
J A R I  T Ö Y L I

AdSchema – a Schema for
Semistructured Data

AC TA  WA S A E N S I A

No. 157
Computer Science 5

U N I V E R S I TA S  WA S A E N S I S  2 0 0 6



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewers Professor Eljas Soisalon-Soininen 
 Helsinki University of Technology 
 Department of Computer Science and Engineering 
 P.O. Box 5400, FI-02015 HUT 
 
 Professor Martti Penttonen 
 University of Kuopio 
 Department of Computer Science 
 P.O.Box 1627, FI-70211 Kuopio 
  
  



ACTA WASAENSIA 

ACKNOWLEDGEMENTS 
 

The development of this thesis was a long process during which I have met 

many extraordinary people.  Although in the cover of this thesis is only one 

name, many are the names of people who, one way or other nurtured it, and to 

whom I am pleased to devote my most sincere and deep gratefulness. 

 

At first, I would like to thank my supervisor Professor Matti Linna, for his great 

support and wise guidance throughout the process, steering but without 

imposing, suggesting but keeping freedom intact.  I would also like to thank 

Professor Merja Wanne for the insightful discussions we had and her 

indispensable help at the beginning of this work.  I also like to thank Professor 

Jarmo Alander for his support and thoughtful feedback of this work.  I would 

also like to thank Professor Martti Penttonen and Professor Eljas Soisalon-

Soininen for reviewing the thesis and their valuable comments and remarks 

concerning the work.   

 

With gratefulness, I would like to acknowledge here, that the research work 

behind this thesis was financed by Research Institute for Technology and 

Vaasan yliopistoseura. 

 

I would like to thank all my colleagues who have supported or contributed to 

this work by encouragement, advice, suggestions, discussions, etc. especially 

Anja, Pekka, Hannu K., Kimmo, Markus, Timo, Johanna and many others. 

 

Finally, my deepest gratitude to my loving wife Tuula who has loved me and 

encouraged me all these years and to our children Jani, Hannakatrin, Ville, 

Elina-Sofia and Johannes for being there.  

 
 





ACTA WASAENSIA 

CONTENTS 

 

ACKNOWLEDGEMENTS 3 

ABSTRACT 6 

1.  INTRODUCTION 7 
1.1.  Background of the Research 7 
1.2.  Research Objectives and Contributions 9 
1.3.  Structure of Thesis 11 

2.  DISCOVERING THE DATA STRUCTURE 12 

3.  FOUNDATIONAL THEORIES 17 
3.1.  Representative Objects 18 
3.2.  DataGuide 24 

4.  ADAJACENCY RELATION SYSTEM 30 

5.  SCHEMA PROPOSAL FOR SEMISTRUCTURED DATA 35 
5.1.  Definition of Semistructured Data 35 
5.2.  Determining of the Degree of a Data Structure 42 
5.3.  General Query 45 
5.4.  Algorithms 46 

5.4.1.  Modeling of Relational Data 46 
5.4.2.  Modeling of an Object Exchange Model 53 

5.5.  Definition of an Adjacency Schema 61 
5.6.  Examples 67 
5.7  Creating an AdSchema from Semistructured Data 70 

6.  CONCLUSIONS AND FUTURE WORK 76 
6.1.  Conclusions 76 
6.2.  Summary of Contributions 77 
6.3.  Future Research 78 

REFERENCES 80 



6 ACTA WASAENSIA 
 

ABSTRACT 
 
Töyli, Jari (2005).  AdSchema – a Schema for Semistructured Data.  Acta 
Wasaensia No. 157, 85 p. 
 
 
Data that do not have a fixed schema cannot be searched efficiently because the 
forming of a query is difficult without a schema or some information about the 
structure.  The quantity of such data has increased since the middle of the 90’s, 
especially on the Internet.  There is much research conducted in this area and 
consequently there are several proposals of how to model such data, how to 
search such data and also how to present the structure of such data.  
Semistructured data, as it is called, is still a subject of intensive investigations. 
 
