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ABSTRACT 

The purpose of this study is to examine active buy-write strategies and whether a dynamic 
strike price strategy, a volatility risk premium estimation utilizing strategy and a 
combination of those active strategies can improve the performance of a vanilla buy-write 
strategy. Buy-write strategy’s popularity among investors and an increasing amount of 
strategy indices and exchange-traded funds are the motivation for this thesis. 
 
The buy-write strategy is an investment strategy that includes having a long position on 
a stock and a short position on a call option on the stock. A short call option obligates its 
holder to sell the underlying stock at a predetermined strike price at a predetermined time. 
As the buy-write strategy is entered, the investor creates instantly a positive cash-flow 
from selling (shorting) the call option but also caps the return of the stock, since if the 
stock price rises above the strike price the stock has to be sold to the holder of the other 
end of the option contract. The dynamic strategy tries to improve the vanilla buy-write 
strategy by using the exercise probability of the option as the criteria which options to 
sell. The volatility risk premium strategy adds another criterion. It estimates whether the 
option’s price is artificially high or not. These concepts and theories are explained more 
thoroughly in theory and methodology sections of this study. 
 
The combine strategy uses both of the aforementioned criteria to construct an active buy-
write strategy. The combine strategy is able to improve the performance of the vanilla 
buy-write strategy. Also, the dynamic and volatility risk premium strategies alone are 
able to improve the performance. These and some other results and findings are presented 
and discussed in detail in the last two sections before references. 
______________________________________________________________________ 
KEY WORDS: buy-write strategy, dynamic strike price, volatility risk premium, 
Heston model, options 
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1. INTRODUCTION 

Options, as derivatives, have existed circa 2300 years. Options on olive presses were 
traded in the ancient Greece around 300 BC. In 1630’s, option and futures were used in 
speculation of tulip prices during the Tulip Mania, which almost crashed the Dutch 
economy. Around 340 years later, the first exchange for listed options, Chicago Board 
Options Exchange, opened. (Markham 2002: 5-6; CBOE 2017a.) Since the opening of 
the CBOE, the buy-write, or covered call strategy has been the most popular option 
investment strategy (Lakonishok, Lee, Pearson & Poteshman 2007).  

Today, CBOE only offers ten different buy-write strategy benchmark indices, ranging 
from the vanilla buy-write on S&P 500 and Dow Jones Industrial Average indices to more 
complex 30-Delta BuyWrite index (CBOE 2017b). There are 25 different covered call 
Exchange Traded Funds (ETFs) available for investors, investing in different asset classes 
and regions (ETF Insights 2018). Interest towards the buy-write strategy is high among 
investors and institutions, as indicated by the increasing number of buy-write products. 

The research on the buy-write strategy started four decades ago. Among the first, Merton, 
Scholes & Gladstein (1978) presented their paper focusing on the risk and return 
characteristics of the covered call strategy. Since then, the focus of the covered call 
research has ranged from company cash management properties (see Brown & Lummer 
1984) to constructing of a benchmark index for the strategy (Whaley 2002). The two most 
recent, and essential, studies from the point of this thesis have tested a dynamic buy-write 
strategy (see Che & Fung 2011) and an estimation model to time the strategy according 
to market movements (Simon 2014). Both Che & Fung (2011) and Simon (2014) show 
promising results in their respective studies. 

This thesis combines a dynamic buy-write strategy with market movements predicting 
model to construct an active buy-write strategy superior to either strategy alone and 
superior to a passive benchmark index. The dynamic buy-write strategy is at its best when 
the markets are volatile, and the forecasting model is designed to predict when the 
markets are optimal for the strategy. 
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1.1 What are an option and a buy-write strategy? 

An option is a derivative security, meaning that its value depends on the value of some 
other asset, known as the underlying asset. A stock option’s value is dependent of the 
value of the underlying stock. Other than the value, an option gives its holder a right, not 
obligation, to buy or sell the underlying asset. A call option gives its holder a right to buy 
the underlying asset and a put option gives the holder a right to sell the underlying asset. 
A stock option can be a call or a put, but it can be also either European, American, Asian 
or Bermudian (the last two are inessential in this case). A European option can be 
exercised only at the expiration date of the option and an American option can be 
exercised whenever during the maturity. When a European option expires, and it is 
beneficially for the holder to exercise it, the predefined strike price or exercise price 
defines the price at which the holder can buy or sell the underlying stock. (Hull 2015: 1, 
213.) 

There are four different positions one can have on an option. A long call and a long put 
positions are already explained above. The other two positions are a short call and a short 
put, which obligates the holder to buy or sell the underlying asset. The seller or writer of 
an option has always a short position in an option and the buyer or holder has a long 
position. (Hull 2015: 216-217.) 

A buy-write or covered call strategy is an option trading strategy which involves taking 
a position in both the underlying stock and a call option. This means buying a stock and 
selling (taking a short position) a call option on that stock. As mentioned above, selling 
an option obligates the seller to sell or buy the underlying asset, in this case, buying the 
underlying stock. Since the investor has both the stock and a short call position on the 
stock, it means that investor’s short position is covered. In this example, the option is a 
European option, meaning that it can be exercised only at the expiration date (Hull 2015: 
256-257.) From now on unless otherwise mentioned, all options are considered as 
European options.  

1.2 Hypothesis and the purpose of the study 

The purpose of this study is to analyze the buy-write strategy and to examine the effects 
of combining a dynamic strike price method (as in Hill, Balasubramanian, Gregory & 
Tierens 2006; Che & Fung 2011; Hsieh, Lin & Chen 2014) and an ex-ante volatility risk 
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premium estimation model constructing out-of-sample fitted implied volatility values (as 
in Simon 2014) on the buy-write strategy. Both dynamic strike price method and volatility 
risk premium estimation have showed some promising results in their respective studies 
(see Hill et al. 2006; Che & Fung 2011; Hsieh et al. 2014; Simon 2014). 

In short, the dynamic strike price method means that rather than choosing the option 
according to the strike price, it is chosen according to its exercise probability (Hill et al. 
2006; Che & Fung 2011; Hsieh et al. 2014). The exercise probability can be derived from 
the Heston option pricing model (see Heston 1993). 

The ex-ante volatility risk premium is calculated as the difference between the actual 
implied volatility and the out-of-sample fitted implied volatility. The VIX index (CBOE 
Volatility Index, see Chicago Board Options Exchange 2014) is used as a proxy for the 
actual implied volatility and the out-of-sample fitted implied volatility is estimated with 
an estimation model as in Simon (2014). 

The first hypothesis states that a combination of attributes exists (maturity and strike 
price), that offers best performance to a buy-write strategy. Intuitively there must be one 
combination better than the others, but the goal is to find a performance-wise distinctive 
combination. 

H1: The performance of a buy-write strategy can be improved by altering the 
fundamentals of the strategy. 

Previous studies (see e.g. Whaley 2002; Feldman & Roy 2005; Figelman 2008) suggest 
that utilizing call options with shorter maturities (one month) are more preferable than 
options with longer maturities. Considering these findings, the first hypothesis is tested 
only with different strike prices, keeping the maturity at one month. 

The second hypothesis states that the best practices found in the first hypothesis can be 
improved further, performance wise, by entering the buy-write strategy when the ex-ante 
volatility risk premium is at optimal level. Volatility risk premium is calculated as the 
difference between the actual and estimated implied volatility of the option. This 
hypothesis is parallel with the research problem in Simon (2014). 

H2: The performance of the vanilla buy-write strategy can be improved by timing the 
implementation of the strategy based on ex-ante volatility risk premium. 
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The third hypothesis states that utilizing a dynamic price method improves the 
performance of the buy-write strategy. The third hypothesis is similar to the research 
problems in Hill et al. (2006), Che & Fung (2011) and Hsieh et al. (2014). 

H3: The performance of the vanilla buy-write strategy can be improved by utilizing 
the dynamic strike price method. 

The fourth hypothesis elaborates on the second and third hypotheses by stating that 
employing both dynamic strike price method and ex-ante volatility risk premium on buy-
write strategy improves its performance even further. 

H4: The performance of the vanilla buy-write strategy can be improved further by 
timing the implementation of the strategy based on ex-ante volatility risk premium 
and utilizing the dynamic strike price method. 

The performance measurements which are used to test all of the hypotheses are presented 
in 4th main section. 

1.3 Intended contribution and limitations of the study 

The intended contribution is to take the research on buy-write strategies further by 
demonstrating that it is beneficiary, risk-return wise, to utilize dynamic pricing method 
and ex-ante volatility risk premium estimation in a buy-write strategy. Put in short, this 
paper tries to demonstrate that an active buy-write strategy is more beneficial than a 
passive buy-write strategy. 

The limitations of this study may have some effect on this study and its results. One 
limitation is the time period of the data, which ranges from January 2004 to January 2018. 
Considering the financial crisis started in 2008, it leaves less than 8 years (ca 96 monthly 
observations) post-crisis examination period. Also, this study does not consider for 
example trading costs nor inflation. Other limitations are for example in the volatility 
premium estimation model, which is parsimonious comparing to, for example a recent 
study of Psaradellis & Sermpinis (2016) examining a promising volatility estimation 
model combining a heterogeneous autoregressive process and a genetic algorithm-
support vector regression. 
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1.4 Structure of the study 

This thesis has seven main sections as a whole. First section is the introduction and the 
rest of this thesis is divided as follows. The second section introduces the previous studies 
focusing on the buy-write strategy. The literature review starts from the 1970s and ends 
in 2016, covering the essential papers on this topic. 

The third section covers the options theory, starting from basic terminology and ending 
to option risk management measures known as the Greeks. This section covers also option 
valuation and pricing with Black-Scholes-Merton and Heston option pricing models. 

The fourth section presents the performance measurements, which are used in the 
comparison of the different buy-write strategies. This section starts from the construction 
of Capital Asset Pricing Model (CAPM) and presents several different performance 
measurements. 

The fifth section presents the methodology and the data used in this study. The 
methodology follows mostly the methodology of previous studies. This section describes 
in detail how the buy-write returns, volatility risk premium estimates and dynamic 
strategy returns are calculated.  

The sixth section presents the results of this study and discusses these results and findings 
in detail. First, the results on all of the hypothesis testing are examined in own sections 
and then the results summarized in last section. 

The last section concludes this study and discusses the results and proposals for future 
research topics. 

Appendices includes figures and tables visualizing the results as a whole. 
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2. LITERATURE REVIEW 

This literature review starts from 1978, when Merton, Scholes and Gladstein (1978) 
published their paper on covered call strategy and ends in 2016 to the paper of Diaz and 
Kwon (2016). The literature review is not an exhaustive review of all the studies 
published on the strategy, but it tries to give a coherent picture of the history and topics 
already covered of the buy-write strategy. 

This section is divided in subsections by topic, to make it easier to the reader to perceive 
the different research directions of the study of buy-write strategy. The first subsection 
presents the previous main studies, which have highest importance to this paper. The 
second covers the risk and return characteristics of the strategy, including an own section 
for risk-adjusted return. The third section covers the creation of a benchmark index for 
passive covered call strategies, the BXM (the CBOE S&P 500 BuyWrite Index). The 
fourth section explains how market conditions affects the returns of the strategy. 

2.1 Previous main studies 

The previous main studies for this thesis are the studies of Hill et al. (2006), Che & Fung 
(2011) and Simon (2014). These studies are essential to this study, since much of the 
methodology of this thesis is motivated by these three studies. 

Hill et al. (2006) examines active covered call strategies in their study, which are fixed 
and flexible (also known as dynamic) strike price strategies. They use the CBOE S&P 
500 BuyWrite index as the benchmark index and finds that both active strategies offer 
higher risk-adjusted returns than the benchmark. The fixed strike price strategy has been 
examined before in the studies mentioned in the next section, but the dynamic strike price 
strategy has had minimum to none coverage in studies previous to Hill et al. (2006). They 
construct the covered call portfolios of at-the-money, 2% out-of-the-money and 5% out-
of-the-money call options on the S&P 500 index with maturity of one-month (they also 
examine calls with three-month maturity, but this part is not presented). They account 
only return and standard deviation in the performance comparison. This may affect the 
results of the study, since several studies before have demonstrated that the returns of 
covered call strategy are non-normally distributed, which is why semi-standard deviation, 
or some other non-normality considering measure, is suggested as the risk measure of the 
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strategy (see e.g. Board, Sutcliffe & Patrinos 2000; Whaley 2002; Feldman & Roy 2005; 
Figelman 2008). 

Hill et al. (2006) results shows that the dynamic strike price strategy offers higher returns 
with lower volatility than the underlying S&P 500 index and that in some cases the 
dynamic strategy offers higher return than the fixed strike price strategy. The dynamic 
strategy allows the strike price to adapt to the changes of volatility, which may be the 
reason for the higher performance. Also, they find that the strategy with one-month 
maturity calls outperforms the strategy with longer maturity calls. (Hill et al. 2006.) 

Che & Fung (2011) does a similar study to Hill et al (2006) by testing the fixed strike 
price and dynamic strike price covered call strategies. They find that both buy-write 
strategies outperform the stock index with statistically significant positive alphas and, 
that in some cases the dynamic strike price strategy outperforms the fixed strike price 
strategy. Overall, only the near at-the-money dynamic strike price strategy outperforms 
with a higher Sortino ratio the other strategy. When accounting for different market and 
volatility conditions, the dynamic strategy outperforms the fixed strategy during sharply 
rising market and moderately volatile market. The time period is divided to four volatility 
conditions and four market conditions. Che & Fung (2011) uses Hang Seng Index as the 
underlying and they substitute the cash leg (the stock index) of the strategy with futures. 
They reason using futures instead of direct long position on the underlying index, because 
futures have smaller bid-ask spreads than the index and it allows avoiding the transaction 
costs. 

Hsieh, Lin & Chen (2014) continues the study of Che & Fung (2011) by examining three 
different covered call strategies, one fixed strike price and two dynamic strike price 
strategies. The other dynamic strategy is similar to the dynamic strategies examined in 
Hill et al. (2006) and in Che & Fung (2011), but the other dynamic strategy uses Heston 
model (see Heston 1993) instead of Black-Scholes-Merton model (BSM-model) (see 
Black & Scholes 1973; Merton 1973) to implement the dynamic strategy. The Heston 
model assumes that volatility is a stochastic process and it changes over time, whereas 
the BSM-model assumes that volatility is a constant (the models are discussed further in 
the theory section of this study). They conduct their study in Taiwan, using Taiwan index 
options on futures contracts in Taiwan stock markets, similarly to the study of Che & 
Fung (2011). 
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Hsieh et al. (2014) finds that overall the dynamic strategy using the Heston model has 
higher risk-adjusted return (higher Sortino ratio) than the dynamic strategy using BSM-
model. The Heston dynamic strategy outperforms also the future-only strategy when the 
exercise probability is 20% or 17%.  

Che & Fung (2011) also estimates the volatility risk premium (the difference between 
implied and realized volatility) with an error correction model following the studies of 
Christensen & Prabhala (1998) and Fung (2007). The results of their forecasting model 
are congruent to previous studies, demonstrating that there is a positive relationship 
between volatility premium and buy-write strategy returns (Che & Fung 2011).  

Simon (2014) also does a study utilizing ex-ante volatility risk premium estimation, 
finding that utilizing the estimation increased both pure returns and risk-adjusted returns. 
The model differs from the model of Che & Fung (2011), since the former is a GARCH 
-like (generalized autoregressive conditional heteroscedasticity) model and the latter is 
an AR-like (autoregressive) model. Simon (2014) tests the model on Nasdaq 100 ETF 
(QQQ) and constructs an implied volatility index of the QQQ -ETF, following the 
methodology of VIX -index (see Chicago Board Options Exchange 2014). The model is 
then used to estimate the out-of-sample implied volatility and compare it to the actual 
volatility. This difference (ex-ante or conditional volatility premium) between the implied 
and actual volatility is used as a gauge for expensiveness of the option (the higher the 
difference, the more expensive is the option). Intuitively, it is more profitable to sell at 
higher price, meaning that the buy-write strategy is implemented when the ex-ante 
volatility risk premium is high. (Simon 2014.) 

