

UNIVERSITY OF VAASA

SCHOOL OF TECHNOLOGY AND INNOVATIONS

SOFTWARE ENGINEERING

Jori Kankaanpää

ON REDUCING RELEASE COST OF EMBEDDED SOFTWARE

Master’s thesis for the degree of Master of Science in Technology submitted for

inspection, Vaasa, 11 November 2018.

Supervisor Prof. Jouni Lampinen

Instructor M.Sc. (Tech.) Lassi Niemistö

1

PREFACE

Huge thanks for my supervisor Professor Jouni Lampinen and instructor M.Sc. (Tech.)

Lassi Niemistö for all the assistance and constructive suggestions I’ve received for this

study. Thanks also for everybody else who have given tips or otherwise helped me with

the study.

I would also like to thank my family, colleagues and friends for all the support and pa-

tience during my studies in the past 5 years.

Vaasa, 18.10.2018.

Jori Kankaanpää

2

TABLE OF CONTENTS

PREFACE 1

ABBREVIATIONS 4

ABSTRACT 5

TIIVISTELMÄ 6

1 INTRODUCTION 7

2 SOFTWARE DEVELOPMENT LIFE CYCLES 11

2.1 Waterfall 11

2.2 Agile 12

2.3 Release management 13

3 CONTINUOUS DELIVERY 16

3.1 Background 16

3.2 Continuous Integration 17

3.3 Continuous Delivery 21

3.4 Continuous Delivery in embedded domain 23

4 BUILD ENVIRONMENT ISOLATION 26

4.1 Containers as build environment providers 26

4.2 Docker for Continuous Integration 29

5 PLANNING 32

5.1 Current situation 32

5.2 Reducing work 40

3

5.2.1 Automate branch creation and version file updates 41

5.2.2 Updating configurations and building test packages 42

5.3 Controlling the pipeline 43

6 IMPLEMENTATION 46

6.1 Creating the branch creator for automatic branching and file updates 46

6.2 Creating the system exporter for providing test packages from CI 49

6.2.1 Isolating the build environment 50

6.2.2 Building test packages 54

6.3 Managing the pipeline with TeamCity 57

7 RESULTS 62

7.1 Results 62

7.2 Suggested next steps 64

8 CONCLUSIONS 66

REFERENCES 68

4

ABBREVIATIONS

API Application Programming Interface, a definition according to

which applications can communicate with each other.

CD Continuous Delivery, a term with the meaning that product is

ready to be deployed to the production anytime without long

planning.

CI Continuous Integration, a term with the meaning that each

change is tested as soon as it is pushed to the repository.

QA Quality Assurance, a process of verifying that the product

fulfills the quality requirements.

REST Representational State Transfer, an architectural style for im-

plementing web services.

SDLC Software Development Life Cycle, a process describing the

whole software development process.

TTM Time-to-market, time from a product idea to the finished prod-

uct which is available on the market.

VCS Version Control System, a system to store source files along

with the versioned history.

VM Virtual Machine, software which imitates physical hardware

making it possible to install multiple machines inside a single

physical machine.

5

UNIVERSITY OF VAASA

School of Technology and Innovations

Author: Jori Kankaanpää

Topic of the Thesis: On Reducing Release Cost of Embedded Software

Supervisor: Prof. Jouni Lampinen

Instructor: M.Sc. (Tech.) Lassi Niemistö

Degree: Master of Science in Technology

Major of Subject: Software Engineering

Year of Entering the University: 2013

Year of Completing the Thesis: 2018 Pages: 73

ABSTRACT

This study focuses on lowering release cost for an embedded software project by improv-

ing the continuous integration pipeline and by moving towards continuous delivery. The

study is made as an assignment for a Finnish software company. The case project is em-

bedded software project written with C/C++ programming languages. Additionally, the

project consists of a desktop tool for managing the embedded systems, but no special

focus is given to this tool. The goal of the study is to reduce both the total time of the

deployment pipeline and the amount of active manual working in the pipeline. This is

achieved by automating tedious steps of the release and by constructing an automated

pipeline which produces all the needed files for the release.

The work began by exploring the previous release process and by identifying the compli-

cated or time-consuming parts of it. Based on the findings, three main focus areas were

selected for development: work related to branching and file updates, work related to

updating test systems configuration and work related to building the test binaries. After

this, each of these three focus areas were improved one at a time by building tools to

automate the steps with Python and Kotlin programming languages. Additionally, the

continuous integration pipeline was further developed by taking Docker containerization

technology into use, which provided better build environment isolation giving a possibil-

ity to better utilize binaries produced by the continuous integration server.

As a result of the study, a proposal for the improved release process was created focusing

on the automation of the tedious steps. With the new process total deployment time went

down to about 4 hours from previous 7 hours and 40 minutes, and the active manual work

went down to a bit less than 1 hour from previous 4.5 hours. Additionally, some of the

steps might be repeated multiple times during a release. On the other side, it was found

out that the process also had some steps which were not feasible to automate such as steps

which currently require manual consideration from release engineer. Due to this, the re-

sulting pipeline is not yet fully automatic. This would be a good candidate for a further

study since overcoming this issue would make the pipeline fully automatic after the code

freeze which would further increase the benefits.

KEYWORDS: software engineering, software release process, continuous delivery

6

VAASAN YLIOPISTO

Tekniikan ja innovaatiojohtamisen yksikkö

Tekijä: Jori Kankaanpää

Diplomityön nimi: Sulautetun ohjelmistoprojektin julkaisukustannusten

alentaminen

Valvojan nimi: Professori Jouni Lampinen

Ohjaajan nimi: DI Lassi Niemistö

Tutkinto: Diplomi-insinööri

Oppiaine: Ohjelmistotekniikka

Opintojen aloitusvuosi: 2013

Diplomityön valmistumisvuosi: 2018 Sivumäärä: 73

TIIVISTELMÄ

Tämän diplomityön aiheena on sulautetun ohjelmiston julkaisukustannusten alentaminen

pyrkimällä lähemmäksi jatkuvan toimituksen prosessia. Työ toteutetaan suomalaiselle

ohjelmistoyritykselle. Työ liittyy C/C++-pohjaiseen sulautetun järjestelmän ohjelmisto-

projektiin, jonka asetusten säätäminen ja monitorointi tapahtuu erillisellä työpöytäsovel-

luksella. Tavoitteena on vähentää ohjelmiston julkaisuun liittyvien manuaalisten työvai-

heiden määrää sekä niiden vaatimaa aikaa rakentamalla automatisoitu julkaisuputki,

jonka lopputuloksena saadaan tarvittavat tiedostot ohjelmiston julkaisemiseen. Työpöy-

täsovelluksen julkaisuprosessiin työssä ei kiinnitetä erityistä huomiota.

Työ alkoi selvittämällä entisen prosessin kulku ja eri vaiheisiin kuluva aika, sekä se pal-

jonko vaihe sisältää aktiivista manuaalista työtä. Selvityksen perusteella valittiin proses-

sin osat, joiden parantamisesta saavutettaisiin suurin hyöty. Prosessin kuvauksen perus-

teella havaittiin, että prosessissa on kolme osaa, joiden parantamiseen tulisi kiinnittää

huomiota: julkaisuhaarojen luonti ja siihen liittyvät tiedostojen päivitykset, sulautetun

järjestelmän asetuksien päivitykset ja testaamista varten luotujen sulautettujen testiohjel-

mien kääntäminen ja paketoiminen. Myöhemmin näitä vaiheita kehitettiin muun muassa

rakentamalla Python- ja Kotlin-ohjelmointikielillä apuohjelmia, jotka automatisoivat vai-

heiden suoritusta. Lisäksi käännösprosessia kehitettiin ottamalla käyttöön Docker-kontti-

teknologia, mikä mahdollisti ympäristön paremman suojaamisen virhetilanteilta. Muutos

mahdollisti jatkuvan integraation palvelimen luomien testiohjelmien laajemman käytön.

Työn tuloksena syntyi ehdotus uudeksi julkaisuprosessiksi, jossa automaation määrää on

lisätty. Ehdotuksessa manuaalisten vaiheiden määrä väheni ja virheiden mahdollisuus

prosessin aikana pieneni. Vaiheisiin kuluva kokonaisaika pieneni noin puoleen alkupe-

räisestä. Aktiivisen manuaalisen työn määrä väheni noin 80 prosentilla. Toisaalta todet-

tiin, että prosessissa on sellaisia vaiheita, joiden automatisointi ei vielä tässä vaiheessa

ollut mahdollista ilman lisäpanostusta niiden vaatiman tapauskohtaisen harkinnan vuoksi.

Tämän vuoksi systeemin asetuksien päivityksen automatisointia ei saatu täysin toteutet-

tua. Julkaisuprosessin sujuvoittamiseksi se olisi kuitenkin hyvä jatkotutkimuksen kohde.

AVAINSANAT: ohjelmistotuotanto, ohjelmiston julkaisuprosessi, jatkuva toimitus

7

1 INTRODUCTION

The functional requirements of the software development process are increasing. At the

same time, software should be developed faster with fewer resources while also keeping

the number of software defects low. The market demands that the software release times

are reduced and that the customers start seeing the added value from the software as soon

as possible. These different demands conflict with each other and improvements to the

whole software development process are needed in order to stay relevant in the competing

field.

Back in the 1990s, the most commonly used software development life cycle (SDLC)

model was the waterfall model (Isaias & Issa 2015). Over the time it has been observed

that the given model is not often the optimal due to issues it has, especially regarding the

requirement change management during the process (Rajlich 2006). As a result, various

new models have emerged such as many different agile methods. Nowadays using one of

the agile methods in one form or another is more of a norm than an exception. In a study

conducted by Rodríquez, Markkula, Oivo and Turula (2012) 58% of 200 participated

Finnish companies reported using agile or lean methods.

In order to adequately support an agile software development process, various practices

and tools have emerged. Continuous integration (CI) and continuous deployment (CD)

are practices that have recently gained a lot of attention in the companies. Using the agile

software development model along with the continuous integration is supposed to help

releasing software in faster cycles while keeping the quality of the software high (Fowler

2006).

Having a short release cycle is beneficial for a software project since that allows custom-

ers to start gaining value from their investment early on and the feedback cycle also gets

shorter which benefits the requirement management and overall efficiency. However,

achieving full continuous deployment might be a troubled task for a complex software

project which has not been built with the continuous deployment in mind. Often there

8

might be for example some manual steps which require human intervention. Some pro-

cess for handling situations like this then needs to be created.

This study is made for a Finnish software company Wapice Ltd where the author of the

study has been working since 2013. The background to the research is that there was a

request from a customer in 2017 to reduce the costs related to releasing a new version of

the software developed by Wapice. To fulfill the request, multiple projects were launched.

One of those was related to reducing manual work that needs to be done every time a new

version of the software is released to the customer. This is the part this study will attempt

to cover.

This study will focus on the matter of reducing software release costs with the help of

continuous delivery in a complex software project. The goal of the study is to reduce

software release costs by automatizing steps in the software release process. After the

single tasks are automated, the goal is to build an automatic pipeline where time-

consuming tasks are done automatically after the user has given the needed inputs.

The actual project consists of two main parts: embedded software which is run on the

customer’s embedded hardware and the desktop software used for configuring and mon-

itoring the embedded systems consisting of the said embedded devices. The embedded

software is packaged into Debian Linux package and distributed as such to customer. The

customer further uses the Debian package to build customized packages for the different

installations. Debian package is used since the main development environment is cur-

rently based on Lubuntu Linux. The desktop software is created using Qt-framework and

it currently supports only Windows environment. Desktop tool is distributed as a single

installer capable of installing the tool to the user’s machine.

