racy of 92.85% after 77 epochs for 2 languages. For 3 languages the best accuracy can 

be seen at the 85th epoch with 83.65%. The model achieved accuracy of 70.39% after 

41 epochs for 4 languages. 

 

Figure 74. Accuracy of 2nd CNN 70-30 model over epochs. 
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Figure 75. Validation loss of 2nd CNN 70-30 model over epochs. 

 

Figure 76. Confusion matrix of 2nd CNN 70-30 model for 2 languages. 
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Figure 77. Confusion matrix of 2nd CNN 70-30 model for 3 languages. 

 

Figure 78. Confusion matrix of 2nd CNN 70-30 model for 4 languages. 
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The case of 60-40 includes 84.77% accuracy at the 74th epoch for 2 languages. In the 

case of 3 languages the best accuracy is 83.67% after 100 epochs. For 4 languages the 

accuracy is low at 19.87% after 50 epochs. 

 

Figure 79. Accuracy of 2nd CNN 60-40 model over epochs. 
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Figure 80. Validation loss of 2nd CNN 60-40 model over epochs. 

 

Figure 81. Confusion matrix of 2nd CNN 60-40 model for 2 languages. 
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Figure 82. Confusion matrix of 2nd CNN 60-40 model for 3 languages. 

 

Figure 83. Confusion matrix of 2nd CNN 60-40 model for 4 languages. 
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Continuing to the case of 50-50, the best accuracy of 2 languages is 85.47% after 98 ep-

ochs; 73.36% accuracy after 100 epochs for 3 languages and 70.52% at the 50th epoch 

for 4 languages. 

 

Figure 84. Accuracy of 2nd CNN 50-50 model over epochs. 
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Figure 85. Validation loss of 2nd CNN 50-50 model over epochs. 

 

Figure 86. Confusion matrix of 2nd CNN 50-50 model for 2 languages. 
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Figure 87. Confusion matrix of 2nd CNN 50-50 model for 3 languages. 

 

Figure 88. Confusion matrix of 2nd CNN 50-50 model for 4 languages. 
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Concerning the case of 40-60 the best accuracy for 2 languages is 75.27% at the epoch 

of 98; 70.81% accuracy after 100 epochs for 3 languages and 71.70% accuracy after 50 

epochs for 4 languages. 

 

Figure 89. Accuracy of 2nd CNN 40-60 model over epochs. 
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Figure 90. Validation loss of 2nd CNN 40-60 model over epochs. 

 

Figure 91. Confusion matrix of 2nd CNN 40-60 model for 2 languages. 
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Figure 92. Confusion matrix of 2nd CNN 40-60 model for 3 languages. 

 

Figure 93. Confusion matrix of 2nd CNN 40-60 model for 4 languages. 
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In the matter of 30-70 the results are: 78.82% accuracy at the 100th epoch for 2 lan-

guages; 65.5% accuracy after 83 epochs for 3 languages and 65.18% accuracy at the 

50th epoch for 4 languages. 

 

Figure 94. Accuracy of 2nd CNN 30-70 model over epochs. 
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Figure 95. Validation loss of 2nd CNN 30-70 model over epochs. 

 

Figure 96. Confusion matrix of 2nd CNN 30-70 model for 2 languages. 
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Figure 97. Confusion matrix of 2nd CNN 30-70 model for 3 languages. 

 

Figure 98. Confusion matrix of 2nd CNN 30-70 model for 4 languages. 
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Regarding 20% training samples and 80% test samples the best accuracy for 2 lan-

guages is 74.02% after 93 epochs. For 3 languages the model achieved 60.87% accuracy 

at the 90th epoch and only 11.03% accuracy after 50 epochs for 4 languages. 

 

Figure 99. Accuracy of 2nd CNN 20-80 model over epochs. 
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Figure 100. Validation loss of 2nd CNN 20-80 model over epochs. 

 

Figure 101. Confusion matrix of 2nd CNN 20-80 model for 2 languages. 
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Figure 102. Confusion matrix of 2nd CNN 20-80 model for 3 languages. 