Simon (2014) also constructs a framework for an active buy-write strategy, by separating 
the buy-write position to a delta neutral short call and a long stock position. With this 
framework the strategy can be actively rebalanced to maintain delta-neutrality (delta 
means options sensitivity to changes in the price of the underlying and it is one of the 
Greeks discussed thoroughly later; see Neftci 2008: 228). The results show that 
rebalancing delta-neutrality leads to higher buy-write strategy risk-adjusted returns. 
(Simon 2014.) 
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2.2 Risk and return characteristics 

Merton, Scholes and Gladstein (1978) published their paper on covered call strategy five 
years after the opening of the first options exchange CBOE. They examine the risk and 
return characteristics of the covered call strategy by using two groups of stocks, 30 Dow 
Jones Industrial Average stocks and 136 stocks (all of the stocks which were currently 
available as underlying in option exchange) as underlying. Since the option market data 
was not available for enough long period, they calculated the option prices with BSM –
model. This may affect the results because it has shown that the returns of a covered call 
strategy using option prices calculated with the BSM –model differs from covered call 
returns calculated with real market data (see McIntyre & Jackson 2007). They use fully 
covered positions (i.e. the same number of stocks and options) with call option maturities 
of 6 months and with four different variation of ‘moneyness’, 10% in-the-money, at-the-
money, 10% out-of-the-money and 20% out-of-the-money, and they assume that the 
positions are held until maturity. Their results demonstrate that the covered call strategy 
offers better risk-return combination than the underlying stock or a portfolio of stocks 
and fixed-income products. They also find that the 10% ITM portfolio offers best risk-
return combination. (Merton, Scholes & Gladstein 1978.) 

Zivney & Alderson (1986) studies on companies’ cash management and how it could be 
enhanced with dividend capturing strategies. They construct a hedge portfolio that 
captures dividends by using covered call strategy. The data consists of the S&P 100 stock 
index and call options on that index with maturity of one month. The moneyness of the 
options is slightly in-the-money or at-the-money. The data period consists of the year 
1984. They make several findings on systematic risk, total risk and return of the strategy. 
Having a stock index as the underlying on the covered call strategy lowers the systematic 
risk (market beta) and the overall risk (standard deviation). Also, they compared their 
results on Brown & Lummer’s (1984) similar study, which found that covered call 
strategy reduces portfolio’s systematic and overall risk but doesn’t increase annualized 
return. In contrast, Zivney & Alderson (1986) demonstrates that covered index writing 
results in both reduced systematic and overall risk, but also higher annualized return. 
(Zivney & Alderson 1986.) 

Board, Sutcliffe & Patrinos (2000) focuses on the return distribution of the covered call 
strategy in their study. They argue that variance is not a suitable risk measure for the 
strategy since its returns are not normally distributed, because the covered call returns 
have a cap and because of the returns are negatively skewed. The data consists of FTSE-
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100 index (as the underlying) and call options on the index and it ranges from 1992 to 
1995. Their results show that the returns are negatively skewed, which means that semi-
variance is a more correct risk measurement than the simple variance, because semi-
variance counts only the downside risk. Although, they conclude that the covered call 
strategy is beneficial for an investor, their results are contrary with Isakov & Morard’s 
(2001) study. Isakov & Morard (2001) finds that the returns of the covered call portfolio 
are normally distributed, which is in contrast with the findings of Board et al (2000). The 
reason may be in the different time period and different data, but it could also be because 
Isakov & Morard (2001) used a minimum-variance algorithm in their strategy 
construction. 

Figelman (2008) presents a theoretical framework for calculating the expected return of 
the covered call strategy. With this framework, the historical returns of covered call can 
be divided into three components: risk-free rate, equity risk premium (ERP) and implied-
realized volatility spread. The framework also suggests using short dated calls in the 
strategy. The framework is tested with the S&P 500 stock index and CBOE BXM index 
(discussed more thoroughly in next section). The results show again that the covered call 
strategy returns are non-normally distributed because of the negative skewness, which 
suggests using semi-standard deviation instead of standard deviation as a risk measure. 
Also, the results show that the higher the spread between implied and realized volatility, 
the beneficiary the strategy. This relation between implied and realized volatility is 
discussed further in Figelman (2009). (Figelman 2008.) 

Diaz & Kwon (2016) also constructs a theoretical framework for calculating the expected 
return of covered call strategy, but it also allows to calculate the optimal strike price and 
write-buy ratio (the ratio of number of short calls and underlying stocks, i.e. ratio of 1 
means a fully covered position) risk-return wise. They also consider covered call 
positions combining calls with different strikes and use value-at-risk (VAR) and 
conditional-value-at-risk (CVAR) in addition to traditional risk measures variance and 
semi-variance. The data consist of S&P 500 (as the underlying) and an own version of 
the CBOE BXM index, which are then simulated. Diaz & Kwon’s (2016) results shows 
that it is often optimal to sell several calls with different strike prices risk-return wise (e.g. 
their optimal portfolio contained short calls with 5 different strikes prices). This is due to 
the negative relationship between the call risk premium (CRP, which is the difference 
between call’s value and price) and covered call return. 
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The studies above have found several characteristics of the buy-write strategy. Zivney & 
Alderson (1986) finds that when using buy-write strategy, it is more profitable to write 
call options on a stock index instead of individual stocks. Board, Sutcliffe & Patrinos 
(2000) demonstrates that the buy-write strategy returns are not normally distributed, 
which is why variance or standard deviation are not suitable risk measures for the 
strategy. They argue that semi-variance describes more correctly the risk of the strategy. 
Figelman (2008) demonstrates that volatility spread (difference between implied and 
realized volatility) is one of the key components of the buy-write strategy returns. 
Figelman (2008) also finds that, because of the negative relationship between call risk 
premium (CRP) and buy-write returns, it is preferable to use short-dated options. 

2.2.1 Risk-adjusted return 

Several studies have found that the traditional volatility measure, standard deviation, does 
not capture well the risk of the buy-write strategy, since the strategy returns are negatively 
skewed. This negative skewness can be accounted by measuring semi-standard deviation 
that accounts for the non-normality by measuring only the downside deviation of the 
returns. (Whaley 2002; Feldman & Roy 2005; Figelman 2008.) 

Whaley (2002) and later Figelman (2008) calculates the risk-adjusted return of the 
strategy by calculating the risk as semi-standard deviation. They measure the semi-
standard deviation as downside deviation from the risk-free rate, and the positive 
deviations as zero. This measure differs slightly form the method used in Che & Fung 
(2011) and Simon (2014). They measure the risk with Sortino ratio, which measures the 
risk as downside deviations from the mean return (instead of the risk-free return) (Sortino 
1994). Kapadia & Szado (2007) and Figelman (2008) calculates the risk-adjusted return 
with Stutzer Index, that employs an information statistic whether the return is above a 
reference level. The Stutzer Index returns the same value as the Sharpe ratio, if the returns 
are normally distributed (Stutzer 2000). 

These three non-normality accounting risk-adjusted return measurements presented 
above are considered in the performance comparison of the buy-write strategies examined 
and they are discussed further later in this paper. 
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2.3 CBOE S&P 500 BuyWrite -index 

In 2002, CBOE presented the CBOE S&P 500 BuyWrite Index (BXM), which is a buy-
write strategy index using the S&P 500 -index as underlying and it was developed with 
the help of Robert E. Whaley (Whaley 2002). BXM is presented in its own subsection, 
because it is used as a benchmark index for a passive buy-write strategy in this thesis. 

BXM is constructed to follow a buy-write strategy, writing almost at-the-money call 
options on the S&P 500 -index. ‘Almost’ meaning that the call option written is chose so, 
that it has the strike price closest to the underlying, but still out-of-the-money (i.e. the 
strike price is higher than the price of the underlying). The strategy writes call options 
with a maturity of one month and the strategy rolls every month’s third Friday (with some 
exceptions), when the option expires. (Whaley 2002.) 

Whaley (2002) and later Feldman & Roy (2005) studies the risk-return characteristics of 
the strategy, and the latter study also concentrates on the strategy’s investment properties. 
Both find that the benefit of the strategy is in its better risk-adjusted return than the 
underlying’s. Measuring only return, the strategy returns follows the underlying’s returns, 
but the strategy returns have lower standard deviation than the underlying. This finding 
is supported by the strategy’s property to generate constant cash flows from writing the 
options. (Whaley 2002; Feldman & Roy 2005.) 

The performance measurements are done using semi-standard deviation (as described in 
the previous section). Whaley (2002) suggests using a version of semi-standard deviation, 
which considers only downside deviations from the risk-free rate, in the calculation of 
total risk, and a version considering downside deviations from excess returns when 
calculating systematic risk. Feldman & Roy (2005) uses instead Stutzer ratio (see 
previous section) and Leland´s alpha (i.e. abnormal return), which uses systematic risk 
that considers non-normality of returns (Leland’s beta) (Leland 1999). These 
performance measurements are discussed more thoroughly later under an own heading. 
(Whaley 2002; Feldman & Roy 2005.) 

2.4 Market conditions 

Previous studies have found that market, and furthermore volatility conditions, affects the 
buy-write strategy returns. Figelman (2008) constructed an expected return framework 
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for the strategy and demonstrated that the implied-realized volatility spread is in positive 
relationship with the spread between buy-write’s and its underlying’s returns. Later, Hill 
et al. (2006) demonstrated that only during the highest volatility-regimes the volatility 
spread is turned negative (i.e. realized volatility is higher than the implied volatility). This 
connection between volatility regimes and buy-write strategy returns is discussed below. 

Che & Fung (2011) demonstrates that the buy-write strategy has higher absolute return 
than the underlying when the market volatility higher than its lowest quartile level. 
Similarly, Kapadia & Szado (2012) found that the buy-write strategy returns were almost 
twice the underlying’s returns when the implied-realized volatility spread was highly 
positive, and the market volatility was relatively high. 

Intuitively, when the market (the underlying) are in an upward trend, the call option is 
exercised with higher probability, leading to lower buy-write returns. Feldman & Roy 
(2005) found that during a bull market the S&P 500 return were higher than the buy-write 
return and vice versa during bear market. Likewise, Hill et al. (2006) and Che & Fung 
(2011) demonstrates that during bull markets the buy-write strategy has lower absolute 
return than the underlying stock index, and during bear markets the strategy outperforms 
the underlying return wise. Even though the strategy demonstrates lower returns than the 
underlying e.g. during bull market, the risk-adjusted performance still supports the 
dominance of the strategy over the underlying stock index (Feldman & Roy 2005; Hill et 
al. 2006; Che & Fung 2011; Kapadia & Szado 2012). 
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3. OPTIONS THEORY 

This section introduces the theory behind options, starting from basic terminology and 
ending with the Greeks. The theory is divided into subsections as follows. First, the 
terminology in presented. Some of it is discussed already in the first section of this thesis, 
but here it is in more detail. Second, conversion and put-call parity are presented. In 1969, 
Stoll (1969) presented the put-call parity, which later became a fundamental part of option 
pricing and valuation. Third comes Black-Scholes-Merton and Heston option pricing 
models. These two pricing models were presented in 1970s and 1990s, respectively, and 
are a part of the methodology of this study. Last part of this section are the Greeks, which 
represents options’ sensitivities to changes. 

3.1 Introduction of options and the buy-write strategy 

The introduction section of this study already introduced the reader to some concepts of 
option. To summarize the introduction, an option is a derivative, meaning that its value 
is derived from the value of its underlying asset. An option gives its holder a right to buy 
the underlying asset if it is a call option. If it is a put option, it gives its holder a right to 
sell the underlying asset. Whether it is a call or a put, transaction of the underlying is 
executed at a predetermined strike price either at a predetermined maturity date, or 
expiration date, or any time before a predetermined date, depending whether the option 
is a European or an American option, respectively. These properties apply only for 
exchange traded options, which are regulated and available for investors. There are also 
OTC (over-the-counter) traded options, which are tailored for the needs of the trade 
counterparts. (The Options Clearing Corporation 1994: 1-22, 49-53; Hull 2015: 1, 213.) 
As mentioned in the introduction, this study assumes that every option is a European 
stock option unless otherwise mentioned. 

The four option positions are long call, long put, short call and short put. The buyer has 
always a long position and the seller, or writer, has short position on the option. A long 
position gives a right to execute the option and a short position obligates the holder to act 
accordingly, either sell or buy the underlying. Values of the positions on call options can 
be demonstrated with the following formulas (Hull 2015: 215-217): 

(1)	 𝐿𝑜𝑛𝑔	𝑐𝑎𝑙𝑙 = 𝑚𝑎𝑥(𝑆. − 𝐾, 0) 
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(2)	 𝑆ℎ𝑜𝑟𝑡	𝑐𝑎𝑙𝑙 = 𝑚𝑖𝑛(𝑆. − 𝐾, 0) 

Where 𝑆. is price of the underlying stock at expiration and K is the strike price. If the 
stock price is higher than the strike price at expiration date, it is beneficiary for the holder 
to exercise the call option and buy the underlying stock at price K and sell it immediately 
at price 𝑆. and receive a payoff equal to 𝑆. − 𝐾 minus the premium paid of the option. 
The payoff for the option writer is the opposite: 𝐾 − 𝑆. plus the premium received from 
the option (Hull 2015: 215-217). Values of put options are as follows (Hull 2015:217): 

(3)	 𝐿𝑜𝑛𝑔	𝑝𝑢𝑡 = 𝑚𝑎𝑥(𝐾 − 𝑆., 0) 

(4)	 𝑆ℎ𝑜𝑟𝑡	𝑝𝑢𝑡 = 𝑚𝑖𝑛(𝐾 − 𝑆., 0) 

Where the variables are the same. Now, if the stock price is lower than the strike price at 
expiration date, the holder of put option buys the stock from markets at price 𝑆.,  exercises 
right to sell the stock to the option writer at price K. The payoff from long position is 
𝐾 − 𝑆. minus the option premium and the payoff from short position is 𝐾 − 𝑆. plus the 
premium. Again, the win from the long position is unlimited and the loss from the short 
position unlimited. In an opposite scenario, the short position payoff would be limited to 
the premium received and the long position loss would be limited to the premium paid of 
the option. (Hull 2015: 216-217.) 

If the strike price of a call option is lower than the stock price (the option produces 
positive cash-flow), it is in-the-money (ITM), if it is equal to the stock price, it is at-the-
money (ATM) and if it is higher than the stock price, it is out-of-the-money (OTM). In 
the same fashion, if a put option generates positive cash-flow to the holder, it is ITM, if 
it generates no cash-flow, it is ATM and if it generates negative cash-flow, it is OTM 
(Bodie, Kane & Marcus 2014: 680; Hull 2015: 220.) 

The buy-write strategy is an option strategy that has a long position on a stock and a short 
call position on the stock. The strategy generates a positive cash-flow when the call option 
is written and the long position on the underlying stock covers the short call position, 
which is why the strategy is also known as covered call strategy. The formula for 
calculating return of buy-write strategy is presented in the methodology part of this study, 
but the payoff from the strategy is presented in the figure below. (Hull 2015: 256-257.) 
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Figure 1. The payoff from buy-write strategy. The underlying SPXT is S&P 500 Total 
Return index as of 27.3.2018. The price S is 5206 and the option is 2% out-of-the-
money. Data source: Bloomberg Terminal. 

The figure above demonstrates the option premium as the distance between the SPXT 
and buy-write strategy lines. As can be seen, the returns from buy-write strategy are 
capped, because as the underlying price increases above the strike price, the option is 
executed by its holder and the underlying stock is sold to the holder at the strike price 
(Hull 2015: 256-257.) 

3.2 Conversion and put-call parity 

Conversion and put-call parity are mechanisms that explain interrelationships between 
European call and put options and their underlying stocks. The relationship between call 
and put option prices can be demonstrated with the lower and upper bounds of option 
prices presented in the section above and these two mechanisms together if the markets 
are efficient. (Stoll 1969; Klemkosky & Resnick 1979; Hull 2015: 241-244.) 

In the 1960s, Stoll (1969) presented an arbitrage mechanism, known as put-call parity, to 
explain the parity between call and put option prices. He starts by demonstrating that 
through a mechanism called conversion, there is two ways to enter a position on an option. 
The first is to buy the option and the second is to create the option synthetically (Stoll 
1969.) Conversion is demonstrated with vector notation, as follows: 
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(5) 

(6)   

Where Long and Short are long and short positions on the underlying stock and the upper 
number demonstrates payoff when the price of underlying increases and the lower number 
demonstrates payoff when the price of underlying decreases. Formulas 5 and 6 shows 
how a call option can be created synthetically by taking a long position in a stock and 
buying a put option on it. The same way a put option can be created by short-selling a 
stock and buying a call. Also, short positions in options can be created in the same 
fashion, but by taking the opposite positions to the formulas presented above. (Stoll 
1969.) 

