 UNIVERSITY OF VAASA
SCHOOL OF TECHNOLOGY AND INNOVATIONS
AUTOMATION TECHNOLOGY

Vesa Iltanen
DATA COLLECTOR FOR INDUSTRIAL SANDING MACHINES
IoT Module Implementation

Master’s thesis for the degree of Master of Science in Technology
Vaasa 27.5.2019

Supervisor Jarmo Alander
Instructor Thomas Höglund

2
PREFACE
This Master’s thesis was conducted for Mirka Ltd department of power tools, Jepua, Fin-
land.
I want to thank the supervisor of this thesis prof. Jarmo Alander and the instructor, MSc
Thomas Höglund and give a big hand for the company of Mirka which made this possible.
I also want to thank my family for all the support and kicking my ass to graduate, also
special thanks for all my friends that helped me thought the University.
Finally, thanks for all who had faith in me and it is great to end this journey with famous
quote of Rick Sanchez: “Wubba lubba dub dub”.

3
TABLE OF CONTENTS
PREFACE 2
TABLE OF CONTENTS 3
TIIVISTELMÄ 9
ABSTRACT 10
1 INTRODUCTION 11
1.1 Mirka 11
1.2 Target 12
1.3 IoT 13
1.3.1 IoT products 14
1.3.2 Security 15
2 IOT ARCHITECTURE 18
2.1 Standardization 19
2.2 Architecture 20
2.2.1 IoT application layer 22
2.2.2 IoT communication layer 23
2.2.3 IoT physical layer 23
2.3 Summary for AIROS logger system 23
3 SELECTING COMMUNICATION LAYERS 26
3.1 AIROS Technologies 26
3.1.1 Modbus 27
3.1.2 RS-485 31

4
3.1.3 Ethernet 32
3.2 Additional technologies for the AIROS logger 32
3.2.1 Bluetooth 33
3.2.2 Wireless Local Area Network 36
3.2.3 Cellular service 36
3.2.4 HTTP 37
3.3 Common IoT protocols 39
3.3.1 Message Queue Telemetry Transport 39
3.3.2 Constrained Application Protocol 40
3.3.3 Lightweight M2M 40
3.4 Implementing to AIROS logger 41
4 PROTOTYPE OF AIROS LOGGER 43
4.1 Raspberry Pi 3 44
4.2 Arduino 45
4.3 Selected hardware 45
4.3.1 4G connection 49
4.3.2 Other used devices 49
4.3.3 Hardware flow 50
4.3.4 Remote access 52
4.4 Software 54
4.4.1 Software requirements 55
4.4.2 Software flows 56
4.5 Database implementation 60
5 SOFTWARE DEVELOPMENT 64
5.1 Unit testing 64

5
5.2 Developing the software 65
5.3 Protype testing 67
5.3.1 Target 67
5.3.2 Setup 67
5.3.3 Cases 68
5.3.4 Results 68
5.4 Data analysis 69
6 CONCLUSION AND FUTURE WORK 73
REFERENCES 75

6
SYMBOLS AND ACRONYMS

3GPP the 3rd Generation Partnership Project
4G Fourth Generation
5G Fifth Generation
ADU Application Data Unit
ANSI American National Standards Institute
API Application programming interface
ASIC Application-specific integrated circuit
CRC Cyclic Redundancy Check
DIY Do It Yourself
EIA Electronic Industries Alliance
EN European standard
ETSI The European Telecommunications Standards Institute
FPGA Field Programmable Gate Array
GHz Giga Hertz
GPIO General-Purpose Input/Output
HDMI High-Definition Multimedia Interface
HMI Human–Machine Interface
IEC The International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IP the Internet Protocol
ISM Industrial, Scientific and Medical

7
ISO the International Organization for Standardization
L2CAP The logical link control and adaptation protocol -layer
LPWA Low Power Wide Area
LPWAN the Low Power Area Network
M2M Machine to machine
MAC Media Access Control
Mbps Megabits per second
MQTT Message Queue Telemetry Transport
MTC Machine Type Communications
mW milliwatt
NAT Network Address Translation
NB-IOT Narrowband Internet of Things
NFC Near-field communication
NTC Negative temperature coefficient
OMA Open Mobile Alliance
OS Operating System
OSI Open Systems Interconnection
P&G Procter & Gamble
PCB Printed Circuit Board
PDU Protocol Data Unit
PLC Programmable Logic Controller
PROFINET PROcess FIeld NET
QoS Quality of Service
RF Radio Frequency
RFID Radio-Frequency Identification

8
RPM Revolutions Per Minute
RTU Remote Terminal Unit
SCADA Supervisory Control And Data Acquisition
SIG Special Interest Group
SQL Structured Query Language
SSH Secure Shell
TCP Transmission Control Protocol, and,
TIA Telecommunications Industry Association
UHF Ultra High Frequency
USB Universal Serial Bus
VPN Virtual Private Network
WAN Wide area networks
WLAN Wireless local area network
WPAN Wireless Personal Area Network

9
VAASAN YLIOPISTO
Teknillinen tiedekunta
Tekijä: Vesa Iltanen
Diplomityön nimi: Data collector for industrial sanding machines
Valvojan nimi: Jarmo Alander
Ohjaajan nimi: Thomas Höglund
Tutkinto: Diplomi-insinööri
Oppiaine: Automaatiotekniikka
Opintojen aloitusvuosi: 2010
Diplomityön valmistumisvuosi: 2019 Sivumäärä: 80
TIIVISTELMÄ
Tämän diplomityön tarkoituksena oli kehittää Mirka Oy:lle IoT-laite, joka kerää ja lähet-
tää dataa palvelimelle analysointia varten. IoT-laite tulee sijoittumaan hiomakoneen yh-
teyteen, jossa sen tulee monitoroida laitteiden välistä kommunikaatiota. Tässä kommuni-
kaation monitorointi tarkoittaa datan tarkastelemista ilman omien kutsujen lähettämistä
laitteille, jolloin sen toiminta ei tule häiritsemään laitteita.
Hiomakone tuottaa jatkuvasti tietoa käytöstä ja laitteen olosuhteista piirikorttiin liitettyjen
antureiden avulla. IoT-laite on tyypiltään datan kerääjä, joka tullaan liittämään Mirkan
AIROS-hiomakoneeseen, jota ohjataan robotin välityksellä.
Työ on jaoteltu teoriaan, käytäntöön, analyysiin sekä tulevaisuuden suunnitelmiin.
Työssä käydään läpi IoT:n arkkitehtuuria, laitteiden välistä kommunikaatiota sekä tekno-
logioita, joiden avulla voidaan toteuttaa prototyypin suunnittelu. Lopuksi kerrotaan pro-
totyypin suunnittelusta, testauksesta sekä analysoidaan saatua dataa. Viimeiseksi käydään
läpi päätelmiä sekä parannusehdotuksia.
IoT-laite on toteutettu Raspberry Pi-korttikoneella, joka käyttää 4G-modeemia datan lä-
hettämiseksi Mirkan palvelimen tietokantaan. Datan analyysissä on tutkittu laitteiden lä-
hettämää käyttötietoa ja tietojen kuvantamiseen on käytetty Microsoft Exceliä. Ohjelman
avulla muunnettiin tietokantaan kerättyä dataa visuaaliseen muotoon kuvaajien avulla,
jotka hahmottavat saatuja tietoja.
Datan kerääjä on asennettuna Mirkan työpajalle, Jepualle, mutta tulevaisuudessa laite
olisi tarkoitus antaa AIROS hiomakoneen ostajille osana toimituspakettia, asennetavaksi
hiomakoneen yhteyteen.

AVAINSANAT: teollinen automaatio, esineiden internet, hiomalaite, tiedonke-
rääjä, prototyypin suunnittelu, robotiikka

10
UNIVERSITY OF VAASA
Faculty of technology
Author: Vesa Iltanen
Topic of the Thesis: Data collector for industrial sanding machines
Supervisor: Jarmo Alander
Instructor: Thomas Höglund
Degree: Master of Science in Technology
Major of Subject: Automation Technology
Year of Entering the University: 2010
Year of Completing the Thesis: 2019 Pages: 80
ABSTRACT
The purpose of this thesis was to develop an IoT device for a company called Mirka Ltd.
The IoT device is designed for data collection from sanding machine and sending data to
the server for later analysis. The IoT device will be located next to a sanding machine,
where it will monitor communication between devices. In this case, the data collection is
done without sending any data request to the sanding machine. This kind of data collec-
tion won’t disturb the sanding machine’s performance.
The sanding machine continuously produces data about the usage and conditions of the
device. This data is received from built-in sensors which are located in the sanding ma-
chine’s circuit board. The IoT device is a data logger that will be attached to the Mirka’s
AIROS sanding machine, which is controlled by a robot.
Thesis is divided into theoretical, practical, data analysis and future development parts.
In the theoretical part the IoT architecture, communication between devices and technol-
ogies concerning the communication are discussed. After the theoretical part focus is on
the IoT device itself, including the developed program, devices and tools that are used.
The last part is about testing, data analysis and future development that are related to the
data we collected from real use of the IoT device.
The IoT device is made using Raspberry Pi computer and 4G communication device.
With the 4G device, IoT device is able to send data through the Internet to an external
database, which is located in Mirka Ltd’s server.
IoT device is set up and currently running in the Mirka Ltd’s workshop in Jepua. In the
future, the intention is to include it to the AIROS end product.

KEYWORDS: Industrial automation, Internet of Things, sander, data logger, pro-
type development, robotics

11
1 INTRODUCTION
This thesis is a project for the company Mirka Ltd, it‘s power tools department which
is responsible of the development and manufacturing of the company’s power tools in-
cluding sanding and polishing machines. In this thesis we will be developing IoT device
for monitoring data from sander machine and go through technologies behind the device
and finally testing and analysis for prototype product. The name of the IoT device is
AIROS logger which will be optional standalone component which will work with spe-
cific sanders. Because Mirka is operating globally we must ensure that our extractor is
working fine despite of destination country or industrial communication environments.
1.1 Mirka
Mirka develops and produces sander products and it is part of the KWH Group, family-
owned company. KWH group is divided into three independent divisions: KWH Invest,
KWH Logistics and Mirka, which is the most important division of the company. (Mirka
2018a)
Mirka operates globally but it’s headquarter and production are located in Jeppo, Finland
and subsidiaries are in Europe, Middle East, Asia, and North and South America. The
company has high export rate, more than 97 % and products are sold over to 100 coun-
tries. (Mirka, 2018a)
The company is actively developing new products and improving the user experience,
properties and quality of power tools. New products have to bring value to customers and
one of the company’s main themes is to be innovative. One of the new products or rather
applications is myMirka, which gives users more information on the machine’s usage and
visualizes data from the sander. MyMirka was developed for data visualization and for
analyzing the data of the sanders, thus the data analysis of this thesis is only a shallow
analysis because Mirka Ltd already has an existing tool for that.

12
1.2 Target
One of Mirka’s newest product innovation is automated random orbit sander, AIROS,
this is made for robot use only. AIROS, that is illustrated in Figure 1, has been an invest-
ment for the future and it has a lot of new opportunities and potential to beat competitors
and improve the company‘s services.

Figure 1. Mirka AIROS is available in two different sizes, in 150mm and 77mm
 (Mirka 2018b).
AIROS contains temperature sensors, one in tool and one in the motor drive. AIROS
holds a lot of information on the usage and environment. There are for example infor-
mation about how the voltage, current and speed changes and statistics like usage time
and how the temperature behaves.
Now Mirka is interested to know how customers are using the products such as how long
they run with it or is the temperature increasing during the work. Now all the interesting
data isn‘t easily accessible and the customers and Mirka are more than eager to know
more about it. So there is data, but we cannot access it easily without specific program.