 

Figure 103. Confusion matrix of 2nd CNN 20-80 model for 4 languages. 
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Lastly, in the case of 10-90 the model scored 30.76% accuracy after 86 epochs for 2 

languages, 48.11% after 98 epochs for 3 languages and 56.35% accuracy at the 50th ep-

och for 4 languages. 

 

Figure 104. Accuracy of 2nd CNN 10-90 model over epochs. 
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Figure 105. Validation loss of 2nd CNN 10-90 model over epochs. 

 

Figure 106. Confusion matrix of 2nd CNN 10-90 model for 2 languages. 
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Figure 107. Confusion matrix of 2nd CNN 10-90 model for 3 languages. 

 

Figure 108. Confusion matrix of 2nd CNN 10-90 model for 4 languages. 
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Table 4. Results from the experiments of the second CNN (languages, accuracy, 

  epochs). 

90-10 80-20 70-30 

2L: 95.08%  epochs = 69 2L: 95.08%  epochs = 100 2L: 92.85%  epochs = 77 

3L: 81.39%  epochs = 100 3L: 84.3%   epochs = 87 3L: 83.65%  epochs = 85 

4L: 75.77%  epochs = 50 4L: 74.22%  epochs = 50 4L: 70.39%  epochs = 41 

 

60-40 50-50 40-60 

2L: 84.77%  epochs = 74 2L: 85.47%  epochs = 98 2L: 75.27%  epochs = 98 

3L: 83.67%  epochs = 100 3L: 73.36%  epochs = 100 3L: 70.81%  epochs = 100 

4L: 19.87%  epochs = 50 4L: 70.52%  epochs = 50 4L: 71.70%  epochs = 50 

 

30-70 20-80 10-90 

2L: 78.82%  epochs = 100 2L: 74.02%  epochs = 93 2L: 30.76%  epochs = 86 

3L: 65.5%   epochs = 83 3L: 60.87%  epochs = 90 3L: 48.11%  epochs = 98 

4L: 65.18%  epochs = 50 4L: 11.03%  epochs = 50 4L: 56.35%  epochs = 50 
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Almost similar results can be derived from the second CNN compared to the first one. 

The best accuracy for 2 languages can be seen in 90-10 and 80-20 cases being 95.08%, 

which is a little lower than the first CNN (96.72%). The best accuracy for 3 languages 

was at the case of 80-20 with the value of 84.3%, being a little lower than the first CNN 

(87.2%). Concerning 4 languages the best accuracy achieved in this model was seen in 

the case of 90-10 with 75.77%, while in the first CNN the accordingly accuracy was 

76.19% at 70-30 category. 

Again, the results show that in the case of two languages (Chinese and Spanish) the dif-

ference in the English accent is large and can be seen from the first category of 90-10 

and even from the 80-20 case. When the user adds more native languages with different 

accents then the system is not able to achieve extremely high accuracy. 

In terms of the statistics of the models running on the current computer it can be noted 

that the average time for loading the WAV files is almost identical to the first CNN: 

Specifically the system needed around 8 minutes and 38 second for 2 languages, 12 

minutes and 18 seconds for 3 languages and 19 minutes and 44 seconds for 4 languages. 

The process of converting the WAV files to MFCCs is 48 seconds for 2 languages, 56 

seconds for 3 languages and 1:39 minutes for 4 languages. The average time needed for 

training the models is 43 minutes for 2 languages, 1 hour and 30 minutes for 3 lan-

guages and 1 hour and 24 minutes for 4 languages. Similarly to the first neural network, 

the time needed for training a model depends mainly on the number of languages it con-

tains and the number of epochs. 
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6. CONCLUSION AND FUTURE WORK 

In conclusion, the process of accent classification using two different convolutional 

neural networks and the results of the experiments have been presented in this thesis. 

Specifically, the languages used in the projects were Chinese, Spanish, English and 

Arabic and the dataset was retrieved by "The speech accent archive" of George Mason 

University Department of English Speech Accent Archive. The audio files with the 

speakers contain a certain elicitation paragraph in English; therefore the proposed sys-

tem is text dependent. 