The pipeline for the desktop application is currently in better shape than the one for re-

leasing the embedded software. There is also a separate project for reducing the release

cost for the desktop application. Thus, this research will mostly focus on automatizing

the release steps of the embedded software part of the software project. At the beginning

of a study, it is known that there are currently many manual steps involved in releasing

9

an updated version of the embedded software. The goal of the study is to minimize this

manual work and handle the entire process in a more organized way.

This study is limited to using continuous delivery to reduce the software release time and

cost. For example, automatic testing is known to be a valuable tool for reducing release

costs, but this study will not focus on the matter unless it is strictly related to continuous

delivery. Continuous delivery is considered mainly for an embedded software develop-

ment process. Thus, the solutions used might be different from the ones that would be

used for a more typical web-based application. For the continuous integration server, the

focus is limited in the study to a continuous integration server produced by JetBrains

called “TeamCity”. As part of building an automated pipeline, some improvements to the

existing build system are also to be done. To increase the robustness of build environment

containerization technology is to be used. There, the study will limit the focus to Docker

container technology which is supported by TeamCity out of the box. The study will not

put much focus to alternative container technologies.

The goal is to start initial work for the study on the last quarter of 2017. The practical part

of the study is to be finished in the second quarter of 2018 and documenting work will

shortly follow practical part. Work will be finished at the latest by the autumn of 2018.

The study will begin with a literature review. In the literature review, the first chapter

goes briefly through the advantages and issues of the agile software development life

cycle models compared with the more traditional waterfall model. Ways to manage soft-

ware releases are also shortly introduced in this part. After that, the focus is moved to

continuous delivery, what it means, what are the benefits of it, what issues there often are

when implementing it, specifically on embedded environments and which tools are avail-

able for helping to accomplish that. As the last part of the literature review, Docker con-

tainer technology is to be explained and discussed how it can be utilized to improve the

robustness of the build environment.

After the literature review is done, there will be a practical study for reducing the software

release cost by striving towards the continuous delivery process for the case project. The

10

practical part will begin by introducing the current situation followed by the plan where

the main points of focus are selected. Then the practical work is conducted after which

the findings and results are analyzed, and recommendations for the future steps are given.

Finally, in the conclusions chapter the progress of the whole study is evaluated.

11

2 SOFTWARE DEVELOPMENT LIFE CYCLES

2.1 Waterfall

The waterfall model is a traditional software development life cycle model that has been

in use for a long time. It often consists of six stages although this depends slightly on how

the stages are count. The six stages are: requirements analysis, system design, implemen-

tation, testing, deployment and maintenance. The process begins with the requirements

analysis phase where the requirements of the application are collected and often a require-

ments document is also created. In the system design phase system to be created is ana-

lyzed and business logic is decided. In the implementation phase, the actual program is

written and integrated and its functionality is verified in the testing phase. Once testing is

done, the program is deployed to the production in the deployment phase which is fol-

lowed by the possibly long-lasting maintenance phase. (Pfleeger & Atlee 2010: 75.)

These stages are visible in Figure 1.

Figure 1. The traditional waterfall model with six stages. The model moves sequen-

tially from top to bottom one stage at a time.

12

The waterfall model is a very structured model and it flows from the first phase to the last

phase sequentially starting a new phase only after the previous phase has finished (Pflee-

ger & Atlee 2010: 54). This has a benefit that it forces a project to work in a structured

manner which is often necessary for a large software project (Powell-Morse 2016). On

the other hand, the waterfall model is considered inadequate in various ways. It has been

criticized for not reflecting the usual software development process where software is

developed iteratively (Pfleeger & Atlee 2010: 76). Also, due to structural, linear nature,

testing begins very late in the life cycle leading to the late discovery of issues. It is also

suboptimal for changing requirements during the software life cycle since the requirement

gathering is done very early in the process and once it has finished those are not re-

checked. (Powell-Morse 2016.)

In modern industry time-to-market (TTM) is also a key factor for customers (Kwak &

Stoddard 2004). That is, how much time it takes to start gaining value from the point the

new idea was invented. The waterfall model is not optimal for this because the whole

application needs to be finished before it can be deployed. This makes for long feedback

times which raises possibilities for problems late in the development cycle (Powell-Morse

2016).

2.2 Agile

Agile methods were invented to overcome some of these inflexibility issues of the water-

fall model. Ideas central to agile software development were introduced in the Agile Man-

ifesto by Beck et al. (2001) which states: “We are uncovering better ways of developing

software by doing it and helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.”

13

Faster releases and increased flexibility during the development process are often considered

the strengths of the agile methods (Begel & Nagappan 2007). Agile methods often also im-

prove communication both inside the project team and to the end customer (Begel & Nagap-

pan 2007). These can be considered substantial competitive advantages on the fast-changing

market.

There are various software development frameworks which adhere to the principles of the

Agile manifesto. Out of those frameworks, Scrum is one of the most popular ones (Begel &

Nagappan 2007). Scrum consists of short sprints during which small part of the software is

developed according to priorities set by a customer. At the end of the sprint, software is sup-

posed to be in a working condition. Quick reaction to problems is achieved with the daily

scrum meetings which are short meetings where issues that have aroused are handled.

(Schwaber & Sutherland 2018.)

2.3 Release management

While agile methods might reduce the time to market metric, there are other important

factors related to software release costs. Significant portion of the total costs associated

to a medium to large software project are typically related to the release process, project

management and to the testing and quality assurance which are often part of release pro-

cess (Saleh 2010; XebiaLabs 2018). In the market, there are multiple tools for helping

with managing the release process such as XL Release from XebiaLabs and BuildMaster

from Inedo (Inedo 2018a; XebiaLabs 2018).

Both BuildMaster and XL Release allow for example modeling the release process, in-

serting manual steps into the release process, inserting automatic steps into release pro-

cess and setting approval gates between the steps. They also both visualize the state of

the releases. Additionally, both tools integrate into many other services often used during

the release such as issue trackers and continuous integration servers. (Inedo 2018a; Xebi-

aLabs 2015; XebiaLabs 2018.) This makes it possible to have more control over the

14

release process providing more reliable and reproducible releases. Example view from

BuildMaster is presented in Figure 2.

Thus, the usage of a release management tool could help improve the release process and

reduce time wasted for example waiting for approval since the release management tool

can notify required parties when the input from them is needed. However, both BuildMas-

ter and XL Release are commercial programs (Inedo 2018b; XebiaLabs 2018). Therefore,

the license costs should be considered when deciding their usage. As of April 2018,

BuildMaster has also a community version which can be freely used, but it has the

Figure 2. Example view from BuildMaster 6.0.3 release management tool.

15

limitation that each user is an admin on the service, so no proper access control is possible

(Inedo 2018b). No information is available about the pricing of XL Release from the

website of the product.

16

3 CONTINUOUS DELIVERY

3.1 Background

Nowadays the agile methods are widely used in the software industry due to their ability

to better respond to continuously changing customer needs. As mentioned before in the

introduction, according to study by Rodríguez et al. (2012) 58 % of the studied Finnish

software companies reported using some form of agile or lean development method.

Naturally, the widespread adaption of the agile methods has caused interest in software

tools that can help in adopting the agile methods, and as a result, various tools and prac-

tices have emerged to support working according to those methodologies. As the software

needs to be in a working condition at the end of each short sprint, it is vital to keep it in a

functioning state continuously. This is needed to avoid excessive integration work at the

end of each sprint. Doing the integration work late in the software life cycle is often costly

and quickly leads to project delays (Duvall, Matyas & Glover 2007). Continuous integra-

tion (CI) and continuous delivery (CD) are practices often used for avoiding integration

issues at the end of a software process (Fowler 2013).

In the continuous integration developers integrate their work back into the main reposi-

tory regularly. When the integration happens, a continuous integration server verifies that

the integration is successful by validating the change against the rest of the repository. If

integration fails, the developer is notified by the integration server. In the continuous de-

livery, this idea is taken further, and software is not only integrated, but also otherwise

prepared for deployment such that the new version could be released each time the devel-

oper successfully integrates his work into the main repository. Integrating software regu-

larly makes it possible to notice issues earlier and to release software more often. (Fowler

2013.) However, there might also be issues preventing the continuous integrations such

as lack of the testing hardware (Lwakatare et al. 2016).

17

3.2 Continuous Integration

Continuous integration is one of the practices often used to help with implementing agile

development methods. The term continuous integration is originating from one of the

Extreme Programming’s twelve practices. In the continuous integration team members

integrate their work frequently into the main development branch. This integration usu-

ally happens at least once per day, and it can be automatic or manual. When the change

is integrated, it is common to run some basic test set for it to catch possible integration

issues early on. Doing the frequent integrations helps to keep the software in the releasa-

ble state during the whole development cycle. (Fowler 2006.)

The usual workflow for the developer in a continuous integration environment is described

by Fowler (2006) followingly: as usual, the workflow process begins by upgrading one’s

local version of software sources from a remote version control repository. After that, the

changes are made to the local version of the software, and it is verified that building the

software still succeeds. Once verification is done, the developer can push changes back to the

remote repository.

Then comes the actual CI part: the software is built for the second time on a separate CI

machine (CI agent) which might execute various additional steps such as executing auto-

matic tests during the integration pipeline. At this point, it is verified that developer’s new

modifications work well with everyone else’s work. If something fails, the CI system

sends an alert notification to the developer that there is something wrong with the updated

version and that it failed to integrate cleanly with the main branch. This way, the issue is

detected early in the process and can be fixed quickly. (Fowler 2006.) Figure 3 demon-

strates the process.

18

Of course, the described process is a straightforward one, and it could be easily taken

further. For example, it might be a clever idea to produce an application installer as an

output (artifact) of a successful build thus enabling the customers or other developers to

Figure 3. The diagram describes the usual straightforward continuous integration pro-

cess.

19

continuously test the latest version of the software (Fowler 2006). Another option is to go

all the way to the continuous deployment: after the software is integrated successfully and

tests pass it is possible to make yet another step that deploys the updated version of the

software to the production server automatically (Fowler 2006).

Implementing the continuous integration provides a project with many benefits. One ben-

efit is that CI system helps reducing assumptions by doing a rebuild of the software each

time the change is made. CI can also be considered a vital part of project QA as it can be

used for determining software health after each change. (Duvall et al. 2007: 24-25.) In

the book by Duvall et al. (2007: 29) the high-level values of CI are described as: “

• Reduce risks

• Reduce repetitive manual processes

• Generate deployable software at any time and at any place

• Enable better project visibility

• Establish greater confidence in the software product from the development team“.

Additionally, CI system enables some other benefits. These include the ability to find and

fix software bugs early, decrease the cost of new changes and ability to take software into

use with smaller risk (Rasmusson 2010: 235).

However, adopting the continuous integration is not always a trivial task. Some problems

found out were for example skepticism to benefits, the fear that implementing the CI will

cost more than the benefit is, the poor maturity of tools required for supporting CI and

the doubt of applicability of CI to all organizations and projects. In addition to these some

more technical problems were found out such as too long feedback times for the CI system

to be useful, too many manual tests to integrate frequently, the poor visualization of the

build pipeline and the need for stricter software dependency management. (Debbiche,

Dienér & Svensson 2014.)