13
Intention of the AIROS logger is to give it with purchaser of the AIROS. Mirka will ask
permission to set it up and log the usage of the AIROS. The data is needed to improve
AIROS and to detect the need of service. One possible future scenario for the data is to
use it with the myMirka application which visualizes environment of the sanding ma-
chines like vibration and gives end-users access to it.
The AIROS logger, which will gather the data, must fulfill some major requirements:
cellular communication, storing and sending data through VPN (virtual private network),
reliability, controlling remotely and having to monitor the data packages.
In a nut shell, the thesis will investigate how to fetch and read raw sander data, way to
send fetched data automatically to server for further usage and finally, how to improve
existing and future products. Theory will descript ways to communicate with the AIROS
and external server. In practice the AIROS logger will detect and send data.
1.3 IoT
Machine data has been collected a long time and computer driven machines can easily
log desired data. Data can be sent wirelessly from long distances and capture and analyze
signals locally or send it to cloud for later investigating.
The term Internet of Things was first coined by Kevin Ashton in his presentation con-
ducted for Procter & Gamble (P&G) in 1999. Kevin Ashton was working to improve
P&G business by linking its supply chain with Radio-Frequency Identification (RFID)
information to the Internet. (Geng 2016)
The Internet of Things is creating intelligent connections between different diversities in
the physical world and IoT tries to close the gap between the material and the information
world. Commonly an IoT device is an embedded device or microprocessor that enables
telecommunication. The IoT has two qualities: being an Internet application and dealing
with information inside ‘things’. (Minoli 2013)

14
IEEE (Institute of Electrical and Electronics Engineers) has defined IoT as a system con-
sisting of networks of sensors, actuators and smart objects and the purpose is to connect
things to make them intelligent, programmable and more capable of interacting with hu-
mans and each other. (Geng 2016)
1.3.1 IoT products
Internet of Things is a technology for digitizing the physical world and it is one of the
most significant emerging technologies in recent years and it is said to be one of the
prominent drivers of the fourth industrial revolution. It will have impact across business
and industry around the world. (Geng 2016)
Devices that fulfill our requirements have already been developed or some devices can
be extended with external components. Next, we will list a couple of commercial alterna-
tives for a logging system that could be used with AIROS.
- SmartSwarm 351 from B+B SmartWorx company (Advantech B+B SmartWorx,
2019)
- GMU491 Cloud Gateway from Gluon (IonSign 2019)
- MB5901B Series from Atop Technologies (Atop 2019)
Chart 1. shows a small comparison for a couple of existing IoT devices or gateways that
are suitable for industrial and logging use. These are useful for sending all and raw data
to cloud for further investigation. However, there should be a program that detects useful
data. Because all the data is sent to the server, fast connections and cloud performance is
needed for working almost real-time.

15
Chart 1. Comparison of industrial IoT devices that partly fulfil demands of the logger.

The Chart 1. holds information about IoT devices which could be used for logging the
communication. All devices can communicate with Modbus which is the main commu-
nication way of AIROS sander. They all also are able to use cellular communication and
LAN (Local Area Network) and SmartSwarm is also able to communicate with MQTT.
QMU491 runs with Linux so it could be used to monitor communication without sending
own messages like the AIROS logger is planned to do. All these devices are expensive
compared to self-made product which will cost approximately 100 euros or less and it is
able to do all the same and more. The devices in the Chart 1. are industrial made devices
and easy alternative for small scale logging.
These products are made for industrial use and they can handle multiple connections, and
also serve as slaves or masters. The aim of the AIROS logger i.e. the target IoT device
(Internet of Things), is to do almost same as the listed devices and more, but with less
cost.
1.3.2 Security
IoT has grown fast and it has brought many types of issues and challenges. Security is
one of the main issues for IoT technologies, applications and platforms. (Aldowah,
Rehman, Umar 2018)
Probably the first security concern of the IoT is a compromise of the privacy and the
protection of personal integrity. Massive growth of sensors in our environment, for ex-
ample smartphones have lot of built-in sensors, huge amount of data can be collected

16
from the people and it can be profiled and identified with analytics tools even if the data
is anonymized. (Tsiatsis, Fikouras, Avesand, Karnouskos, Mulligan, Holler, Boyle 2014)
The Internet has made it possible to make economical or social damages but Internet
connected and controllable devices have made it possible to do physical damage to peo-
ple’s property and also people’s safety is at risk. (Tsiatsis i.e. 2014)
Security threats are classified as physical attacks, logical attacks and data attacks. Physi-
cal attacks are physical thefts, modifications to the software and side-channel attacks,
which means attacks using information that is gathered from implementations of the com-
puter system. (Amodu and Othman 2018.)
Logical attacks are impersonations, denial of service and relay attacks, meaning data cap-
turing and replaying the data. The technique is common in keyless car systems where key
data is captured and replayed. (Aldowah i.e. 2018)
Data attacks are privacy, data alteration and selective forwarding attacks, meaning drop-
ping only selected data and forwarding other data normally. Devices and systems have to
fulfill some security requirements, because of law and for safety. There are also security
concerns like trust creation, advanced credential management for mobile communication
and horizontal end-to-end security solutions. (Amodu i.e. 2018)
Amodu (2018) writes in the article that IoT security solutions should include effectively
supporting authentication, proper identification of entities, confidentiality, data integrity,
access control, and non-repudiation. Chart 2 presents some common security issues that
can occur to any IoT devices but especially to the AIROS logger. The chart presents attack
names in italics, they are most considerable attacks that this AIROS logger can front.
AIROS logger uses VPN (virtual private network) connection to the Mirka Ltd server and
the logger can be used for getting inside the company’s network and information. The
AIROS logger can be also captured and used for distributed denial-of-service attack for
crashing servers. This hijacking is one of the biggest threats if the logger’s software won’t
be updated regularly.

17
The first wave of the IoT attacks were in the 2016 when devices were turned into the
botnets, known as Mirai Botnet. In the first half of 2018 were almost three times more
samples detected than in the 2017 and almost ten times more than 2016. In the 2018, most
of the attacks were trying of cracking the Telnet or SSH passwords and intentions is to
get control of devices. After the access attacks it most likely downloaded one malware of
the Mirai family. (Kuzin, Shmelev, Kuskov 2018)
Chart 2. The Security issues and probability of attacks of the IoT devices and most
 common attacks in the 2016 where trying to get control of the device.

Name Description
Privacy and personal
integrity
Data can be profiled and identified with an-
alytics even it is anonymized
Physical attack Physical theft, modifications to the software and side-channel attacks
Logical attack Impersonation, denial of service, and relay attacks
Data attack Privacy, data alteration and selective for-warding attacks
Control of device Possible to do physical damage to property and also people’s safety are at risk

Most of the issues can be occurred when the attacker get inside the IoT system. The home
automation systems can include security camera or microphone that can be used against
owner. The AIROS logger won’t include confidential information about the company but
hijacking to botnet or using VPN connection to unauthorized accessing to local network
of Mirka have to be blocked.

18
2 IOT ARCHITECTURE
The Internet of Things is nowadays a popular concept, but it isn’t a new idea to connect
things together. Machine to machine communication (M2M) has been available for years
before the IoT and they have lot in common but also a lot of differences, thus people
usually confuse the terms. The focus of this chapter is to understand the structure and
concept of the IoT and how it differs from an older M2M concept.
So, what is IoT? IoT is a vision of extending Internet connectivity to the things and things
will be able to interact with real-world objects, process information and allow them to
make independent decisions to help and save our time. IoT is nowadays on everyone’s
lips and it is said to be next step for the Internet and it will attach Internet to everything
around us. IoT device is created to work with standard IP-protocol, so it doesn‘t need new
network environments and the IoT device itself isn’t so interested about the network un-
der it. (Swetina, Lu, Jacobs, Ennesser, Song 2014)
M2M is defined as technologies that connect devices and machines to the Internet and
transforms them into intelligent assets (Rawat, Singh, Bonnin 2013). M2M devices com-
municate between the same type of devices and specific applications using wireless or
wired communication networks (Tsiatsis i.e. 2014). M2M solutions allow end-users to
observe and process the data from sensors and events (Rawat i.e. 2013). M2M devices
are mostly connected to the Internet via public telecommunication network and spe-
cific mobile networks. M2M device is very interested of the network beneath it be-
cause networks are not designed to device like, because M2M device uses very small
amount of data and networks are designed for large data transfers and high speed
(Swetina i.e. 2014).
What is the difference between these two technologies? IoT and M2M both connect sen-
sors or other devices to information and communication systems, but the size of the sys-
tem is different. IoT is the whole system with group of technologies, systems and design
mechanics. IoT system can be very similar to the Internet of today, where things or de-
vices can be interact with each other. M2M acts like enabler, inform changes but they

19
won’t be as interactive as IoT device and usually has no or very simple interface like soda
machines have. In this thesis it is not relative to go deeper in differences between con-
cepts. (Haidine, El Hassani, Aqqal, El Hannani 2016)
2.1 Standardization
IoT system is based on many standardize bodies and it is important to recognize why they
are developed and why it is important to follow them.
Standardization has been quite challenging because of the wide range of M2M applica-
tions and several standards development organizations are making efforts to facilitate
M2M communication. These are 3GPP (the 3rd Generation Partnership Project), ETSI
(The European Telecommunications Standards Institute), IETF (Internet Engineering
Task Force), oneM2M, and NB-IOT (Narrowband Internet of Things). 3GPP provides a
stable environment for members to produce reports and specifications that are used to
define its technologies like radio access, core transport network and service capabilities.
ETSI develops standards that are globally applicable for information communication
technologies such as fixed, mobile, broadcast, radio and Internet technologies. IETF is
developing towards operation of the Internet and the evolution of its architecture.
OneM2M is targeted for M2M and IoT and develops required specifications. It tries to
create a standard uniform service layer that can be embedded in various hardware and
software. NB-IoT is a narrowband radio technology standardized by 3GPP, aimed at ad-
dressing requirements of IoT. (Amodu i.e. 2018: 265)
Due to continuous growth of the M2M field many standardization bodies were forced to
define M2M standards and it lead to overlapping of different standards. After the over-
lapping mess, OneM2M was formed to create a global M2M specification and standards.
(Ptiček, Čačković, Pavelić, Kušek, Ježić 2015).
Standardization of the IoT has concerns with representation formats, data dissemination
mechanisms and data management platforms. Management of data from different sources

20
must be flexible and help ecosystem services and innovations. Flexible data management
will prevent ecosystem isolation but at the same time it also enables issues at security and
information quality like trustworthiness and reliability.
2.2 Architecture
Next the architecture of the oneM2M is described. The oneM2M layered model is sup-
porting end-to-end M2M services and it consist of three different layers: Application,
common service and network service layers, see Figure 2. (oneM2M 2018: 535)

Figure 2. OneM2M layered model (oneM2M 2018: 535).
OneM2M is usually descripted to be application layer of IoT model and top three levels
of OSI (Open Systems Interconnection) model: application, presentation and session lay-
ers. Other four levels of the OSI model are transport, network, data link and physical
layer.
M2M and IoT manufacturers can use either a vertical or horizontal service model which
the oneM2M architecture uses, see Figure 3. In the Vertical business model, one company
is providing and controlling the IoT or M2M device, the gateway and the cloud-based
service so the whole system is depending on one actor (Quinnell 2013). The vertical
model uses point to point communication and it can be used at home, in automotive and

21
industrial domains (Carey 2017). It has advantages because end-users don’t have to worry
about device compatibly and it has only a single point to contact if something goes wrong.
Disadvantages are that the end-user is locked to a vendor who can decide on improve-
ments, enhancements or upgrades.
Figure 3. also illustrates Horizontal architecture, which based on common layer and ap-
plications share common service layer, network infrastructure and it also uses multipoint
communication. Applications share common infrastructure, environments and network
elements (Carey 2017). Using a horizontal model allows multiple providers to use a com-
mon framework. Then it can be assumed that gateway and cloud resources are in place
and have known and open functionality. It is easier to share data and resources between
different devices and services. (Quinnell 2013)

Figure 3. OneM2M horizontal architecture (multipoint communication) is evolved
 from the vertical, point-to-point communication architecture
 (Carey 2017).
Figure 3. illustrates how the oneM2M architecture is evolved from the traditional, closed
pipe architecture to the horizontal approach. Horizontal shows that devices (dark blue
circles), can use either own common service layer (green) or gateway (triangle) of the