Moreover, the role of machine learning and the feature extraction using the Mel-

Frequency Cepstral Coefficients have been discussed. The MFCCs proved to be the 

most accurate way to represent the energy of a human voice and to capture the charac-

teristics of human tract. It is important to note that the first 13 MFCCs from the audio 

files were sufficient to be used in the system and the audio files were in WAV format 

sampled at 16kHz, mono channel, 16-bit. 

In addition, the theory of neural networks and convolutional neural networks have been 

discussed in order for the reader to understand the concepts and the architecture used in 

the proposed system. The system architecture and the implementation have been pre-

sented in detail. Particularly the source code of the system is based on the project of 

Yatharth Garg and it was modified by the author to suit the purposes of the experiments. 

The programming language used was Python 3.6 and the importance of using this lan-

guage was high in terms of extensibility, modularity and being open source. The im-

plementation of the convolutional neural networks in this thesis was based on the open 

source neural network library of Keras, which runs on top of the TensorFlow frame-

work. 

The experiments with the two proposed CNN architectures using ReLU and Sigmoid 

activation functions and their results were presented and discussed in detail. The dia-

grams of the accuracy, validation loss and confusion matrices of the experiments have 
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shown that the proposed system can acquire relatively good results concerning the size 

of the dataset and the computer used to run the models.  

In terms of future work and improvements it would be beneficial to use a larger dataset 

in order to achieve better results and accuracy of the models. An advantage of the data-

set used is that is free and available to the public. Having in mind that in general data-

sets used for machine learning applications are licensed and expensive to acquire. How-

ever, larger datasets are crucial for achieving a more accurate prediction system. 

Another aspect of improving the system would be to work independently of a speaker 

reading a certain text. When a system is text independent, the party using its services is 

more flexible to predict the origin of the speaker. On the other hand, a text independent 

system demands a different implementation using GPUs. 

Finally, the application of different neural networks, such as recurrent neural networks 

and quantum neural networks, would provide a better way to solve the accent classifica-

tion problem. Recurrent neural networks can be already used, but quantum neural net-

works may take some time to be applied. Future research will determine if recurrent or 

quantum neural networks will replace convolutional neural networks in accent classifi-

cation. 
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APPENDIX 1. SOURCE CODE 

#--------------------------------------------------------------------- 
# trainmodel.py 
#--------------------------------------------------------------------- 

# original code taken from: 
# Garg, Yatharth (2018). Speech-Accent-Recognition [online]. 
# [cited 14 Nov. 2018]. 

# Available from World Wide Web: 
# <URL: https://github.com/yatharth1908/Speech-Accent-Recognition>. 
# modified by Stavros Grigoriadis 

#--------------------------------------------------------------------- 
 
import pandas as pd 

from collections import Counter 
import sys 
sys.path.append('../speech-accent-recognition/src>') 

import getsplit 
import time 
import datetime 

 
from keras import utils 
import accuracy 

import multiprocessing 
import librosa 
import numpy as np 

from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import MinMaxScaler 
 

from keras.models import Sequential 
from keras.layers.core import Dense, Dropout, Flatten 
from keras.layers.convolutional import MaxPooling2D, Conv2D 

from keras.preprocessing.image import ImageDataGenerator 
from keras.callbacks import EarlyStopping, TensorBoard 
 

import winsound 
 
 

DEBUG = True 
SILENCE_THRESHOLD = .01 
RATE = 16000 

N_MFCC = 13 
COL_SIZE = 30 
EPOCHS = 100 

 
 
def to_categorical(y): 

    ''' 
    Converts list of languages into a binary class matrix 
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    :param y (list): list of languages 
    :return (numpy array): binary class matrix 

    ''' 
    lang_dict = {} 
    for index,language in enumerate(set(y)): 

        lang_dict[language] = index 
    y = list(map(lambda x: lang_dict[x],y)) 
    return utils.to_categorical(y, len(lang_dict)) 

 
 
def get_wav(language_num): 

    ''' 
    Load wav file from disk and down-samples to RATE 
    :param language_num (list): list of file names 