Duvall et al. (2007) also point out some concerns commonly faced when thinking about

taking a CI system into use. One problem mentioned is that people are worried that main-

taining the CI system is too much extra work. Another problem that was mentioned is

20

that people might be worried that implementing the CI system in the middle of a project

poses a too massive change causing a risk to the project. Other concern mentioned is that

wrongly applied CI might cause some issues such as build instability which reduces the

benefits of the system. Yet another concern comes from the needed software licenses and

hardware costs. (Duvall et al. 2007: 32-33.)

In the market, there are various CI server tools available for different needs. In the em-

bedded software project on-premises hosted solution is often necessary in order to get

easy access to the tested hardware. Tools allowing this include TeamCity, Jenkins, Bam-

boo, CircleCI, and Travis CI Enterprise. Some of those are open source such as Jenkins

and some are mainly cloud-based hosted solutions, even though they include commercial

on-premises versions as well such as Travis CI. (Pecanac 2016.)

TeamCity is the CI solution that has been used in the case project for approximately two

years now. TeamCity is a CI server by JetBrains which can be either self-hosted locally

or hosted on one of the cloud providers. TeamCity provides a professional version free of

charge. However, the professional version has some limitations which make it unsuitable

for large software projects. Limitations are: only 3 build agents can be registered at the

same time, and only 100 build configurations might be used. To overcome the limitations,

JetBrains offers an enterprise edition of the TeamCity which has the same features, but

the limitations can be scaled up by purchasing a suitable license. (JetBrains s.r.o. 2018a.)

C and C++ environments used in the case software project are supported by TeamCity

along with many different environments (JetBrains s.r.o. 2018c). In TeamCity 2017.2

official support for using Docker as part of the build pipeline was also included. This new

feature allows, for example, running each software build inside a new Docker container.

(JetBrains s.r.o. 2017.) The feature can be used to provide better isolation of the build

environment and easier replication of the environment. This feature will be used in the

case study and using Docker will be covered in more detail in Chapter 4.

21

3.3 Continuous Delivery

Continuous delivery builds on top of the continuous integration. While CI usually refers

to the integrating, building and testing each change, this does not mean that everything

needed for deployment is done in the CI pipeline. There might, for example, be additional

work such as updating the environment, deploying the packages to the servers, updating

the configuration files or other activities related to the release process which are not done

as part of the continuous integration pipeline. Continuous delivery is filling the needed

holes for the product to be ready for deployment at any point in the lifecycle. (Fowler

2013.)

Continuous delivery is an approach where software is kept in the releasable state during

the whole life cycle so that it can be reliably released at any given time to the production.

It is believed that there are numerous benefits from doing this such as the ability to bring

new features and improvements rapidly and reliably to the market. This is often consid-

ered a substantial competitive advantage. Not using continuous delivery approach might

lead to a situation where each release is developed for months and features completed

early on the cycle unnecessarily wait a long time before they can be released to the

customer. This might reduce or even completely remove the value that could have been

acquired with the feature. (Chen 2015.)

Another problem with which the continuous delivery might help with is a disorganized

release process. When the release is done only once in a few months and when the release

process contains numerous manual steps the execution is often disorganized and error-

prone. With the continuous delivery, the release process occurs more often which makes

it easier to remember. Implementing CD frequently requires also stripping the unneces-

sary complications away from the process. Continuous delivery also often improves prod-

uct quality and customer satisfaction because feedback for the changes is received more

frequently. (Chen 2015.) Figure 4 lists benefits of applying continuous delivery to a soft-

ware project.

22

Figure 4. Typical benefits of practicing continuous delivery in a software project

(Chen 2015).

Implementing the continuous delivery might sometimes be problematic. One problem

mentioned by Chen (2015) is that release process usually involves many different teams

that might have separate interests. For example, setting up the test environment might

need support from operations team which might not be keen on giving too strong access

rights to servers for another team as they might fear something will be broken. Another

problem mentioned by Chen is that release processes often involve long bureaucratic

steps which might take multiple days making delivery take too long time. Lastly, he men-

tions that there are currently no robust and comprehensive tools for supporting continuous

delivery. Often necessary tools need to be developed by the developing organization

themselves which takes lots of resources and might involve multiple tools for achieving

all the requirements.

The continuous delivery pipeline can be automatic, semi-automatic or a manual. The

pipeline often starts when the code is committed to the repository. After that, the CI server

23

usually builds the software and runs unit tests for it as was described in the previous

chapter. However, in continuous delivery, there are usually more steps after it. For exam-

ple, after the build has finished, there might be more extensive acceptance tests which are

executed. There might also be manual tests and finally, the deploy step. The pipeline

would advance to the next step only if the current step was executed successfully without

problems. Promotion to the next step might be automatic such as when the next step be-

gins if integration tests pass or manual such as when a release manager manually marks

manual tests as executed leading to the product deploy phase to begin. Figure 5 represents

an example CD pipeline.

3.4 Continuous Delivery in embedded domain

Continuous delivery is most commonly used in the web domain as there are various tools

for supporting it there. For example, virtualization and configuration management tools

help setting up the test and production environments quickly and scaling up the processing

power when needed. However, despite the benefits of continuous delivery, it has not been

yet as commonly taken into use in the embedded system domain. This is not necessarily

because the benefits of the continuous delivery would not be applicable to the embedded

domain but rather because of the additional obstacles embedded systems development

imposes. (Lwakatare et al. 2016.)

Figure 5. Example pipeline with automatic and manual promotions between the steps

(Chen 2015).

24

Lwakatare et al. (2016) conducted a multi-case study with an interpretive approach about

the adoption of DevOps practices in the embedded systems domain. In the study, they

collected data from four Finnish companies which develop embedded systems. They

found out four key categories for issues of adopting the CD practices on the embedded

domain.

The first problem found out was the usual organization structure. In the web companies,

development is usually done by self-organizing feature teams with the required skills and

tools to develop and test new features. On the embedded side, development is more often

done in module teams which focus on some particular low-level part of a system. These

teams tend to require specialization as they work closer to hardware. This kind of struc-

ture makes the importance of communication more crucial, since with the specialized

teams it might easily happen that members of the team are not aware of what is happening

outside the team. Moreover, having the hardware dependency often prolongs the devel-

opment cycles and feature releases. (Lwakatare et al. 2016.)

The second frequent problem is the lack of proper test environments. Embedded software

teams often do not have proper access to test environment which closely matches the one

used by the customer. In the web domain creating a new test environment is easy but it is

not the same in the embedded project where there are dependencies to the specific hard-

ware used by the customer. (Lwakatare et al. 2016.)

The third problem found out by Lwakatare et al. is the lack of tools. While for the web

domain there are various open source tools for automating the deployment process, very

few tools exist for the embedded domain. They found out that there are no tools which

would allow new software to be deployed reliably on a continuous basis to the target

devices. This problem was even more severe in the critical embedded systems. (Lwa-

katare et al. 2016.)

The last found issue was about the lack of usage data. In the web domain companies often

collect data about how their services are used and by whom. This data can be further

processed to find out development targets for the continuous improvement. In the

25

embedded software domain, monitoring is often done only for the fault analysis and the

feature usage information is not collected. The data is also often saved on the device or

on the customer side leading to a situation where the developing company might not have

easy access to it. This makes continuous improvement harder to do on the embedded

domain. (Lwakatare et al. 2016.)

Despite the problems of adoption of continuous delivery for the embedded software pro-

jects, the benefits of practicing it would still be valid. For example, cutting the time-to-

market time down by continuously building and testing software is not limited to the web

application domain but instead would be beneficial to any project. Another reason why

CD might be important in the future is cyber security of the embedded devices, which

requires frequent updates.

In order to make continuous delivery more feasible in the embedded system domain, tech-

niques have been studied for overcoming some of the limitations mentioned above. For

example, one alternative solution to lack of test equipment is using simulation (Engblom

2015). In this solution real hardware is simulated using a virtual platform which runs on

standard PCs and servers (Engblom 2015). This simulated platform can use code imple-

mented for the embedded device and thus the testing becomes much more accessible

(Engblom 2015). When the environment is running on a typical PC, for example, tech-

nologies used for web domain environment setup might be used.

26

4 BUILD ENVIRONMENT ISOLATION

4.1 Containers as build environment providers

Another part of a continuous delivery pipeline is setting up the build and test environment.

Preferably the build environment should be reliable, isolated and easy to replicate. One

option for build environment is to have a physical machine with the same operating sys-

tem and environment as is used in the daily development. Another option is to replace the

physical machine with a virtual machine. The machine can also be set up with a configu-

ration management tool or in case of a virtual machine, from the snapshot image to ease

the replication. However, another option is to use containerization technology such as

Docker or LXD to provide an isolated environment for building and testing the software.

Docker is a software containerization platform. A Docker container is an environment

created from a Docker image, which is a lightweight, stand-alone package, to provide the

program and all the needed dependencies to run it. These containers will run similarly

regardless of the platform on top of which Docker is running. Docker is available for

Linux and Windows-based applications and it is based on open standards and is open

source. (Docker Inc. 2018b; Docker Inc. 2018c.)

Containers also isolate the application from the surrounding environment avoiding the

conflicts and improving the security (Docker Inc. 2018b; Docker Inc. 2018c.). The

Docker container runs inside a separate namespace from which it cannot see the processes

or filesystem outside the namespace. This isolation is provided on Linux using two pieces

of the Linux kernel: namespaces and cgroups. (Anderson 2015.) On Windows the isola-

tion is provided with Hyper-V or with process and namespace isolation technologies pro-

vided by the operating system (Brown et al. 2016).

On the other hand, there have also been studies if the Docker itself introduces security

vulnerabilities. One example is that Docker daemon usually runs as a user who has full

administrator rights on the host machine. As a result, if the access was gained from inside

27

the container to the host operating system, it could potentially compromise the entire sys-

tem. This is something that should be considered when taking Docker into use in critical

environments. (Merkel 2014.) Other points to the security issues are a possibility to turn

off some of the Docker’s security mechanisms and quite commonly used functionality to

automatically update the environment from third-party registries. (Combe, Martin & Di

Pietro 2016.)

Docker containers typically use operating system kernel of the host machine. The filesys-

tem of the container image is layered. This has the benefit that if changes are made in a

single layer, only the layers above the modified layer need to be rebuilt and distributed

saving both disk space and network bandwidth. Structure of Docker is shown in Figure

6. (Docker Inc. 2018b.)

Docker is sometimes used in place of a traditional virtual machine. However, it differs

from the virtual machine in some noteworthy ways. Containers virtualize the operating

Figure 6. Structure of the Docker. Docker is a layer on top of the application layer.

The container includes an application with needed dependencies to run it.

(Docker Inc. 2018b.)

28

system instead of the hardware and thus the container does not need a hypervisor layer

on top of the hardware. This should lead to less wasted computing resources which should

lead to a better performance. This is backed up by the study from Felter et al. (2015)

where Docker performance was found out to be the same or better than KVM-based vir-

tualization although the difference was not huge. Containers are a layer on top of the

application layer. Multiple containers can run on the same machine and they share the

operating system kernel and resources. However, containers are isolated processes in the

user space and do not have access to each other’s internals. Due to these reasons, contain-

ers usually start almost instantly. (Docker Inc. 2018b.)

Virtual machines, on the other hand, are at lower level. A virtual machine abstracts phys-

ical hardware into many machines. Each machine has its own copy of an operating sys-

tem, including the kernel and applications. This means, for example, that starting up a

virtual machine might take a long time as it needs to start up the whole operating system.