22
local network can handle the service. Because devices share common infrastructure, en-
vironments and network elements they can be used from multiple applications instead of
specific application like in the pipe approach (connections: green dashed line). Devices
are using Internet Protocol for the communication (pink cloud) instead of for example
power line communication.
OneM2M functional architecture can be divided in three entities: application, common
service and network service. Application entity represents application logic for end-to-
end M2M solutions. Common service entity represents the set of common service func-
tions of the M2M environments and network service entity provides services from under-
lying network to common service entities i.e. provide data transport services between
entities like device management or device triggering. (Ptiček i.e. 2015)
oneM2M uses a resource-based data model and all oneM2M services are represented as
resources. A resource is a data structure that can be uniquely addressed by a uniform
resource identifier and oneM2M uses a tree-based resources structure. oneM2M has also
adopted some of the standardized communication protocols such as MQTT (Message
Queue Telemetry Transport), more on this in the communication layers and technologies
section 3. (Andrianto, lam, Widodo, Lee, Lee, Lim 2018)
The IoT architecture can be divided in three different layers: application, communication
and physical layer. The application layer is the layer for users where they can control the
device and data. The communication layer is where all data communication is made, local
and external communication. The physical layer has sensors and controllers and their in-
teraction with a gateway. (El-Shweky, El-Kholy, Abdelghany, Salah, Wael, Alsherbini,
Ismail, Salah, AbdelSalam 2018)
2.2.1 IoT application layer
The IoT application layer is responsible for providing services and defines a set of mes-
sages. An IoT device always has some sort of data processing environment for fetched
data and making the data usable. It can be done directly by the application or globally by

23
clouds, which can for example analyze, sort and store the data and use website as inter-
face.
The application layer also provides device management and a virtual service layer that is
responsible for data transport, security and service discovery. A virtual service layer pro-
vides information collected from objects and the performance of the actuators. (El-
Shweky i.e. 2018)
2.2.2 IoT communication layer
The communication layer is the main channel between the application layer and different
operating activities in the IoT system. It provides communication protocols for connected
nodes because the data needs to be shared between nodes. Communication can be divided
into three categories according to distance, short like Wi-Fi, medium like Ethernet and
long-distance communication like cellular communication. (El-Shweky i.e. 2018)
2.2.3 IoT physical layer
The layer mostly consists of sensors that bring information for the system and actuators
that do actions response to instructions from the system. They work together like temper-
ature sensor tells heating must turn on. Sensors are devices that measures physical quan-
tity and send feedback to the controller which send signal to the actuators to do actions
for example to turn on heating. (El-Shweky i.e. 2018)
2.3 Summary for AIROS logger system
Planning of the new IoT-system needs different aspects as mentioned in the previous sub-
chapters focusing on standards and architecture. There are multiple ways to achieve fully
functional IoT-system but making it more flexible and better it needs to follow standards
and planned architecture.

24
The chapter two also gave understanding of the concept and architecture of the IoT. This
knowledge will be needed when the architecture of the AIROS logger is planned. There
are many ways to create IoT system, so the architecture of the AIROS logger needs to be
defined. Decision between the vertical and the horizontal architecture depends what kind
of system is planned to build.
This decision also has effects to numbers of the standards that the AIROS logger have to
fulfil. If prototype device needs to be able to communicate with different IoT systems or
different vendors devices, the IoT architecture needs to be horizontal. Then it needs to
fulfil some IoT standards to able communicate smoothly without specific integration. If
prototype is planned to be closed system, IoT architecture can be vertical. Using the that
approach, IoT standards can be partly ignored and use own technical choices.
The system of the AIROS logger is planned to be simple to develop, so the selected ar-
chitecture approach is selected to be vertical. It is selected because the wanted system is
closed and it is not for commercial use or planned to be integrated to other IoT system.
The AIROS logger system will be using only commonly used standards that are known
for example from phones and Internet. The system won’t use any specific IoT or M2M
standards.
Layers of the IoT architectures: physical, communication and application are worth de-
fining before starting to develop the device. The physical layer of the logger is responsible
for, for example converting digital binary to electrical messages.
The communication layer of the AIROS logger provides protocols for the communication
that physical layer enables. Modbus and HTTP protocols are provided from the commu-
nication layer. The Modbus is used between the AIROS and robot, and HTTP is used
between the AIROS logger and the server, technologies descripted in Figure 4 .
The application layer is the top layer and it is responsible for using the data that physical
and communication layers provide. The application layer includes the monitoring appli-
cation that detects data that transports between the AIROS and robot. The application also

25
needs to convert, save and check monitored values. Figure 4. illustrates diagram of the
AIROS logger that shows, what kind of communication the system needs, Chapter three
gives more details on the communication methods of the AIROS logger.

Figure 4. AIROS logger diagram with communication.

26
3 SELECTING COMMUNICATION LAYERS
Internal communication devices, logger and the server, must naturally communicate with
each other and communication can be established in different ways. Communication is
often classified by distance and the scale starts from hundreds of nanometers and ends at
interplanetary size, so there is a wide range of communication types which can be used.
Familiar communication protocols are NFC (Near-field communication), Bluetooth,
Ethernet, Wireless local area network (WLAN) and wide area networks (WAN) like
fourth generation (4G) mobile network. The core idea of the IoT is to use the IP (Internet
Protocol) and mainly IP version 6 (IPv6) to communicate between device and cloud ser-
vices. Today there are several standards available for the IoT on different levels of the
protocol stack and they can be combined in different ways. (Larmo, Ratilainen, Saarinen
2018)
Different communication technologies are used in different situations. Next are listed and
explained the most used and common communication protocols and technologies for the
IoT.
First part contains technologies that are exist in current AIROS system: Modbus, RS-485
and Ethernet. Second part contains technologies that will be implemented to the AIROS
logger, these are Bluetooth, WLAN, Cellular services and HTTP. Third par is more about
IoT technologies like should consider in the future use, MQTT, and also technologies that
designers should know, CoAP and Lightweight M2M. Final subchapter describes what
and where technologies are used or have potential later use in AIROS logger.
3.1 AIROS Technologies
AIROS uses wired technologies which are oldest and the most reliable way to communi-
cate even if the technologies have wireless alternatives. Next is descripted couple com-
munication protocols and standards that AIROS logger might use or AIROS sanding ma-
chine is using.

27
3.1.1 Modbus
The AIROS supports the Modbus communication protocol and it is mainly way to com-
municate with the device. The AIROS logger needs this protocol in some stage because
communication is handled between the AIROS and robot with this protocol. Modbus pro-
tocol is needed to implement to the application of the AIROS logger.
Modbus is an application layer messaging protocol that provides client-service commu-
nication between devices. The Modbus protocol implements client-service architecture
and operates basically in request-response mode. The Modbus client-service model con-
sist of four types of messages. 1) Request, client sent message that initiates transaction.
2) Confirmation, client-side response that indicates that the message has been received.
3) Indication, server-side message that request is received. 4) Response, server sent re-
sponse message. (Reynders i.e. 2004)
The client-server model is used to exchange real-time information between device appli-
cations and devices, two device applications or devices and HMI/SCADA (SCADA, Su-
pervisory Control And Data Acquisition and HMI, Human-Machine Interface) applica-
tions. (Reynders i.e. 2004)
Information exchange flow between client and server starts with the client, master device,
initiates a request. It generates a protocol data unit, PDU, consisting of function code and
data request. The PDU is converted to an application data unit, ADU, with added bus or
network related field such as slave address and checksum for error detection. Modbus
frame with ADU and PDU is illustrated in Figure 5. (Reynders i.e. 2004)

28

Figure 5. Generic MODBUS frame.

After the server has performed required action it initiates a response. The full interaction
between client and server is illustrated in Figure 6.

Figure 6. MODBUS transaction.
Modbus needs additional support from the lower layers to get the messages across. A
popular method is to use master-slave layer 2 protocol, transmitting the data in serial
format over for example RS-232 or RS-485 which is also known as ANSI/TIA/EIA-485
(ANSI, American National Standards Institute; TIA, Telecommunications Industry As-
sociation; EIA, Electronic Industries Alliance). A newer approach would be to use
TCP/IP and Ethernet to convey data from client to server, which requires additional sub-

29
layer to map Modbus application layer on to TCP. Sublayer encapsulates the Modbus
PDU, so TCP/IP can be sent as a packet of data, Figure 7. illustrates the communication.
(Reynders i.e. 2004)

Figure 7. Modbus communication stack (Reynders i.e. 2004).
Modbus message frame is illustrated in Figure 5 and the first field of this frame is the
address field, which every message contains and it consists of a single byte of infor-
mation. In request, byte identifies the controller to which the request is being directed and
in response, frame begins with the address of the responding device. The maximum num-
ber of slaves can be between 1 to 247 which is also address numbers limitation. Typically,
there is one master and a few slaves. (Reynders i.e. 2004)
The function field is the second field of the message frame, which also consist of a single
byte of information. It identifies function that target device like PLC (Programmable
Logic Controller) is to perform. If target device can perform the function, the function
field of its response will echo that of the original request. Otherwise, the function field of
the request will be echoed with its most significant bit set to one, signifying an exception.
(Reynders i.e. 2004)

30
The message field is the third field of the message frame, the length of which varies ac-
cording to which function is requested. In the request, the message may contain infor-
mation that is needed to fulfill the requested function and in the response, the message
contains data that is requested by the host. (Reynders i.e. 2004)
The error-check field is the last message frame and it consists of two bytes. The message
frame is calculating the value of this field by performing a cyclic redundancy check
(CRC-16). This is done to check for errors if the message is damaged during the trans-
mission and preventing devices from reacting. (Reynders i.e. 2004)
There are lot of Modbus function codes and some typical function codes are illustrated in
Error! Reference source not found. which also shows typically data types and their
descriptions. The requested data will depend on what function code is used and typically
used function codes are from 01 to 07. Next is explained more about the function code 01
and function code 02. (Reynders i.e. 2004)
Chart 3. Examples implementation of Modbus addresses and function codes
 (Reynders i.e. 2004).

31
Function code 01 means reading one or multiple coils of the target device, the response
represents on/off status of the logic coils. The data field contains information about how
many coils will be read and the response contains that many bytes of coil data. (Reynders
i.e. 2004)
Function code 02 is reading digital input status and it enables the host to read one or more
discrete inputs in the target device. The request frames data field consist of the relative
address of the first discrete input and after it follows information on how many discrete
inputs will be read. The response data consists of count of discrete input data bytes and
after it bytes of discrete input data. (Reynders i.e. 2004)
3.1.2 RS-485
RS-485 is usually used to implemented to Modbus which uses it as physical layer. RS-
485 refers to Regulation specification and the RS-485 is one of the used RS interface
standards. The standard is an extension of the RS-422 but it increases the number of trans-
mitters and receivers permitted on the line. RS-485 and RS-422 have the same distance
and data speeds. It allows a ‘multidrop’ network connection on two wires. RS-485 allows
communications at distances of up to 1200 meters and data rates up to 10 Mbps. It can
have up to 32 line drivers and up to 32 receivers on the same line. It doesn’t achieve
maximum bit rate and maximum length at the same time. (Reynders i.e. 2004)
Conductor markings A in B are mentioned in the RS-485 specification. Conductor A is
known as A-, TxA and Tx+. Conductor B is similar and known as B+, TxB and Tx-.
Identifying cables can be done as follows: in the OFF-state, e.g. -8V. The voltage of the
A wire is more negative than on the B wire. The differential voltages on outputs A and B
of the driver are in the range -1.5 to -6 V on terminal A with respect to the terminal B for
a binary state 1, and in the same range but positive values for binary state 0. (Reynders
i.e.2004)

32
3.1.3 Ethernet
Ethernet is widely used for computer networking and it is hard to find a device that isn’t
using Ethernet in some level. Ethernet was first introduced in 1980 and it got internation-
ally standardized in 1983 as IEEE 802.3. Network speeds range from 10 Megabits per
second to 100 Gigabits per second, depending on which cables are used. Physically it uses
coaxial cables, twisted pairs or optical fibers. Ethernet is usually used in local area net-
works, metropolitan area networks or wide area networks. Ethernet is included in the
datalink layer of the OSI model. (El-Shweky i.e. 2018)
Because Ethernet supports high speed communication, it is ideal for applications that
handle a huge amount of data and require high speed. Ethernet cables are ideal for trans-
mitting data to remote destinations, but it also has disadvantages compared to other wire-
less communication protocols. It needs a direct physical connection between nodes and it
is vulnerable to physical damage. (El-Shweky i.e. 2018)
3.2 Additional technologies for the AIROS logger
This Chapter 3.2 gives more details about technologies that are implemented to the
AIROS logger system. Modern solutions usually uses wireless alternatives to connect to
IoT devices and these technologies that are descripted in this section is more about wire-
less solutions. Selecting most suitable wireless technologies from huge scale of technol-
ogies may be hard. Figure 8 tires to illustrate the suitability of different technologies to
different IoT environments.