Motivation to create synthetically an option could be that a contract is mispriced. For 
example, if an investor believes that the price of a call is artificially high, she could write 
the mispriced call (take a short position on it), create a synthetic call and end up with no 
position and arbitrage profit equal the difference between the ‘real’ call and synthetic call. 

Assuming that there are no transaction costs, the stock does not pay dividend, investing 
and borrowing money is done at a risk-free rate without any risk and that the put and call 
options have the same time to maturity and strike price, the example above can be 
presented in a form of a formula is as follows (Klemkosky & Resnick 1979; Hull 2015: 
241:242): 

(7)	 𝑐 − 𝑝 − 𝑆 + 𝐾𝑒<=. = 𝐴	

Where c is the price of a call, p is the price of a put, S is stock price, K is strike price, r is 
risk-free rate, T is time to maturity and A is arbitrage profit. Similarly, assuming that the 
price of a put option is artificially high, an investor could make arbitrage profit by short-
selling the put option and creating a synthetic put through the conversion mechanism, as 
demonstrated with the following formula (Klemkosky & Resnick 1979; Hull 2015: 241-
242): 

(8)	 𝑝 − 𝑐 + 𝑆 − 𝐾𝑒<=. = 𝐴	
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Where variables are the same as in formula 7. Stoll (1969) proposes a parity between call 
and put option prices, basing it on the conversion mechanism, the formulas 7 and 8. 
Assuming, that if there exist arbitrage possibilities (A>0), investors will exploit these 
arbitrage possibilities until A is zero. This leads to the put-call parity by combining the 
formulas 7 and 8 (Stoll 1969; Hull 2015: 242): 

(9)	 𝑐 + 𝐾𝑒<=. = 𝑝 + 𝑆	

The put-call parity demonstrates how the price of a European call option can be derived 
from a European put option and vice versa. 

3.3 Black-Scholes-Merton option pricing model 

In 1970s, Black & Scholes (1973) and Merton (1973) presented their new option pricing 
model (BSM-model) to the public. The model was a breakthrough, which led to Nobel 
prizes for Merton and Scholes in 1997. Black & Scholes (1973) approach the option 
pricing model with Capital Asset Pricing Model (CAPM, which is introduced in section 
4.1), by explaining the connection between stock and option expected returns with beta 
(see section 4.1). Merton’s (1973) has a more general approach where a fully hedged 
portfolio of an option and the underlying stock is assumed risk-free during a short period 
of time. These approaches were better to explain the correct discount rate, which earlier 
attempts failed to explain (Jarrow 1999; Hull 2015: 321.) 

The modern option pricing theory started 1900 from Bachelier’s (1900) work on option 
speculation. Among others, Itō’s (1951) work on stochastic calculus and Samuelson’s 
(1965) work on warrant (an OTC traded option) pricing influenced the work of Black & 
Scholes (1973) and Merton (1973). (Jarrow 1999; Hull 2015: 321.) 

The examination of BSM-model starts with presenting variables and assumptions, as 
follows (Black & Scholes 1973; Kosowski & Neftci 2015: 290): 

1. Lending and borrowing is possible at a risk-free rate r. 
2. The option is considered as European, it has a strike price K and it expires at time 

T-t, where t is current time. 
3. The underlying stock price follows a stochastic process in continuous time 

(stochastic differential equation, SDE, below) and it pays no dividends. 
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4. There are no transaction costs. 

The SDE as follows (Kosowski & Neftci 2015: 290): 

(10)	 𝑑𝑆C = 𝜇(𝑆C)𝑆C	𝑑𝑡 + 𝜎𝑆C	𝑑𝑊C,			𝑡 ∈ [0,∞]	

Where 𝜇 and 𝜎 are drift and volatility of stock S, respectively, and 𝑊C is a Wiener process. 
A Wiener process (also known as Brownian motion) is a Markov process, with mean 
equal zero and variance equal to one (Föllmer & Schied 2011: 314-315; Hull 2015: 303-
305.) 

Black & Scholes (1973) presents a partial differential equation (PDE), which has a closed-
form solution known as the Black-Scholes-Merton option pricing model and from the 
Greeks (presented further) can be derived. The PDE can be also derived, for example to 
price stock paying dividends, which are presented in detail in e.g. Chin, Nel & Ólafsson 
(2017: 89-190). The Black-Scholes PDE as follows (Black & Scholes 1973; Lee, Lee & 
Lee 2010: 502; Hull 2015: 332): 

(11)	 KL
KC
+ 𝑟𝑆 KL

KM
+ N

O
𝜎O𝑆O K

PL
KMP

− 𝑟Π = 0,					

Where, 

(12) ΠRSTT = max(S − K, 0)	 

 ΠZ[C = max(𝐾 − 𝑆, 0)	 

Where Π is value of the option on stock S, r is risk-free rate and 𝜎 is stock price volatility. 
The Black-Scholes-Merton option pricing model is a closed-form solution of the Black-
Scholes PDE, under the assumptions and with the variables and parameters presented 
above. The BSM-model as follows (Black & Scholes 1973; Kosowski & Neftci 2015: 
290-291): 

(13)	 𝐶(𝑡) = 𝑆C𝑁(𝑑N) − 𝐾𝑒<=(.<C)𝑁(𝑑O)		

Where, 
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(14)	 𝑑N =
^_`abcd=c

eP

P f∗(.<C)

h√.<C
	,	 𝑑O =

^_`abcd=<
eP

P f∗(.<C)

h√.<C
	

Where C is the price of a call option, N() is a standard normal cumulative density function 
(cdf) (see e.g. equation 9.55 in Kosowski & Neftci 2015: 291) and the other variables and 
parameters are defined above. The price for a put option can be calculated with the same 
formula but rearranging the terms (see put option boundary eq. 3) and changing the 
normal cdf loadings as negative (Hull 2015: 335-336). 

The terms 𝑁(𝑑N) and 𝑁(𝑑O) from formula 13 can be interpreted also other way than just 
as normal cumulative density functions. The 𝑁(𝑑N) is also known as option delta (one of 
the Greeks) and in a risk neutral-world, 𝑆C𝑁(𝑑N) equals the expected price of stock S at 
time t assuming stock prices lower than S equal to zero. The term 𝑁(𝑑O) demonstrates 
the probability that the option C will be exercised in a risk-neutral world. (Hull 2015: 
337; Kosowski & Neftci 2015: 297-298.) 

This section describes the option pricing model developed by Black, Scholes and Merton. 
The equations above represent only a fraction of the full derivation of the model to give 
enough detail to the reader to comprehend the logic behind the model. For a full and 
detailed derivation of the BSM-model and its extensions (e.g. models allowing 
dividends), please see the original papers of Black & Scholes (1973) and Merton (1973), 
and e.g. Chin et al. (2017: 89-190). 

3.4 Heston option pricing model 

In 1993, Steven L. Heston (1993) presented a closed-form solution on a European option 
pricing model (such as the BSM-model), but that allows the underlying asset to have 
stochastic volatility. Heston (1993) argues that the BSM-model, under its assumptions, is 
not suitable for pricing bond and currency options, which is why he proposes a new 
model. The new model is suitable for pricing bond and currency options, in addition to 
European options since it allows the use of stochastic interest rates (Heston 1993). 

Whereas the BSM-model assumes that the price of the underlying stock follows a 
stochastic differential equation (SDE) but the volatility is constant, the Heston model 
assumes that both stock price and volatility follow a stochastic process (Heston 1993; Lee 
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et al. 2010: 1165). SDE’s for the underlying stock and its variance (volatility squared) as 
follows (Heston 1993; Lee et al. 2010: 1165-1166): 

(15)	 𝑑𝑆C = 𝑟𝑆C𝑑𝑡 + 𝑆Cj𝑉C𝑑𝑊M(𝑡)	

And 

(16)	 𝑑𝑉C = 𝜅(𝜃 − 𝑉C)𝑑𝑡 + 𝜎nj𝑉C𝑑𝑊n(𝑡)	

Where r is the risk-free rate, S is the stock price and V is the variance at time t, 𝜅 (kappa) 
is the mean reversion speed, 𝜃 (theta) is long-run mean variance, 𝜎n is the volatility of 
the variance and 𝑊M and 𝑊n  are Wiener processes (see the explanations of formula 10) 
with a correlation equal to 𝜌 (rho). The reader can see the resemblance between formulas 
15 and 10. Then, Heston partial differential equation (PDE) can be formulated as follows 
(Heston 1993; Lee et al. 2010: 1166): 

(17)	 Kp
KC
+ nMP

O
KPp
KMP

+ 𝜎n𝜌𝑆𝑉
KPp
KMKn

+ hq
Pn
O

Kp
KnP

+ 𝑟𝑆 Kp
KM
+ 𝜅(𝜃 − 𝑉) Kp

Kn
− 𝑟𝐶 = 0	

Where the variables are the same as in the SDEs above. The PDE is then solved to form 
the characteristic function. Similarly, as in the BSM-model, let’s assume that a European 
call option price is as follows (Heston 1993): 

(18)	 𝐶(𝑠, 𝑣, 𝑡) = 𝑆𝑃N − 𝐾𝑃(𝑡, 𝑇)𝑃O	

Where, 𝑆𝑃N is the presents value of the underlying stock at optimal exercise and 
𝐾𝑃(𝑡, 𝑇)𝑃O is the present value of the strike price. Defining x=ln(S), the probabilities 𝑃N 
and 𝑃O can be calculated as follows (Heston 1993): 

(19)	 𝑃v(𝑥, 𝑣, 𝑇; ln[𝐾]) =
N
O
+ N

z ∫ 𝑅𝑒 ?}
~����	[b]��

��
A 𝑑𝜙�

� 	

Where 

(20)	 𝑓v(𝑥, 𝑣, 𝑡; 	𝜙) = 𝑒p(.<C;�)c�(.<C;�)c���	
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The formula 20 is the characteristic function solution, which satisfies the Heston PDE. 
The terms of the characteristic function are as follows (Heston 1993): 

(21)	 𝐶v(𝑇; 𝜙) = 𝑟𝜙𝑖𝑇 + S
hP
��𝑏v − 𝜌𝜎𝜙𝑖 + 𝑑v�𝑇 − 2ln ?

N<��}
���

N<��
A�	

And 

(22)	 𝐷v(𝑇;𝜙) =
��<�h��c��

hP
? N<}���

N<��}
���
A	

Where 

(23)	 𝑔v =
��<�h��c��
��<�h��<��

,	 𝑑v = j(𝜌𝜎𝜙𝑖 − 𝑏v)O − 𝜎O(2𝜇v𝜙𝑖 − 𝜙O),	

	 𝜇N =
N
O
,		 𝜇O = − N

O
,	 𝛼 = 𝜅𝜃,	 𝑏N = 𝐾 + 𝜆 − 𝜌𝜎,	

 𝑏O = 𝐾 + 𝜆 

Where 𝜆 is the market price of volatility risk as a function of the stock price, its volatility 
and time. The other variables are explained above. (Heston 1993.)  

The formulas above do not present every part of the derivation of the Heston model. This 
section is designed to give a coherent picture of the Heston model with only the minimum 
amount of equations and derivations necessary. For the full derivation of the model (and 
e.g. the partial differential equation), please see the original research of Heston (1993) 
and e.g. Chin et al. (2017: 753-769) and Lee et al. 2010: 487-489). 

In 2007, Lord & Kahl (2007), in collaboration with Kahl & Jäckel (2006), presents their 
extension on the Heston model. The Heston model is found to have issues on continuity 
on pricing options with short maturities or strike prices deep-in-the-money or deep-out-
of-the-money (see e.g. Lee et al. 2010: 1167-1168). Lord & Kahl (2007) argue, that their 
model is capable of robust pricing of European options with large scale of levels of 
maturities and strikes with an optimal Fourier inversion. They suggest that finding the 
optimal level of a is the key in the pricing process. a is the damping parameter and 
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ensuring the optimal level enables the Fourier transform of it (Lord & Kahl 2007). The 
methodology of this study uses the Kahl & Jäckel (2006) and Lord & Kahl (2007) 
extension on the Heston model, because of its argued capability of higher robustness in 
pricing of short maturity European options. 

3.5 The Greeks 

The Greeks describes options’ sensitivities to changes, for example in the price of the 
underlying stock and risk-free rate. Sensitivities to the two mentioned changes are called 
delta and rho, respectively. The other 3 Greeks are gamma, theta and vega. These all are 
first order derivatives except gamma, which is a second order derivative. There are also 
other second order, third and even higher order Greeks, but these are left out of 
examination in this study (for the higher order Greeks see e.g. Ederington & Guan 2007). 
These Greeks are used in risk management, for example to create delta or gamma hedge, 
but they also have a theoretical aspect because they explain the mechanics behind option 
pricing and Black-Scholes-Merton model. (Ederington & Guan 2007; Kosowski & Neftci 
2015: 297, 305-506.) 

This section introduces the Greeks of call option only. Put options are left out of 
examination because of two reasons. First, put options are trivial for this study since they 
are not used in the methodology of this study. Second, put options are left out to focus on 
the essentials and to keep this theory section brief. The theory part is designed to be 
detailed enough to give the reader necessary theoretical background to help comprehend 
the rest of this study. 

3.5.1 Delta 

Let’s start by examining again the Black-Scholes PDE and rewriting it (Lee et al. 2010: 
502): 

(24)	 KL
KC
+ 𝑟𝑆 KL

KM
+ N

O
𝜎O𝑆O K

PL
KMP

− 𝑟Π = 0	

	 Θ + 𝑟𝑆Δ + N
O
𝜎O𝑆OΓ − 𝑟Π = 0	
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Where Π is value of the option on stock S, r is risk-free rate and 𝜎 is stock price volatility 
and t is time to maturity (as in formula 11). Now part of the second term from left is 
substituted with Δ, or delta. (Lee et al. 2010: 502.) 

As mentioned, delta represents sensitivity of the option’s price to changes in the price of 
the underlying stock. For example, the price of a call option with a delta of 0,2 changes 
20 percent of the underlying stock’s price change. If a portfolio has a delta equal to zero, 
it is immune to price changes in the underlying stock, i.e. it is delta-neutral. A delta-
neutral position can be created by delta-hedging, but as the delta changes over time, the 
delta-hedge must be rebalanced periodically to uphold delta-neutrality (Deacon & 
Faseruk 2000.) 

 

 

 

 

 

 

Figure 2. SPX call option delta for different SPX prices. X-axis is moneyness and Y-axis is 
delta. Strike price is SPX closing price as of 21st March 2018. Data source: Bloomberg 
Terminal. 

The figure 2 demonstrates the s-shape curve of the option delta. As can be seen, the deeper 
the option is in-the-money, the lower the delta is and vice versa for out-of-the-money 
options. Delta changes fastest when the option is near at-the-money and beyond the delta 
curve starts turning horizontal. Gamma measures the sensitivity of delta, which is 
examined next. (Deacon & Faseruk 2000; Kosowski & Neftci 2015: 297-299.) 
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3.5.2 Gamma 

Gamma, Γ in the formula 24, demonstrates the option’s sensitivity to changes in the delta 
in relation to the price of the underlying stock. Gamma is a second order derivative of the 
BSM-model. Unlike delta, gamma is always positive, and it reaches the maximum value 
when the option is near or at-the-money and it approaches zero when the option is deep-
out-of-the-money or deep-in-the-money. (Deacon & Faseruk 2000; Ederington & Guan 
2007; Kosowski & Neftci 2015: 300-303.) 

Gamma’s importance in risk management is highlighted since it can be used in explaining 
option price changes and to measure the cost of adjusting delta. Achieving gamma-
neutrality decreases the necessity of continuous delta adjustments and minimizes the risks 
of larger changes in the underlying stock price. (Deacon & Faseruk 2000; Ederington & 
Guan 2007; Papahristodoulou 2004; Kosowski & Neftci 2015: 300-303.) 

 

 

 

 

 

 

Figure 3. SPX call option gamma for different SPX prices. X-axis is moneyness and Y-axis is 
gamma. Strike price is SPX closing price as of 21st March 2018. Data source: Bloomberg 
Terminal. 