Docker is often seen as a lightweight virtual machine because it does not need heavy

hypervisor layer and full operating system installed on each image. However, Docker is

Figure 7. Structure of the virtual machine. Hypervisor works as an additional abstrac-

tion layer on top of the hardware. Each VM has its own operating system

and applications. (Docker Inc. 2018b.)

29

not technically a virtual machine and its architecture is rather different from usual virtu-

alization. (Docker Inc. 2018b.) The difference in structure between Docker and the

traditional virtual machine can be seen by comparing Figures 6 and 7.

Docker is typically used to deploy microservice-based applications to a cloud. This is

useful because the container contains everything that is needed to run the software while

it does not care about the underlying platform on which it is run. Another huge benefit

with Docker is that it helps to manage the dependencies. Quite often applications have

many components which all have their own set of dependencies. Sometimes these de-

pendencies might even conflict with one another which leads to a situation known as

“dependency hell”. With Docker, each component can be packaged along with its de-

pendencies separately from the other components to avoid the issue. (Docker Inc. 2018c.;

Merkel 2014.) Another area where this ability might be used is for packaging research

environment along with the needed dependencies with the scientific work (Cito, Ferme

& Gall 2016).

4.2 Docker for Continuous Integration

Another use case for Docker is to use it for providing the build environments for the

continuous integration server. In this situation, a separate Docker image is created specif-

ically for building the application. This image contains all the tools necessary for building

the application. At the beginning of the build, a new container is created from this special

purpose image in a continuous integration build agent and the source code of the applica-

tion is made available inside the created container. Then further steps of the build are

executed inside this newly created container. After the build has finished, build artifacts

can be fetched from inside the container and stored for use outside it. (Ledenev 2016.)

Using Docker like this for setting up the build environment has various benefits. One

huge benefit is that it makes it is easy to switch between different environments. For

example, if the application was previously built with the older toolchain, it is just a matter

of building a new image with the new toolchain to test building with it. If the new

30

toolchain is not suitable, switching back is just a matter of falling back to the previous

image. Another advantage is that build environment is easy to share with other developers

since everything they need to build the software is bundled inside the image. This also

supports build environment replicability. (Rancher Labs 2016.) Also, since one machine

can host several Docker images at the same time as mentioned in the previous chapter,

one physical machine can easily build many different programs without the risk of build

environments conflicting with each other.

Since everything during the build is happening inside a Docker container, after the build

has finished, it is easy to roll-back everything that was done (Rancher Labs 2016). This

allows doing complicated environment setup during the build and cleaning the system

once the build has finished which helps in build isolation and makes it possible to make

heavier modifications to the build environment without possibly breaking other parts of

the system.

Several CI server tools support using Docker for build environment setup. TeamCity has

had this support since the end of 2017 (JetBrains s.r.o. 2017). TeamCity has extensive

support for Docker. It allows creating Docker images in the build steps, uploading the

created images to Docker registry and executing arbitrary build steps inside a Docker

container created from the specified image, which can be fetched from the registry or

stored locally on the machine. When build steps are executed inside the container, check-

out directories and most of the environment variables are automatically passed inside it.

As of Spring 2018 Docker support of the TeamCity has a limit that on Windows machines

Docker works only in a “Windows container mode”. This means that Windows build

machines cannot host Linux based build environments. (JetBrains s.r.o. 2018b.)

Build step execution inside a container works on per build step basis in TeamCity. A new

container is created at the beginning of a build step, and it is automatically destroyed at

the end of the build step. This means that the whole build does not share the same con-

tainer unless the build has only a single build step. TeamCity also automatically makes

sure that file permissions and ownerships are restored at the end of each build step to the

state those were before the build step began. It is also possible to pass additional

31

parameters to Docker’s run command that is executed by TeamCity to for example restrict

resource usage or to mount additional locations inside the container. (JetBrains s.r.o.

2018b.) The configuration needed for using Docker is easy to configure in a build step

configuration page provided by TeamCity as demonstrated in Figure 8.

With the strong support for Docker in TeamCity introduced at the end of 2017, it is simple

to use Docker for build environment provision and isolation as introduced earlier.

Figure 8. Settings by TeamCity for running a build step inside a Docker container.

32

5 PLANNING

5.1 Current situation

In the case project, major releases are currently done a few times per year due to the vast

amount of manual work related to each release. The outputs of a release include three

parts from the software perspective. On top of that, there are documents such as release

notes and a test report.

First, the major release contains an embedded software platform which is packaged inside

a Debian Linux package. This package can be considered the main release artifact from

the embedded side since this is the package that the customer uses for developing their

customized binaries. This package is basically a platform on top of which different appli-

cations for a specific purpose are built with. The platform provides the core functionality

of a system such as communication methods between the embedded devices. Develop-

ment and building of the platform occur mainly inside a specialized Linux environment

which often runs inside a virtual machine. In the study, this part of the software will be

referred as the “platform.”

Secondly, the release contains a desktop configuration and monitoring tool for the em-

bedded devices. This tool currently works only on the Windows operating system. This

tool can be used for example to configure the embedded system such as which devices

are part of the system and how are the devices communicating with each other. The tool

can also be used to define, for example, which version of the developed communication

protocol is used by the system. Additionally, the tool allows monitoring and diagnosing

the configured system. This tool is not given particular attention in this study since there

is a parallel project for reducing the release time for it. When needed, this tool will be

referred as the “configuration tool”.

Thirdly, the release contains four test system packages. These packages are pre-config-

ured systems with different capabilities and devices enabled. For example, there is one

33

test system which is configured to include at least one of each device type. The test pack-

age contains a configuration created by the configuration tool and binaries for the embed-

ded devices which can be downloaded to the devices using the configuration tool. The

binaries are created inside the Linux development environment using the platform. Bina-

ries are created based on the configuration created by the configuration tool since it de-

cides which applications are enabled on which devices. The actual test package that is

released is a specially structured zip archive created by the configuration tool. The pack-

age created by the configuration tool is later referred as a “test package” while the binaries

created by the platform are referred as “test binaries”. Figure 9 represents the required

release outputs with numbers 1 to 3.

In case of an embedded software project, it is at times a bit hard to define what is the

meaning of the continuous delivery. In this study, the definition of continuous delivery is

that all the three release outputs mentioned above are provided and tested by the

Figure 9. Figure representing different release outputs and situation where those are

produced.

34

continuous integration system. This is, once all the outputs from the Wapice are ready for

delivery to the customer who can start using the provided files right away. This is needed,

because it is not possible for this project to decide how and when the product is deployed

to the end users.

The preparation for each release begins already before the code freeze, which is the point

when all the changes for the release need to be committed to the master branch. Before

the code freeze, however, release team is already doing some activities. The steps exe-

cuted during the release are represented in Figure 10.

Figure 10. Overview of the steps executed during the release. Each step has a time esti-

mate for executing it.

The steps with red color are currently done manually. The step with green color is done

automatically by the CI system. The orange step would already be provided by CI system

35

but is still currently done manually for the release purposes. The process is represented

in a diagram with the time estimates from the release team for executing each manual

step. It is good to note these estimates are from an experienced release engineer and time

estimates would probably be much higher for someone inexperienced with the steps.

Update schemas is the first step. In this step it is made sure that the schema files do not

have unnecessary versions defined in them since those might have been added during the

development for the testing purposes. If the version is no more in use and if it has not

been released before, it should be removed from the file.

The second step is update transition files. These files define how the configuration is

updated when updating some part of the system from one version to another. When new

version of the schema is created, a corresponding transition file should also be created.

Thus, when schema is removed, transition files should be updated accordingly.

The third step is update logids. There, an updated version of the log message IDs file is

fetched from the external service and committed into the repository. A small utility is

used for fetching the latest version of the file.

The last step before the code freeze is update version info for test applications. In this

step, the versions of the test applications built on top of the platform are changed to the

release version by modifying a configuration file.

Once the code freeze has started, the first step is to create branches, update submodules

and .gitmodules. The step begins by creating release branches to the version control sys-

tem (VCS). The VCS system in use is Git, and more specifically, Gerrit is used for man-

aging it. Gerrit is hosting Git-repositories with extra functionalities such as with the sup-

port for peer-reviews. Once the release branches are created, “.gitmodules” file needs to

be updated in each repository. This file handles which versions of the submodules are

fetched. The project has 4 repositories. One for the platform, one for the configuration

tool, one for automatic test scripts and one shared repository which is used to share com-

mon files between the three other repositories. In addition to this, the configuration tool

36

repository includes the platform repository as a submodule in its repository. Thus, .git-

modules file needs to be updated in three repositories and also the links to the correct

revision needs to be updated in the same repositories.

Usually, at the same time as the submodules are updated, the step update version defi-

nitions in configuration files is also done. In this step, versions are updated to various

configuration files such as to the documentation files. There are multiple files that need

to be updated, and most of them have a different schema for the version string they expect.

For the platform, there are currently three files which need to be updated, and they all

have a different format for the version. After the changes are made, changes are pushed

to Gerrit for a code review.

Once the changes are reviewed and merged, build installers step is executed. In this step

an installer of the configuration tool is automatically built by the CI system and published

as a build artifact.

Afterwards, a member of the release team installs the configuration tool and imports a

test configuration into it. At the same time, one needs to fetch and import needed sche-

mas from the platform’s repository and point configuration tool to those.

After that, the user logs into the system with the configuration tool. At this point, the

configuration tool might ask user to execute migrations. In that case, the release engineer

has to select which migrations should be executed.

Next, the user should update versions in the system configuration. This includes updating

software / version field with the release number and updating test applications versions

to the latest ones available in the imported schemas.

Then one should use the configuration tool to trigger update CAN-configuration and to

generate header files for the platform. These steps are simple to execute via the graphical

user interface and are not explained in more detail. However, the generated header files

should be moved to the platform repository.

37

Afterward, configuration is saved and committed to the VCS. This process from im-

porting the configuration file to saving the updated version is repeated for all the 4 test

system configurations. Along with the configuration, generated header files are also com-

mitted to the repository.

When the configurations are updated and committed to the repository for all the test sys-

tems, the build server creates the platform Debian package. This could then have been

fetched by the release engineer and installed on one’s local machine. However, it turned

out that release engineer was building the Debian package on one’s own local machine

as well. This was mainly happening because one needed to build test applications locally

anyway since those were not created by the CI system. One problem preventing the de-

livery of those by the CI system was that the created Debian package needed to be in-

stalled on the build machine before test binaries could be built against it. However, in-

stalling the development version of the Debian package poses a risk of breaking the build

machine since the package might have post-install steps which might execute arbitrary

commands. Thus, in a faulty situation, this could potentially break the whole test envi-

ronment.

Typically, developers compile the test applications directly against the platform source

code. However, during the release it is vital to verify that building the applications works

also against the content of Debian package which is what is released to the customer. In

order to do that, the Debian package is installed and file called build_config.cmake is

updated to point to the installed version of the platform before building the test binaries.

Previously, build_config.cmake file was updated four times, once for the test application

binaries of each four systems. However, during the new process planning it turned out

that this was unnecessary and updating the file once was enough.

Once build_config.cmake is updated, test application binaries are built. Since the bi-

naries are not created against the Debian package continuously during the development,

this step often causes problems in a way that compilation fails.

38

Once the binaries are successfully created, they are moved back to Windows machine

where they are imported to the configuration tool with the configuration file and

logids file which were updated before.