33

Figure 8. Suitable wireless technologies for different IoT environments
 (Sohraby, Minoli, Occhiogrosso,Wang 2018).
There are roughly five different approaches to wireless radio technologies: cellular,
LPWA (Low Power Wide Area), satellite, short range wireless, wireline to wireless like
Wi-Fi.
3.2.1 Bluetooth
The AIROS sander has the option to communicate with Bluetooth but communication
can be low-quality or even impossible. Quality depends on how far the AIROS logger is
from the AIROS and if there is some material between them. That is why this option is
hardly considered now but in the future it could be possible.
Probably the most familiar short-range wireless technology is Bluetooth, which is a
WPAN (Wireless Personal Area Network) technology that uses radio waves instead of
wires or cables to connect devices. Bluetooth is one of the most popular technologies in
consumer electronics and it is based on the IEEE 802.15.1 standard. A Bluetooth device
contains a computer chip with a Bluetooth radio and software. “Communication between
Bluetooth devices happens over short-range, ad hoc networks known as piconets. A
piconet is a network of devices connected using Bluetooth technology.” Bluetooth is a
master-slave connection and uses usually 2.4 – 2.48 GHz UHF (Ultra High Frequency)

34
radio waves or other ISM (Industrial, Scientific and Medical) bands. Bluetooth uses fre-
quency hopping spread spectrum and a full-duplex signal. The Bluetooth version 2.0
bandwidth is usually 1-3 Mbps, but newer versions can reach higher speeds. The system
uses omnidirectional radio waves that can transmit through non-metal barriers like walls.
Bluetooth was invented in the late 1994 and was considered a wireless alternative to RS-
232 data cables. (Minoli 2013:170-177)

Figure 9. Bluetooth Low Energy core specification (Oliveira, Rodrigues, Kozlov
 Rabêlo, Albuquerque 2019: 9).
Bluetooth protocol layers are described in Figure 9 that shows how Bluetooth is being
used. Layers of the Bluetooth stack does not fully match to the OSI model and they have
some overlapping but next the Bluetooth Low Energy (BLE) protocol stack is roughly
compared to OSI model. The BLE consist of controller, host and app part. The controller
part is consists of physical and MAC (Multimedia Access Controll) layer, that is part of

35
the link layer. The whole host part belongs to the MAC layer. The application layer is
roughly same as application layer. (Oliveira etc. 2019: 9)
Bluetooth has evolved through four versions and all versions are downward compatible.
In mid-2016 Bluetooth SIG (Special Interest Group) announced a new version, Bluetooth
5. It had been said to reach two times higher speed and quadruple the distance compared
with the older 4th version of Bluetooth. It consists of three different power classes and the
higher the class, the shorter the range and the lower the power class of the Bluetooth. The
first class uses a power level of 100mW and it reaches up to a distance of 100 meters. The
second class uses a power of 2.5 mW and reaches up to a distance of 10 meters, and the
last class uses a power of 1 mW and reaches up to a distance of 1 meter. (Minoli 2013:
172)
Bluetooth standard IEEE 802.15 has four different sublayers: RF-layer (Radio Fre-
quency), Baseband layer, the link manager, L2CAP (the logical link control and adapta-
tion protocol), which is also a MAC-layer (Media Access Control) protocol.
“Overall Bluetooth is design for high QoS (Quality of Service) applications, a variety of
duty cycles, and moderate data rates in networks with limited active nodes” (Minoli
2013:172)
Bluetooth allows devices to create a trusted relationship between a master and slaves.
There can be up to seven slaves and this group of master and slaves are called piconets.
The master can communicate only to one slave at a time but the master can change con-
nection pair rapidly, which makes it seem like it communicates with multiple slaves at
the same time; in a round-robin fashion. A Bluetooth device can act as a bridge between
two piconets and at one time it can be the master in one piconet and a slave in another
piconet. This is called a Scatternet when Bluetooth devices are connected to multiple
piconets. (Minoli 2013: 178)

36
Hackers are already using Bluetooth to attack devices which means Bluetooth devices are
becoming a security issue. A method called bluejacking is searching for available Blue-
tooth devices and sending unsolicited messages. Another type of attack is Bluesnarfing,
which uses the same method to access contact lists and other information without the
user’s knowledge.
3.2.2 Wireless Local Area Network
Wireless Local Area Network usually refers to the Wi-Fi which is a trademark of Wi-Fi
Alliance. Nowadays high-speed wireless area networks are very compatible with IoT and
computer networks because of improved data rates and lower costs. First generation de-
vices were only capable of speeds of 1 to 2 Mbps and nowadays it goes up to 7 Gbps
(IEEE 802.11ad). (Olenewa, 2012)
3.2.3 Cellular service
Cellular networks like 3G, 4G or new 5G sound like practical solutions for IoT/M2M
applications designed to operate in different places. It is often chosen because cellular
networks can cover nationwide areas. In the near future, IoT and M2M applications are
expected to be major contributors of traffic and also revenue for cellular networks.
(Sohraby i.e. 2018)
It is important to choose the right cellular system from 3G, 4G or 5G or specific M2M
cellular service for the IoT and M2M system. A smart grid environment is a good example
of why it is so important to calculate which cellular to choose based on factors such as
cost, reliability and deployment schedule and performance. IoT and M2M traffic has spe-
cific characteristics, including data priority, transaction size, the real-time streaming QoS
requirements and higher delay tolerance of data. 3GPP is able to differentiate to Machine
Type Communications (MTC) and supporting selectively MTC devices in case of net-
work jam. Reliability and confidentiality are actual security concerns and endpoints need
to provide and support virtual private network (VPN) constructs, embedded firewalls and
other capabilities. (Sohraby i.e. 2018)

37
One aim with the AIROS logger is that it should be able to communicate independently
without having to rely on local area networks. Cellular services are a good way to achieve
this with low cost.
3.2.4 HTTP
HTTP (Hyper Text Transfer Protocol) is a standard protocol used on the Web and it is
based on client-server communication. It is between client and server. A client is the Web
browser or an application program that sets up a connection to send queries to the server.
A server is an application that accept connection request and responds to queries. (Antta-
lainen 2003: 332)
An HTTP request identifies the web resource i.e. the URL that the client is interested in
and what the server does with it. HTTP enables the fetching of different kinds of content
from the server such as text, images and video. First, TCP connection is established for
the HTTP to send requests and responses via this connection. The destination host is iden-
tified in the URL and DNS is also helping in this identification process. (Anttalainen
2003: 332)
HTTP request contains information on what the server should do with the given resource
and HTTP response consists of a header which contains information about the resource
and actual resource. Figure 10 illustrates the HTTP request and response procedure.
(Anttalainen 2003: 332)

38

Figure 10. HTTP request and reply procedure (Anttalainen 2003: 333).
HTTP is not designed to devices used in IoT which have limited resources but it remains
widely accepted within the existing network infrastructure and it is hard to find IoT sys-
tem which isn’t rely on HTTP in some degrees. There are some challenges when using
HTTP in IoT: (Bziuk, Phung, Dizdarević, Jukan 2018: 350-355)
1) Latency: Server needs to receive and process a request from the client and this
latency is a consequence of both HTTP and its underlying TCP. (Bziuk i.e. 2018:
350-355)
2) Energy and power consumption: Large uncompressed and redundant HTTP head-
ers cause higher network usage and increased power consumption (Bziuk, i.e.
2018: 350-355)
3) No server push option: HTTP is request/response protocol, so a HTTP server has
to wait for a specific request from the client before the data transfer is initialized.
(Bziuk i.e. 2018: 350-355)
4) HOL (Head of line) blocking problem: the HTTP version 1 allows pipelining re-
quest multiple objects over the same TCP connection. Because of the request /
response, server has to response request in order and an early request for a large

39
object as a lost request can delay all later pipelined requests. (Bziuk i.e. 2018:
350-355)
Even HTTP version 1 has issues. It is still an acceptable and widely used solution for IoT.
Reasons why HTTP is still in use is that it is probably an easier and faster solution to
implement than other protocols. (Bziuk, Phung, Dizdarević, Jukan 2018: 350-355)
3.3 Common IoT protocols
Next is briefly introduced some protocols that have not gained so much popularity at the
moment in IoT or M2M systems. These aren‘t implemented anywhere in the AIROS log-
ger IoT-system either but are well known and that’s why they are briefly introduced.
3.3.1 Message Queue Telemetry Transport
Message Queue Telemetry Transport (MQTT) is a connectivity protocol for IoT and
M2M devices and it was invented in 1999 by Dr. Andy Stanford-Clark from IBM and
Arlen Nipper from Arcom (Andrianto i.e. 2018). Most of the popular IoT applications
use MQTT or CoAP as choice of the data transfers (Larmo i.e. 2018). MQTT is as an
extremely lightweight publish/subscribe messaging transport and it has low power usage,
small header and efficient distribution to one or many clients. (Andrianto i.e. 2018)
The principle of the publish/subscribe messaging is that there are entities that are inter-
ested in piece of information that will register their interest. The process of registering an
interest is called subscription and the interested entity is called subscriber. Entities that
want to produce information are called publishers. A broker, which is what is between a
publisher and subscriber, ensures data delivery from the publisher to the subscribers.
There are three different kinds of publish/subscribe systems: topic-, type- and content
based. For example the topic-based system is where the list of topics is already known.
A subscriber sends a message to the broker and the publisher sends a message which

40
contains the data to be published. The broker will transfer the message to the subscriber
if the topic of the publisher and subscriber matches. (Andrianto i.e. 2018)
MQTT also supports basic end-to-end Quality of service with three different levels, de-
pending on the reliability of the message. Level zero is where a message is delivered once
or not at all. In the first level, a message will be retransmitted until acknowledged by the
receiver. Level two ensures reception of the message and it is delivered only once to the
receiver. (Andrianto i.e. 2018)
3.3.2 Constrained Application Protocol
HTTP is very popular protocol but for tiny resource-constrained device that communi-
cates over resource-constrained IP network, HTTPU is not practical option because it
requires too many resources and too much bandwidth. Some networks limit the size of
the datagrams and if a device is planned to be used in for example 6LoWPAN (IPv6 over
Low power Wireless Personal Area Netroks), it will limit the size of the datagrams. Con-
strained Application Protocol (CoAP) is attempting to solve this problem (Waher 2015:
120-125).
CoAP designed by IETF and CoAP is a client-server or request and response protocol
that fills the requirements of only constrained node with a low capability in RAM (Ran-
dom-Access Memory) or CPU (Central Processing Unit) and constrained with lower
power. CoAP supports publisher/subscribe architecture as previously mentioned MQTT.
CoAP is a web transfer protocol and it holds up unicast and multicast requests by taking
advantage of UDP. (Bahashwan, Abdullah, Manickam, Selvakumar)
3.3.3 Lightweight M2M
LWM2M is a device management protocol and it is designed for sensor networks and the
demands of the M2M environment. Lightweight M2M is specifically designed for the
management of low power and constrained IoT/M2M devices (Putera, and Lin 2015).
LwM2M is developed by OMA specWorks, which is a successor brand for Open Mobile

41
Alliance and its purpose is to develop technical specifications in the mobile and IoT mar-
kets (OMA specWorks 2019).
Device management protocol is designed for reducing the amount of time to configure
and manage the M2M devices, especially for those located in remote areas. This is done
by enabling the device to collect resources and information as a managed object. Device
management protocol has to be lightweight to fit the limited properties of IoT / M2M
devices. Then it is possible to generate managed objects. (Putera and Lin 2015)
ETSI and OneM2M and other IoT / M2M standard organizations don’t purpose any other
device management mechanism. They have adopted the Device Management protocols
by OMA for mobile devices and the TR-069 protocols by Broadband Forum for fixed
devices. (Putera and Lin 2015)
3.4 Implementing to AIROS logger
The AIROS logger system can be divided in two parts: the system of AIROS sander which
consist of communication between AIROS and other devices. See more details in chapter
4.3.2. The second part is the logger system which technology choices is described next.
Chart 4. shows a list of technologies and protocols that are described in this chapter and
where it is used or needed for AIROS logger. The chart has a column that has colors that
indicate green if it is used, yellow if it is wanted but not necessary and red if property is
not needed. AIROS logger is supposed to work with cellular service so Ethernet and
WLAN isn‘t necessarily needed but they give an opportunity to connect to the Internet if
the cellular service fails. The possible server protocols are MQTT and HTTP. MQTT is
created for IoT but HTTP is very common in web-based systems and it is already used in
other projects, so HTTP is selected for later use.