The figure 3 demonstrates the gamma in relation to the underlying stock price. As 
mentioned above, the delta is most sensitive when the option strike is near the stock price, 
which is demonstrated as the bell-shaped curve of the gamma. 
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3.5.3 Theta 

Theta, Θ in the formula 24, measures the option’s sensitivity to time decay. Theta 
demonstrates how much the time value of the option changes when the option approaches 
its maturity. The time value decreases as the time to maturity decreases and vice versa for 
the put option, which is supported by the logic that when the maturity approaches, the 
underlying stock has less time to progress above the strike price (and the opposite for put 
options). (Kosowski & Neftci 2015: 305-306.) 

Emery, Guo & Su (2008) finds the lower and upper bounds for values of theta and that 
option theta is at maximum level when the option is slightly in-the-money. The lower 
bound for call option theta is zero when the stock price approaches zero, and the upper 
bound is rK𝑒<=.(the present value of strike price multiplied by the risk-free rate) when 
the stock price approaches infinity. (Emery et al. 2008.) 

 

 

 

 

 

 

Figure 4. SPX call option theta for different SPX prices. X-axis is moneyness and Y-axis is 
theta. Strike price is SPX closing price as of 21st March 2018. Data source: Bloomberg 
Terminal. 

The figure 4 demonstrates the call option theta in relation to underlying stock prices. The 
figure demonstrates the findings of Emery et al. (2008) that the theta reaches its maximum 
when the option is slightly in-the-money. 
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3.5.4 Vega 

Vega, sometimes referred by kappa (𝜅) or lambda (𝜆), (see Deacon & Faseruk 2000; Gao 
2009) measures option’s sensitivity to changes in the option’s value in respect to changes 
in its volatility (Kosowski & Neftci 2015: 303, 305). The sensitivity can be calculated 
with the following formula (Gao 2009): 

(25)	 𝑣𝑒𝑔𝑎 = Kp
Kh
= 𝑆√𝑇𝑁(𝑑N)	

Where the variables are familiar from the BSM-model (see section 3.3). The formula 
shows that an increase in volatility grows the value of the option, and that high absolute 
value of vega implies that the option is sensitive to changes in volatility (Chance 1994). 

The figure 5 demonstrates vega in relation to its underlying and shows the resemblance 
between vega and gamma. Vega has the highest value when the option is near or at-the-
money and it approaches zero when option is deep-out-of-the-money or deep-in-the-
money, similarly as gamma. Regardless the similarity between those two, vega-neutrality 
does not imply gamma-neutrality. (Ederington & Guan 2007; Hull 2015: 415; Kosowski 
& Neftci 2015: 303-305.) 

 

 

 

 

 

 

Figure 5. SPX call option vega for different SPX prices. X-axis is moneyness and Y-axis is 
vega. Strike price is SPX closing price as of 21st March 2018. Data source: Bloomberg 
Terminal. 
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3.5.5 Rho 

Rho, Greek letter 𝜌, measures the sensitivity of an option to changes in risk-free interest 
rate. Rho should be always positive for a call option, since increasing interest rates lowers 
the strike price of the option through the discount factor, which increases the option’s 
price (Lee et al. 2010; 500). The formula for calculating rho as follows (Chance 1994):  

(26)	 𝜌R =
KR
K=
= 𝑇𝐾𝑒<=C𝑁(𝑑O) > 0	

Where the variables are the same as in BSM-model presented in section 3.3. Figure 6 
shows that rho is most sensitive to interest rate changes when the option is near or at-the-
money. The call option rho approaches zero when the option becomes deep-out-of-the-
money and rho approaches the approximate value of T*K when the option becomes deep-
in-the-money (Deacon & Faseruk 2000). 

 

 

 

 

 

 

Figure 6. SPX call option rho for different SPX prices. X-axis is moneyness and Y-axis is rho. 
Strike price is SPX closing price as of 21st March 2018. Data source: Bloomberg Terminal. 
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4. PERFORMANCE MEASUREMENTS 

This section introduces the performance measurements used in the evaluation of the buy-
write strategies. First, the Capital Asset Pricing Model is presented to establish the 
framework for performance measurements as Sharpe ratio and Jensen’s alpha. Although, 
these measurements alone are not enough to describe the relationship between risk and 
return as suggested by earlier studies (see e.g. Lien 2002; Eling & Schuhmacher 2007). 
Following the previous studies examining buy-write strategy (see e.g. Feldman & Roy 
2005; Kapadia & Szado 2012), this study also measures Leland’s alpha and beta, Sortino 
ratio and Stutzer index. 

4.1 Capital Asset Pricing Model 

In 1960s, the studies of Sharpe (1964), Lintner (1965) and Mossin (1966) led to a pricing 
model known as the Capital Asset Pricing Model (CAPM). The model assumes that the 
total risk of an asset is a sum of systematic risk and unsystematic risk, and the return of 
the asset is a sum of systematic return and unsystematic return. (Lee et al. 2010: 10-11; 
Bodie, Kane & Marcus 2014: 291-292.) 

The Capital Asset Pricing Model assumes that markets only explain the systematic risk 
of the asset. The rest of the risk, unsystematic risk, is asset specific risk which can be 
minimized by diversification. The systematic risk, also known as beta, is the slope 
coefficient of the linear regression of the asset excess return, as follows: (Lee et al. 2010: 
11; Bodie et al. 2014: 302) 

(27)	 𝑅� = 𝛼� + 𝛽�𝑅¡ + 𝑢�	

Where 𝑅� is excess return of a stock (calculated as the difference between stock return 
and risk-free rate), 𝛼� is the intercept (alpha), 𝛽� is the slope coefficient (beta), 𝑅¡ is the 
market excess return (market factor) and 𝑢� is the residual. Beta demonstrates the 
systematic risk of the stock and the residual demonstrates the unsystematic risk, and 
combined, beta and residual equals total risk of the stock. As mentioned earlier, the 
unsystematic risk can be minimized by diversification, since its mean is assumed zero 
and it is uncorrelated with the market factor. As CAPM assumes, investor is a rational 
actor and minimizes unsystematic risk, all the risk left is explainable by market factor, 
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which magnitude is represented with the slope coefficient beta (Lee et al. 2010: 11; Bodie 
et al. 2014: 301-303.) 

As the investor has diversified all the unsystematic risk, all the risk left is beta. Assuming 
CAPM with its underlying assumptions holds, beta represents the measurable risk, which 
can be used when comparing assets, for example, the riskiness of stocks. As the beta 
represents the risk of a stock, alpha represents the abnormal return of a stock, which is 
discussed further in the section below (Lee et al. 2010: 11; Bodie et al. 2014: 301-303.) 

4.2 Jensen’s alpha 

In 1968, Jensen (1968) presented his study on the performance of mutual funds, where he 
compared performances of the mutual funds with a measure, currently known as Jensen’s 
alpha. The measure, Jensen’s alpha, is derived from the Capital Asset Pricing Model 
(presented above) and it describes the abnormal return of an asset. The alpha is calculated 
as follows, and for the full derivation of the measure, see the original study (Jensen 1968; 
Bodie et al. 2014: 840.) 

(28)	 𝛼¢ = �̅�¢ − [�̅�� + 𝛽¢�	�̅�¡ − �̅���]	

Where 𝛼¢ is the abnormal return (Jensen’s alpha), �̅�¢ is the asset return,  �̅�� is the risk-
free rate, 𝛽¢ is beta and 	�̅�¡ is the return of market portfolio. A positive value of alpha 
means that the realized excess return of the asset is higher than the excess return expected 
by the CAPM, indicating that the asset has performed well. As described in Bodie et al. 
(2014: 840), Jensen’s alpha can be also calculated with other models than CAPM, for 
example with factor models (see e.g. Fama & French 2015). In general, Jensen’s alpha 
indicates whether an asset provides higher return than expected by a certain pricing 
model, and it can be also used to measure whether a portfolio benefits from active 
management. (Lee at al. 2010: 275; Bodie et al. 2014: 840.) 

4.3 Sharpe ratio 

In addition to his contribution to the Capital Asset Pricing Model, Sharpe (1964) studied 
the performance of mutual funds and presented a performance measure, later known as 
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the Sharpe ratio. This ratio divides asset’s excess return with its total risk, as follows 
(Sharpe 1966): 

(29)	 𝑆ℎ𝑎𝑟𝑝𝑒	𝑟𝑎𝑡𝑖𝑜 = =̅¤<=̅¥
h¤

	

Where �̅�Z is the mean portfolio return, �̅�� is the risk-free rate and 𝜎Z is the portfolio 
volatility (Bodie et al. 2014: 840). Since the ratio considers total risk, it can be interpreted 
as how efficiently a portfolio is diversified compared to other portfolios with similar 
contents. Even though Sharpe ratio is the most popular performance measurement, it is 
criticized because it assumes portfolio returns to be normally distributed (Eling & 
Schuhmacher 2007; Lee et al. 2010: 274-275). 

4.4 Leland’s alpha and beta 

Leland (1999) argues that CAPM and its risk measurement, beta, and Jensen’s Alpha are 
invalid, because of CAPM’s assumption of normally and symmetrically distributed 
returns. Leland (1999) proposes his risk measurement and alpha in a power utility model 
which is based on Rubinstein’s (1976) constant relative risk aversion model. Although, 
one could argue that the underlying assumptions of Leland’s model are also suspect. The 
model assumes that the market portfolio is independently and identically distributed (IID) 
and that the markets are perfect. (Goyal & Saretto 2009.) 

Leland’s model is similar to CAPM, but it considers skewness and kurtosis, which are 
present in portfolios containing derivatives (and especially in portfolios with buy-write 
positions, see the appendix 2). With the same data and with an additional variable to the 
CAPM, the Leland’s alpha and beta is calculated as follows (Leland 1999): 

(30)	 𝐸(𝑟¢) = 𝑟� + 𝐵¢¨𝐸(𝑟¡) − 𝑟�©	

Where 𝐸(𝑟¢) is the expected return of a portfolio, 𝑟� is risk-free rate, 𝑟¡ is the return of 
market portfolio and 𝐵¢ is Leland’s beta, which is calculated as follows: 

(31)	 𝐵¢ =
Rª«¨=¬,<(Nc=)~®©
Rª«¨=,<(Nc=)~®©
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Where the other coefficients are the same, but b is calculated as follows: 

(32)	 𝑏 = T¯[°(Nc=)]<T¯�Nc=¥�
«S=[T¯(Nc=)]

	

The Leland alpha can be derived from the equation 30, as follows (Leland 1999): 

(33)	 𝐴¢ = 𝐸(𝑟¢) − 𝐵¢¨𝐸(𝑟¡) − 𝑟�© − 𝑟�	

Where 𝐴¢ is the Leland’s alpha and the other terms are explained above. Leland’s alpha 
and beta are interpreted in the same fashion as Jensen’s alpha and CAPM beta. 
Particularly to this study, Leland’s alpha is in focus, since it is used as a gauge whether 
an investor can benefit from active buy-write strategies, compared to passive strategies. 

4.5 Sortino ratio 

Downside deviation, lower partial standard deviation or semi-standard deviation is a risk 
measurement, which considers only downside deviations from a reference level (Bodie 
et al. 2014: 140). The reference level is user defined and as in Whaley (2002) and Bodie 
et al. (2014), this thesis uses risk-free rate as the reference level. This means that when 
calculating the semi-standard deviation, only negative values of excess returns are 
considered. The semi-standard deviation is calculated as in Whaley (2002): 

(34)	 𝑆𝑒𝑚𝑖 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ±∑ ³�¯	�´�,a<´¥,a,��
P�

aµ¶
.

	

Where 𝑅�,C is the return of portfolio i at time t and 𝑅�,C is the risk-free rate. In 1994, Sortino 
& Price (1994) presented their modified version of Sharpe ratio, which divides the 
portfolio excess return with semi-standard deviation, instead of standard deviation 
(volatility). (Sortino & Price 1994.) 

(35)	 𝑆𝑜𝑟𝑡𝑖𝑛𝑜	𝑟𝑎𝑡𝑖𝑜 = ´�,a<´¥,a
��

	

Where the numerator is excess return of portfolio i at time t and the denominator is 
downside deviation. Sortino ratio is suitable for measuring risk-adjusted returns of 
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normally and non-normally distributed returns since it considers only downside 
deviations and this way takes skewness into account. Lien (2002) shows that Sortino ratio 
is an increasing function of Sharpe ratio, whether the returns are normally distributed or 
not (see section 2.2.1; Sortino & Price 1994; Whaley 2002). 

4.6 Stutzer index 

In 2000, Stutzer (2000) presented his performance index for measuring portfolios’ risk-
adjusted returns. He argues that lacking the capability of considering skewness or 
kurtosis, Sharpe ratio is not suitable for evaluating portfolios with return non-normalities 
ensued from, for example the use of options. Basing his model on large deviation theory, 
the Stutzer index as follows (Stutzer 2000; Feldman & Roy 2005): 

(36)	 𝐼¢ = 𝑚𝑎𝑥
¸

¹− 𝑙𝑜𝑔 ºN
.
∑ 𝑒¸=�.
�»N ¼½	

Where 𝐼¢ is Stutzer information statistic, which is maximized by adjusting the value of 
theta. The Stutzer index is then calculated with the following formula (Stutzer 2000; 
Feldman & Roy 2005): 

(37)	 𝑆𝑡𝑢𝑡𝑧𝑒𝑟	𝑖𝑛𝑑𝑒𝑥 = �𝑟¿ − 𝑟�ÀÀÀÀÀÀÀÀ�j2𝐼¢	

Where the difference inside parentheses is the mean excess return of portfolio i over risk-
free rate and 𝐼¢ is the information statistic from formula 36. When the returns are normally 
distributed, Stutzer index equals Sharpe ratio. Stutzer index can be interpreted as a rate 
of decay at which, the probability that the portfolio i underperforms its benchmark. The 
higher value of Stutzer index, the higher is the decay and the faster the probability of 
portfolio underperformance approaches zero. The probability can be estimated with the 
following formula (Stutzer 2000): 

(38)	 𝑃 º�𝑟¿ − 𝑟�ÀÀÀÀÀÀÀÀ� ≤ 0¼ ≈ R
√.
𝑒<Ã¬.	

Where the left-hand side is the probability of the portfolio’s underperformance, which 
approaches zero at rate 𝐼¢ as T approaches infinity. c is a constant related to the return 
distribution. (Stutzer 2000; Feldman & Roy 2005.)  
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5. DATA AND METHODOLOGY 

This section presents the data and methodology used in this study. It starts with short 
introduction to the whole examination period of this study. The data part describes in 
detail what data this study uses and where it is from, in an own section. The methodology 
part is divided in three. The first part presents the buy-write return calculation method. 
The second part presents the methodology behind the volatility risk premium estimation 
and the buy-write strategy utilizing it. The third part describes how the Heston model is 
employed to the dynamic strike price strategy. 

In 2002, Chicago Board Options Exchange (CBOE) introduced a benchmark index for 
passive covered call strategies, the BXM (the CBOE S&P 500 BuyWrite Index). As 
covered call strategies, the BXM is constructed by taking a long position in the S&P 500 
and taking a short position in call options on the S&P 500 (Whaley 2002). Since then, 
several studies demonstrate that the BXM has higher risk-adjusted returns than the S&P 
500 (see e.g. Whaley 2002, Feldman & Roy 2005, Hill et al. 2006, Figelman 2008). 

 

 

 

 

 

 

 

Figure 7. Return of the BXM, S&P 500 Total Return and VIX indices. From January 
2004 to January 2018. Normalized on 100 as per January 2004. LHS = VIX, RHS = 
SPX and BXM. 
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The figure 7 graphs the BXM, S&P 500 Total Return (SPXT) and VIX indices for the 
whole observation time period. The BXM and SPXT indices are on right-hand side (RHS) 
and the VIX index is on left-hand side (LHS). The figure demonstrates the return of a 100 
dollars investment on both BXM and SPXT indices. The time period before financial 
crisis (in 2008) is a market uptrend period with low volatility from 2004 to end of 2006 
and from 2006 market volatility expectations (VIX) starts to increase. During the 
financial crisis in 2008, SPXT and BXM falls sharply and VIX rises above 60. From 
January 2009, both BXM and SPXT have rose ever since, except in 2011 and 2012 
because of the European debt crisis and in 2015. The volatility index has lowered since 
the debt crisis except the spike in 2015. 

This thesis aims to examine if the use of active covered call strategies by benchmarking 
them against the underlying stock index and a passive covered call strategy is justified. It 
seems like an obvious choice to use the BXM as a proxy for the passive covered call 
strategy, since its performance is demonstrated in several studies, as mentioned above. 
The next section describes the data used in this paper, followed by the methodology part. 