In our investigations we have found out that schemas of such data still need 
enhancements.  It has turned out that the schemas can be bigger than the 
original source database or, if the size is limited, some accuracy is lost.   In this 
work we first propose a schema to be used to present the structure of such data 
and secondly an algorithm with which we can construct such a schema.  Our 
earlier investigations showed that we can use the theory of Adjacency Relation 
Systems to model semistructured data and also that  the same theory can be 
used, with some minor modifications, as a foundation for a schema for 
semistructured data.   
 
In this work we apply the theory of Adjacency Relation Systems and propose a 
new way to present the schema of semistructured data.  This approach differs 
in some parts substantially from those presented by other researchers.  Our 
proposal is not based on merging of similar parts of the schema but on the 
interrelationships between adjacent types.  By this technique we can prevent the 
schema from growing too large and avoid loosing of accuracy of the schema.  
Our proposal has also the advantage that the produced schema has the same 
kind of characteristics as a strong DataGuide.   
 
Our work gives also an accurate definition of semistructured data and 
introduces an algorithm for calculating the degree of semistructured data.  
Moreover, we present a general query by which we can search data from such 
data structure. 
 
Jari Töyli, Department of Computer Science, University of Vaasa, P.O. Box 700, FI-
65101 Vaasa, Finland, email jari.toyli@uwasa.fi. 
 
 
Keywords: Semistructured Data, DataGuide, Schema Construction, 
Algorithms, Interrelationship, Degree of Semistructured Data. 



 ACTA WASAENSIA 7 

 

1.  INTRODUCTION 
 

1.1.  Background of the Research 
 
In structured database systems the schema has two purposes.  First it describes 

the structure or type of the data and secondly it describes some constraints on 

the information system.  This type of data can easily be represented and 

accessed by conventional database systems, like relational and object oriented 

database systems.  However, today there exist more and more data that cannot 

be constrained by a schema because the data has variations in its structure.  The 

variations typically consist of missing data, duplicated fields, or minor changes 

in representation.  This kind of data arises among others on the Internet, and it 

is called semistructured data.   

 

Semistructured data (Abiteboul 1997; Buneman 1997; Abiteboul, Buneman & 

Suciu 2000) has been investigated since the middle of the 90’s.  During that time 

the research has mainly focused on developing data models and query 

languages for semistructured data.  There is one proposal that has gained more 

attention than any other.  This model, based on objects, is called Object 

Exchange Model (OEM) (McHugh, Abiteboul, Goldman, Quass & Widom 

1997).  In another model, proposed by Buneman, Davidson, Hillebrand & Suciu 

(1996) and Buneman, Fernandez & Suciu (2000), the node labels are absent and 

the data is carried entirely on the edge labels.  This model has not been named, 

although it is based on a sound theory.  

 

In addition to these two data models there are also other proposals that have a 

close affinity to these models.  The first one, ACeDB (Thierry-Mieg & Durbin, 

1992) has been developed as a database for genetic data and the second, is the 

XML (World Wide Web Consortium, 2004).  There is a great deal of research on 



8 ACTA WASAENSIA 
 

XML in the context of semistructured data, e.g. Goldman, McHugh & Widom 

(1999) and Broekstra, Fluit, & van Harmelen (2000).  

 

Because of the absence of a fixed schema, conventional SQL cannot be used to 

access semistructured data.  However, there are new query languages 

developed for semistructured data.  Some of them are meant to be used with 

XML data (Broekstra et al. 2000), and others with object data, like Lorel.  Lorel 

has been developed in the context with the Lore system, and it is based on the 

object query language (OQL).  Still another language is called UnQL, and it is a 

value based query language (Buneman et al. 2000).   