42
Chart 4. Potential technologies for the AIROS logger. The colors are indicating need
 of the technology. Green: needed, Yellow: possible, Red: not needed.

The AIROS logger can be connected to Internet with using either Ethernet, WLAN or
cellular service which is the main connection way. After the communication to the Inter-
net is established AIROS logger needs to send data to the server. The server has to be
configured to work with a specific protocol. The AIROS logger system uses HTTP re-
quests to handle data. HTTP request is used because of its simplicity and IT crew had
experience of it. HTTP request are good and enough in small scale projects but more
sophisticated methods are required if data packages are lost because of bad communica-
tion. Figure 12 shows communication links between devices.
The communication with AIROS can be done as Figure 13 illustrates. The figure shows
that AIROS mainly communicates with Modbus, but it is also possible to control it with
PROFINET (PROcess FIeld NET) which is a common protocol in industrial use. AIROS
has also integrated Bluetooth but it isn‘t utilized in the AIROS logger system because
there can be distractions between AIROS and the logger.
There are possibility to use Wireless personal area networks like Zigbee and LPWAN.
They are great technologies for larger scale and connecting to near located devices. The
use-case for using these kinds of technologies would be the following: AIROS loggers
could be linked together, and it only needs one gateway to send data to server instead of
every AIROS loggers have own cellular service. Our focus is to create working simple
IoT devices that can work on its own so these technologies should be kept in mind. Im-
plementing this kind of network would need tens of AIROS sanders in one location.

43
4 PROTOTYPE OF AIROS LOGGER
Today many industries rely on vertically specified machine-to-machine (M2M) solutions
that involve extensive use of specifically customized hardware and software, which are
typically designed only for that industry's service. Design, deployment, and maintenance
of such proprietary solutions can cause high capital and operational expenditures. (Swet-
ina i.e. 2014)
Building a complete IoT system is not always easy and it is important to choose the per-
fect hardware and software platform that is suitable for its purpose. There are factors,
described below, that monitor our choice for the optimal platform for IoT system. The
hardware platform has two computational concerns when it handles massive data flows,
either decision making controller or data processing. An operating system is also a way
to use the hardware platform and it helps developing an application with excellent per-
formance. (El-Shweky i.e. 2018: 626)
The factors to help defining right hardware platform are:
1) Reduction of employed transistors, reflecting to die size, packing and unit cost.
2) Time to market – the markets require a generic solution to apply its demands.
3) Nonrecurring engineering cost – cost of the development process for software or
hardware.
(El-Shweky i.e. 2018: 626)
Platform choice is based on the previous factor and there are two different types of plat-
forms that could be chosen for prototyping.
1) Microprocessors
Microprocessors are used as platform for developing IoT devices and there are chips
available which have a microprocessor with other blocks. The whole system is built on
the chip with all its peripherals. The system acts as a gateway for the local devices on the

44
Internet and it is required to support several protocols for communication between de-
vices, sensors and the Internet. There are many systems that are used commercially for
this purpose. Arduino and Raspberry Pi are the most common. They are generic and could
be used for many purposes. Hardware components are installed, which increases the
power consumption, so it needs optimization for saving batteries. (El-Shweky i.e. 2018:
626)
2) Field programmable gate array, FPGA
It gives a less generic solution and provides a less time to market and nonrecurring engi-
neering cost than application-specific integrated circuit (ASIC). FPGAs are expensive
and their energy consumption is much higher than ASIC chips’, which could be an issue
for an IoT device. Combining FPGA and ASIC chips together gives advantages of both
and FPGA’s products are usually used for prototyping and testing the ASIC design that
can be later mass product. (El-Shweky i.e. 2018: 626)
4.1 Raspberry Pi 3
Raspberry Pi was originally designed to schools for easy entrance to coding and develop-
ing. The first Raspberry Pi was released by Raspberry Pi Foundation in 2012 and it gained
instant popularity because of low prize and overall its computer with all necessary com-
ponents integrated to the board. There have been multiple models and now the Raspberry
Pi is at version 3 which brought integrated wireless LAN and Bluetooth to the board.
Version 3 also gained more power with quad core processor and it has multiple different
inputs and outputs such as GPIO-pins (General-Purpose Input/Output), USB (Universal
Serial Bus), HDMI (High-Definition Multimedia Interface) and Ethernet.
The Raspberry Pi is no longer a unique chip computer and there are lot of alternatives to
it. Raspberry Pi has also a smaller and cheaper model, Raspberry Pi Zero with reduced
features for example only two USB-ports of which the other is for power. Because we
needed to work with port communication we didn’t succeed to separate communication

45
between the converter and USB-dongle so we used easier solution and chose Raspberry
Pi 3 with all possible features.
4.2 Arduino
Arduino is an open-source electronics platform that consist of hardware and software.
There are many different boards that are suitable and have different kinds of properties.
Boards have potential to extend with shields giving them extra features.
All properties that are listed in Chart 4. are possible to achieve with a shield and Arduino
needs at least two shields, cellular communication and RS-485. Arduino also has many
ready-made libraries for example for Modbus communication.
4.3 Selected hardware
All the components are mainly designed for home use which means all the components
aren’t best suitable for industrial use, but the main purpose is to show that you don‘t need
expensive components to this kind of operations. Project did not have any precise budget
but focus was to get affordable parts with good value and that all the parts could be
changed with other similar parts.
Chart 4.Error! Reference source not found. has also small technology comprehensions
between Raspberry Pi and Arduino which shows that products have differences in inte-
grated communication technologies such as WLAN or Ethernet. Both products needs ex-
ternal accessories to use cellular or RS-485 communication but Raspberry pi can use plug-
in USB accessories but Arduino needs specific designed shields.
The Chart 5. shows more details about the differences between prototype platforms. The
selected prototype needs to perform actions fast, almost real-time, to capture communi-
cation between AIROS and robot. Arduino is fast to read sensors and other similar devices

46
which are used directly through with digital or analogy ports. It is possible to capture
messages through serial ports, but our focus is to rely on accessories that converts them
readable form. Raspberry Pi is many times faster than Arduino and has more calculations
speed to perform value converts, comparisons and database handling.
Chart 5. Differences between Arduino mega 256 and Raspberry pi 3.

 Arduino Raspberry Pi
Core 8 bit 64 bit
RAM 8 KB 1 GB
Flash memory 256 KB -
Clock speed 16 MHz 1.2 GHz
GPU - 400 MHz
Programming Arduino python, C, C++, ruby etc.
multitasking No Yes
Network - Ethernet/WLAN/Bluetooth
USB interface 1 / connection to computer 4
Input voltage 7-12V 5V
Faulty shutdown No effect Possibility of files corruption
power consumption ~50 mA 2.5 A

The prototype should detect request and following response which is needed to remember
so prototype needs some kind of database to remember read values. Both prototypes can
handle this but it have to remember that Arduino has limited size of flash memory but
Raspberry Pi uses external SD-memory card, which is much bigger.
Arduino has integrated flash memory that and it is designed for work when power is
plugged-in and work until its plugged-out. Arduino doesn‘t have start up sequence and

47
only the programmed code will be run and Raspberry Pi is small size computer that has
start up sequence and there are lots of programs running all the time. There is possibility
that if the Raspberry Pi isn‘t shutdown correctly it will corrupt files because it uses exter-
nal SD-memory card.
Our choice of hardware platform, heart of the IoT-system, is a Raspberry Pi, which is
very flexible for IoT and DIY-projects. The operating system Raspbian is based on
Debian, so many Linux packages are compatible with it and without forgetting the huge
number of active users. Selecting the Raspberry Pi to use instead of Arduino is based on
that platform is enough powerful and it have built-in backup connection if cellular com-
munication fails.
We used a USB to RS485 converter because they are so simple to use and they are cheap
but randomly bought models may have some cons like erroneous communication. At the
beginning of the project a couple of different USB to RS485 adapters were tested and
they all seemed to work fine. Converters were bought from eBay and same models had
different branding. We tested a PL2303HX chip-based model and another one was a
FT232RL module and they both have automatic detection for data rate of the serial signal
and they also support Linux, Windows and Mac computers. When the project was in
testing we noticed that FT232RL model with AIROS logger program wasn‘t able to detect
all inputs so we chose to use PL2303HX based converter. The problem was detection of
the message and the converter was terminating signal detection, serial port program is
able to identify message periods. So, for some reason converter couldn‘t detect correctly
stop bits. Stop bits are used to detect the end of the Modbus message and they depend on
what protocol and parity is used, for Modbus RTU (Remote Terminal Unit), which is used
in this project, it is always 1 bit.
The choice of the cellular module i.e. dongle for outside communication was the next
step. The module had to be able to function internationally, so it had to support as many
frequencies as possible. Our 3G dongle had to support Linux and we looked at ones which

48
incorporate their own network functionality. We chose to use a module by Huawei be-
cause it had a good reputation to work well with Raspberry Pi. Our device is Raspberry
Pi model 3.
With these components it is possible to create an IoT device that collects the data from
the AIROS. This device is illustrated in Figure 11.

Figure 11. Installation diagram for the AIROS logger.
The Figure 11. illustrates the diagram of the AIROS logger that also contains wiring and
available inputs and outputs for the logger. The figure has two systems, AIROS logger
and the original AIROS sanding system that contains AIROS, gateway and robot. The
AIROS logger system will be inserted to existing gateway is connected to AIROS with
Modbus RTU RS-485 (J5). The Raspberry Pi is connected to cellular stick and RS-485
with USB-port (J1 and J2) and the devices uses 5 VDC power input (J3). Raspberry has

49
able to communicate with Ethernet (J6), GPIO pins (J7), Bluetooth (J8) and WLAN (J9).
The connections to the gateway is handled with Modbus RTU RS-485 (J4), there are three
different pins A, B and ground. It is possible to that there is no gateway between AIROS
and robot, then it is possible to use cable divider and connect directly to RS-485 cables
to link the AIROS logger.
4.3.1 4G connection
Raspberry Pi has built-in Ethernet and WLAN, but AIROS logger has to be able to con-
nect to the Internet by itself. Relying on Ethernet or WLAN could sometimes be easier or
might be the only option if cellular coverage area is too bad to use. Our purpose of using
a dongle is to build a so effortless solution that other companies give permission to use it
and WLAN and LAN are usually highly forbidden to use excluding guest networks.
We need to send data from the AIROS logger to the remote server where our database is
located. We also need to connect to the Raspberry Pi from the outside to update the device
or just check something manually.
There are differences between 4G sticks that are in the market, but AIROS logger will
use a Huawei E3372h-153. Using this 4G stick is easy because it only requires being
inserted to Raspberry Pi and the installation of a modem software
4.3.2 Other used devices
Because the AIROS logger needs some data to monitor, it has to be attached to some
place it can monitor the data exchange between two devices. In this case between the
AIROS and robot which is moving AIROS. A good location for monitoring is the gateway
which converts messages of different protocols to a suitable format for devices and all
communication between them goes through it. The AIROS logger is connected to this
gateway by an RS-485 adapter. It is possible to monitor the communication without a
gateway and connect directly to AIROS by using cable divider like the Figure 11 shows.