    :return (numpy array): Down-sampled wav file 
    ''' 
 

    y, sr = librosa.load('../audio/{}.wav'.format(language_num)) 
    return(librosa.core.resample(y=y,orig_sr=sr,target_sr=RATE, 
scale=True)) 

 
 
def to_mfcc(wav): 

    ''' 
    Converts wav file to Mel Frequency Ceptral Coefficients 
    :param wav (numpy array): Wav form 

    :return (2d numpy array: MFCC 
    ''' 
    return(librosa.feature.mfcc(y=wav, sr=RATE, n_mfcc=N_MFCC)) 

 
 
def remove_silence(wav, thresh=0.04, chunk=5000): 

    ''' 
    Searches wav form for segments of silence. If wav form values are 
lower than 'thresh' for 'chunk' samples, the values will be removed 

    :param wav (np array): Wav array to be filtered 
    :return (np array): Wav array with silence removed 
    ''' 

 
    tf_list = [] 
    for x in range(len(wav) / chunk): 

        if (np.any(wav[chunk * x:chunk * (x + 1)] >= thresh) or 
np.any(wav[chunk * x:chunk * (x + 1)] <= -thresh)): 
            tf_list.extend([True] * chunk) 

        else: 
            tf_list.extend([False] * chunk) 
 

    tf_list.extend((len(wav) - len(tf_list)) * [False]) 
    return(wav[tf_list]) 
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def normalize_mfcc(mfcc): 
    ''' 

    Normalize mfcc 
    :param mfcc: 
    :return: 

    ''' 
    mms = MinMaxScaler() 
    return(mms.fit_transform(np.abs(mfcc))) 

 
 
def make_segments(mfccs,labels): 

    ''' 
    Makes segments of mfccs and attaches them to the labels 
    :param mfccs: list of mfccs 

    :param labels: list of labels 
    :return (tuple): Segments with labels 
    ''' 

    segments = [] 
    seg_labels = [] 
    for mfcc,label in zip(mfccs,labels): 

        for start in range(0, int(mfcc.shape[1] / COL_SIZE)): 
            segments.append(mfcc[:, start * COL_SIZE:(start + 1) * 
COL_SIZE]) 

            seg_labels.append(label) 
    return(segments, seg_labels) 
 

 
def segment_one(mfcc): 
    ''' 

    Creates segments from on mfcc image. If last segments is not long 
enough to be length of columns divided by COL_SIZE 
    :param mfcc (numpy array): MFCC array 

    :return (numpy array): Segmented MFCC array 
    ''' 
    segments = [] 

    for start in range(0, int(mfcc.shape[1] / COL_SIZE)): 
        segments.append(mfcc[:, start * COL_SIZE:(start + 1) * 
COL_SIZE]) 

    return(np.array(segments)) 
 
 

def create_segmented_mfccs(X_train): 
    ''' 
    Creates segmented MFCCs from X_train 

    :param X_train: list of MFCCs 
    :return: segmented mfccs 
    ''' 

    segmented_mfccs = [] 
    for mfcc in X_train: 
        segmented_mfccs.append(segment_one(mfcc)) 

    return(segmented_mfccs) 
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def train_model(X_train,y_train,X_validation,y_validation, 
batch_size=128): #64 
    ''' 

    Trains 2D convolutional neural network 
    :param X_train: Numpy array of mfccs 
    :param y_train: Binary matrix based on labels 

    :return: Trained model 
    ''' 
 

    # Get row, column, and class sizes 
    rows = X_train[0].shape[0] 
    cols = X_train[0].shape[1] 

    val_rows = X_validation[0].shape[0] 
    val_cols = X_validation[0].shape[1] 
    num_classes = len(y_train[0]) 

 
    print('X_Train shape rows:',rows) 
    print('X_train1 shape cols:', cols) 

    print('num_classes:',num_classes) 
 
    # input image dimensions to feed into 2D ConvNet Input layer 

    input_shape = (rows, cols, 1) 
    X_train = X_train.reshape(X_train.shape[0], rows, cols, 1 ) 
    X_validation = 