5.1 Data 

The option data is downloaded from CBOE Datashop’s server. The option data consists 
of quote and expiration dates, strike prices, underlying (S&P 500 index) prices, bid 1545 
prices (bid price 15 minutes before the closing time of the exchange) and value-weighted 
average prices (VWAP). The VWAP prices were used if there were not bid 1545 prices 
or the bid 1545 price were zero. 

The data for BXM, SPXT and VIX were downloaded from Bloomberg Terminal software 
as daily prices, which were then transformed to correct monthly values according to the 
option quote and expiration dates. The US Government Treasury 1-Month Treasury 
Constant Maturity Rate (later 1M T-Bill or T-Bill) is used as a proxy for one-month risk-
free rate. The T-Bill data was downloaded from FRED, Federal Reserve Bank of St. 
Louis. 

The table 1 presents the descriptive statistics of the BXM, SPXT and VIX indices. BXM 
offers lower mean return than SPX or SPX, but also lower volatility, which is in line with 
the previous studies (see e.g. Whaley 2002). Also, the table shows that the BXM returns 
are negatively skewed and highly leptokurtic, meaning that the returns are not normally 
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distributed. SPXT and SPX have also high positive kurtosis, but less negatively skewed 
returns. 

Table 1. Descriptive statistics of the SPXT, SPX, BXM and VIX indices. 
  SPXT SPX BXM VIX 
Observations 169 169 169 169 
Mean  0,71 % 0,54 % 0,47 % 18,61 
Annualized mean  8,82 % 6,61 % 5,80 %  
Lowest return -3,49 % -3,92 % -2,01 % 12,08 
Highest return 12,52 % 12,60 % 5,74 % 59,89 
Standard deviation 4,70 % 4,76 % 3,28 %  
Kurtosis 9,84 8,41 21,96 6,12 
Skewness -2,02 -1,89 -3,74 2,22 

 

5.2 Methodology 

The progress of the empirical part of this study is as follows. First, the optimal 
combination of fundamentals of the options used in the buy-write strategy examined by 
comparing the returns of different strategies. Next, the volatility risk premium estimation 
model is presented and last the dynamic strike price model. MATLAB is used as the 
primary calculation software and Excel is used in some simple calculations. 

 The only variable in the fundamentals is option strike price, since previous studies (e.g. 
Hill et al. 2006; Figelman 2008) suggests that it is preferable to use short-dated options, 
which are in this case call options with maturity of one month. More precisely, moneyness 
is the only variable in the fundamentals of the compared strategies. Moneyness is 
calculated by dividing the strike price with the SPX price (S/K) and it is presented as 
percentage and if it is in or out of the money (ITM or OTM), e.g. 2%-OTM. 

5.2.1 Buy-write strategy return 

The hypothesis one (H1) states that the buy-write strategy returns can be improved by 
altering the fundamentals (in this case, the strike price) of the strategy. This is done by 
comparing the risk-adjusted returns of different strategies, which are calculated with the 
following formula (following Whaley 2002 and Hill et al. 2006): 
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(39)	 𝑅C<N,C =
Ma<Ma~¶c�a

Ma~¶
+ pa~¶

Ma~¶
− pa

Ma~¶
	

Where, 

(40)	 𝐶C = 𝑚𝑎𝑥(𝑆C − 𝐾, 0)	

Where 𝑅C<N,C is the return of the strategy, 𝑆C is the SPX price at time t, D is dividend, K 
is the strike price, 𝐶C<N is price of the call option when it is written and 𝐶Cis value of the 
call at expiration date. The dividend factor is omitted from the formula since the S&P 500 
Total Return index already includes dividends. 

5.2.2 Volatility risk premium estimation model 

The next step is to examine the methodology for the ex-ante volatility risk premium 
estimation model. The ex-ante volatility risk premium is calculated as the difference 
between actual implied volatility and estimated out-of-sample fitted implied volatility. 
The VIX index is used as a proxy for actual implied volatility and the estimated out-of-
sample fitted implied volatility is calculated with the following model (as in Simon 2014): 

(41) 𝑉𝐼𝑋C = 𝛽� + 𝛽N ∗ 𝑉𝐼𝑋C<N + 𝛽O ∗ 𝑅c + 𝛽Å ∗ 𝑅< + 𝑢C 

Where 𝑉𝐼𝑋C is the value of VIX at time t; 𝛽�, 𝛽N, 𝛽O and 𝛽Å are coefficients and 𝑢C is 
residual term. 𝑅c is a variable that gets the value of 0 when return of SPXT (S&P 500 
Total Return index) is negative, otherwise it gets the value of the positive return of the 
SPXT. 𝑅< is an opposite variable to 𝑅c, which gets the value of 0 when return of the 
underlying is positive, otherwise it gets the value of the negative return of the SPXT. 

The model is operated as follows. First, the model needs a learning period to calculate the 
coefficients. The learning period starts from January 2002 and ends in December 2003. 
The coefficients (𝛽�, 𝛽N, 𝛽O and 𝛽Å) are estimated with Ordinary Least Squares (OLS) 
method. The model is then assessed with coefficient of determination (R-squared, Rsqr 
or R2) and adjusted coefficient of determination (adjusted R-squared, ARsqr of AR2), 
Student’s t-statistic (t-statistic or t-stat), Durbin-Watson statistic (DW) and Ljung-Box 
(LB) statistic. The last two statistics are measured to test whether there is autocorrelation 
between residual terms over time. 
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Then, with these coefficients calculated with the learning period, the model is used to 
estimate monthly fitted values for 2004. In January 2005, the model is re-calibrated with 
2004 in the learning period and then used to estimate monthly fitted values for 2005. This 
operation is rolled from January 2004 to January 2018 to obtain monthly fitted for the 
whole period. 

Table 2. The volatility risk premium estimation model coefficients and test statistics. ** 
means p-value <0,05 and *** p-value<0,01. LP is the learning period from Jan 2002 to 
Dec 2003 and the last period includes year 2017 and Jan 2018. Ljung-Box (LB) and 
Durbin-Watson (DW) test p-values only are presented. 
Period 𝛽� 𝛽N 𝛽O 𝛽Å AR2 LB DW 
LP 0,0402** 0,8369*** -0,7050*** -0,6544*** 0,90 0,90 0,74 
2004 0,0252** 0,8829*** -0,6729*** -0,6753*** 0,93 0,88 0,53 
2005 0,0209*** 0,9020*** -0,7438*** -0,6953*** 0,94 0,99 0,38 
2006 0,0233*** 0,8890*** -0,7599*** -0,7166*** 0,94 0,95 0,29 
2007 0,0325*** 0,8328*** -0,7730*** -0,8884*** 0,91 0,79 0,55 
2008 0,0466*** 0,7162*** -0,6563*** -1,2576*** 0,94 0,85 0,09 
2009 0,0414*** 0,7601*** -0,5957*** -1,1966*** 0,94 0,37 0,13 
2010 0,0456*** 0,7328*** -0,5436*** -1,2754*** 0,92 0,52 0,37 
2011 0,0472*** 0,7256*** -0,5322*** -1,3107*** 0,92 0,88 0,44 
2012 0,0464*** 0,7239*** -0,4954*** -1,3067*** 0,92 0,77 0,50 
2013 0,0459*** 0,7271*** -0,5182*** -1,3013*** 0,92 0,72 0,66 
2014 0,0456*** 0,7295*** -0,5420*** -1,2984*** 0,92 0,69 0,68 
2015 0,0449*** 0,7287*** -0,5315*** -1,3106*** 0,92 0,58 0,73 
2016 0,0445*** 0,7292*** -0,5399*** -1,3080*** 0,92 0,61 0,84 
2017à 0,0441*** 0,7289*** -0,5351*** -1,3147*** 0,92 0,51 0,92 
 

Table 2 presents the VRP estimation model coefficients and the test statistics. All of the 
betas have p-values below 1% (except 𝛽� during the learning period and year 2004), 
meaning that they are statistically significant. The model variations explain above 90% 
of the VIX variations according to the adjusted R-squared (AR2). Ljung-Box (with 12-
month lag) and Durbin-Watson test p-values indicates that in any calibration neither of 
the tests’ null hypothesis cannot be rejected (in both tests the null hypothesis states that 
the model residuals are not correlated). However, there is a drop in the p-values (DW p-
value drops from 0,55 to 0,09 between 2007 and 2008) during the financial crisis, 
implying that the model’s estimation capability may have weakened, since the probability 
of autocorrelation increases. This is only logical, since during the years of financial crisis, 
the VIX increased more than six-fold and then dropped more than 50% (see figure 7). 
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Appendix 4 plots the actual VIX, estimated VIX and the volatility risk premium (VRP) 
for the whole period. VRP is below its average until the financial crisis, increases during 
the crisis and then stays at higher level than post-crisis. This could indicate, that even 
though the VIX decreased after the crisis to pre-crisis levels it stayed and continued being 
at artificial high level, according to the VRP. 

The first two coefficient estimates (𝛽� and 𝛽N) are in line with Simon (2014), meaning 
that a 1% change in the previous period VIX translates on average to 0,77 percentage 
change in the following period VIX. The differences in 𝛽O and 𝛽Å are higher between this 
study and Simon (2014). On average, a 1% increase in SPXT translates to a 0,61-
percentage decrease in VIX (ca. 0,12 percentage decrease in Simon 2014) and a 1% 
decrease in SPXT translates to 1,1 percentage increase in VIX (ca. 0,95 percentage 
decrease in Simon 2014). The magnitude of the positive impact of negative returns of the 
SPXT on VIX increases and in contrast, the negative impact of positive SPXT returns on 
VIX decreases during the period. The reason behind this could be in the investors’ 
sentiment, that when the VIX decreases and is low, negative news have greater increasing 
impact than positive news has decreasing impact on the VIX.  

In an attempt to improve the forecasting ability of the model, a modified version of the 
model was also tested. In the modified version the calibration was done in monthly basis 
after the learning period to result in more accurate estimates of the coefficients. However, 
the differences in the results and statistical tests (Rsqr, DW and LB) between the modified 
and unmodified models were insignificant, which is why the modified version of the 
model was not examined further.  

The ex-ante volatility risk premium (VRP) is then calculated as the difference between 
actual implied volatility (VIX) and out-of-sample fitted values, which is used as a gauge 
for call option expensiveness. The buy-write position is then entered when the VRP is 
above its average level (also 50% and 75% median classes are tested) and the call option 
is sold when its price is at artificially high level, according to the VRP estimation model. 

The table 3 shows the statistics of the three different volatility risk premium calculation 
methods. During 66 of the 169 months the VRP is above the average level and during 84 
and 42 months the VRP is above the median and median 75% levels respectively. The 
other statistics of the mean method are also between the two median classes. The 
appendix 4 plots the actual VIX, estimated VIX and volatility risk premiums (only for 
mean method).  
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Table 3. Statistics of the three different call option expensiveness (VRP) calculation 
methods. 
Sort Mean Median 50% Median 75% 

Count of VRPs > 0 66 84 42 

Average VRP 6,28 5,76 7,33 

Min VRP 4,08 3,67 4,91 

Max VRP 13,82 13,82 13,82 

 

5.2.3 Dynamic strike price strategy 

Call options are chosen according to options’ exercise probability for the dynamic 
strategy, instead of strike price (as for the vanilla buy-write strategy). The dynamic 
strategy is designed to better adapt to changes in the market conditions, since the exercise 
probability is not fixed in a certain moneyness (the ratio of strike price and the price of 
underlying) level. Previous studies show that the dynamic strategy outperforms the fixed 
strike price strategy only when the markets are sharply rising or highly volatile (see Hill 
et al. 2006; Che & Fung 2011), if the exercise probability is estimated with Black-
Scholes-Merton model. Hsieh et al. (2014) estimates the exercise probability with Heston 
model, which outperforms the BSM-model based dynamic strategy and fixed strike price 
strategy, despite the market condition. Motivated by this finding of Hsieh et al. (2014), 
this study uses also Heston model in the estimation of exercise probability. 

The estimation of exercise probabilities with the Heston model starts with calibrating the 
model to acquire the five unknown parameters: theta (q), sigma (s), rho (r), kappa (k) 
and the initial variance (v0). The calibration is done as a least squares optimization 
problem with a non-linear least-squares solver (MATLAB-function lsqnonlin), where the 
difference between real market prices of options and the model prices is minimized by 
finding the optimal values for the five unknown parameters (explained below). This study 
uses a semi-analytical extension of Heston model presented by Kahl, Jäckel and Lord 
(Kahl & Jäckel 2006; Lord & Kahl 2007). The calibration process is executed as follows: 

1. The least-square solver needs an initial guess for the parameters where to start 
the optimization and upper and lower bounds for the values. The lower bounds 
are [0, 0, -1, 0, 0] and the upper bounds are [¥, ¥, 1, ¥, ¥]. Rho is bound 
between -1 and 1, and the other parameters can have any positive value. 
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2. The solver is run with limit on maximum 600 evaluations and 400 iterations. 
If the solver is stuck in local minimum, it is run again with the local minimum 
parameter values as the starting values. 

3. When the solver is done, the parameter values are used in the next step, and if 
the solver was run twice, the parameters that resulted in lower root-mean-
square-error (RMSE) are chosen. 

Next, the model prices for all of the call options are calculated with the calibrated model, 
as follows (for the complete version of the formula see section 3.4; Heston 1993; Lord & 
Kahl 2007): 

(42)	 𝐶(𝑆, 𝐾, 𝑇, 𝑟) = 𝑆�𝛱N − 𝐾𝑒<=.𝛱O	

Where C is the price of call option, S is price of the underlying, K is the strike price, T is 
time to maturity, r is risk-free rate, ΠN (P1) is option delta and ΠO (P2) is the exercise 
probability. The formula 42 is a simplified description of the Heston model for option 
pricing but gives enough detail to comprehend how the exercise probability is estimated. 

The exercise probability P2 is solved with the calibrated model and model prices. In a 
similar fashion as the calibration, the P2s are solved as a least-squares optimization 
problem, which is solved with the same MATLAB function. The solver is programmed 
to minimize the difference between actual option prices and the model prices by adjusting 
the P2 (ΠO) of the pricing model. The P2 is estimated for 23130 call options (all of the 
call options with maturity of one month). Then the calls are rounded to nearest 10% 
multiple and sorted to groups accordingly. Since the probabilities are clustered to above 
90% and below 10%, there are additional groups, 95% and 5%. These two groups are 
formed with closest probabilities that are over 95% in 95%-group and lower than 5% in 
5%-group. 

The table 4 shows average exercise probability and moneyness of the eleven dynamic 
strategies and statistics of Heston model pricing. The average exercise probabilities tend 
to cluster in the both sides of the probability scale, as can be seen from the longer distance 
between the rounding points and group averages. Also, the moneyness jumps when 
approaching either the D95% or D5% groups. The model P2 and the percentage of options 
executed shows deviation between the groups. In the 95% group the model P2 is closer 
to the realized exercise probability, compared to the same difference in group D10% 
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where the difference is highest (0,06% and -40% respectively). Also, there are some 
differences in exercise probability and moneyness pairs between this study and previous 
studies. Hill et al. (2006) associates e.g. 20% probability with 3,81% out-of-the-money 
(OTM), compared to the corresponding figures in this study, 20% and 1%. Che & Fung 
(2011) associates 42% probability to 1,1% OTM and 20% probability to 5,6% OTM, 
compared to the table above: 40% probability with 0,3% OTM and 20% probability with 
1% OTM. Although, these differences could be explained with the different pricing 
models between the studies. 

Table 4. Dynamic strategy sorts and Heston model statistics. P2 is exercise probability. 
Model and actual prices are averages. MAD is median absolute deviation, AAE is 
average absolute error and RMSE is root mean square error. 

 Avg. P2 
Pct. 

Executed 
Avg. 