50
4.3.3 Hardware flow
Hardware of our project consist of the previously mentioned devices: Raspberry Pi with
RS-485-USB-adpter and 4G module accessories. The existing sanding entity includes
AIROS, robot and computer which controls devices. The IoT-system is illustrated in Fig-
ure 12 which shows where connection of devices is shown. The AIROS logger will be
inserted between AIROS and robot and then it will be able to detect communication be-
tween them. AIROS logger program will be running inside Raspberry pi which is con-
nected to gateway with RS-485 converter. Raspberry Pi will be use 4G dongle to interact
with the database and the server which enables remote access. Described hardware con-
nection map can be seen in Figure 12. This figure only describes communication regard-
ing the proto system and there might be some connections that are irrelevant. Inside the
box all the data is transmitted in wires and outside connections go through the 4G dongle,
which transfers data to wireless communication. Figure 12 illustrates connections when
AIROS logger is not using VPN communication because VPN creates a tunnel to the
server and all communication goes through that server. Now database dependency should
go through the server and nothing else is changed.

51

Figure 12. The hardware and communications of the AIROS logger system. This
 show how the hardware is bind to existing AIROS sander system.

The AIROS manual have described possible interface that user can use to communicate
with the sander. The AIROS has three different interfaces: Modbus RTU, Profinet and
Digital control. The main way to interact is with the Modbus RTU but it is possible to
interact using optional Profinet gateway which converts Profinet to Modbus. Connections
and interfaces to the AIROS is illustrated in the Figure 13. The figure is from the AIROS
manual with more details on the connections and for example the following: AIROS mo-
tor drive uses 48 VDC power supply and Profinet can be used through the Modbus RTU
gateway. (Mirka 2018b: 2-3)

52

Figure 13. Installation of the AIROS sander. Markings are descripted in the below
 (Mirka 2018b: 2).
The connector that are illustrated in Figure 13. are following: J1 is Modbus connection;
J2 is 48 VDC input; J3 and J7 are NTC (Negative temperature coefficient) thermistor
connections; J4 is relay connections; J5 is for 4-bit digital speed control; J6 is for 15 VDC
output.
4.3.4 Remote access
Raspbian OS has preinstalled remote access feature but it has to enable from the setting
of the operating system. The remote access that Raspbian OS uses is SSH (Secure SHell)
which creates secured connection between devices. Regular use of the SSH is connect
device that has static IP address or local IP in local area network. Usually device is Con-
necting to remote device that is behind the NAT (Network Address Translation) which is
technique to reduce IP addresses and all devices behind the NAT uses the same IP which
gateway has. When the NAT is between devices it isn‘t possible to access directly to
target device because its IP address. A workaround is to use server between them which
has IP accessible IP address. Method is called reverse SSH which is connection that target
device first creates a connection to the server and after it, it is possible to connect back to
the target device using the same connection that already have created. This reverse SSH

53
is illustrated in the Figure 14 where is steps 1-3. The first step is create connection be-
tween target device and server, green line. Second step is creating connection to the server
from the source machine, blue line, and the last step is connect to the target machine using
the same connection that is made in the first step, green line back to target machine.
Meaning of the different lines in the figure are next: the green line is the connection that
target machine is created and the blue line is the connection that user creates and the
purple line in the server is mechanism that enables communication back to target ma-
chine.
The AIROS logger is using SSH and reverse SSH to create connection to the Raspberry
Pi. Reverse SSH is used because 4G dongle uses NAT that blocks directly incoming traf-
fic and device don‘t have static IP address what is needed for direct SSH connection.
Figure 14 illustrates reverse SSH connection that is described before.

Figure 14. Reverse SSH connection.
The Internet connection of the AIROS logger is established with 4G dongle which means
that outgoing traffic is working like it should, but incoming traffic back to the AIROS
logger was problematic with regular cellular subscriber. New phone subscriptions are
now using new IPv6 which makes it a little bit harder to create (stable) communication

54
to the server. Subscribers NAT has only view incoming ports open and every subscriber
has different ports open. For that reason the protype AIROS logger is using WLAN which
gives reliable connection to the Internet and it is also possible to use reverse SSH and the
AIROS logger doesn’t have to care about blocked ports.
The alternative for the reverse SSH connection is VPN that removes the remote access
problem when using 4G communication. Device network traffic goes through VPN tun-
nel and traffic goes out of the VPN server. VPN also creates a local network that can be
used for SSH connection.
4.4 Software
The Raspberry Pi 3 is as any other platform that can use various operating systems (OS).
The most popular choice and default OS for the Raspberry Pi is Rasbian which is based
on Debian distribution which is Linux based. There are many alternatives for the OS, such
as Ubuntu mate, Ubuntu core, Arch Linux ARM and Pidora. Ubuntu mate is based on
regular Ubuntu, but Ubuntu core is designed for IoT and embedded devices and cloud
computing. Chart 6. shows a couple of OS that are designed for Raspberry Pi and how
they differ form each other. Most of the OS’s are based on Linux but the Windows 10
IoT core is based on Windows and RICS of their own kind.

Chart 6. Operating systems for Raspberry Pi.

Name Light IoT Maintenance Linux Comments
Rasbian Yes Yes Official Yes Based on the Depian distribution, also
headless.
Ubuntu MATE No No Community Yes Full Linux with only MATE desktop
Snappy Ubuntu Core Yes Yes Company Yes Almost same as Rasbian OS.
Windows 10 IoT Core Yes Yes Company No Needs Windows 10 and Visual Studio
RISC OS Yes No Community No Not Linux or Windows
Pidora Yes No Community Yes Based on the Fedora distribution, also
headless but not so active.

55
There are multiple Linux based operating systems that are quite similar to each other and
have only small differences. Some Linux OS’s can be used fully headless, without graph-
ical user interface, and most of the using is through remote control which uses only a
command line. The AIROS logger can be operated through the command line and the
device needs less power and have better performance if we use headless OS.
Because of the Linux OS’s are quite similar but the OS needs to have good long-term,
device and program support and active community. We choose to use Raspbian in this
project because it had all the criteria and it is the official operating system for Raspbian
Pi.
The choice of the programming language was easy because Raspberry Pi supports Python
well and it has many different libraries that will support AIROS logger functions and
accessories and controlling Raspberry Pi GPIO pins are easy. Other preinstalled coding
languages in the Raspbian are C, C++, Java, Ruby and Scratch.
The project software uses the object-oriented Python programming language. The project
runs version 2 of Python, because some useful libraries aren‘t compiled to the newest
version 3. The advantage of Python is its power and clear syntax. (Python 2019a)
The protype program takes advantage of Python’s wide package library and uses them
for many purposes, but interesting packages are PyModbus, pySerial and SQLite.
PyModbus is a Modbus protocol implementation and it is easy to get basic AIROS infor-
mation. PySerial encapsulates the access for serial port which enables monitoring the
communication (Liechti 2019). SQLite is a C-language library that implements a SQL
(Structured Query Language) database engine and it is small, fast and reliable and it is
also the most used database engine in the world (SQLite 2019).
4.4.1 Software requirements
Mirka didn‘t give any special requirements for the AIROS logger software but a target
was given: it needs to monitor Modbus communication and send changed values to an

56
external server. The planning of the software started from writing down some require-
ments that AIROS logger software needs to fulfil:
1. Send Modbus message to AIROS to get device information.
2. Detect Modbus messages, request first then the response of the device.
3. Convert Modbus response data to a readable form.
4. Check if response is changed and hold the value.
5. Send changed value to external database.
After the listed requirements, simplified process structure is illustrated in Figure 15.

Figure 15. Simplified process structure of AIROS logger program.
4.4.2 Software flows
The AIROS logger program can be divided into a couple of sections as presented in Fig-
ure 15. First it sends Modbus request to the sander which will give basic information
about the AIROS device. It will give data that isn‘t so useful for controlling the device,

57
such as the device name and firmware version. Secondly it monitors the serial communi-
cation and saves the monitored data to the local database. Thirdly, it retrieves data from
the database and sends it to the external server.
The software architecture wasn‘t directly planned but system was divided by functional-
ities.
1. Modbus communication
2. Serial communication
3. Response detection
4. Database service
5. Http service
6. Calculations / Modbus data checking

The Modbus communication takes care of the Modbus commands to and from AIROS.
Serial communication handles the monitoring and gives Modbus a message that is even
a request or response. The Response detection will detect if the Modbus message is a
request or a response and after that it gives the data for further handing. The calculation /
Modbus data checking will handle Modbus data and sends it to the Database service.
Database service is able to build a database where the given data will be stored. The ser-
vice is also responsible for retrieving and deleting the data from the database. The re-
trieved data is used in HTTP service which will send the data to an external service.
Figure 15 shows the first part of the software, requesting information. This part is Modbus
request-response operation and saving the retrieved data in to the database. The high-level
presentation of the fully functional code is illustrated in Figure 16. The meaning of the
code is next: Application starts by going to Modbus service, which handles all the Mod-
bus related functions. The service starts by making connection to the Modbus serial
adapter and trying establish the connection to the AIROS sander. Without success, pro-
cess will end. After successful connection, the program will create model that holds re-
sponse values from the AIROS. Then data requests are send and responses are handled.
The AIROS responses data is needed to convert to readable form and after that the data

58
will be stored to object. It will be returned to main program after all responses are han-
dled. The main program will store the values to the database.

Figure 16. Modbus request and response function to AIROS sander.

59
Second part of the code that can be seen in Figure 15, monitoring the serial port commu-
nication, is part of the eternal loop. The loop will keep monitoring forever and this func-
tionality is described in Figure 17, which illustrates data flow of the monitoring part and
how the data is stored to the database.

Figure 17. Process flow of AIROS logger and saving.

60
Part three of the code (Figure 15) describes a retrieving database data to data array which
is transformed to multiple http-post requests. The request will send logged data to Mirka’s
server where it will be better protected and safe. The figure also shows that if the response
from the server is successful, only that data will be deleted. Otherwise it will stay in the
database. Figure 18 illustrates the dataflow of the third part of the program.

Figure 18. Dataflow of sending data to the external server.
4.5 Database implementation
Raspberry Pi has a local database and it is done by SQLite which is a very popular and
light SQL database. It can have one database which has multiple different tables with
different structures.

61
The structure of the local database isn‘t straight given but server-side database has almost
the same values as AIROS and all the server-side values were typed to the string. Chart
7. illustrates a part of the server-side database structure.
Chart. 7. This is database structure is used in the Mirka server.
index
logger
id date time
serial
number
device
name
part
version
firmware
version
usage
time
hours
usage
time
min.
1203 12034
18.2.
2019
18:51:
27 131411
AIROS
8095933
AI1.0
12345
1.21 Jan 3
08:58 804 54
In the beginning Raspberry Pi database was designed to be simple and the structure would
look like Modbus structure with addresses and a value for them. This kind of structure
gives an easy access to evaluate what has changed. Error! Reference source not found.
illustrates the structure of the table and it includes only a couple of different columns:
date, register number i.e. address and value. The register number is the Modbus register
or coil number which depends on the Modbus’ function from 1 to 49999. Some interesting
values are combined from different register numbers such as device name so Chart 8.
styled Modbus like database structure was too much work for later use.