X_validation.reshape(X_validation.shape[0],val_rows,val_cols,1) 
 
 

    print('X_train shape:', X_train.shape) 
    print(X_train.shape[0], 'training samples') 
 

    # Initializing the CNN 
    model = Sequential() 
 

    # Add 1st Layer Convolution, input_shape = (13,30,1), MFCCs coming 
in 13x30x1 
    # input shape matches the data shape coming into the network 

    # Output filter of dimension 32 in the convolution, 
    # Kernel size: 3x3, 
    # Activation ReLU, 

    # Data_format = "channels_last" which means that the ordering of 
the dimensions 
    # in the inputs have the form of (batch, height, width, channels) 

    model.add(Conv2D(32, kernel_size=(3,3), activation='relu', 
                     data_format="channels_last", 
                     input_shape=input_shape)) 

 
    # Max pooling operation with a pool size of 2x2 is applied 
    # to down scale the spatial dimension 

    model.add(MaxPooling2D(pool_size=(2, 2))) 
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    # Add 2nd convolutional layer, 

    # Output filter of dimension 64 in the convolution, 
    # Kernel size: 3x3, 
    # Activation ReLU, 

    model.add(Conv2D(64,kernel_size=(3,3), activation='relu')) 
    #model.add(Conv2D(64, kernel_size=(3, 3), activation='sigmoid')) 
 

    # Max pooling operation with a pool size of 2x2 is applied 
    # to down scale the spatial dimension 
    model.add(MaxPooling2D(pool_size=(2, 2))) 

 
    # Dropout operation with a rate of 0.25 to avoid overfitting 
    model.add(Dropout(0.25)) 

 
    # Flattening work in a single array, 1 dimension 
    model.add(Flatten()) 

 
    # Fully Connected 
    # A Regularly densely-connected layer is added with 128 units 

    # Activation function of ReLU 
    model.add(Dense(128, activation='relu')) 
    #model.add(Dense(128, activation='sigmoid')) 

 
    # Dropout operation with a rate of 0.5 to avoid overfitting 
    model.add(Dropout(0.5)) 

 
    # The last layer is a fully connected layer with the number of ac-
cent classes 

    # used for the model and 
    # a softmax activation function 
    model.add(Dense(num_classes, activation='softmax')) 

 
    # Compiling the CNN 
    # optimizer is reverse propagation 

    # readjusting the weights 
    # loss how to computer the error 
    model.compile(loss='categorical_crossentropy', 

                  optimizer='adadelta', 
                  metrics=['accuracy']) 
 

    # Stops training if accuracy does not change at least 0.005 over 
10 epochs 
    es = EarlyStopping(monitor='acc', min_delta=.005, patience=10, 

verbose=1, mode='auto') 
 
    # Creates log file for graphical interpretation using TensorBoard 

    tb = TensorBoard(log_dir='../logs', histogram_freq=0, 
batch_size=32, write_graph=True, write_grads=True, 
                     write_images=True, embeddings_freq=0, embed-

dings_layer_names=None, 
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                     embeddings_metadata=None) 
 

    # Image shifting 
    datagen = ImageDataGenerator(width_shift_range=0.05) 
 

    # Fit model using ImageDataGenerator 
    # Training the CNN 
    model.fit_generator(datagen.flow(X_train, y_train, 

batch_size=batch_size), 
                        steps_per_epoch=len(X_train) / 32 
                        , epochs=EPOCHS, 

                        callbacks=[es,tb], valida-
tion_data=(X_validation,y_validation)) 
 

    return (model) 
 
 

def save_model(model, model_filename): 
    ''' 
    Save model to file 

    :param model: Trained model to be saved 
    :param model_filename: Filename 
    :return: None 

    ''' 
    model.save('../models/{}.h5'.format(model_filename))  # creates a 
HDF5 file 'my_model.h5' 

 
 
if __name__ == '__main__': 

    ''' 
        Console command example: 
        python trainmodel.py data_info2L.csv model2l10_9010_relu 

        ''' 
 
    start = time.time() 

 
    # Load arguments 
    file_name = sys.argv[1] 

    model_filename = sys.argv[2] 
 