Moneyness 
Model 
price 

Actual 
price MAD AAE RMSE 

D95% 98,4 % 98,2 % 89,1 % 167,60 168,03 1,94 3,26 5,13 
D90% 94,4 % 94,0 % 93,8 % 99,41 99,45 2,24 4,56 7,11 
D80% 80,0 % 72,6 % 98,9 % 35,94 34,79 3,10 6,83 10,21 
D70% 69,6 % 71,4 % 99,3 % 32,23 31,03 3,22 6,94 10,33 
D60% 59,2 % 69,6 % 99,7 % 28,95 27,73 3,23 6,96 10,38 
D50% 49,4 % 67,3 % 100,0 % 26,15 24,94 3,46 6,97 10,40 
D40% 39,7 % 62,5 % 100,3 % 23,42 22,16 3,33 6,95 10,40 
D30% 29,7 % 58,9 % 100,6 % 20,80 19,53 3,26 6,91 10,34 
D20% 20,1 % 53,6 % 101,0 % 18,28 17,00 3,26 6,75 10,19 
D10% 11,2 % 51,2 % 101,3 % 15,81 14,56 3,07 6,57 9,98 
D5% 2,8 % 6,5 % 105,6 % 2,87 2,63 0,52 2,52 5,24 

 

The pricing accuracy of the Heston model is highest in groups D95% and D5% and when 
measured with MAD. This is logical, since the other two measurements gives higher 
weight on the maximum deviations. The accuracy is relatively even between groups from 
D70% to D20%. Groups D80% and D10% have accuracy below the most accurate groups 
(D95% and D5%). Similarly, to the moneyness also the group average prices jumps when 
approaching either extremity of the exercise probabilities. This jump is clearer near the 
high exercise probability groups than the other end groups. 
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6. RESULTS 

This section presents the results of this study in five subsections. The first section 
examines the vanilla buy-write strategy, finds the strike price that leads to highest strategy 
performance and tests the hypothesis one. The second section examines the volatility risk 
premium estimation strategy, shows that applying VRP estimation to buy-write strategy 
increases its performance and tests the second hypothesis. The third section examines the 
dynamic strike price strategy and its performance and tests the third hypothesis. The 
fourth section examines buy-write strategies combining both volatility risk premium 
estimation and dynamic strike price method, shows that the combine strategy leads to 
highest performance and tests the fourth hypothesis. The last section discussed some 
findings further and summarizes the results of this study. 

6.1 Vanilla buy-write strategy 

The first research problem is to find optimal combination of buy-write strategy 
parameters, as the first hypothesis states below. Motivated by earlier studies, this study 
considers only call options with maturity of one month. This leaves the strike price of the 
option as the only variable. As the table 5 shows, eight different buy-write strategies are 
compared. Two of the strategies writes in-the-money (ITM) calls, one writes at-the-
money (ATM) calls and 5 strategies writes out-of-the-money (OTM) calls. These eight 
strategies are then compared against each other and against the benchmark index SPXT 
(S&P 500 Total Return index). 

Table 5 shows the performance measurements, Leland alpha and beta, Sharpe and Sortino 
ratios and Stutzer index, of the benchmark indices and the buy-write strategies. Appendix 
2 panel B shows the return and risk characteristics of the strategies and benchmarks. As 
can be seen, the OTM-4% buy-write strategy performs the best of the buy-write strategies, 
considering the return non-normality capturing performance measurements (Leland 
alpha, Sortino ratio and Stutzer index). OTM-4% strategy offers highest risk-adjusted 
return, according to the Sortino ratio and Stutzer index values. In addition, OTM-4% 
strategy offers 0,26% statistically significant Leland alpha, indicating that the strategy is 
capable of making both economically and statistically significant abnormal return. The 
OTM-4% strategy outperforms also both SPXT and BXM indices, supporting the 
hypothesis 1, which is as follows: 
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H1: The performance of a buy-write strategy can be improved by altering the 
fundamentals of the strategy. 

Considering the performance of the OTM-4% buy-write strategy, the implied null 
hypothesis, that the risk-adjusted return of buy-write strategy cannot be improved by 
altering the fundamentals of the strategy, is rejected. 

Table 5. Performance measurements of the vanilla buy-write strategies and 
benchmarks. The whole estimation period from January 2004 to January 2018. 169 
monthly observations. * is p-value <0,1, ** is p-value<0,05 and *** is p<0,01. 

  Leland alpha p-value Leland beta 
Sharpe 
ratio 

Sortino 
ratio 

Stutzer 
index 

SPXT 
   

0,1302 0,1693 
 

BXM 0,08 % 0,4099 0,67 0,1144 0,1331 0,0748 
ITM-5% -0,05 % 0,7330 0,36 0,0529 0,0560 0,0000 
ITM-2% 0,01 % 0,8816 0,50 0,0883 0,0965 0,0000 
ATM 0,11 % 0,3472 0,67 0,1198 0,1377 0,0778 
OTM-1% 0,16 % 0,1463 0,73 0,1333 0,1572 0,1401 
OTM-2% 0,21%** 0,0408 0,79 0,1441 0,1742 0,1913 
OTM-3% 0,26%*** 0,0069 0,84 0,1534 0,1903 0,2308 
OTM-4% 0,26%*** 0,0022 0,88 0,1527 0,1925 0,2332 
OTM-5% 0,25%*** 0,0012 0,90 0,1495 0,1902 0,2254 
 

The table 5 and appendix 1 shows that the trade-off between mean monthly returns and 
semi-standard deviations changes somewhat linearly as the moneyness grows (assuming 
that ITM is lower than OTM in moneyness). Also, the Leland beta follows the same 
pattern, being lowest when the option is furthest ITM and highest when the option is 
furthest OTM. As can be seen from the table, all of the buy-write returns are non-normally 
distributed, where the 5%-ITM strategy demonstrates lowest skewness and highest 
kurtosis. Due to this non-normality, the value of Stutzer index is zero for 5%-ITM and 
2%-ITM strategies. 

Comparing the appendix 1 with figure 7 in Hill et al. (2006) shows that the risk and return 
are positively correlated when the moneyness grows. Though, the figure 7 in Hill et al. 
(2006) shows more clearly the shift in the correlation, when the moneyness grows past 
2%-OTM, compared to appendix 1 where the correlation has smaller shift and does not 
change to negative. Although, as this study does not consider higher moneyness than 5%-
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OTM, the shift to negative correlation could occur with higher moneyness. Otherwise, 
the results in the table 5 are in line with the findings of previous studies. Leland’s alphas 
and betas are close to corresponding measures in Kapadia & Szado (2012). Both studies 
show that the alphas and betas grow as the moneyness grows.  

The appendix 3 demonstrates the cumulative returns of each buy-write strategy. It can be 
imagined demonstrating the development of a 100-dollar investment in each of the 
strategies for the whole period. The best yielding vanilla buy-write strategy is the OTM-
4% strategy and the worst is ITM-5% strategy. The OTM-4% has also higher cumulative 
return than the benchmarks. One interesting finding is the smooth plot of ITM-5% 
strategy, since its volatility less than half compared to SPXT or OTM-4%. Also, the ITM-
5% has third lowest mean return of all of the strategies, but it could be suitable for a risk 
averse investor. 

6.2 Volatility risk premium strategy 

The second hypothesis states that the performance of buy-write strategies can be 
improved by utilizing the estimation of volatility risk premium (VRP). This estimation is 
done with a model (see section 5.2.2) which calculates out-of-sample fitted values for the 
VIX and then measuring the difference between the actual values of VIX with the 
estimated VIX. This difference, VRP, is the estimate whether the actual implied volatility 
(VIX) is at an artificially high level. When VRP is above its average, the buy-write 
position is entered and when it is below, only the stock position is entered. As mentioned 
in section 5.2.2. 50% and 75% median levels were also used as the expensiveness 
thresholds, but these two methods do not lead to as good performance as the mean 
method. To save space, the results for these two methods are not shown in this paper. 

Table 6 shows the performance measurements of the VRP enhanced buy-write strategies 
(VRP strategies). ITM-5% VRP strategy outperforms the other VRP strategies with every 
performance measurement and has also the lowest systematic (Leland beta) and total risk 
(volatility, see appendix 2 panel D). The ITM-5% VRP strategy has 0,53% (6,55% as 
annualized) statistically significant Leland alpha, highest Sortino ratio at 0,3334, highest 
Stutzer index at 0,1233 and highest Sharpe ratio 0,2472 (the last measurement has least 
weight since it does not capture non-normality of the returns). 
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Comparing the VRP strategy to the vanilla buy-write strategy shows that the ITM VRP 
strategies outperforms with every performance measurement and the OTM VRP 
strategies outperforms with Leland alpha, Sortino ratio and Sharpe ratio the respective 
vanilla buy-write strategies. OTM Vanilla buy-write strategies outperforms the respective 
VRP strategies with the Stutzer index, even though the vanilla OTMs have lower 
skewness and higher kurtosis. The second hypothesis is as follows: 

H2: The performance of a buy-write strategy can be improved by timing the 
implementation of the strategy based on ex-ante volatility risk premium. 

Considering the findings discussed above, the implied null hypothesis that the 
performance of a buy-write strategy cannot be improved by timing the implementation 
of the strategy based on ex-ante volatility risk premium, is rejected. 

Table 6. Performance measurements of the volatility risk premium strategies and 
benchmarks. The whole estimation period from January 2004 to January 2018. 169 
monthly observations. * is p-value <0,1, ** is p-value<0,05 and *** is p<0,01. 

 Leland alpha p-value Leland beta 
Sharpe 
ratio 

Sortino 
ratio 

Stutzer 
index 

SPXT 
   

0,1302 0,1693 
 

BXM 0,08 % 0,4099 0,67 0,1144 0,1331 0,0748 
ITM-5% 0,53%*** 0,0002 0,57 0,2472 0,3334 0,1233 
ITM-2% 0,47%*** 0,0002 0,68 0,2201 0,2867 0,1180 
ATM 0,38%*** 0,0009 0,78 0,1845 0,2369 0,1125 
OTM-1% 0,36%*** 0,0009 0,82 0,1768 0,2269 0,1204 
OTM-2% 0,33%*** 0,0008 0,85 0,1681 0,2155 0,1111 
OTM-3% 0,32%*** 0,0004 0,88 0,1648 0,2121 0,1165 
OTM-4% 0,30%*** 0,0003 0,90 0,1586 0,2045 0,1041 
OTM-5% 0,26%*** 0,0005 0,91 0,1513 0,1949 0,0782 
 

Examining the VRP strategy’s properties further reveals that it differs risk-return wise 
from the vanilla buy-write strategy, or to be more precise, it is the opposite. The figure in 
appendix 1 shows that applying the VRP estimation method to the vanilla buy-write 
strategy turns the correlation between mean return and semi-standard deviation from 
positive to negative and closer to horizontal. This finding suggests that it would be 
beneficial to choose even deeper ITM options to write, than the 5%-ITM options written. 
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On the OTM side of moneyness the choice between vanilla buy-write and VRP strategies 
seem indifferent, considering only the payoff between risk and return. 

The outperformance of ITM-5% strategy has also other interpretations. Let’s start from 
the logic behind the VRP strategy. The logic is to estimate when the VIX is at artificially 
high level and write the call options only then, because then the options prices also are 
artificially high. Option price and implied volatility are positively correlated through the 
exercise probability, since when the volatility is high the underlying’s price has higher 
change of deviating above the strike price. The VRP estimation model is then used to 
reflect the correct level of implied volatility and abnormalities in VIX. This leads us to 
the interpretations. Either: the SPX options are repeatedly overpriced; the SPX options 
are overpriced and the VIX is abnormally high repeatedly; or the markets tend to 
overestimate the SPX performance. 

Previous studies (see e.g. Feldman & Roy 2005) supports the interpretation that the SPX 
options are overpriced, and it seems also the simplest explanation. But, considering that 
the VIX is calculated of options written on the SPX (see the VIX white paper: Chicago 
Board Options Exchange 2014) and assuming that the SPX options are overpriced it leads 
to the deduction that also the VIX has to be overpriced or at an artificially high level. The 
third interpretation relies on an assumption that the model is able to anticipate when the 
SPX is at artificially high level. The second and third interpretation are not mutually 
exclusive, but it would need further research to reject or confirm the third interpretation. 
No matter of the correct interpretation, the performance of ITM-5% VRP strategy and the 
statistics in table 2 (in section 5.2.2) suggests that the estimation model is capable of out-
of-the-sample estimation of the VIX. 

Also, the figure in appendix 3 demonstrates the benefits of the VRP strategy. The ITM-
5% buy write strategy offers a cumulative return equal to ca. 100% for the whole period, 
but when the VRP estimation model is utilized, the ITM-5% (VITM-5% in the figure) 
strategy offers ca. 300% cumulative return for the whole period. The appendix 2 panel D 
shows that the VRP ITM-5% strategy has also highest mean monthly return, which is 
11,09% as annualized return. 

This study finds greater difference between VRP and vanilla buy-write strategies than the 
original study does. Simon (2014) finds that utilizing VRP (or conditional volatility 
premium, CVP, as he defines it) increases performance of the strategy, but not as 
significantly as this study finds. Also, the risk-return payoff is an increasing function of 
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the strategy returns in whether the VRP estimation is employed or not. Though, it should 
be noted that Simon (2014) constructs his own volatility index for the underlying 
exchange-traded fund, which may not capture the same characteristics or interdependence 
with the underlying as VIX may have with its underlying (SPX).  

6.3 Dynamic strike price strategy 

The third research problem focuses on the dynamic strike price strategy, which writes call 
options based on their exercise probability instead of moneyness. These exercise 
probabilities are calculated for call options on the SPX with Heston option pricing model 
and then the options are sorted to 11 groups by their exercise probabilities. The 11 groups 
are then used to form 11 dynamic strike price strategies. Statistics for each group are 
found in table 4 in section 5.2.3. 

Table 7 shows the performance measurements of these 11 dynamic strategies and 
benchmarks. D5% is the best performing dynamic strategy with the only statistically 
significant Leland alpha, the highest Sortino ratio at 0,1952 and the highest Stutzer index 
value of 0,1130. The D5% strategy writes call options with average moneyness of 5,6% 
OTM. 

Comparing the best dynamic strategy with the best vanilla buy-write strategy shows that 
the D5% dynamic strategy outperforms the OTM-4% vanilla strategy and both BXM and 
SPXT benchmark indices. Also, the D5% strategy outperforms its closest equivalent 
OTM-5% vanilla strategy. Otherwise, the dynamic strategy underperforms the vanilla 
buy-write strategy. The groups above D20% have Stutzer index value of zero, because 
the Stutzer index penalizes skewness and kurtosis which the groups have highest among 
all strategies (see appendix 2, panel C). Also, the Sortino ratio is below the vanilla 
strategies and D95% is the only of all the strategies that has a negative Sortino ratio. 

Considering the results presented in the table above and the third hypothesis: 

H3: The performance of the vanilla buy-write strategy can be improved by utilizing 
the dynamic strike price method. 

The implied null hypothesis, that the performance of the vanilla buy-write strategy cannot 
be improved by utilizing the dynamic strike price method, is rejected. Although, on 
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average level the dynamic strategy does not improve the performance of the vanilla 
strategy, but the best version of dynamic strategy does, and this is what the third 
hypothesis is stating.  

Table 7. Performance measurements of the dynamic strike price strategies and 
benchmarks. The whole estimation period from January 2004 to January 2018. 169 
monthly observations. * is p-value <0,1, ** is p-value<0,05 and *** is p<0,01. K/S 
(strike price/stock price) is average moneyness.  

 K/S 
Leland     
alpha p-value 

Leland 
beta 

Sharpe 
ratio 

Sortino 
ratio 

Stutzer 
index 

SPXT      0,1302 0,1693  
BXM  0,08 % 0,4099 0,67 0,1144 0,1331 0,0748 
D95% 89,1 % -0,14 % 0,1552 0,20 -0,0331 -0,0344 0,0000 
D90% 93,8 % -0,06 % 0,5812 0,32 0,0391 0,0412 0,0000 
D80% 98,9 % 0,04 % 0,7223 0,58 0,1002 0,1118 0,0000 
D70% 99,3 % 0,05 % 0,6605 0,60 0,1036 0,1164 0,0000 
D60% 99,7 % 0,07 % 0,5283 0,62 0,1106 0,1253 0,0000 
D50% 100,0 % 0,09 % 0,4278 0,64 0,1162 0,1327 0,0000 
D40% 100,3 % 0,10 % 0,3868 0,67 0,1182 0,1357 0,0000 
D30% 100,6 % 0,12 % 0,2880 0,68 0,1239 0,1437 0,0000 
D20% 101,0 % 0,15 % 0,1851 0,71 0,1314 0,1541 0,0052 
D10% 101,3 % 0,17 % 0,1305 0,73 0,1359 0,1608 0,0279 
D5% 105,6 % 0,27%*** 0,0003 0,91 0,1527 0,1952 0,1130 
 

The appendix 1 shows that the dynamic strike price strategy and the vanilla buy-write 
strategy have similar risk-return payoff patterns (the reader can notice that the D95% is 
not plotted). Both strategies are somewhat linear functions of the risk-return payoff, so it 
would appear that it is indifferent which strategy to choose and the only difference is 
which moneyness or exercise probability to choose. The dynamic strategy maintains its 
linearity with higher risk-return combinations, compared to the vanilla strategy which 
starts turning horizontal. Assuming that this linearity would hold with higher risk-return 
pairs, it would be an attractive quality for an investor with higher risk-taking capacity, 
since the performance (Leland alpha, Sortino ratio and Stutzer index) is also increasing. 