 

The main purpose of this work is to present a new proposal for a schema of 

semistructured data and an algorithm for its construction.  Besides, this work 

contains a definition of semistructured data, and an algorithm for defining the 

degree of semistructured data.  We present also a general query for 

semistructured data, which includes all the special queries presented in Wanne 

(1998).   

 

Schema proposals for semistructured data are one of the research areas which 

have been widely investigated during the last decade.  DataGuide (Goldman, 

Widom 1997; Goldman 2000) is the most promising proposal of a schema for 

semistructured data, but as it has some drawback, the research on that subject is 

still active.  There are also other proposals e.g. Wang & Liu (1997) and 

Nestorov,  Abiteboul & Motwani (1998) of how to discover the inherent 

structure of semistructured data, but these proposals are all in a stage of 

development, and so far there is no prominent solution to the problem. 

 

The drawbacks in the proposals of a schema for semistructured data 

represented so far are  significant to the extent that there is a need of a new 

proposal.  The following problems are the most distinctive ones: 



 ACTA WASAENSIA 9 

 

• There can be more than one schema for a semistructured database. 

• Some accuracy of the schema can be lost when one generates an 

approximate schema (i.e. merge similar parts) of the source database. 

• The size of the schema may be bigger than the size of the original  

database. 

 

As long as these problems are unsolved the queries on semistructured data are 

inefficient, which in turn means higher costs.  Researches have developed new 

query languages that use novel techniques and there are also more efficient 

methods to discover the embedded structure of the data from the underlying 

structure.  However, the results are still unsatisfactory in some areas.  In our 

work we focus on the latter technique and propose a method in which we can 

complete the underlying data structure with new relations that are derived 

from the known relations.  The completion of the data structure applies the idea 

of relations between adjacent elements, and adjacency defining sets (Wanne 

1998, Wanne & Linna 1999).  

 

1.2.  Research Objectives and Contributions 
 

According to the research conducted on schema discovery and extraction we 

conclude that schema development is a vital area that is worth to be explored 

more.  Our research hypotheses are the following: 

 

A schema for semistructured data can be constructed and completed 

according to the theories of the adjacency relation system. 

 

The size of the present schemas for semistructured data can be 

reduced and its accuracy can be increased with the help of the 

Adjacency Schema. 

 



10 ACTA WASAENSIA 
 

In order to test our hypothesis we state some research questions which will 

guide our work.  There are four research questions that are the following: 

 

1. Is it possible to apply the theory of the adjacency relation system 

to construct a schema on semistructured data? 

2. Can we develop an algorithm with which the schema can be built 

up? 

3. Does the Adjacency Schema fulfil the same requirements imposed 

on the present schemas for semistructured data? 

4. Is the Adjacency Schema minimal and more accurate than the 

existing schemas? 

 

The results of Töyli (2002) and Töyli, Wanne & Linna (2002a, 2002b) showed 

that semistructured data can be presented with the adjacency model.  In this 

work we will go further ahead in our investigations and propose a schema for 

semistructured data.  Our further research is based on the theory of the 

adjacency relation system (Wanne 1998), which we have somewhat modified, as 

well as the theory of representative objects (Nestorov, Ullman, Wiener & 

Chawathe 1997a). 

 

According to the hypothesis and research questions stated above, the main 

contributions of this work can be stated as follows: 

 

1. A new schema proposal for semistructured data. 

2. An accurate definition of semistructured data. 

3. An algorithm for calculating the degree of an incomplete data structure. 

4. A general query for a given relation combination.  

5. An algorithm for modelling semistructured data. 

6. An algorithm for modelling relational data. 

7. An algorithm for the construction of a schema for semistructured data. 



 ACTA WASAENSIA 11 

 

1.3.  Structure of Thesis 
 

The rest of this thesis is organized as follows.  Section 2 is a literature review, in 

which we present the most recent research findings in the area of this study.  

The literature review is restricted to cover the areas of schema extraction and 

discovery, and the most significant papers written on schemas of 

semistructured data until today. 