    # Load metadata 

    df = pd.read_csv(file_name) 
 
    # Filter metadata to retrieve only files desired 

    filtered_df = getsplit.filter_df(df) 
 
    # Train test split 

    X_train, X_test, y_train, y_test = gets-
plit.split_people(filtered_df) 
 

    # Get statistics 
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    train_count = Counter(y_train) 
    test_count = Counter(y_test) 

 
    print("Entering main") 
 

    acc_to_beat = test_count.most_common(1)[0][1] / 
float(np.sum(list(test_count.values()))) 
 

    # To categorical 
    y_train = to_categorical(y_train) 
    y_test = to_categorical(y_test) 

 
    # Get resampled wav files using multiprocessing 
    if DEBUG: 

        print('Loading wav files....') 
    pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()) 
 

    start_loading_wavs = time.time() 
    X_train = pool.map(get_wav, X_train) 
    X_test = pool.map(get_wav, X_test) 

    end_loading_wavs = time.time() 
    print("\nTotal time needed for Loading wav files: ", 
datetime.timedelta(seconds=(end_loading_wavs - start_loading_wavs))) 

 
    # Convert to MFCC 
    if DEBUG: 

        print('Converting to MFCC....') 
 
    start_converting_mfcc = time.time() 

    X_train = pool.map(to_mfcc, X_train) 
    X_test = pool.map(to_mfcc, X_test) 
 

    # Create segments from MFCCs 
    X_train, y_train = make_segments(X_train, y_train) 
    X_validation, y_validation = make_segments(X_test, y_test) 

 
    # Randomize training segments 
    X_train, _, y_train, _ = train_test_split(X_train, y_train, 

test_size=0) 
 
    end_converting_mfcc = time.time() 

    print("\nTotal time needed for Converting to MFCC: ", 
datetime.timedelta(seconds=(end_converting_mfcc - 
start_converting_mfcc))) 

 
 
    start_training_model = time.time() 

 
    # Train model 
    model = train_model(np.array(X_train), np.array(y_train), 

np.array(X_validation),np.array(y_validation)) 
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    # Make predictions on full X_test MFCCs 

    y_predicted = accu-
racy.predict_class_all(create_segmented_mfccs(X_test), model) 
 

    end_training_model = time.time() 
    print("\nTotal time needed for Training Model: ", 
datetime.timedelta(seconds=(end_training_model - 

start_training_model))) 
 
 

    # Print statistics 
    print('Training samples:', train_count) 
    print('Testing samples:', test_count) 

    print('Accuracy to beat:', acc_to_beat) 
    print('Confusion matrix of total samples:\n', 
np.sum(accuracy.confusion_matrix(y_predicted, y_test),axis=1)) 

    print('Confusion matrix:\n',accuracy.confusion_matrix(y_predicted, 
y_test)) 
    print('Accuracy:', accuracy.get_accuracy(y_predicted,y_test)) 

 
    # Save model 
    save_model(model, model_filename) 

 
    end = time.time() 
 

    print("\nTotal time needed: ", datetime.timedelta(seconds=(end - 
start))) 
 

    winsound.PlaySound("Success", winsound.SND_FILENAME) 
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#--------------------------------------------------------------------- 
# getsplit.py 

#--------------------------------------------------------------------- 
# original code taken from: 
# Garg, Yatharth (2018). Speech-Accent-Recognition [online]. 

# [cited 14 Nov. 2018]. 
# Available from World Wide Web: 
# <URL: https://github.com/yatharth1908/Speech-Accent-Recognition>. 