The figure in appendix 3 shows that the D5% dynamic strategy offers third highest 
cumulative return (ca. 202%) and the D95% offers the lowest cumulative return (ca. 6%), 
of all of the strategies. The cumulative return of D95% is even lower than the 
corresponding return of the risk-free rate (T-Bill), which is ca. 17%. This indicates that 
the risk-free rate is a better investment than the D95% strategy.  
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Comparing the dynamic strategy with the VRP strategy shows that the best dynamic 
strategy (D5%) is able to outperform only the worst performing VRP strategy (OTM-
5%). D5% Leland alpha, Stutzer index and Sortino ratio values are 0,27%, 0,1130 and 
0,1952 respectively and the corresponding values for OTM-5% strategy are 0,26%, 
0,0782 and 0,1949. The systematic risk (Leland beta) and total risk (semi-standard 
deviation, see appendix 2 panel C and D) are the same for both strategies. This difference 
between the D5% and the OTM-5% strategies is marginal, compared to the difference 
between the D5% and the best VRP strategy ITM-5%. With lower systematic and total 
risk, the ITM-5% is able to offer ca. twice as high Leland alpha, higher Stutzer index and 
higher Sortino ratio. 

Hill et al. (2006), Che & Fung (2011) and Hsieh et al. (2014) examines the dynamic strike 
price strategy in their studies. All of the studies are conducted in different markets with 
different time periods, which may be the reason to somewhat different results between 
their studies and this study. Table 3 in Che & Fung (2011) shows that the Sortino ratio is 
highest (0,219) for the 49% probability group and lowest (0,167) for the 17% probability 
group. Hsieh et al. (2014) (tables 2 and 3) shows that the Sortino ratio is at highest in 17% 
group (0,066 and 0,1062) and lowest in 49% group (0,0159 and 0,0307) calculated with 
BSM and Heston models, respectively. Hill et al. (2006) does not report any performance 
measures for the strategies. 

Both Hsieh et al. (2014) and this study suggest a lower exercise probability dynamic 
strategy, in contrast to findings of Che & Fung (2011) which suggests a higher exercise 
probability dynamic strategy. The difference could be explained with different probability 
calculating methods, but Hsieh et al. (2014) uses both BSM and Heston models which 
both contradicts the findings of Che & Fung (2011).  

6.4 The combine strategy 

The combine strategy is a buy-write strategy that combines the volatility risk premium 
estimation (VRP) strategy and the dynamic strike price strategy. This strategy uses the 
VRP estimation model to time when to enter the dynamic strike price strategy and when 
to hold just the underlying stock (SPXT index in this case). The methodology for both 
strategies is explained in previous sections. 
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The table 8 presents the performance metrics for the 11 combine strategies. The 10,9%-
ITM strategy performs the best of the all combine strategies with every performance 
measurement. It offers statistically significant 0,58% Leland alpha, 0,1463 Stutzer index 
and 0,4088 Sortino ratio. The Leland alpha and Sortino ratios are the highest among all 
of the strategies examined in this study. 

The fourth research problem focuses on the performance of the combine strategy. 
Comparing the best combine strategy (10,9%-ITM) to other buy-write strategies, shows 
that the 10,9%-ITM strategy outperforms every other buy-write strategy with every 
performance measurement, except with Stutzer index the vanilla OTM-2%-OTM5% 
strategies. The 10,9%-ITM offers fourth highest mean monthly return with fourth lowest 
systematic risk (Leland beta) and third lowest total risk (semi-volatility) among all buy-
write strategies (see appendix 2 panel E). The fourth hypothesis is as follows: 

H4: The performance of the vanilla buy-write strategy can be improved further by 
timing the implementation of the strategy based on ex-ante volatility risk premium 
and utilizing the dynamic strike price method. 

Considering the performance of the 10,9%-ITM combine strategy, the implied null 
hypothesis to the H4, that the performance of the vanilla buy-write strategy cannot be 
improved further by utilizing the VRP and dynamic strategies, is rejected. 

The figure in appendix 1 demonstrates the effect applying VRP estimation to the dynamic 
strategy has. Comparing the 6,2%-ITM (second triangle from the left) to D90% shows 
that, applying VRP estimation to the D90% strategy (closest to the origin) increases semi-
standard deviation 38 basis points (bp) but increases mean return 70 bp. Or comparing 
the best VRP strategy with the worst dynamic strategy shows that the change in risk-
return payoff is 47 bp increase in risk and 81 bp increase in mean return. In relative terms 
the change is equal to 33% increase in risk and 1620% increase in mean return. Only the 
best dynamic strategy (D5%) is able to offer better risk-return payoff than the worst 
combine strategy (5,6%-OTM). Mean returns are equal but the semi-standard deviation 
of D5% strategy is 1 bp lower. 
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Table 8. Performance measurements of the combine strategies and benchmarks. The 
whole estimation period from January 2004 to January 2018. 169 monthly observations. 
* is p-value <0,1, ** is p-value<0,05 and *** is p<0,01. P2 Group is the exercise 
probability group. 

 
P2 
Group 

Leland    
alpha p-value 

Leland 
beta 

Sharpe 
ratio 

Sortino 
ratio 

Stutzer 
index 

SPXT         0,1302 0,1693   
BXM   0,08 % 0,4099 0,67 0,1144 0,1331 0,0748 
10,9%-ITM D95% 0,58%*** 0,0002 0,43 0,2744 0,1463 0,4088 
6.2%-ITM D90% 0,54%*** 0,0003 0,53 0,2522 0,1170 0,3470 
1,1%-ITM D80% 0,43%*** 0,0004 0,73 0,2035 0,1135 0,2628 
0,7%-ITM D70% 0,41%*** 0,0005 0,74 0,1974 0,1075 0,2544 
0,3%-ITM D60% 0,40%*** 0,0005 0,76 0,1939 0,1113 0,2496 
0,0%-ATM D50% 0,40%*** 0,0005 0,77 0,1918 0,1207 0,2470 
0,3%-OTM D40% 0,38%*** 0,0008 0,78 0,1847 0,1099 0,2370 
0,6%-OTM D30% 0,37%*** 0,0007 0,79 0,1833 0,1162 0,2355 
1,0%-OTM D20% 0,36%*** 0,0008 0,81 0,1802 0,1187 0,2314 
1,3%-OTM D10% 0,36%*** 0,0008 0,82 0,1778 0,1216 0,2282 
5,6%-OTM D5% 0,26%*** 0,0003 0,92 0,1497 0,0755 0,1931 
 

Also, the VRP strategy benefits from combining with the dynamic strategy. Comparing 
ITM-5% VRP strategy to its closest equal 6,2-ITM strategy shows that the change from 
fixed strike price to dynamic strike price decreases mean return 1 basis point but decreases 
semi-standard deviation 12 bp. Or comparing ATMs (0,0%-ATM and ATM) shows that 
the change from VRP to combine strategy leads to 2 bp increase in mean return and 5 bp 
decrease in risk. Similarly to the dynamic strategy, the VRP strategy benefits less from 
the combining the further the options are out-of-the-money. OTM-1% VRP strategy and 
1,0%-OTM combine strategy have equal mean returns and 4 bp difference in semi-
standard deviation, in favor for 1,0%-OTM strategy. The difference decreases when 
moving further away from the money. At ca. 5% out-of-the-money, 5,6%-OTM combine 
strategy and OTM-5% VRP strategy have 1 bp difference in risk, the mean returns being 
equal. 

The table 9 demonstrates the effect of combining the strategies to the dynamic strategies 
cash-flows from option writing. The D5% strategy is the only with positive mean cash-
flow. D95% strategy has a mean of -10,49 and nearly twice as many negative cash-flow 
months than positive.  
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Table 9. The effect of combining to dynamic strategy option premiums. 
  D95% D90% D10% D5% 
 Panel A: Without VRP 
Mean -10,49 -8,51 -2,30 0,62 
Median -18,65 -14,89 6,31 0,50 
Max 164,70 130,94 58,10 36,00 
Min -172,19 -163,69 -124,89 -66,54 
No. Pos 60 66 105 157 
No. Neg 108 102 63 11 
 Panel B: With VRP 
Mean 3,72 3,86 1,74 0,69 
Median 0 0 0 0 
Max 164,70 130,94 58,10 36,00 
Min -95,85 -87,65 -64,92 -44,42 
No. Pos 32 34 47 61 
No. Neg 34 32 19 5 
 

After combining the strategies, the median of all strategies turns to zero, since the VRP 
is below its mean most of the months (see appendix 4). The effect of combining is more 
dramatic on the ITM side than the OTM side of the strategies. For the D95% strategy, the 
mean monthly cash-flow turns positive by increasing from -10,49 to 3,72, the lowest cash-
flows grows from -172,19 to -95,85 and the number of positive cash-flows months 
increases from ca. 36% to 48%. The table 9 supports the VRP models capability and 
combining of the dynamic and VRP strategies. 

Appendix 2 shows that the combine strategy is able to combine strengths from both 
dynamic and VRP strategies, lower semi-volatility from dynamic strategy and higher 
mean return from VRP strategy. This effect is strongest when options are deep-in-the-
money and weakest when options are deep-out-of-the-money. Combining affects also 
skewness and kurtosis of the returns, as can be seen from the figure 8 below. The D95% 
dynamic strategy skewness and kurtosis decreases in absolute terms from -10,58 and 
125,67 to -1,63 and 10,93 after combination, respectively. Also, the VRP strategy return 
distribution changes to more normally distributed after combining. The ITM-5% VRP 
strategy skewness and kurtosis decreases in absolute value from -2,58 and 16,69 to -1,63 
and 10,93 after combining, respectively. The kurtosis of buy-write strategies is high 
compared to the excess return distribution of SPXT.  

Appendix 3 shows that the 10,9%-ITM combine strategy offers the second highest 
cumulative return for the whole period. The difference between the first (ITM-5% VRP 
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strategy) and the second is relatively small, only 1,66 index points (399,10 vs. 397,44). 
The worst combine strategy offers higher cumulative return than the best vanilla strategy 
(OTM-4%), SPXT or BXM indices. Also, the figure shows that the financial crisis has 
the least effect on 10,9%-ITM strategy from all of the strategies. This is examined further 
in the next section. 

 

 

 

 

 

 

 

 

Figure 8. Excess return probability distribution function. Strategies plotted: vanilla, 
dynamic, VRP and combine buy-write strategies and S&P 500 Total Return (SPXT) 
index of the whole period. 

6.5 Further discussion and summary 

The table 10 summarizes the best and worst performers of all of the buy-write strategies. 
The 10,9%-ITM combine strategy performs the best with statistically significant Leland 
alpha more than twice higher than the OTM-4% and D5% offers, lowest Leland beta of 
the top performers, highest Sharpe and Sortino ratios and second highest Stutzer index. 
The VRP strategy comes second, dynamic strategy third and the vanilla buy-write 
strategy last, although the OTM-4% vanilla buy-write strategy has highest Stutzer index 
value of the strategies. Appendix 2 shows that the 10,9%-ITM strategy offers fourth 
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highest mean monthly return (0,86%), which is 10,89% mean annualized return with third 
lowest semi-volatility. The ITM-5% VRP strategy has the highest mean monthly return 
(0,88%), which is 11,09% annualized. All of the top performers outperform the 
benchmark indices (SPXT and BXM) with every performance measurement and even the 
worst performers of combine and VRP strategies outperforms the benchmark indices. 
These results support the intended contribution of this study, that is to demonstrate that 
active buy-write strategies outperform the passive strategies. 

Table 10. The best and worst performers of all buy-write strategies. V in the strategy 
name indicates that it is VRP strategy. 

 Leland alpha p-value Leland beta 
Sharpe 
ratio 

Sortino 
ratio 

Stutzer 
index 

SPXT       0,1302 0,1693   
BXM 0,08 % 0,4099 0,67 0,1144 0,1331 0,0748 
Panel A: Top performers 
10,9%-ITM 0,58%*** 0,0002 0,43 0,2744 0,4088 0,1463 
VITM-5% 0,53%*** 0,0002 0,57 0,2472 0,3334 0,1233 
D5% 0,27%*** 0,0003 0,91 0,1527 0,1952 0,1130 
OTM-4% 0,26%*** 0,0022 0,88 0,1527 0,1925 0,2332 
Panel B: Worst performers 
VOTM-5% 0,26%*** 0,0005 0,91 0,1513 0,1949 0,0782 
5,6%-OTM 0,26%*** 0,0003 0,92 0,1497 0,1931 0,0755 
ITM-5% -0,05 % 0,7330 0,36 0,0529 0,0560 0,0000 
D95% -0,14 % 0,1552 0,20 -0,0331 -0,0344 0,0000 
 

Examining the appendix 3 shows that the ITM-5% VRP strategy (VITM-5%) 
demonstrates highest cumulative return for the whole period, the 10,9%-ITM combine 
strategy less than two index points behind. D95% dynamic strategy has lowest cumulative 
return, below the cumulative return of risk-free rate (ca. 6% vs. 17%). The figure in 
appendix 3 also demonstrates how the strategies react to market disturbances. The table 
11 shows how much the top and worst performers and the benchmark indices draw down 
during the financial crisis. 
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Table 11. The effect of financial crisis on top and worst performers and benchmarks. 
Calculated from period between 21.9.2017-20.2.2009, when the SPXT started to decline 
until it started to incline again. 
  SPXT BXM ITM-5% OTM-4% D95% 
Drawdown -52 % -36 % -25 % -45 % -15 % 
  D5% VITM-5% VOTM-5% 10,9%-ITM 5,6%-OTM 
Drawdown -47 % -29 % -48 % -21 % -48 % 
 

The S&P 500 Total Return index decreases 52% and the BXM decreases 36% during the 
17-month period. The OTM-5% VRP and the 5,6%-OTM combine strategies both 
decreases 48%, which is the highest drawdown of the buy-write strategies. The financial 
crisis has least effect on the worst performer D95% dynamic strategy, which decreases 
15%. The best performer 10,9%-ITM combine strategy has the second least effect, a 
drawdown of 21%. The figure in appendix 3 shows that also in 2015 when other strategies 
occurs some market turbulence, the 10,9%-ITM manages to increase, but at a more 
flattish rate. Also, the ITM-5% VRP strategy seems more immune to spikes in market 
volatility (compare appendix 3 and the actual VIX in appendix 4). This finding could 
mean that in addition to the benefits in performance, applying the VRP estimation to a 
buy-write strategy increases its immunity against market fluctuations. Examination of 
this possible property of the combine strategy is left at a speculative level and should be 
tested with proper statistical analysis, but since it is out of this study’s scope it is left to 
future research to be conducted. 

The appendix 1 shows that the vanilla and dynamic buy-write strategies are 
approximately increasing linear functions of the risk-return payoff, meaning that the 
higher return an investor wants, the higher risk she has to bear and the deeper-out-of-the-
money options she has to write. But if the VRP estimation is applied to the buy-write 
strategy, the risk-return payoff turns to a decreasing function, where out-of-moneyness 
leads to lower return and higher risk. This finding indicates that writing deeper in-the-
money options would minimize the risk. The return would be approximately unchanged, 
as the both VRP estimation utilizing strategies’ risk-return payoff curves turns horizontal 
with deep-in-the-money options. 

The figure 9 demonstrates also other characteristics of the buy-write strategies. All of the 
strategies approach the same relatively small area in the risk-return space as the out-of-
moneyness grows. The deepest out-of-the-money version of each strategy are within a 3 
basis point range, measured with both mean monthly return and semi-standard deviation. 
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Considering that in the in-the-money-side of the strategies the differences in returns and 
semi-volatilities are nearly 90 basis points at highest, signifying the close range of the 
deep-out-of-the-money strategy risk-return characteristics. 

 

 

 

 

 

 

 

 

Figure 9. The risk-return characteristics of out-of-the-money buy-write strategies. 