 

In Section 3 we present the theories of representative objects and DataGuide, 

which set down the ground for a schema of semistructured data.  We also give a 

short presentation of other research conducted  in this area concerning structure 

discovering. 

 

In Section 4 we present the theory of Adjacency Relation Systems (ARS), which 

has been the basis when modelling semistructured data (Töyli 2002), and also in 

this case when we present our proposal of a schema for semistructured data.  

This theory is fundamental to our work, although we have made some minor 

changes to some of the definitions. 

 

In Section 5 we present our schema proposal for semistructured data.  First we 

give the definition of semistructured data, an algorithm for determining the 

degree of a data structure, and define a general query.  After that we present 

two algorithms for the modelling of relational and semistructured data and one 

for the construction of a schema for semistructured data.  We also introduce the 

concept of an Adjacency Schema (AdSchema) and give some examples. 

 

Finally, in Section 6 we give some conclusions of the results, and outline some 

proposals of future work.   



12 ACTA WASAENSIA 
 

2.  DISCOVERING THE DATA STRUCTURE 

 
Schema discovery, especially in context with semistructured data, has been 

under intensive investigations during the last few years.  In order to get some 

understanding of the research conducted in this area we present some work 

that deal with this specific subject.  There is much research that does not 

propose any new schema, but which is very important for the development of 

the schema construction.  

 

Actually, there is a proposition called DataGuide (Goldman et al. 1997) which 

can be used as a schema for semistructured data.  It is a directed graph, where 

every edge of the graph is represented with a formula.  However, DataGuide 

has been developed since then and a more accurate version of it has been 

introduced.  The most significant problems in context with a schema for 

semistructured data are the size and the accuracy of the schema.  The more 

accurate schemas we want the larger the schema becomes and vice versa.  We 

have to balance between these two aspects. 

 

In addition to DataGuide there are other propositions in which the researchers 

try to discover (Wang et al., 1997; Wang & Liu, 1998; Cong, Yi, Liu & Wang, 

2002; Wang & Liu, 2000b) or extract (Wang, Yu & Wong, 2000; Hacid, Soualmia 

& Toumani, 2000; Nestorov et al., 1998) schema information from the data, or 

more generally, they try to discover a typical or frequent structure on the data.  

The data will then be classified or clustered into sets of objects.  The results of 

these investigations are promising, but more research is needed because the 

accuracy and conciseness of the schema is still incomplete.   

 

All the above-mentioned papers consider object models like Object Exchange 

Model (OEM).  The same idea and model have been considered in Nestorov et 

al. (1997a) in which the authors present the concept of representative objects that 



 ACTA WASAENSIA 13 

 

facilitates the querying and browsing of semistructured data.  In Nestorov et al. 

(1997b) the authors consider the problem of identifying some underlying 

structure in large collections of semistructured data. 

 

Buneman et al. (1997) present a proposal of a schema for  semistructured data in 

which both data and schema are represented as edge-labeled graphs.  It differs 

from the OEM model in that the labels are associated with edges, not nodes.  

The notion of conformance between a graph database and a graph schema are 

introduced.  Also a “deterministic” subclass of schemas is investigated.  

 

In Wang et al. (1997) the authors consider schema discovery.  The basic idea is 

to generate a structured layer of typical object structures of semistructured data 

(e.g. of an OEM database).  The main concept in this process is a so-called tree-

expression, which is a partial (labelled) tree representation of an object, i.e. a 

generalization of an object.  When generalizing an object some information may 

be lost.  The generalization problem is considered in Wang et al., (2000b).  

 

The concept of the tree expression is further developed in Wang et al. (1998a) 

and Wang et al. (2000a), where the authors represent a new concept called a k-

tree-expression. A k-tree expression is a tree expression of k leaf nodes, and it is 

constructed by “cluing” a sequence of k paths that are not prefixes of each other.  