Next, the release engineer logs into the system and downloads the binaries and config-

uration to the actual embedded devices using the configuration tool. Then it is verified

using the configuration tool that the system is functioning correctly by checking it goes

to the operational mode. Finally, the system is exported as a test package using the

configuration tool. This is naturally also repeated for all the four test systems.

Now all the outputs needed for the release are ready. The Debian package has been built,

and so has the installer of the configuration tool. Also, the test packages have been created

using the Debian package as the source, and simple validation for it has been done. At

this point, further manual validation is done, and if it passes, the created content will be

published to the customer. If problems arise, then platform or configuration is changed,

and the needed steps are repeated to provide new candidates for the release.

In order to better evaluate the results of the planned improvements, measures are in order

about the current situation. Three measures were decided: total time of the process after

the code freeze, the time between the beginning of the first manual step and the end of

the last manual step after the code freeze and total active working time on the manual

steps after the code freeze.

Table 1 contains the time estimates for different release steps. The estimates for the table

are based on estimates from the members of the release team and verified by the author

of the research by executing the same steps. Additionally, as mentioned before, due to

application binaries not being build using the Debian package during the development,

“build application binaries” step often takes much longer, up to at least 30 minutes extra

time. This is included in the table with name “Fix problems in building binaries”. Based

on the table, the whole process after the code freeze took about 7 hours and 40 minutes.

This is also the time from the beginning of the first manual step to the end of the last

manual step. Out of this time, active manual working was about 4 hours and 30 minutes.

39

Table 1. Table listing tasks related to release process when the practical part of the study

began along with the total time and manual work time related to each step.

Step description Time Manual work

Create branches / update files 2 h 2 h

Code review changes 10 min 10 min

Build installers 50 min 0 min

Install software / import config 20 min 5 min

Import schemas 28 min 28 min

Execute migrations 20 min 1 min

Update software / version 4 min 4 min

Update sys. param and application versions 12 min 12 min

Update CAN configuration 12 min 5 min

Generate headers 12 min 5 min

Save config and commit it 20 min 10 min

Create platform Debian package 30 min 1 min

Install Debian package 1 min 1 min

Update build_config.cmake 4 min 4 min

Build application binaries 4 min 4 min

Fix problems in building binaries 30 min 30 min

Import system into the configuration tool 20 min 15 min

Login, download, check operational 40 min 10 min

Export test package 20 min 5 min

TOTAL TIME 457 min 270 min

The time before the code freeze is not taken into account for two reasons. Firstly, the

long-lasting steps there require manual consideration with the other developers and are

thus hard to automate. Secondly, and more importantly, the steps after the code freeze are

40

the steps which decide the actual deployment time. The other steps can be kept up-to-date

during the project if needed, but the steps after the code freeze are significant in how long

it takes to actually deliver the software once the decision for a release has arrived.

5.2 Reducing work

The goal of this study is to reduce the release cost and to decrease the time needed from

code freeze to final release by removing the manual work required for each release. The

process was modeled in Figure 10 with the time estimates from release engineers. In ad-

dition to asking time estimates, the release engineers were interviewed for recommenda-

tions about which steps they find the most troublesome to execute during the release. As

a result, three focus areas were selected for this study.

The first problem area is the branching and updating all the submodules and version files.

This step requires working with four different Git-repositories and updating files on three

of them. In addition, interaction with Gerrit web application is needed for creating the

branches. Almost every file that needs to be updated also has a unique format for the

version string. The step requires quite a bit of active manual working and is rather error-

prone due to the need to jump around between different repositories and to update each

file with the correct format.

The second problematic part is dealing with the test system configuration updates. This

involves installing the configuration tool on the user’s own machine, importing the con-

figuration file and the needed schemas and doing the needed updates to the configuration.

The process is tedious and error-prone especially since it needs to be repeated four times

for different test packages.

The third focus area is building the test packages. This involves taking the upgraded con-

figuration, moving it to the Linux-based development environment, installing the plat-

form Debian package there, updating the build configuration file to point to the installed

platform and to select which test binaries to build, building the binaries and moving them

41

back to Windows-environment, importing them along with the configuration file to the

configuration tool and testing that everything works. After that the test package is ex-

ported using the user interface provided by the configuration tool. Additionally, in the old

process, updating the build configuration file and building the binaries had to be done

separately from each other for each test system.

Plans were made to improve the situation on all the three problem areas. The overview of

the pipeline is represented in Figure 11 and presented in more detail in next paragraphs.

Figure 11. Overview of the planned new release process.

5.2.1 Automate branch creation and version file updates

At first, the focus is put on the branch creation and file updates. The proposed solution to

this problem is creating a utility which handles the branch creation and file updates. The

tool can interact with the Gerrit server using the REST-API that Gerrit provides (Gerrit

2018). The tool would need to have two main functionalities:

42

• Interact with the Gerrit server to manage the branches.

• Fetch the file contents from Gerrit, update the content and push it back to Gerrit

for a review.

The release engineer could then merely execute this utility with the needed parameters

such as the release name, Gerrit server address and project names and the utility would

handle the branching and the file updates.

5.2.2 Updating configurations and building test packages

The second problem is updating the system configuration files. The first plan was to use

the Apache Thrift API provided by the configuration management tool to automate the

actions required. Apache Thrift is a software framework for scalable cross-language ser-

vice development (Apache Software Foundation 2018a). Using the Thrift API, it is

possible to use the most of the functionalities provided by the configuration tool

programmatically. The bindings to the API are already generated for the Java program-

ming language since those are also used by the automatic test scripts. The problem with

this approach is that not everything in the process can be straightforwardly automatized.

There is, for example, “execute migrations” step which would benefit from the user con-

sideration about which of the migrations should be executed at which time. Thus, the fully

automatic solution was ditched.

The solution idea for the third issue is first to isolate the build environment so that the

Debian package can be installed inside it without risk. Then, updating build_config-

.cmake there will be automated, and test binaries will be compiled in the CI system against

the Debian package. Then when this job finishes, it will trigger another job in CI system,

which imports the created binaries, copies them to the correct places and logs into the

system using the previously mentioned Thrift API.

After the system has been opened with the Thrift API, versions of the test applications

and general software version defined in the configuration will be validated. In case some

43

version does not match the expected version, the build will report the situation as a

TeamCity build problem. This will help the release engineer with the problem 2 for which

completely automatic solution was abandoned. TeamCity can be configured so that build

problem does not stop the build which shall be done so that package is exported even if

some validation fails. The validation needs to get expected versions somewhere, and it

can get them from the Debian package job. General software version will be parsed from

the Debian package version, and the expected application versions will be formed using

the schemas, which the Debian platform job will export as build artifacts.

Once the validation is done, this new software exports the actual test packages using the

same Thrift API. This will result in one archive file per test system which is then pub-

lished on the CI system. Implementing the tool this way will solve the problem 3, and

problem 2 will be semi-automatized. The release engineer needs to update manually only

the systems for which build problems are reported.

In order for the solution to the problems 2 and 3 be feasible, it must be possible to install

the Debian package to the CI agent machine in order to use it for building the test binaries.

For this TeamCity’s Docker support will be utilized. The idea is to update the Docker

image at the beginning of a build with the needed dependencies. Then Debian package

will be created inside a clean container and installed there. After this, build_config.cmake

will also be updated inside the container, and test binaries will be created there. Binaries

will be published as build artifacts, and the created container will be removed from the

system.

5.3 Controlling the pipeline

In order to control the complete build pipeline, multiple options were considered. First,

release management tools like BuildMaster and XL Release were considered. However,

the work required from setting up these was considered to be too massive at this point

since the study already had multiple areas to implement such as Docker setup and the

44

schedule was already getting tight. XL Release is also rather expensive to use, which

means it would need to have clear benefits to justify the cost.

The second option was to use Jenkins along with its pipeline plugin since it has support

for asking the user input in the middle of the pipeline. Nevertheless, the idea was ditched

when it became clear that the final pipeline would not benefit significantly from the sup-

port for manual steps which would have been the main selling point for Jenkins.

Instead, it was finally decided that the tools created as part of this study would at this

point be controlled from the same TeamCity server as where the builds happen. The over-

view of planned TeamCity pipeline setup is described in Figure 12.

Figure 12. Overview of the planned TeamCity pipeline controlling the release process.

45

When the release begins, release manager triggers job to create release branches and up-

date version in configuration files. Once those changes have been reviewed and merged

to the repository, the rest of the pipeline is executed automatically. The needed user in-

puts for the “create release branches” will be asked before the build begins and those are

stored as build parameters to control the build. The advantages of this solution are that it

is both familiar to both teams involved in the process and TeamCity instance is already

up and running so the cost of setting the system up will be minimal. This is beneficial

also if the switch to a release management tool will happen at the later stage.

46

6 IMPLEMENTATION

6.1 Creating the branch creator for automatic branching and file updates

Improving the process is started by creating a tool for automating the branch creation and

updating the necessary files. The process is started by collecting the exact requirements

for the application. Identified main requirements are:

• Create release branches according to a user specified release name and base

branches (base branch is the branch from which the new branch is created from).

• Base branch can be different for each project for which branches are created.

• It should support release candidate releases, final releases and maintenance re-

leases.

• Update content of the files that require updating during the release. Currently,

there are 5 distinct types of files that require updating in different projects. The

file does not need to exist in all of the projects, but it might.

There are some additional features which could be considered such as also creating stable

branches in addition to release branches. The stable branch is a branch which is created

to continue development on a specific major release after the current release is done (usu-

ally bug fixes to the release). In order to fulfill the requirements, some hidden require-

ments also exist. These include a way to specify the correct Gerrit server and a possibility

to interact with Gerrit’s REST-API which requires user authentication. The created tool

should also have an effortless way to include new file update abilities to the process since

the files that need updating are changing from time to time. Also, the dependency to Gerrit

should preferably be isolated from the rest of the system so that program can be modified

for working with other tools apart from Gerrit if needed in the future.

47

The tool was decided to be implemented with Python programming language. There were

multiple reasons for the choice. First, Python is familiar to every developer on the pro-

ject’s CI team. Secondly, its dynamic nature suits well the scripting use-case for the CI

job. There also exists a third-party library pygerrit2 for interacting with the Gerrit’s

REST-API and the library is MIT-licensed (Pursehouse 2018). Java was also considered

since it would share most of the same advantages, but the need for compiling was con-

sidered troublesome for scripting inside the CI job.

The development of the tool was started with planning the needed classes. Gerrit related

functionality is isolated into the class GerritClient to fulfill the requirement that tool must

be easy to modify to work with other VCS services apart from Gerrit. Also adding new

file updaters is a matter of creating a new class and implementing the method called up-

date_file_content there which gets the old file content as a string input and the method

should return the updated file content. Then an instance of this new class should be added

to the list of file updaters in VersionStringUpdater class along with the project and path

where the file is updated. This is all that is needed for adding a new file to be updated to

the tool.

Apart from the class diagram, the needed inputs for the program were designed. The pro-

gram will take as inputs: address to Gerrit server, credentials to Gerrit (username and

HTTP auth token), release name for which the branches are created in the form of MA-

JOR.MINOR[.MAINTENANCE] [RC X], e.g. 1.0.1 RC 1, the name of the default base

branch along with the possible overwrites on per project basis and boolean toggle

switches to decide if the files should be updated or if the stable branches should also be

created. An example command invocation of the program could look like:

branchcreator –-gerrit-url http://gerrit-address.com -–

gerrit-username user -–gerrit-password password -–re-

lease 1.0.1 --base-branch master –-override-projectA-

base-branch 1.0.0 -–update-files -–no-stable-branches

However, not all the parameters are required. The only necessary parameters are

username, password, and release. Others have default values defined. The class diagram

of the tool is represented in Figure 13.