#--------------------------------------------------------------------- 
 
import pandas as pd 

import sys 
from sklearn.model_selection import train_test_split 
 

 
def filter_df(df): 
    ''' 

    Function to filter audio files based on df columns 
    df column options: 
[age,age_of_english_onset,age_sex,birth_place,english_learning_method, 

    eng-
lish_residence,length_of_english_residence,native_language,other_langu
ages,sex] 

    :param df (DataFrame): Full unfiltered DataFrame 
    :return (DataFrame): Filtered DataFrame 
    ''' 

 
    chinese = df[df.native_language == 'chinese'] 
    spanish = df[df.native_language == 'spanish'] 

    english = df[df.native_language == 'english'] 
    arabic = df[df.native_language == 'arabic'] 
 

    #chinese = chinese[chinese.length_of_english_residence < 10] 
    #spanish = spanish[spanish.length_of_english_residence < 10] 
    #arabic = arabic[arabic.length_of_english_residence < 10] 

 
 
    df = df.append(chinese) 

    df = df.append(spanish) 
    df = df.append(english) 
    df = df.append(arabic) 

 
    return df 
 

 
def split_people(df,test_size=0.1): 
    ''' 

    Create train test split of DataFrame 
    :param df (DataFrame): Pandas DataFrame of audio files to be split 
    :param test_size (float): Percentage of total files to be split 

into test 
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    :return X_train, X_test, y_train, y_test (tuple): Xs are list of 
df['language_num'] and Ys are df['native_language'] 

    test_size = 10% train_size = 90% 
    ''' 
 

 
    return 
train_test_split(df['language_num'],df['native_language'],test_size=te

st_size,random_state=1234) 
 
 

if __name__ == '__main__': 
    ''' 
    Console command example: 

    python bio_data.csv 
    ''' 
 

    csv_file = sys.argv[1] 
    df = pd.read_csv(csv_file) 
    filtered_df = filter_df(df) 

    print(split_people(filtered_df)) 
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#--------------------------------------------------------------------- 
# accuracy.py 

#--------------------------------------------------------------------- 
# original code taken from: 
# Garg, Yatharth (2018). Speech-Accent-Recognition [online]. 

# [cited 14 Nov. 2018]. 
# Available from World Wide Web: 
# <URL: https://github.com/yatharth1908/Speech-Accent-Recognition>. 

#--------------------------------------------------------------------- 
 
from collections import Counter 

import numpy as np 
 
 

def predict_class_audio(MFCCs, model): 
    ''' 
    Predict class based on MFCC samples 

    :param MFCCs: Numpy array of MFCCs 
    :param model: Trained model 
    :return: Predicted class of MFCC segment group 

    ''' 
    MFCCs = 
MFCCs.reshape(MFCCs.shape[0],MFCCs.shape[1],MFCCs.shape[2],1) 

    y_predicted = model.predict_classes(MFCCs,verbose=0) 
    return(Counter(list(y_predicted)).most_common(1)[0][0]) 
 

 
def predict_prob_class_audio(MFCCs, model): 
    ''' 

    Predict class based on MFCC samples' probabilities 
    :param MFCCs: Numpy array of MFCCs 
    :param model: Trained model 

    :return: Predicted class of MFCC segment group 
    ''' 
    MFCCs = 

MFCCs.reshape(MFCCs.shape[0],MFCCs.shape[1],MFCCs.shape[2],1) 
    y_predicted = model.predict_proba(MFCCs,verbose=0) 
    return(np.argmax(np.sum(y_predicted,axis=0))) 

 
 
def predict_class_all(X_train, model): 

    ''' 
    :param X_train: List of segmented mfccs 
    :param model: trained model 

    :return: list of predictions 
    ''' 
    predictions = [] 

    for mfcc in X_train: 
        predictions.append(predict_class_audio(mfcc, model)) 
        #predictions.append(predict_prob_class_audio(mfcc, model)) 

    return predictions 
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def confusion_matrix(y_predicted,y_test): 
    ''' 

    Create confusion matrix 
    :param y_predicted: list of predictions 
    :param y_test: numpy array of shape (len(y_test), number of 

classes). 1.'s at index of actual, otherwise 0. 
    :return: numpy array. confusion matrix 
    ''' 

    confusion_matrix = 
np.zeros((len(y_test[0]),len(y_test[0])),dtype=int ) 
    for index, predicted in enumerate(y_predicted): 

        confusion_matrix[np.argmax(y_test[index])][predicted] += 1 
    return(confusion_matrix) 
 

 
def get_accuracy(y_predicted,y_test): 
    ''' 

    Get accuracy 
    :param y_predicted: numpy array of predictions 
    :param y_test: numpy array of actual 

    :return: accuracy 
    ''' 
    c_matrix = confusion_matrix(y_predicted,y_test) 

    return( np.sum(c_matrix.diagonal()) / float(np.sum(c_matrix))) 
 
if __name__ == '__main__': 

    pass 
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#--------------------------------------------------------------------- 
# predict.py 

#--------------------------------------------------------------------- 
# original code taken from: 
# Garg, Yatharth (2018). Speech-Accent-Recognition [online]. 