In other words, a k-tree expression is the “prefix tree” of the k paths that 

preserves their order in the sequence.  The authors also present an algorithm for 

searching all k-tree expressions.  The simple paths of k-tree expressions are then 

traversed in depth-first order (Goodrich & Tamassia 1998). 

 

In Wang et al. (1998a) and Wang et al. (2000a) the authors noticed that the use 

of wildcards on paths can cause over generation of them, and also that the 

algorithm cannot discover typical substructures which exist in the lower part or 

in the middle part of semistructured objects when the upper part of objects has 



14 ACTA WASAENSIA 
 

a different number of labels.  The authors in Cong et al. (2002) propose a new 

and more effective method to compute the frequencies of the substructures 

(with a wild card or not).  This approach contains a new feature in which the 

semistructured objects are represented with paths and corresponding tidlists, 

where  the tidlist is a set of transaction objects or trees that contain a path as a 

tuple in the database.  Representation of objects with labelled paths saves a lot 

of space.   The authors also propose an effective method by which the over 

generation of paths with wild cards can be removed.  Finally, they propose an 

adapted mining algorithm for the substructure discovery problem. 

 

The algorithm proposed in Cong et al. (2002) is more effective than the one 

developed and improved in Wang et al., (1997, 1998a, 2000a). However, as long 

as wildcards are used we must balance between efficiency and accuracy.  The 

number of wildcards affects restrictively to accuracy and increasingly to the 

search space, so we would need a method that does not use wildcards at all, or 

at least the number of them is minor. 

 

The same problem of schema extraction has been considered in Wang et al. 

(2000b) and in Nestorov et al. (1998) but this time the authors have used a 

slightly different method.  In Wang et al. (2000b) the method has been to use 

description logics and in Nestorov et al. (1998) the method is based on the 

semantics of monadic datalog.  However, both of these methods use the same 

approach of merging of similar object classes.  These classes proved to be too 

large so the authors in both papers propose approximation of the generated 

groups.  Here we give only a short presentation of the subject, but a more 

detailed description of the methods can be found in Wang et al. (2000b) and in 

Nestorov et al. (1998).  As a motivation for our work we can mention that the 

authors faced the same kind of problem as we have encountered before, i.e. 

inaccuracy when grouping or merging objects.  

 



 ACTA WASAENSIA 15 

 

In Wang et al. (2000b) the authors propose a construction of an approximated 

graph schema by clustering objects with similar incoming and outgoing edge 

patterns.  This approach differs from the DataGuide in that the DataGuide 

combines objects with similar type definitions.  The main idea is to predict the 

sets of incoming and outgoing edges of a vertex of a data graph that also 

appears as a vertex of the schema graph.  Another principle is to minimize the 

size of the schema graph by minimizing the number of appearances of each 

label. 

 

The approximate graph schema is small in size, cheap to construct and 

maintain, and there is no predetermined user defined threshold.  However, 

there may be duplicates and false paths in the schema graph, which means that 

it is not fully accurate.   

 

In Nestorov et al. (1997a) the authors investigated the typing problem of 

semistructured data.  This problem will be considered more detailed in Section 

3 and is bypassed here. 

 

The idea of a concise representation of the inherent schema of semistructured 

data has been refined in Nestorov et al. (1997b).  The authors present an 

algorithm for constructing a type hierarchy for semistructured data source.  The 

classification is highly dependent on the choice of the so-called threshold value.  

If the threshold is too low, the result set is too large and on the other hand if the 

threshold is too high, the accuracy becomes very low.  Once again, there is a 

trade-off between the accuracy and the size.  It is also problematic to choose the 

value of the threshold. 

 

In Nestorov et al. (1998) the authors present an algorithm for approximate 

typing of semistructured data, i.e. an object does not have to fit its type 

definition precisely.  The size of perfect typing was a problem in Nestorov et al. 