62
Chart 8. First Database version of the AIROS logger, where the database structure
 is modelled to look like Modbus message. Single address is single value.
index Value Timestamp Date Time Address Logger id
1 A 1555494151 04/17/2019 9:42:00 40001 132456
2 I 1555494379 04/17/2019 9:46:00 40002 132456
3 R 1555494379 04/17/2019 9:46:00 40003 132456
4 O 1555494379 04/17/2019 9:46:00 40004 132456

Previously database was modified to look like a database where are mixed variables and
addresses. Now variables were used for values that needed combination. For example the
device name was stored to one variable instead of 10 different addresses. This database
was working well enough but the naming policy needed some clarity. The addresses were
difficult to read as they were and needed renaming after for example the name of the
device. This database structure is illustrated in Error! Reference source not found. 9.
Chart 9. Second database version of the AIROS logger, where database structure is
 also modelled to look like Modbus, but it can store multiple values in single
 address. Address is like variable which stores multiple single values.
index value timestamp date time address logger id
11 25 1555494151 04/17/2019 9:42:00 pcb temperature 1322456
12
AIROS
80959339 1555494379 04/17/2019 9:46:00 Firmware version 1322456
The server of the Mirka company can take only one row of parameters at time. The row
can contain one or multiple values at the same time but if the AIROS logger sends only
one parameter, it will change other row values to NULL. This makes it harder to use data
if only a part of the data is shown and other data is missing. It would be simpler to have
all the possible data even if they have not changed.

63
The current database which have value per row will need investigate unchanged values
to fill caps and combine them in the end, when the data is sent to the server.
The logging program was doing unnecessary combining it was easy to see where optimi-
zation is needed. The Database was modified to keep all current values in one row and
now whole row is ready to send to the server. Now the database structure is the same as
the server-side database which can be seen in Chart 7. This design is needed for reducing
the time and work for sending data to server and it will simplify the code structure.
At the beginning of the logging we will save MAC address to the database which is also
for identification at the Mirka server. With this identification we can update the data with-
out getting multiple rows.
It is rational to keep all current values in stash and also keep log what have changed and
when. So, the database is made of two different tables one for current values and one for
logged values. When the current value is changed it will automatically be added to the
logged table. This copying is done with SQLite triggers, which are handy to automate
simple tasks. This logging table can be erased when needed so only content of this table
is sent to external Mirka server and if sending of the values successful they will be deleted
from the data-table.

64
5 SOFTWARE DEVELOPMENT
The software is developed in Python language, so it can be compiled and run in different
OS and when a source code is running for the first time the source code is compiled to
byte code which is a faster way to run than a source code is. AIROS loggers software is
coded with using Microsoft Windows OS and Visual Studio Code - code editor which
also Microsoft product. Code editor has many useful extensions that make coding easier.
In the source code developing progress Lint is used for finding syntax and style problems.
There are some differences between how different OSs show attached USB-devices but
overall it is easy to write code in one and use it in another one.
There is no perfect code because there are always something to improve but it is important
to aim for a better code. One way to improve the code is using Lint and using testing
frameworks for testing the written code.
5.1 Unit testing
In the AIROS logger software development process, any other software testing extensions
or any behavior-driven develop framework like Jasmine weren’t used. Jasmine is com-
monly used testing frameworks for JavaScript language and it has also been developed
for Python based web projects (Pivotal Software 2019). Python has its own unit testing
framework, which is inspired by Junit, testing framework for Java (Python 2019b). Be-
cause unit tests catches mistakes and exceptions it is important use them.
The AIROS logger software uses Python’s own test framework to test the whole programs
code. There are multiple files that had to be tested and most of the functions are tested in
some level. Python’s own test framework doesn‘t have code coverage but approximately
70% of the functions have been tested to exclude third party code. After starting to use
unit tests it found some bugs that were hard to find and that were not considered.

65
5.2 Developing the software
After using the perfectly functioning dummy messages it was time to run the code with
some real data. The easiest way to get real data is to use a Modbus request to the AIROS
board. The board has pre-set information such as serial number and device name. It also
has an integrated temperature sensor that gives real data. The Modbus request is used for
developing functions that converts and checks Modbus messages.
The monitor functions cannot be developed correctly if the data isn‘t coming from the
serial port. Using AIROS with sampler, which continuously requests different values,
creates opportunity to capture real Modbus communication. The captured data from the
communication has to be checked and modified to readable format.
One of the first problems encountered during the serial port communication was the de-
tection of the Modbus messages. Using randomly selected Modbus adapter caused prob-
lems with detection of the correct Modbus messages. This problem appeared first ran-
domly when assembling testing/developing board. Messages were assembled wrong al-
most every time which made the messages look as if they were cut and joined randomly.
After changing the serial adapter to another corrected the messages. So even the bad
adapter worked fine to show the messages. It didn‘t notice when the message ended and
that for it wasn‘t suitable for monitoring a task.
The Modbus is a request-response type of communication, protype software needs to
know the previously detected Modbus message. Software has to know what the robot is
requesting so it can read response messages data and store it correctly.
The form of the database is important and if the database is formed rationally it is easy to
maintain. Also saving and cueing the data is fast to execute. The structure of the database
was changed after the first program generation. At first the data was saved by using the
Modbus address and one row of data consisted of logged data, logging date, Modbus
address code and unique identification for AIROS logger. This kind of structure is good
for inserting values because it is simple to add or update only one value. When all data is

66
scattered it needs to combine or fill the missing values before sending them. These func-
tions make it more complex and it needs to work harder to create JSON-message that is
needed for exporting data to Mirka’s server.
The database structure was modified to keep all the possible data within the database row,
so JSON-message is now simple to create without extra work. This structure also keeps
all current values, so it simplifies the data preparation at data analysis stage which means
there are less data gaps to fill.
One of the concerns was saving the data to the database so that it would keep all the
desired data and clear it after the data is processed. The first program version consisted
of two separate threads for data monitoring and logging values and for sending logged
values to the server and saving the data again if sending was faulty. The idea for this
threading was to separate the fast and slow functions so that monitoring would continue
logging and other thread handles process of sending the data which might cause latency.
Threading is causing some database problems because only one database connection can
be written to the database at same time, but it is possible to read in multiple threads or
programs. This problem was bypassed with creation of another database.
In the next program version, threading wasn‘t used anymore. This was done because us-
ing one database is much simpler and clearer because also the entire code had permission
to edit the database if needed. Overall the new program version had no significant delay
in data sending process, so it could be used. SQLite has triggers which is used when
program is inserting or updating values to the main database date, which keeps record of
the current values. Triggers are programmed to automatically “copy-paste” changed row
to the other table that contains all the logged rows. This another table is cleared when sent
to Mirka’s external server.
Modbus communication has always one master and one or multiple slaves that give in-
formation if requested. In the system, AIROS is acting as Modbus slave and the robot as
master and when AIROS logger is installed, it also acts as Modbus master. This means
there will be two master devices in the same system. Usually Modbus RTU system has

67
only one master, but it is possible to add several master devices for example with gateway.
AIROS logger isn‘t much communicating with AIROS, but it is possible that both robot
and logger communicate at the same time. Logger is communication only when the de-
vice, Raspberry Pi, is started. The device is only requesting some unusual parameters that
might not been added to be asked such as device serial number, name or firmware version.
This overlapping request may cause problems but probably they don‘t do any harm to the
system or the connected devices. The request that AIROS logger sends is just requesting
of the parameters, so in the worst-case scenario a wrong device is responding.
5.3 Protype testing
When the software was coded it was simultaneously tested in small scale, but proper
tested wasn‘t run. Testing the whole program would require some real and changeable
data to investigate how the system behaves.
5.3.1 Target
The purpose of the test is to investigate how the software will react to real data that might
be corrupted and if the software is powerful enough to capture all the messages. Also how
the collector device will react to other devices with different cases.
5.3.2 Setup
The testing system will be Raspberry Pi version 3 with Modbus converter and AIROS
circuit board with gateway sampler. This sampler will request continuously and system-
atically all AIROS values. In the later AIROS board and sampler is replaced with real
AIROS and robot which won‘t differ from this case because AIROS board has integrated
a temperature sensor, which gives changeable data to log. The software is modified to
send logged data every 10 minutes to the server and delete that data from the local data-
base.

68
5.3.3 Cases
Testing plan 1 is next: Raspberry Pi is connected to the gateway between AIROS and
sampler which is already requesting information. Raspberry Pi is turned on and it should
request some information from the AIROS and then it should start monitoring the com-
munication between the AIROS and the sampler. This testing is planned to take approxi-
mately 20 minutes and it should send data at least two times to the server.
Testing plan 2 is next: All the devices are turned off and the Raspberry Pi is first turned
on and then other devices are turned on. Raspberry Pi shouldn‘t have been able to get any
Modbus response from AIROS so how monitoring and sending logged data now works.
This testing is planned to take approximately 15 minutes and it should send data at least
one time to the server.
Test plan 3 has almost the same specs than test plan 1 has but the environment of the
AIROS is cooling down after the start. Cooling is done by inserting ice under the AIROS,
so the temperature sensor should react to the temperature drop.
5.3.4 Results
At first checking the logs of the software showed that some messages aren‘t detected
correctly even though the bad RS-485 converter wasn‘t used. Serial port was detecting
messages automatically, but it won’t identify messages 100% correctly but overall it de-
tects most of them. The messages are randomly broken but sometimes they appear a lot
but then there can be a long time between two broken messages. This kind of distortion
can be caused by a bad connection or wires. This kinds of distractions were detected in
every test case.
The second test case caused major errors for the program and the program stopped work-
ing after it tried to send a request to the AIROS and the response never returned. The
software got an undefined variable which crashed the program. The software was fixed
and tested again without any errors.

69
After the third test, the system was detecting changes and values were logged to the local
database and sent to Mirka’s server as it should. The test was successful.
Overall, tests showed that AIROS logger software is working fine with the Raspberry Pi
and RS-485 accessory. The AIROS logger detects almost all serial port communication
and it tries to detect every message, even if they aren’t Modbus messages or just shattered.
AIROS logger software is focusing on Modbus protocol so it needs to detect a request
message before a response. So if there is for example some noise between request and
response or the response is shattered, it won’t detect the response at all even if the mes-
sages are fine.
5.4 Data analysis
After the testing cases, the IoT-system was attached to the working AIROS sander and
robot. The data logging was performed in the laboratory of Mirka in Jeppo. The IoT-
system was left to gather the logging data from AIROS and this data got approximately
one week of irregular usage and most of the data it got in a couple of different sections.
The data was stored in approximately 3700 data points, and this gave a small hint on how
the sander is being used. The data analysis chapter is describing what kind of data is stored
and how to read the gathered data. For reminding, the purpose of the AIROS logger is to
collect usage data that can be used for improving the AIROS and detecting need of ser-
vice.
AIROS or AIROS logger program won‘t detect any information on the sanding material
or sanding paper, it gives only usage statistic and sensor data. AIROS has two different
temperature sensors, one in the motor and another in the PCB (Printed Circuit Board).

70
Figure 19 shows the sensor data from the motor and PCB and how much the device is
heating up when the load changes.

Figure 19. AIROS temperature data from inbuild motor and PCB temperature
 sensors. Data illustrates the heat that sanding progress produces.
Sensors are in different spots and the motor temperature increases faster because the mo-
tor is generating heat more and faster and the PCB is located further from the heat source.
When machines are gathered enough data, different patterns can be detected that indicates
different needs or things for example when motor temperature is always too high which
can indicate need for motor service.
In Figure 20 an average current and speed changing during the same period is shown. The
target of the speed is usually 10000 RPM (Revolutions Per Minute) which a sander
reaches fast. The speed seems often almost static but current level is changing which is
caused by the load of the sander. The needed amount of power for keeping the same speed
depends on the force, sanding material and sandpaper and for example polishing glass
needs less power than sanding wood.

71
There can be found some patterns when examining the Figure 20. The first and second
last bar can mean lot of things. For example, AIROS is sanding corner of the target item
or that sander is partly off from the target item.

Figure 20. AIROS average speed and current, where can be detected pattern when
 it approaches and recedes from the sanding piece.