The explanation for this out-of-the-moneyness cluster is that as the buy-write strategy 
writes deeper OTM options, the cash-flows generated from the option writing approaches 
zero, since as the strike price grows (out-of-moneyness deepens) the more likely it is that 
the option expires worthless. And as the cash-flows decreases, the buy-write returns 
approaches its underlying’s returns (the individual data point, SPXT, in figure above). 
This finding leads to two deductions, as follows.  

The first is, that if an investor plans to use buy-write strategy as a passive investment 
strategy he should write approximately 4-5% OTM options (assuming that pure buy-write 
strategy can be considered as a passive strategy). As the table shows, all of the 4-5% OTM 
strategies offers the same risk-return payoff inside a 3 basis point range, despite the buy-
write strategy. Also, the OTM-4% vanilla buy-write strategy offers highest Stutzer index 
among OTM strategies. 
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The second deduction is, that if an investor plans to use buy-write strategy as an active 
investment strategy, she should write ITM options and choose the buy-write strategy 
carefully. Compared to the OTM strategies, the differences between buy-write strategies 
in the ITM side of the risk-return space are greater in significance, as can be seen from 
the figure 9. The dynamic and vanilla buy-write strategies start approaching the origin 
from the OTM cluster, where both risk and return is lower, whereas VRP and combine 
strategies start approaching the opposite direction (return increases, but risk decreases). 
As the appendix 1 demonstrates, VRP and combine buy-write strategies offers more 
attractive risk-return payoffs than dynamic and vanilla buy-write strategies. 
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7. CONCLUSIONS 

The buy-write strategy has been the most popular option strategy, at least until the recent 
decade. The growing amount of exchange-traded funds and strategy indices employing 
this strategy, in addition to its popularity, are the motivation for this study. The purpose 
of this study is to examine buy-write strategies and whether the active strategies 
outperform the passive strategies. These active strategies are the dynamic strike price, the 
volatility risk premium and the combine strategy.  

The history of studies examining the buy-write strategy starts from the 1970s, the same 
decade the first option exchange, Chicago Board Options Exchange, opened. The five 
decades of research is divided into four groups according to their direction of research 
and importance to this study.  

The first group presents the previous main studies to this study. Hill et al (2006) and Che 
& Fung (2011) examines the dynamic strike price strategy in their respective studies and 
finds that the dynamic strategy is a beneficial strategy during highly volatile markets 
conditions, since it offers higher risk-adjusted return than the vanilla fixed trike price 
strategy. Hsieh et al (2014) examines the dynamic strategies further and argues that a 
dynamic strategy using the Heston option pricing model instead of Black-Scholes-Merton 
model performs better. Simon (2014) presents a model to estimate the volatility risk 
premium of call options, which is based on the ability to predict when the implied 
volatility is artificially high. The buy-write position is then entered when the volatility 
risk premium is above its average level, leading to an increase in strategy performance. 
Motivated by these studies, this study examines a combine strategy, that according to its 
name, combines the dynamic strike price strategy and the volatility risk premium strategy. 

 The second group of studies focuses on the risk-return characteristics of the buy-write 
strategy. Brown & Lummer (1984) and Zivney & Alderson (1986) finds that writing 
options on a stock index instead of individual stocks leads to higher strategy performance. 
Later studies find that returns of a buy-write strategy are non-normally distributed, which 
is why the more traditional performance measurements as Jensen alpha and Sharpe ratio 
do not capture the performance of the strategy well (see e.g. Board et al. 200 and Figelman 
2008). These traditional performance measures are then substituted with non-normality 
considering Leland alpha and beta, Sortino ratio and Stutzer index. 
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The third and fourth group focuses on the construction of the CBOE S&P 500 BuyWrite 
Index (BXM) and the effect of market conditions in buy-write returns. The BXM is a 
buy-write strategy index writing options on the S&P 500 stock index and is used as a 
benchmark index for the buy-write strategies in this study. The effect of market conditions 
and especially volatility conditions in buy-write returns is demonstrated in several studies 
(see e.g. Feldman & Roy 2005 and Kapadia & Szado 2012). These studies show that the 
strategy outperforms the underlying stock index during market downturn and vice versa 
during market upturn. 

The theory part of this study is divided in half, the first part focusing on the options theory 
and the second part focusing on the performance measurements used in evaluation of the 
different buy-write strategies in the research part of this study. The options theory starts 
from the basic terminology, explains the valuation and boundaries of option prices and 
ends with Black-Scholes-Merton and Heston option pricing models and risk management 
measures known as the Greeks. The performance measurement section presents the 
traditional CAPM based measurement and also non-normality capturing Leland alpha and 
beta, Sortino ratio and Stutzer index. 

The data and methodology part disclose the data sources, presents some descriptive 
statistics of the data and explains in detail how the empirical part of this study is 
conducted. The option data is acquired from CBOE Datashop and all the rest of data is 
downloaded from Bloomberg Terminal, except the proxy for risk-free rate, US 1-month 
Treasury Bill, which is downloaded from Federal Reserve Bank of St. Louis. The 
methodology part presents first the calculation method for the buy-write strategy return 
and the proceeds to more complex methods used in the dynamic strategy and the volatility 
risk premium (VRP) strategy. The dynamic strategy writes call options based on their 
exercise probability, which is derived from the Heston option pricing model. The VRP 
strategy uses a model to estimate the difference between actual and out-of-sample fitted 
values of implied volatility and then times the strategy when the difference (volatility risk 
premium) is at optimal level. The combine strategy combines these two active strategies 
and tries to exploit the strengths of both strategies. 

The sixth section of this study presents the results of this study and discussed the 
interpretations of these results and findings. Results of each of the hypotheses are 
presented and discussed in own subsections and the last subsection discusses the 
interpretations of these findings in more general level. 
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The results of the performance of the vanilla buy-write strategies are examined in the first 
subsection. The results presented and discussed demonstrates that the OTM-4% buy-write 
strategy performs the best of the 8 vanilla buy-write strategies. The OTM-4% has highest 
performance measures (Leland alpha, Stutzer index and Sortino ratio), second highest 
mean return and second highest systematic and total risk of the vanilla strategies. These 
findings support the first hypothesis and are in line with previous studies, e.g. Hill et al. 
(2006) and Kapadia & Szado (2012). 

The second subsection presents the results of the volatility risk premium estimation 
strategies and discusses the findings. The deepest in-the-money ITM-5% volatility risk 
premium strategy performs the best of the VRP strategies with every performance 
measurement. It outperforms also the vanilla buy-write strategies which supports the 
second hypothesis and rejects the implied null hypothesis. An interesting result is that the 
ITM-5% strategy has also the lowest systematic and total risk of the VRP strategies. The 
results show that as the moneyness changes from ITM to OTM, mean returns decrease 
but semi-standard deviations increase. The appendix 1 shows that the VRP strategy’s risk-
return payoff curve is almost perpendicular to the corresponding curve of the vanilla buy-
write strategy, although the VRP starts turning horizontal as it approaches Y-axis (as the 
semi-standard deviation decreases). This finding is not examined in this study but would 
be an interesting question to answer in future research. 

The inverted risk-return payoff curve and the performance of ITM strategies demonstrates 
that the volatility risk premium estimation model is capable of estimating the VIX 
correctly. The best performance of 10,9%-ITM strategy supports the logic that when the 
implied volatility (as considered the option price) is artificially high, the price is high 
because the probability of exercising is thought to be high. And as the most ITM strategy 
performs the best, it indicates that implied volatility truly was artificially high. The 
appendix 4 shows that the volatility risk premium is below its average level the time 
before the financial crisis, is above during the crisis and periodically roses above the 
average after the crisis. This study does not examine why the volatility risk premium stays 
at higher level after the crisis and periodically rises above its average, even though the 
underlying S&P 500 index has been rising since the crisis (see figure 7 in section 5, but 
notice that the SPXT is just directive since it includes dividends). 

The third subsection presents and discusses the results of the dynamic strike price 
strategy. From 11 dynamic strategies the D5% strategy (writing on average 5,6% OTM 
options) performs the best. It is the only dynamic strategy with both economically and 
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statistically significant Leland alpha and it also outperforms the other strategies with 
every performance measurement. The D95% (writing 10,9% ITM options) is the worst 
performing dynamic strategy of all of the buy-write strategies in this study, for example 
it offers lower total period cumulative return than the risk-free rate (1-month T-Bill). The 
D5% strategy outperforms vanilla buy-write strategies supporting the third hypothesis 
and rejecting the implied null hypothesis. 

The findings of both Hsieh et al. (2014) and this study on dynamic strategy suggests 
writing lower exercise probability option in contrast to Che & Fung (2011) suggesting 
writing higher exercise probability options. This difference in results may be explained 
by the different exercise probability calculating methods, but Hsieh et al. (2014) uses both 
BSM and Heston model which both contradicts with Che & Fung (2011) who uses BSM 
model. 

The fourth subsection examines the results of the combine strategy, which utilizes both 
dynamic strike price and VRP strategies. The deepest in-the-money combine strategy 
performs the best. The 10,9%-ITM strategy has the highest statistically significant Leland 
alpha and highest Sortino ratio of all of the buy-write strategies. Except vanilla OTM-
2%-OTM-5% strategies, the combine strategy outperforms every other buy-write strategy 
with every performance measurement. These results support the fourth hypothesis and 
rejects the implied null hypothesis. The 10,9%-ITM strategy offers also the second 
highest cumulative return for the whole observation period (297,44 %). Examining the 
appendix 3 further also shows that the 10,9%-ITM strategy is less sensitive to market 
disturbances compared to other strategies. 

The appendix 1 shows the effect on the dynamic strategy when it is combined with the 
VRP strategy. The D95% dynamic strategy is so close to the origin that it is not plotted 
in the figure, but when it is enhanced with the VRP estimation method, its risk-return 
payoff moves to the leftmost triangle marker (the 10,9% ITM combine strategy). The 
change is equal to 81 basis points increase in mean return but 47 basis point increase in 
semi-standard deviation. 

The last subsection summarizes the results of this study and discusses some findings 
further, for example the clustering of OTM strategies’ risk-return payoffs and the 
immunity of strategies against fluctuations in markets. Last, the section discusses the 
preferable buy-write strategies for active and passive investors. 
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The purpose of this study (see section 1.2) is to analyze the buy-write strategy and to 
examine the effects on strategy performance when combining a dynamic strike price 
method and a volatility risk premium estimation model. Each of the four hypotheses (see 
section 1.2) focuses on a different buy-write strategy examined in this study. All of the 
implied null hypotheses were rejected, supporting the four hypotheses and the intended 
contribution of this study, which is to demonstrate that the active buy-write strategy 
outperforms the passive buy-write strategy. This study found some interesting topics or 
at least questions to answer for future research. The first is to examine further the 
contributing factors behind the VRP strategy’s ability to invert the risk-return payoff 
curve of the vanilla buy-write strategy, could this ability be enhanced by utilizing a more 
sophisticated volatility estimation model and how to choose the optimal threshold for 
VRP expensiveness (this study tested mean, median and median 75% and found mean 
the best). The second is to use robust methods and test whether the combine strategy has 
some immunity against market fluctuations and what are reasons behind it  
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APPENDIX 1. Tradeoff between risk and return. 

Tradeoff between mean return and semi-standard deviation of the strategies. Smaller plot 
is a zoomed plot of the cluster. D95% (1,41%; 0,05%) is not plotted to compress the 
figure size. 
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APPENDIX 2. Return and risk statistics of the strategies. 

This table contains return and risk measurements and statistics of all of the strategies. 
Skewness and kurtosis are calculated of excess returns. 

 
 Mean  

Return 
Annualized 

Mean Return Volatility 
Semi-

Volatility Skewness Kurtosis  
Panel A: Benchmark indices. 

    

SPXT 0,71 % 8,82 % 4,70 % 3,61 % -1,86 8,28 
BXM 0,47 % 5,80 % 3,28 % 2,82 % -3,69 21,62 
  

      

Panel B: Vanilla buy-write strategies 
    

ITM-5% 0,21 % 2,52 % 2,12 % 2,00 % -8,04 78,66 
ITM-2% 0,33 % 4,04 % 2,66 % 2,44 % -5,83 46,32 
ATM 0,49 % 6,10 % 3,33 % 2,90 % -4,06 25,28 
OTM-1% 0,58 % 7,14 % 3,61 % 3,06 % -3,50 19,68 
OTM-2% 0,65 % 8,10 % 3,86 % 3,19 % -3,11 16,28 
OTM-3% 0,72 % 8,98 % 4,07 % 3,28 % -2,78 13,66 
OTM-4% 0,74 % 9,28 % 4,23 % 3,36 % -2,56 12,28 
OTM-5% 0,74 % 9,30 % 4,33 % 3,41 % -2,42 11,44 
  

      

Panel C: Dynamic strike price strategies 
    

D95% 0,05 % 0,56 % 1,47 % 1,41 % -10,58 125,67 
D90% 0,17 % 2,08 % 1,95 % 1,85 % -8,51 86,39 
D80% 0,39 % 4,80 % 2,96 % 2,65 % -4,91 34,88 
D70% 0,41 % 5,05 % 3,05 % 2,72 % -4,65 31,90 
D60% 0,44 % 5,45 % 3,15 % 2,78 % -4,44 29,51 
D50% 0,47 % 5,80 % 3,23 % 2,83 % -4,19 26,62 
D40% 0,49 % 6,03 % 3,33 % 2,90 % -4,06 25,34 
D30% 0,52 % 6,40 % 3,41 % 2,94 % -3,85 23,13 
D20% 0,56 % 6,90 % 3,52 % 3,00 % -3,63 21,07 
D10% 0,59 % 7,28 % 3,62 % 3,06 % -3,48 19,52 
D5% 0,76 % 9,54 % 4,37 % 3,42 % -2,39 11,30 
 
This table continues in the next page. 
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 Mean   

Return 
Annualized 

Mean Return Volatility 
Semi-

Volatility Skewness Kurtosis  
Panel D: Volatility risk premium strategies       
ITM-5% 0,88 % 11,09 % 3,17 % 2,35 % -2,58 16,69 
ITM-2% 0,87 % 10,93 % 3,51 % 2,69 % -2,71 15,90 
ATM 0,81 % 10,22 % 3,89 % 3,03 % -2,58 13,55 
OTM-1% 0,81 % 10,17 % 4,04 % 3,15 % -2,49 12,43 
OTM-2% 0,79 % 9,96 % 4,16 % 3,25 % -2,44 11,93 
OTM-3% 0,80 % 10,01 % 4,26 % 3,31 % -2,36 11,24 
OTM-4% 0,79 % 9,86 % 4,36 % 3,38 % -2,30 10,92 
OTM-5% 0,76 % 9,53 % 4,40 % 3,42 % -2,27 10,72 
              
Panel E: Combine strategies         
10,9%-ITM 0,86 % 10,89 % 2,80 % 1,88 % -1,63 10,93 
6.2%-ITM 0,87 % 10,94 % 3,07 % 2,23 % -2,35 15,21 
1,1%-ITM 0,84 % 10,61 % 3,68 % 2,85 % -2,66 14,84 
0,7%-ITM 0,83 % 10,47 % 3,74 % 2,90 % -2,64 14,45 
0,3%-ITM 0,83 % 10,43 % 3,79 % 2,94 % -2,62 14,19 
0,0%-ATM 0,83 % 10,44 % 3,83 % 2,98 % -2,57 13,51 
0,3%-OTM 0,81 % 10,23 % 3,89 % 3,04 % -2,58 13,56 
0,6%-OTM 0,82 % 10,25 % 3,93 % 3,06 % -2,53 13,02 
1,0%-OTM 0,81 % 10,22 % 3,99 % 3,11 % -2,51 12,72 
1,3%-OTM 0,81 % 10,21 % 4,04 % 3,15 % -2,50 12,48 
5,6%-OTM 0,76 % 9,49 % 4,43 % 3,43 % -2,24 10,61 
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APPENDIX 3. Cumulative returns of different strategies. 

Cumulative returns of best and worst version of each strategy. Indexed to value of 100 as 
of 16.1.2004. A strategy starting with: a V is a volatility risk premium strategy, with a 
one decimal percentage is a combine strategy, with a D is dynamic strategy and with ITM 
or OTM is vanilla buy-write strategy. The observation period is 16.1.2004-18.1.2018. 
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APPENDIX 4. Actual and estimated VIX. 

Actual and estimated VIX from 2004 to 2018. VRP stands for volatility risk premium. 
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