# [cited 14 Nov. 2018]. 
# Available from World Wide Web: 
# <URL: https://github.com/yatharth1908/Speech-Accent-Recognition>. 

# modified by Stavros Grigoriadis 
#--------------------------------------------------------------------- 
 

import numpy as np 
import accuracy 
from keras.models import load_model 

import librosa 
import pandas as pd 
import getsplit 

 
RATE = 16000 
N_MFCC = 13 

COL_SIZE = 30 
 
 

def get_pred_wav(language_num): 
    ''' 
    Load wav file from disk and down-samples to RATE 

    :param language_num (list): list of file names 
    :return (numpy array): Down-sampled wav file 
    ''' 

 
    y, sr = li-
brosa.load('../Prediction_File/{}.wav'.format(language_num)) 

    return(librosa.core.resample(y=y,orig_sr=sr,target_sr=RATE, 
scale=True)) 
 

 
def create_segmented_mfccs(X_train): 
    ''' 

    Creates segmented MFCCs from X_train 
    :param X_train: list of MFCCs 
    :return: segmented mfccs 

    ''' 
    segmented_mfccs = [] 
    for mfcc in X_train: 

        segmented_mfccs.append(segment_one(mfcc)) 
    return(segmented_mfccs) 
 

 
def to_mfcc(wav): 
    ''' 

    Converts wav file to Mel Frequency Ceptral Coefficients 
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    :param wav (numpy array): Wav form 
    :return (2d numpy array: MFCC 

    ''' 
    return(librosa.feature.mfcc(y=wav, sr=RATE, n_mfcc=N_MFCC)) 
 

 
def segment_one(mfcc): 
    ''' 

    Creates segments from on mfcc image. If last segments is not long 
enough to be length of columns divided by COL_SIZE 
    :param mfcc (numpy array): MFCC array 

    :return (numpy array): Segmented MFCC array 
    ''' 
    segments = [] 

    for start in range(0, int(mfcc.shape[1] / COL_SIZE)): 
        segments.append(mfcc[:, start * COL_SIZE:(start + 1) * 
COL_SIZE]) 

    return(np.array(segments)) 
 
 

def create_segmented_mfccs(X_train): 
    ''' 
    Creates segmented MFCCs from X_train 

    :param X_train: list of MFCCs 
    :return: segmented mfccs 
    ''' 

    segmented_mfccs = [] 
    for mfcc in X_train: 
        segmented_mfccs.append(segment_one(mfcc)) 

    return(segmented_mfccs) 
 
 

# Load Model 
print("=============================================================") 
print("Loading Model") 

new_model = load_model('../models/model4l82.h5') 
print("=============================================================") 
 

file_name = 'data_predict.csv' 
 
# Load metadata 

df = pd.read_csv(file_name) 
 
# Filter metadata to retrieve only files desired 

filtered_df = getsplit.filter_df(df) 
 
# Train test split 

X_predict, X_test, y_train, y_test = gets-
plit.split_people(filtered_df) 
 

X_predict = map(get_pred_wav, X_predict) 
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X_predict = map(to_mfcc, X_predict) 
y_predicted = accu-

racy.predict_class_all(create_segmented_mfccs(X_predict), new_model) 
 
if y_predicted == [0]: 

    print ("Chinese Accent Found") 
if y_predicted == [1]: 
    print ("Spanish Accent Found") 

if y_predicted == [2]: 
    print ("English Accent Found") 
if y_predicted == [3]: 

    print ("Arabic Accent Found") 
 