48

Figure 13. Class diagram for the design of the branching utility.

49

After the design, implementation of the program was done. Details of this are not repre-

sented here since those do not add much to the study. After the implementation, the

program was tested on test instance of Gerrit which is cloned from the production in-

stance. Additionally, unit tests were written using ‘pytest’ testing framework. It is a

framework that makes it easy to write small tests for the application using Python’s built-

in assert statement (Krekel 2017). Unit tests included tests for all the version string for-

mats provided from VersionStringFormatter class with different release types (release

candidate, full, maintenance). Additionally, at least one test was made for each file up-

dater in a way that valid file was given to it as an input, validator was executed, and the

output content was validated to be what is expected. The application was also tested to be

working with both Python 2 and Python 3 to make sure it works with both current and

future machines.

Documentation for the application was also created at this stage. Deployment and de-

pendency management of the application was done using program called ‘pipenv’, which

is a tool to manage dependencies for the Python applications (Pipenv 2018). After the

application worked, a new build configuration was created to TeamCity to allow smooth

running of the tool. This is documented in greater detail in chapter 6.3.

6.2 Creating the system exporter for providing test packages from CI

The second task to do was to provide test packages from the continuous integration sys-

tem. This task has basically two separate subtasks. The first task is to improve the build

process of the platform such that the Debian package can be safely installed to the build

agent. This is needed to closely resemble customer use case. The customer builds binaries

against the Debian package and therefore the test binaries for release should also be build

against it. This step requires constructing a way to isolate the build environment such that

it is safe to install the created Debian package to the system without the risk of it breaking

the whole environment. Basically, what is done during the build should be reversable

after the build has finished.

50

The second part of this task is about taking the binaries created by the previous job, mov-

ing those to the correct locations on the file system so that the configuration tool can

access them and then use the Thrift API of the configuration tool to import the needed

schemas, validate the versions in the test system configuration and finally export the sys-

tem as a test package archive. Then those archives are provided as build artifacts on the

CI server for developers and testers to use. Additionally, the tool should report any issues

it finds using the service messages of TeamCity, which allows reporting build problems.

This basically requires just printing the error in special format. The exact format is spec-

ified in the documentation of TeamCity.

6.2.1 Isolating the build environment

The first step is to handle the issue of isolating the build environment. During the litera-

ture review, it was found out that Docker can be used to fulfill this requirement. With

Docker, it is possible to create a new container for each build step and clean the changes

made at the end of the build step so that the next builds are not affected. However, a

suitable Docker image is needed to utilize this option as well as a machine capable of

running the Docker images.

A new virtual machine was created for hosting the Docker. The operating system used

was CentOS 7 64-bit version, and it was installed to the machine already when the ma-

chine was handed out for the use in this project. As part of this study, Docker was installed

and configured to the machine using the OverlayFS2 storage driver. Installation and con-

figuration were done according to official documentation of Docker which is available in

https://docs.docker.com.

The platform development is currently done inside a virtual machine which has 64-bit

Lubuntu 14.04 installed in it. The environment fetches extra Debian packages such as

development libraries from the custom Debian repository that resides inside the cus-

tomer’s network. Due to historical reasons the environment also uses Wine, which is a

compatibility layer to run Windows applications for example in Linux (Wine 2018). This

51

is needed because some of the necessary tools required to run platform’s unit tests are

available only as Windows versions.

Other considerations when creating the image are that it should be performance optimized

and keeping it up-to-date should be easy at this point, since it will be an additional way

to build the platform and there will not be many resources dedicated to keeping it up-to-

date at the beginning.

Based on these considerations, a base-image was built using the standard Docker proce-

dure of using Dockerfile to build the image. The newly created image is based on 64-bit

Ubuntu 14.04 image since this is the operating system used by the development virtual

machines as well. The number of file-system layers was minimized in the Dockerfile by

combining multiple commands into a single RUN-statement. This was done because op-

timizing the performance was one of the goals and because a vast number of layers might

affect filesystem performance (Docker Inc. 2018a). To further support this, most of the

operations for setting up the setup was split out to separate bootstrap shell-script which is

invoked by a single RUN-statement. This has the advantage that layer count stays low.

The disadvantage is that if there is even a minor change to the bootstrap-script, the whole

big layer needs to be rebuilt. However, it is expected that there should not be too many

changes into this layer.

To help to keep the image up-to-date, an additional mechanism was added to the Dock-

erfile. At the end of the Dockerfile, there is a step which is running the script that updates

the environment. Before this step, an additional argument definition was added. With the

help of this argument definition, CI system can pass a value for the argument which

changes each time. When the value changes, the changed layer, and layers above it are

invalidated and rebuilt. This way the script to keep the environment up-to-date can be

forced to be executed each time. This update is triggered currently by a separate build job

once a week.

The created image functions as a base image for more specific images. There are multiple

applications which are built using this same Ubuntu 14.04 environment even though this

52

study focuses on only building the platform. The actual build job in the CI server is sup-

posed to take this base image and add the needed per-application dependencies on top of

it to form software specific final build environment. In case of the platform, this is done

by using TeamCity’s “Build Docker image” build runner to execute Dockerfile which

takes the previously created base image as the base and runs a script which installs plat-

form’s dependencies on this environment, leading to a new image which is then used by

the rest of the build steps. The overview of a Docker image creation process is represented

in Figure 14.

After the base image creation is complete, a new build job is created for the actual plat-

form building. The build job needs to build software specific image, create a container

from it, build the Debian package there, parse the version of the Debian package, install

it, update the build_config.cmake to point to the installed version and build the test bina-

ries. Moreover, the build job should have the possibility to pass “–publishable” flag to the

Figure 14. The overview of the Docker image creation process. First, base-image is

created, and later it is updated once a week. Then specific software build job

takes the base image and builds the more specific image on top of the base

image, which is then used in the rest of the build steps.

53

Debian package creation process if the created Debian package is one that will be released

to the customer repository.

In this build job, the first step creates the specific image using TeamCity’s Build Docker

image runner. It is configured to use base-image vm-base created in another job as a base

for the new image. Name of the new specific image is set to be “vm-platform”. Then on

the rest of the steps “Run inside a Docker container” option is used and this “vm-plat-

form” image is specified. On the second build step, the Debian package is created.

After it, version of the Debian package is parsed in step 3 using Linux utilities “sed” and

“cut”. The name of the Debian package is in form of “platform-a.b.c_a.b.c_amd64.deb”

and the parsed value should be “a.b.c”. The exact command used for parsing is:

version=$(echo platform-*_amd64.deb | sed ‘s/platform-

//g’ | cut -d’_’ -f1)

Here, the echo is used to print the full name of the platform package. Then sed is used to

remove the “platform-“ part from the name. After this, cut is used to split the remaining

part from “_” character into half and take the first half leading to wanted “a.b.c”. After

this, the version is saved for the use by rest of the build steps by printing it using TeamCity

service message format with the command:

echo “##teamcity[setParameter name=’VERSION_STRING’

value=’$version’]”

Then, this Debian package is installed, and build_config.cmake is updated to point to the

newly installed Debian package using the previously parsed version. The file updating is

also done using the sed-utility with the command:

sed -i ‘s/.*PLATFORM.*/set(PLATFORM “%VERSION_STRING%”

)/g’ build_config.cmake

Syntax “%VERSION_STRING%” in the command is a way TeamCity provides for re-

placing paremeter in command with the stored value. So, in this command TeamCity will

54

replace “%VERSION_STRING%” with string “a.b.c”. After this, the test binaries are

compiled against the installed platform which was installed.

The need to be able to pass –publishable flag to the build process is accomplished merely

by using TeamCity’s checkbox type build parameter which is empty when not ticked and

“–publishable” when ticked. This value is added to the end of build command in the same

way as “%VERSION_STRING%” was added to the sed-command in the previous para-

graph.

Finally, the Debian package and test binaries are stored as build artifacts. This is done

merely by using TeamCity’s functionality to select the files from the list of files which

should be published. Additionally, schemas and test package configurations are also pub-

lished as artifacts even though they are taken directly from the repository without any

modifications during the build. This is done because those are later needed by the test

package exporting tool which otherwise will not need access to platform repository. In

the end, the created container is removed to roll-back the system to the point before the

build with the exception that the specific image is now already updated for the next build.

6.2.2 Building test packages

At this point, these outputs are provided with the newly created job: Debian package of

the platform, test binaries compiled using the platform from the Debian package, parsed

version of the platform, schema files and test system configurations. The next step is to

take these to the Windows machine, move them to the correct locations and validate and

export the test packages using the Thrift API of the configuration tool.

Taking those to Windows machine and moving to correct locations is a simple part.

TeamCity has built-in support for fetching files from other builds to the build machine.

After this a trivial PowerShell-script was created which just moves the files to the correct

location on the machine, removing the old ones before doing this and failing the build if

one of the actions fail. This script in the simplest case only needs to use commands

55

“Remove-Item <path>”, “Copy-Item <source> -Destination <target>” and “mkdir <tar-

get>” and thus the script is not presented in greater detail.

Then, a new tool is created for validating and exporting the system. Additionally, this tool

must handle importing the needed schema files. This is needed because not every test

package should have every schema file in it and the information about the needed schema

files are available only through the Thrift API. The tool is implemented using Kotlin-

programming language. This language was chosen because of two reasons: firstly, the

language that is chosen should be compatible with Java. Reason for this requirement is

that files required for interacting with the Thrift API are already automatically generated

for Java because those files are used by the automatic test scripts as well. Secondly, Kotlin

was decided because our team wanted to have more experience with the Kotlin since it is

gaining plenty of attraction. For example, TeamCity’s new domain-specific language for

configuring the projects is based on Kotlin.

Similarly to branch creator utility, the design of this program started by collecting the

requirements. The requirements found were:

• Use Thrift API of the configuration tool to export test packages

• Use Thrift API of the configuration tool to validate versions in the configuration

of the test system.

• Use Thrift API to get information about the needed schema files and copy them

from the user-defined path to the location where the Thrift API expects them to

be when exporting the system.

• If an error happens, report it as a build problem to the TeamCity using the service

message format. The details of the format are available at: https://confluence.jet-

brains.com/display/TCD10/Build+Script+Interaction+with+TeamCity

56

• The program should take as an input a list of test systems to be validated / ex-

ported, the expected software version, and path to all schema files. It should output

test packages and log files which tell what was done.

• Adding more validators to the software should be simple.

Based on these requirements, a class diagram was designed to fulfill the requirements.

The diagram is visible in Figure 15.

Figure 15. The overview of the class structure of the system exporter tool.

57

The controlling of the application flow is done by the main function. It delegates the

execution to the specific instances of the classes when it needs to, for example, to import

schemas or to validate the system. Adding a new validator is a matter of creating a new

class which implements interface Validator and adding an object of this new class to the

list of executed validators in SystemValidator class.

The tool is developed as a Maven project. Maven is a tool for Java (and Kotlin) to handle

for example the dependencies of the application (Apache Software Foundation 2018b).

With Maven it is possible to depend on the generated Thrift API files for Java and re-use

them for this project.