16 ACTA WASAENSIA 
 

(1997b), because the resulting data sets may be imperfect with respect to the 

typing, i.e. the data sets may contain edges that should not be present or lack 

some information (missing edges).  Nestorov et al. (1998) presents a technique 

for computing an approximate typing of an appropriate size, which allows the 

data set to be imperfect with respect to the typing and they focus on the quality 

of the typing result rather than the time performance.  In Nestorov et al. (1998) 

the authors have used the semantics of monadic datalog programs.  Another 

approach, presented in Hacid et al. (2000), use description logics for discovering 

the (partial) implicit structure of semistructured data.  They propose an 

approach for approximate typing of semistructured data.  The extracted schema 

is expressed in the form of terminological axioms in a small description logic.  A 

more detailed description of the approach is given in Hacid et al. (2000). 

 

Constraints on semistructured data are not easy to express.  In Buneman et al. 

(1997) there is a proposal of how to present schema for such data.  In that 

proposal the database is presented as an edge-labeled graph, with a 

corresponding schema in which the edges are labeled with unary formulas.  A 

database conforms to a schema if there is a correspondence between the edges 

in the source database and the schema.  A graph database may conform to 

several graph schemas. So there exists a schema to which all databases conform.  

It is also possible to store multiple schemas for the same data, in order to help 

optimize queries.  Since there is a natural ordering on graphs schemas, it is 

possible to take the least upper bound of a set of schemas and combine all their 

constraints into a single schema.  This approach is one of the first proposals for 

a schema for semistructured data, and has had a very strong implication in the 

research of schemas for semistructured data. 



 ACTA WASAENSIA 17 

 

3.  FOUNDATIONAL THEORIES 
 

In this section we present the theories behind representative objects (Nestorov 

et al. 1997a) and DataGuides (Goldman et al. 1997, Goldman 2000). We consider 

here the theory of representative objects because it lays the foundation for the 

DataGuide.  The DataGuide, in turn, is considered because it is the de facto 

standard of schemas for semistructured data and as far as we know, the only 

implementation of a schema for semistructured data.  In Figure 3.1 we have a 

part of an OEM database, representing a premiership document.  It serves as a 

basis for multiple examples through this section.   

 

 

Figure 3.1.  The premiership object (Nestorov et al. 1997a). 

�����������
	 

�����

�
�� ��
����

������� �

��
��

� ���

��� � � ������ �����


� �

� �

� �

����

� �

� ��

������� �
����

� ��

� ��

��� ��


� � 

� � 

� �!� �� � "�

����������� ��� �

#��$ ���
��� �

� " �  

� ��� � ���

��� �

� % � ��� �"

� & � ! � '

������� �

�����


��� ��

�������������� �

� �� � �! � �'

����

� �% � �&

��
��

� ��

��� � �����


��� ��


� �"

� " 

�����������

��� �

� �'

�����


� �% � ��

��� �

� �& � "�

��� �

� ""

��
� �
� ���
����$�


��
� �
� ���

() ��������


***+ ����$,

(-�$

. �/���,

(�
��, (� ������,

(0 ���*�
��,(�
��*��*-��,

(&, (�
����,

(1 �$�, (� ���,

(�&, (�������, (-�����

��2 ��
,

(',

(0 ����

3 ������ ��,

(#�4*5�� ��

*****��
�,

(��2 ������,

(6�� , (3 �
� ��,



18 ACTA WASAENSIA 
 

3.1.  Representative Objects  
 

The theoretical foundation of dynamically generated structural summaries has 

been given in (Nestorov et al. 1997a).  The authors present the representative 

object concept, which is also called as a DataGuide.  The motivation behind a 

representative object is not only to create a concise description of the structure 

of the data, but also to facilitate querying and browsing of semistructured data.   

 

Representative objects are used with an object model called Object Exchange 

Model (OEM), initially introduced in Papakonstantinou et al. (1995).  In an OEM 

model every node represents an object identification, and the edges with their 

labels represent object references.  One important concept used with the OEM 

model is a simple path expression that is a dot separated sequence of labels of the 

graph (Nestorov et al. 1997a).  