72
Previously shown average speed (Figure 20.) and temperature data (Figure 19) is com-
bined in Figure 21 which shows how temperatures are connected to the current. Using
AIROS with specific load will heat up especially the motor and graphs are surprisingly
same with a small gap. This similarity is a result of the load which heats up the motor
because it needs to use more power. Meaning of the power is the rate of doing work which
means either physically something is moving or generating heat. In this small sample the
produced heat can be said to be directly proportional to the current of device.

Figure 21. AIROS mixed temperature and current data that illustrates that produced
 heat is directly proportional to the current of device.

73
6 CONCLUSION AND FUTURE WORK
The goal of this thesis was to create an IoT device i.e. AIROS logger that can autono-
mously monitor communication between AIROS and the robot. AIROS is acting as Mod-
bus slave and the robot as master which means there will be two master devices in the
same system, because AIROS logger is also acting as master. Usually a Modbus RTU
system has only one master but it is possible to add several master device which is not
very common. AIROS logger isn‘t communicating with Modbus almost at all and only
once when AIROS logger is starting. The device is only requesting some rare parameters
that aren‘t so important for a sanding process such as device serial number, name or firm-
ware version. This may cause problems but probably it will not do any harm to the system
or connected devices and in the worst case some other connected device is responding.
The AIROS logger is detecting all the communication that comes from the serial adapter
and the AIROS logger program is made for detecting requests which follow responses. A
program is made for detecting only communication between specific devices, AIROS and
the robot. If the communication has some irrelevant communication such as requests/re-
sponses from other devices or anything else a serial port registers. This irrelevant com-
munication is probably disturbing the AIROS loggers logging because a Modbus message
has the address of the target device whose detection isn‘t included in the software. This
program related issue should be concerned to fix in the next stage.
The AIROS loggers Raspberry Pi is fine most of the time, but it can be unused for days.
Raspberry Pi is a card computer and like computer as any other, sometimes they need
rebooting when getting stuck or too slow. One of the purposes was to create communica-
tion between the AIROS logger and service which is done by using HTTP-post method.
This HTTP-get is very old and generates huge amount of waste traffic which is expensive
if data usage is limited or priced by usage. Then it could be reasonable to use MQTT or
similar communication to get better quality, performance and smaller data post by de-
vices. This change could be done in the future.

74
The AIROS logger was supposed to work smoothly with 4G dongle but communication
back to the AIROS logger encountered some issues that were subscription related. Sub-
scriber is blocking Internet communication with NAT and some ports are closed. The
cellular subscription that is tested with don‘t have static IP address so AIROS logger
needs reverse SSH that’s ables connection back to the device. The AIROS logger solu-
tions are made for specific cellular subscribers so if subscription provider is changed it
need some reconfiguration. Instead of using the reverse SSH connection it is recom-
mended to use VPN to pass subscription related issues.
The AIROS logger with the monitoring program isn‘t perfect and overall it needs more
long-term testing because it is supposed to work with any human interaction and now it
is generating randomly small errors over the time that are critical for operating the pro-
gram.
Mirka has myMirka software that is a graphical interface for end-users that see the data
from the Mirka power tool devices. The AIROS isn‘t available for all users yet because
the data isn‘t sent to its database. So using this existing software database could add value
for users and Mirka which for example doesn‘t need to maintain different databases. In
the end this AIROS logger needs some small adjustments and will from the Mirka to get
AIROS logger from prototype stage to mass-product.

75
REFERENCES
Advantech B+B SmartWorx, (2019). SmartSwarm 351. [online]. [7.3.2019]. Available
from Internet: http://advantech-bb.com/product-technology/iot-and-network-edge-
platforms/smartswarm-351/
Aldowah, H., Rehman, S., Umar, I., (2019). Security in Internet of Things: Issues, Chal-
lenges and Solutions, Advances in Intelligent Systems and Computing, Pages 396-
405. Volume 843. ISBN: 978-331999006-4
Amodu, O. A., Othman, M. (2018), Machine-to-Machine Communication: An Over-
view of Opportunities. Computer Networks. 255-276. Volume 145. Elsevier.
Andrianto, V. C., lam, J., Widodo, R. N. S., Lee, S., Lee, H., Lim, H., (2018). Toward
implementation of oneM2M based IoT platform. Journal of Theoretical and Applied
Information Technology. Volume 96. 418-425. ISSN: 1992-8645
Anttalainen, Tarmo. (2003). Introduction to Telecommunications Network Engineering,
Artech House, ProQuest Ebook Centra
Atop Technologies, (2019). Modbus Gateways. [online]. [7.3.2019]. Available from
Internet: http://www.atop.com.tw/atop/product/product_de-
tail/data/atop_iapl/en/modbus_gateways/mb5901_series/
Bahashwan, Abdullah & Manickam, Selvakumar. (2019). A Brief Review of Messaging
Protocol Standards for Internet of Things (IoT). pp.1-14.
Bluetooth Special Interest Group (2016). Bluetooth core specification [online].
[1.6.2018]. Available from Internet: https://www.bluetooth.com/specifications/blue-
tooth-core-specification

76
Brooks, J. (2018). Latest oneM2M IoT standardisation progress to be showcased at
MWC 2018. [online]. [12.1.2018]. Available from Internet:
http://www.onem2m.org/news-events/news/174-latest-onem2m-iot-standardisa-
tion-progress-to-be-showcased-at-mwc-2018
Bziuk, W., Phung, C. V., Dizdarević, J., & Jukan, A. (2018). On HTTP performance in
IoT applications: An analysis of latency and throughput, 2018 41st International
Convention on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO), Opatija, pp. 350-355.
Carey, T. (2017). oneM2M Work on IoT Semantic and Data Model Interoperability.
[online]. [5.5.2018]. Available from Internet: http://www.onem2m.org/news-
events/onem2m-in-the-news
Chris Liechti (2019). Welcome to pySerial’s documentation? [online]. [12.1.2019].
Available from Internet: https://pyserial.readthedocs.io/en/latest/index.html
El-Shweky, B. E., El-Kholy, K., Abdelghany, M., Salah, M., Wael, M., Alsherbini, O.,
Ismail, Y., Salah, K., AbdelSalam, M. (2018). Internet of things: A comparative
study. Conference in Las Vegas: 2018 IEEE 8th Annual Computing and Communi-
cation Workshop and Conference (CCWC). ISBN: 978-1-5386-4649-6
Geng, H. (2016). Internet of Things and Data Analytics Handbook, John Wiley & Sons,
Incorporated. ISBN: 9781119173649
Haidine, A., El Hassani, S., Aqqal, A., El Hannani, A. (2016). The Role of Communi-
cation Technologies in Building Future Smart Cities, Smart Cities Technologies.
IntechOpen. ISBN: 978-953-51-2808-3]
ionSign, (2019). Gluon GMU491 Cloud Gateway. [online]. [7.3.2019]. Available from
Internet: https://ionsign.fi/en/iot-big-data/gmu491/

77
Jorge L. Olenewa, (2012). Guide to Wireless Communications. ISBN: 978-1111307318
Kayal, P., & Perros, H. (2017). A comparison of IoT application layer protocols through
a smart parking implementation. 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), Paris. pp 331-336. ISSN: 2472-8144.
Kuzin, Mikhail., Y., Shmelev, V., Kuskov, (2018). [online]. [20.5.2019]. Available from
Internet: https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
Larmo, A., Ratilainen, A., & Saarinen, J. (2018). Impact of CoAP and MQTT on NB-
IoT System Performance. Sensors (Basel, Switzerland), vol. 19
Mekki, K., Bajic, E., Chaxel, F., Meyer, F. (2018). A comparative study of LPWAN
technologies for large-scale IoT deployment. ICT Express. Elsevier BV. ISSN:
2405-9595
Minoli, D. (2013) Building the Internet of Things with IPv6 and MIPv6 : The Evolving
World of M2M Communications, Edition 1, Publisher: Wiley. ISBN:
9781118473474
Mirka. (2018a). Mirka home-page. [online]. [16.9.2018]. Available from Internet:
https://www.mirka.com/fi/fi/-Top-Menu-/Mirkasta/
Mirka. (2018b). Mirka AIROS, Electrical manual.
Oliveira, G. M. B., Costa, D. C. M., Cavalcanti, R. J. B. V. M., Oliveira, J. P. P., Silva,
D. R.C., Nogueira M. B., & Rodrigues M.C. (2018). Comparison Between MQTT
and WebSocket Protocols for IoT Applications Using ESP8266, 2018 Workshop on
Metrology for Industry 4.0 and IoT, Brescia, pp. 236-241. ISBN: 978-1-5386-2497-
5

78
Oliveira, Luiz, Rodrigues, J., Kozlov, S., Rabêlo, R., Albuquerque, V. (2019). MAC
Layer Protocols for Internet of Things: A Survey. Future Internet. ISSN
 1999-5903
OMA specWorks (2019). OMA SpecWorks FAQ [online]. [7.2.2019]. Available from
Internet: https://www.omaspecworks.org/about/oma-specworks-faq/
oneM2M (2018). Functional Architecture. TS-0001. p. 535
Patzke Robert (1998). Fieldbus basics. Computer Standards & Interfaces. Volume 19,
Issues 5–6, p. 275-293. Elsevier. ISSN: 0920-5489
Pivotal Software, (2019). Using Jasmine with Python [online]. [13.2.2019]. Available
from Internet: https://jasmine.github.io/setup/python.html
Ptiček, M., Čačković, V., Pavelić, M., Kušek, M., Ježić, G., (2015). Architecture and
functionality in M2M standards. Conference in Opatija, Croatia: 2015 38th Interna-
tional Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO)
Putera, C. A. L., & Lin, F. J., (2015). Incorporating OMA Lightweight M2M protocol
in IoT/M2M standard architecture, 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), Milan, pp. 559-564. ISBN: 978-1-5090-0365-5
Python Software Foundation (2019a). General Information [online]. [12.1.2019]. Avail-
able from Internet: https://docs.python.org/3/faq/general.html#have-any-significant-
projects-been-done-in-python
Python Software Foundation. (2019b). Unit testing framework [online]. [13.1.2019].
Available from Internet: https://docs.python.org/3/faq/general.html#have-any-sig-
nificant-projects-been-done-in-python

79
Quinnell Rich (2013) Vertical vs. horizontal: Which IoT model will thrive? [online].
[17.11.2018]. Available from Internet: https://www.embedded.com/electronics-
blogs/other/4422131/Vertical-vs--horizontal--Which-IoT-model-will-thrive-
Rawat, P., Singh, K. D., Bonnin, J. M. (2016). Cognitive radio for M2M and Internet of
Things: A survey, Computer Communications. 1-29. Volume 94. Elsevier. ISSN:
0140-3664
Reynders, D., Mackay S., Wright E. (2004). Practical Industrial Data Communications:
Best Practice Techniques. Elsevier Science & Technology. ISBN: 9780750663953
Sohraby, K., Minoli, D., Occhiogrosso, B., Wang, W. (2017). A Review of Wireless and
Satellite-Based M2M/IoT Services in Support of Smart Grids. Mobile Networks and Ap-
plications. Volume 23, Issue 4, pp 881–895. Springer US. ISSN: 1572-8153
SQLite (2019). What Is SQLite? [online]. [12.1.2019]. Available from Internet:
https://www.sqlite.org/index.html
Swetina, J., Lu G., Jacobs, P., Ennesser, F., Song, J. (2014). Toward a standardized com-
mon M2M service layer platform: Introduction to oneM2M. IEEE Wireless Commu-
nications. Volume 21. Issue 3. 20-26. ISSN:1536-1284.
Tsiatsis V., Fikouras I., Avesand S., Karnouskos S., Mulligan C., Holler J., Boyle D.
(2014). From Machine-to-Machine to the Internet of Things: Introduction to a New
Age of Intelligence. Elsevier Science & Technology. ISBN: 9780124076846
Upadhyay, Y., Borole, A., Dileepan, D. (2016). MQTT based secured home automation
system. Symposium on Colossal Data Analysis and Networking (CDAN). Confer-
ence in Indore, India. ISBN: 978-1-5090-0669-4

80
Waher, Peter (2015). Learning Internet of Things, Packt Publishing Ltd. ISBN:
9781783553532 pp. 278