Similarly to branch creator project, the details of the implementation will not be covered

as part of this paper. Testing the finished tool is done again in two steps. First unit tests

were written for most of the methods. Secondly, the application was tested locally against

multiple test system revisions, and the created test packages were compared to the ex-

pected output. After testing was finished, the tool was integrated into TeamCity as another

build job as described in next chapter.

6.3 Managing the pipeline with TeamCity

Once both utilities were created and tested, it was time to integrate them into TeamCity.

Running the branch creator can be considered mostly a separate step from the others.

However, it is still the step that starts the whole pipeline. When the branch creator job is

executed, the new changes are posted by the tool to the Gerrit for code review. Once these

changes are approved and submitted, TeamCity will notice that new commits were

pushed, and it will start builds for the desktop configuration tool and platform automati-

cally. After this, the job to create test package is executed automatically twice per day or

triggered manually by the release engineer.

In order to run branch creator tool, an interface was created using the tools provided by

TeamCity. Basically, it was constructed by passing in the needed inputs to the release

58

creator as changeable configuration parameters, which are requested automatically when

the job is triggered. The interface has fields for changing every significant parameter

value. Some of the parameters were left to the default values such as Gerrit URL which

is always the same for the project. The interface created for running branch creator is

represented in Figure 16. In the figure, there are all the inputs that application needs.

Release field has additionally also extra validation functionality, which prints out an error

if the specified version string is not valid.

Figure 16. The interface provided for the user to execute branch creator utility. Names

of the projects are left out for confidentiality reasons since they are not sig-

nificant for the study.

59

After the reviews have been submitted, another job starts which handles creation of the

platform Debian package and test application binaries. This job usually starts automati-

cally, but it has an extra parameter which can be defined by the user. It is the “–publish-

able” flag that was mentioned before for creating the Debian package without extra

timestamp information in the package version. Usually, the Debian package has mangled

name with a unique timestamp in order to make it easier to identify test versions from the

official versions. With the –publishable flag this extra information is not added to the

package name. Controlling this parameter happens similarly to controlling branch creator,

using TeamCity’s build parameter which can be set before the build begins. Figure 17

shows this feature.

Finally, once the Debian packaging job and desktop configuration tool installer jobs have

finished, the final job will begin for exporting the test packages. This job does not require

any user input. It will use outputs from both the mentioned jobs. The user can optionally

select which build from each of the jobs is used for input files. After the build is executed,

test packages will be available as build artifacts along with the log files. Additionally, if

Figure 17. Configuration options for the Debian package creation. The user can tick

‘Build Platform in Publish mode’ option to have Debian package without

extra information included in the version.

60

the validation step found any issues, those will be printed on the overview tab of the build

as seen in Figure 18.

The problems reported on the overview page inform the release engineer in a simple way

that there is still work that should be done before the packages can be delivered for further

testing. If then further changes to the software or configuration need to be done, the de-

veloper makes the modifications, pushes them to the Gerrit, and the pipeline will be au-

tomatically executed again when TeamCity notices the new changes. Created test pack-

ages are available from the “Artifacts” tab which is visible in the Figure 18.

The overview of the complete pipeline is represented in Figure 19. It shows the process

of getting all three different required release outputs and dependencies between different

TeamCity build jobs. Each blue box represents a different TeamCity build job, while the

green circle represents the release. Solid arrows between boxes represent artifacts that are

moved between the jobs.

Figure 18. An example view from the final job. It lists problems found during the test

package verifications. In the figure, there were problems found in 4 test

packages. Names of the test packages are left out for confidentiality reasons

since they are not significant for the study.

61

Figure 19. The overview of the complete pipeline. The blue boxes represent TeamCity

build configurations. The green circle represents all the needed release out-

puts.

62

7 RESULTS

7.1 Results

After the changes were taken into use and tested, new estimates were done about the

manual work required for a release after the code freeze with the release management

team. New estimates are available in the Table 2 below. Prior to making the

improvements, the whole process after the code freeze took about 7 hours and 40 minutes.

This was also the time from the beginning of the first manual step to the end of the last

manual step. Out of this time, active manual work was about 4 hours and 30 minutes.

After the improvements were made, the total time was cut down to about 4 hours. This is

also the time between the start of the first manual step and the end of the last manual step.

The most significant improvement happened in the amount of active manual work

needed. Previously it was about four hours while after the improvements it was cut down

at best to less than one hour.

Another consideration is that lots of recurring manual work with somewhat dull steps

could be automatized. Overall this should lead to fewer mistakes and more reliable release

process. It is also important to notice that steps executed are necessary first steps to

achieving continuous delivery.

At the beginning of a study, it was considered that test system configuration updates

would also be automatized. Some problems were faced while trying to do this such as

manual intervention needed from the release engineer during the migration step. Because

of this manual work could not be reduced more. Overall the results were good. The study

achieved the goal of reducing release costs by removing the manual work required from

the release team. At the same time, CI pipeline was further developed, and the risk for the

mistakes during the release was lowered. With the improvements done it should also be

more comfortable for new developers to learn steps necessary for a release.

63

Table 2. Table listing tasks related to release process along with the total time and manual

work time related to each task before and after the improvements are done.

Step description

Total time Manual work

Old New Old New

Create branches / update files 2 h 3 min 2h 1 min

Code review changes 10 min 10 min 10 min 10 min

Build installers 50 min 50 min 0 min 0 min

Install software / import config 20 min 20 min 5 min 5 min

Import schemas (comes now from package) 28 min 0 min 28 min 0 min

Execute migrations 20 min 20 min 1 min 1 min

Update software / version 4 min 4 min 4 min 4 min

Update sys. param and application versions 12 min 12 min 12 min 12 min

Update CAN configuration (not needed) 12 min 12 min 5 min 5 min

Generate headers (automated outside the study) 12 min 0 min 5 min 0 min

Save config and commit it 20 min 20 min 10 min 10 min

Create platform Debian package 30 min 30 min 1 min 0 min

Install Debian package 1 min 1 min 1 min 0 min

Update build_config.cmake 4 min 1 min 4 min 0 min

Build application binaries 4 min 4 min 4 min 0 min

Fix problems in building binaries 30 min 0 min 30 min 0 min

Import system into the configuration tool 20 min 5 min 15 min 0 min

Login, download, check operational 40 min 40 min 10 min 10 min

Export test package 20 min 10 min 5 min 0 min

TOTAL TIME 457 min 242 min 270 min 57 min

64

7.2 Suggested next steps

There are multiple areas which could be developed next. The first one is automatizing

testing of the created test packages. This should be reasonably easy to do with the used

automatic test scripts. At the moment, test binaries are already used by the automatic test

runs. Test system takes the binaries from the platform Debian package job and moves

those to the correct locations manually. However, it would be good to change the system

so that it would directly use the produced test packages which contains also the binaries.

This would increase the trust in failure reproducibility since the same files would be used

by automatic and manual testing. This would also reduce the time from the first manual

step to the last manual step quite significantly since saving and committing config would

be the last manual step after this.

The second focus area for the future is looking more thoroughly into automatizing test

system configuration updates since this is the last time-consuming step after the code-

freeze that exists and requires manual work. Another area where the study did not focus

at all is reducing the time spent on manual testing the software. Currently, this is probably

the area which causes significant amount of the costs associated with a release. Similarly,

execution time of automatic tests is currently rather long and limited by the amount of

available test hardware. This is also the same problem as found on the study by Lwakatare

et al. (2006). One good focus area for the future would be reducing time required by the

automatic tests for example by improving the utilization rate of the test hardware.

On the other side, using Docker for build environment setup could be investigated more.

The system that was developed here could be easily developed further. The image created

as part of this study was a recreation of the virtual machine inside a Docker image. In the

future, it could be beneficial to make smaller specific Docker images for different pur-

poses. If this was done, it would be possible to replace parts of the virtual machine-based

development environment with small task-specific Docker images.

Release management tools could also be one suitable area for further research. There exist

tools for helping the management of big software releases such as XL Release and

65

BuildMaster. The benefits and drawbacks of using one could be investigated in more de-

tail.

66

8 CONCLUSIONS

The goal of this study was to find ways to decrease cost and time required to make a new

software release for the embedded software project over at Wapice Ltd. The study pro-

duced a proposal for new improved release process with the focus on automation of the

manual steps. By creating small utilities with Kotlin and Python programming languages

many of the previously high effort manual steps could be simplified or completely auto-

mated.

The total deploy time after the code freeze could be cut to almost half from 7 hours and

40 minutes to a bit less than 4 hours. The active manual work was reduced by about 80%

of what it was before from about 4,5 hours to a bit less than 1 hour. This means that both

total time and active working time was saved with the actions made in this study, which

would suggest that the study was at least somewhat successful since this was the main

goal of it.

The benefit of cutting down the deployment time is not the only advantage of decreased

time. Quite often other developers are waiting for the new test packages during the release

and this waiting time is often not optimally used. Thus, the study should decrease the time

wasted there. Another point to consider is that with the new process, the deployment time

varies less. In the old process the time could vary a lot depending on the experience of

the release engineer, because learning all the different steps would take some time. With

the new process, the manual steps are simplified and are therefore much easier to master.

Moreover, with the help of Docker, it was possible to develop further the existing CI

pipeline. Prior to the study, the installer for the configuration tool was only release output

available from the build server. After the study, all the needed software outputs for the

release are available from the build server. All the improvements are also already taken

into use in the case project. These results strengthen the aspect that the study was useful.

However, the study could not completely achieve fully automatic continuous delivery

pipeline in the same way as it is usually known over at the web development area. One

67

remaining issue to be solved is configuration file updates of the embedded systems which

are needed during the release. The issue is that doing those currently require the judgment

of a release engineer with the help from developers, and due to this no reliable and

straightforward way was found for automating the task. This would be a good area for

further research since this would remove the need for manual intervention in the middle

of the pipeline. However, as mentioned in the literature, the continuous integration pipe-

line does not need to be fully automatic in order to be useful. The study also helped in

identifying the next possible steps for achieving fully automatic deployment pipeline.

Another remaining issue was also mentioned in the literature as a problem for adopting

continuous delivery in an embedded software project. This is, the total deploy time in-

cluding the automatic tests is still higher than what is the length of the pipeline developed

as part of this study because running the automatic tests with the created test packages

takes a long time due to the limited amount of test hardware. Improving the testing capa-

bility would be a good candidate for further research.

On a higher level, this study supported the idea found from the literature that moving

towards a continuous delivery can be beneficial for the software project and that CI pipe-

line can be utilized in embedded software projects as well. This can be seen from the fact

that time needed for making a release could be significantly reduced by moving towards

continuous delivery. However, in the literature, it was mentioned that embedded software

projects need to develop custom solution often to achieve continuous delivery, which was

also the case in this study.

In a situation where custom tools need to be developed, the process that was used in this

study could be re-used. First begin by identifying the steps of the existing process for

getting the desired outputs, find out the most troublesome parts of it by evaluating the

amount of active manual work and total step length. Then start by automatizing those

steps with the most significant effect on the total times. With this way, improvements to

the CI pipeline can be gained even if the fully automatic continuous delivery is not im-

mediately achieved as can be seen from this study.

68

REFERENCES

Anderson, C. (2015). Docker [Software Engineering]. IEEE Software 32: 3, 102-105 pp.

ISSN: 0740-7459.

Apache Software Foundation (2018a). Apache Thrift - Home [online]. [Referenced on:

21.5.2018]. Info about Apache Thrift. Available at: https://thrift.apache.org

Apache Software Foundation (2018b). Maven / Introduction to the Dependency Mecha-

nism [online]. [Referenced on: 22.5.2018]. Info about using Maven for Java project

dependency management. Available at: https://maven.apache.org/guides/

introduction/introduction-to-dependency-mechanism.html

Beck, K., M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.

Grenning, J. Highsmith, A. Hunt & R. Jeffries (2001). Manifesto for Agile Software

Development [online]. [Referenced on: 23.4.2018]. Available at: http://

agilemanifesto.org

Begel, A. & N. Nagappan (2007). Usage and Perceptions of Agile Software Development

in an Industrial Context: An Exploratory Study. In: Proceeding ESEM '07 Proceed-

ings of the First International Symposium on Empirical Software Engineering and

Measurement, 255-264 pp. Ed. L. O`Conner. Washington: IEEE Computer Society.

Madrid, Spain, September 20-21, 2007. ISBN: 0-7695-2886-4.

Brown, T., R. Anderson, S. Cooley, R. Wike, M. Keating, D. Delimarsky & A. Childs

(2016). About Windows Containers [online]. [Referenced on: 2.10.2018]. Available

at: https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/.

Chen, L. (2015). Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Soft-

ware 32: 2, 50-54 pp. ISSN: 0740-7459.

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/

69

Cito, J., V. Ferme & H. C. Gall (2016). Using Docker Containers to Improve Reproduci-

bility in Software and Web Engineering Research. In: ICWE 2016: Web Engineering,

609-612 pp. Eds. A. Bozzon, P. Cudre-Maroux & C. Pautasso. Cham, Switzerland:

Springer International Publishing. Lugano, Switzerland, June 6-9, 2016. ISBN: 978-

3-319-38791-8.

Combe, T., A. Martin & R. Di Pietro (2016). To Docker Or Not to Docker: A Security

Perspective. IEEE Cloud Computing 3: 5, 54-62 pp. ISSN: 2325-6095.

Debbiche, A., M. Dienér & R. B. Svensson (2014). Challenges when Adopting Continu-

ous Integration: A Case Study. In: 15th International Conference, PROFES 2014 Hel-

sinki, Finland, December 10-12, 2014 Proceedings, 17-32 pp. Eds. A. Jedlitschka et

al. Cham, Switzerland: Springer. Helsinki, Finland, December 10-12, 2014. ISBN:

978-3-319-13835-0.

Docker Inc. (2018a). Best Practices for Writing Dockerfiles [online]. [Referenced on:

22.5.2018]. Information on good practises when writing Dockerfiles. Available at:

https://docs.docker.com/develop/develop-images/dockerfile_best-practices

Docker Inc. (2018b). What is a Container [online]. [Referenced on: 15.5.2018]. Available

at: https://www.docker.com/what-container

Docker Inc. (2018c). What is Docker? [online]. [Referenced on: 15.5.2018]. Available at:

https://www.docker.com/what-docker

Duvall, P. M., S. Matyas & A. Glover (2007). Continuous Integration: Improving Soft-

ware Quality and Reducing Risk. 1st ed. Boston: Pearson Education. 336 pp. ISBN:

978-0321336385.

70

Engblom, J. (2015). Continuous Integration for Embedded Systems using Simulation

[online]. Embedded World 2015 Congress. [Referenced on: 15.5.2018]. Available at:

https://www.researchgate.net/profile/Jakob_Engblom/publication/

273119043_Continuous_Integration_for_Embedded_Systems_using_Simula-

tion/links/54f70f7a0cf2ccffe9d99b8b.pdf

Felter, W., A. Ferreira, R. Rajamony & J. Rubio (2015). An Updated Performance Com-

parison of Virtual Machines and Linux Containers. In: 2015 IEEE International Sym-

posium on Performance Analysis of Systems and Software (ISPASS), 171-172 pp. Eds.

IEEE. Philadelphia, USA, March 29-31, 2015. ISBN: 978-1-4799-1957-4.

Fowler, M. (2006). Continuous Integration [online]. [Referenced on: 4.12.2017]. Availa-

ble at: https://martinfowler.com/articles/continuousIntegration.html

Fowler, M. (2013). ContinuousDelivery [online]. [Referenced on: 24.4.2018]. Available

at: https://martinfowler.com/bliki/ContinuousDelivery.html

Gerrit (2018). Gerrit Code Review - REST API [online]. [Referenced on: 21.5.2018]. Info

about Gerrit REST-API. Available at: https://gerrit-review.googlesource.com/

Documentation/rest-api.html

Inedo (2018a). BuildMaster [online]. [Referenced on: 24.4.2018]. Page with general info

about BuildMaster. Available at: https://inedo.com/buildmaster/features

Inedo (2018b). BuildMaster [online]. [Referenced on: 24.4.2018]. Page describing

BuildMaster's pricing model. Available at: https://inedo.com/buildmaster/pricing

Isaias, P. & T. Issa (2015). High Level Models and Methodologies for Information Sys-

tems. 1st ed. New York, NY: Springer Verlag. ISBN: 978-1-4614-9254-2.

JetBrains s.r.o. (2017). TeamCity 2017.2 is Released! | TeamCity Blog [online]. [Refer-

enced on: 3.5.2018]. Info about new features of TeamCity 2017.2. Available at:

https://blog.jetbrains.com/teamcity/2017/11/teamcity-2017-2-released

71

JetBrains s.r.o. (2018a). Buy TeamCity [online]. [Referenced on: 3.5.2018]. Info about

TeamCity licensing. Available at: https://www.jetbrains.com/teamcity/buy

JetBrains s.r.o. (2018b). Integrating TeamCity with Docker [online]. [Referenced on:

20.5.2018]. Detailed information about TeamCity's Docker support. Available at:

https://confluence.jetbrains.com/display/TCD10/

Integrating+TeamCity+with+Docker

JetBrains s.r.o. (2018c). Integrations Support - Features | TeamCity [online]. [Referenced

on: 3.5.2018]. Info about technologies supported by TeamCity. Available at:

https://www.jetbrains.com/teamcity/features/technology_awareness.html

Krekel, H. (2017). Pytest: Helps You Write Better Programs — Pytest Documentation

[online]. [Referenced on: 21.5.2018]. Info about pytest testing framework. Available

at: https://docs.pytest.org/en/latest

Kwak, Y. H. & J. Stoddard (2004). Project Risk Management: Lessons Learned from

Software Development Environment. Technovation 24: 11, 915-920 pp. ISSN: 0166-

4972.

Ledenev, A. (2016). Docker Pattern: The Build Container [online]. [Referenced on:

20.5.2018]. Info about using Docker for Continuous Integration. Available at:

https://medium.com/@alexeiled/docker-pattern-the-build-container-b0d0e86ad601

Lwakatare, L. E., T. Karvonen, T. Sauvola, P. Kuvaja, H. H. Olsson, J. Bosch & M. Oivo

(2016). Towards DevOps in the Embedded Systems Domain: Why is it so Hard? In:

Proceedings of the 2016 49th Hawaii International Conference on System Sciences

(HICSS), 5437-5446 pp. Eds. B. Tung & R. Sprague. Washington, DC, USA: IEEE.

Kauai, Hawaii, January 5-8, 2016. ISBN: 978-0-7695-5670-3.

Merkel, D. (2014). Docker: Lightweight Linux Containers for Consistent Development

and Deployment. Linux Journal 2014: 239. ISSN: 1075-3583.

72

Pecanac, V. (2016). Top 8 Continuous Integration Tools [online]. [Referenced on:

3.5.2018]. Available at: https://code-maze.com/top-8-continuous-integration-tools

Pfleeger, S. L. & J. M. Atlee (2010). Software Engineering. 4th ed. Boston; London:

Pearson Education Inc. 782 pp. ISBN: 978-0-13-814181-3.

Pipenv (2018). Pipenv: Python Dev Workflow for Humans [online]. [Referenced on:

21.5.2018]. Page describing the Pipenv tool. Available at: https://docs.pipenv.org

Powell-Morse, A. (2016). Waterfall Model: What is it and when should You use it?

[online]. [Referenced on: 22.4.2018]. Available at: https://airbrake.io/blog/sdlc/

waterfall-model

Pursehouse, D. (2018). Pygerrit2 - GitHub [online]. [Referenced on: 21.5.2018].

Pygerrit2's GitHub development page. Available at: https://github.com/dpursehouse/

pygerrit2

Rajlich, V. (2006). Changing the Paradigm of Software Engineering. Commun ACM 49:

8, 67-70 pp. ISSN: 0001-0782.

Rancher Labs (2016). Docker-Based Build Pipelines (Part 1) - Continuous Integration

and Testing [online]. [Referenced on: 20.5.2018]. Post about using Docker to provide

build environment. Available at: https://rancher.com/

docker-based-build-pipelines-part-1-continuous-integration-and-testing

Rasmusson, J. (2010). The Agile Samurai: How Agile Masters Deliver Great Software.

Raleigh (NC): Pragmatic Bookshelf. 262 pp. ISBN: 1-934356-58-1.

Rodríguez, P., J. Markkula, M. Oivo & K. Turula (2012). Survey on Agile and Lean Us-

age in Finnish Software Industry. In: Proceedings of the ACM-IEEE international

symposium on Empirical software engineering and measurement, 139-148 pp. New

York: ACM. Lund, Sweden, September 19-20, 2012. ISBN: 978-1-4503-1056-7.

73

Saleh, K. (2010). Effort and Cost Allocation in Medium to Large Software Development

Projects. In: Proceedings of the 10th WSEAS international conference on Applied

computer science, 33-37 pp. Wisconsin, USA: World Scientific and Engineering

Academy and Society (WSEAS). Iwate, Japan, October 4-6, 2010. ISBN: 9789-

604742318.

Schwaber, K. & J. Sutherland (2018). The Scrum Guide [online]. [Referenced on:

23.4.2018]. Available at: https://www.scrumguides.org/scrum-guide.html

Wine (2018). WineHQ - Run Windows Applications on Linux, BSD, Solaris and macOS

[online]. [Referenced on: 22.5.2018]. Page describing the Wine project. Available at:

https://www.winehq.org

XebiaLabs (2015). XL Release [online]. [Referenced on: 24.4.2018]. Page about availa-

ble integrations to XL Release. Available at: https://xebialabs.com/products/

xl-release/plugins

XebiaLabs (2018). XL Release [online]. [Referenced on: 23.4.2018]. Page with general

info about XL Release. Available at: http://gallery.xebia.com/component/xlrelease

	Preface
	TABLE OF CONTENTS
	Abbreviations
	abstract
	TIIVISTELMÄ
	1 Introduction
	2 software development life cycles
	2.1 Waterfall
	2.2 Agile
	2.3 Release management

	3 Continuous delivery
	3.1 Background
	3.2 Continuous Integration
	3.3 Continuous Delivery
	3.4 Continuous Delivery in embedded domain

	4 Build environment isolation
	4.1 Containers as build environment providers
	4.2 Docker for Continuous Integration

	5 planning
	5.1 Current situation
	5.2 Reducing work
	5.2.1 Automate branch creation and version file updates
	5.2.2 Updating configurations and building test packages

	5.3 Controlling the pipeline

	6 implementation
	6.1 Creating the branch creator for automatic branching and file updates
	6.2 Creating the system exporter for providing test packages from CI
	6.2.1 Isolating the build environment
	6.2.2 Building test packages

	6.3 Managing the pipeline with TeamCity

	7 results
	7.1 Results
	7.2 Suggested next steps

	8 Conclusions
	REFERENCES