 

Definition 3.1.  Let il  be a label (of object references) for ni ,,1�= , 0≥n .  Then 

nlllpe �21 ⋅=  is a simple path expression of length n . 

 

Another concept is a data path that is a sequence of alternating objects and 

labels, separated by commas.  A data path starts and ends with an object.  For 

every two consecutive objects the first object has an object reference to the 

second object and there is a label between the objects (Nestorov et al. 1997a).   

 

Definition 3.2.  Let io  be an object for ni ,,0 �= , il  be a label for ni ,,1�= , and 

)()(, 1−∈ iii ovalueoidentifierl for ni ,,1�= , 0≥n .  Then nn ,o,l,,l,o,lop �2110=  is 

a data path, of length n . 

 

Here are some additional terms in order to help to understand the concepts of 

simple path expressions and data paths: 



 ACTA WASAENSIA 19 

 

• A data path nn ollop ,,,, 10 �=  originates from 0o  or is rooted at the object 

0o . 

• An object io  is within an object o  if there exists a data path originating 

from o  and ending with io . 

• A data path p is within an object o  if p originates from an object within 

o . 

• A data path nn ollop ,,,, 10 �=  is an instance of the simple path expression 

nlllpe ... 21 �= . 

 

Example 3.1.  To illustrate the above terms consider the premiership object of 

Figure 3.1. 

 

• The simple path expression Player.Number has two instance data paths 

within the premiership object, namely obj(&1),Player,obj(&5), 

Number.obj(&13) and obj(&1),Player,obj(&14),Number,obj(&18). 

• Consider the following two data paths obj(&1),Player,obj(&14). 

FormerClub,obj(&24) and obj(&24),Player.obj(&28),FormerClub,obj(&1).  

Thus obj(&1) is within obj(&24) and obj(&24) is within obj(&1). i.e. there is 

a cycle within the premiership object. 

 

With a continuation function represented in Nestorov et al. (1997a) we can find 

out the labels of the object references on a given path, and we can also find out 

an answer if we can continue our navigation from the current node, i.e. the 

node is not an atomic node.  The continuation function is substantial for 

representative objects. 

 

Definition 3.3.  Let o  be an object in OEM and nlllpe ... 21 �=  a simple path 

expression, 0≥n .  Then we define the concept on(o,pe)continuati  as follows. 

 



20 ACTA WASAENSIA 
 

• continuation(o,pe) ⊇ { ∃|l  a data path 111 ,,,,,,, += nnn olololop �  

that is an instance of pe.l}. 

• continuation(o,pe) ⊇ { ∃⊥|  a data path nn ololop ,,,,, 11 �=  

that is an instance of pe and no  is an atomic object} 

 

If the simple path expression is of length 0, then the continuation of o  is the set 

of the labels of all outgoing edges from o .  However, if the simple path 

expression is pe , then the continuation of o  is the set of all the labels of the 

outgoing edges of the last node of the path of length 1+n  starting at o  plus ⊥  

if any of the last nodes is atomic. 

 

Example 3.2.  Consider the premiership object from Figure 3.1.  The following 

examples illustrate Definition 3.3. 

 

• continuation(premiership,ε ) = {Club} 

•  continuation(premiership, Club) = {Name, Player, Stadium, Captain} 

• continuation(premiership, Club.Player.Name) = {First, Last, Nickname, ⊥  } 

 

In Definition 3.3 we consider only data paths originating from an object that is 

the first argument of the continuation function.  There are also situations when 

it is convenient to relax this restriction by e.g. limiting the length of the simple 

path expression or by allowing the data path to be within a given object. 

 

Definition 3.4.  Let o be an object, 1≥k , and let pe  be a simple path expression 

of length n , kn ≤≤0 .  Then we define (o,pe)oncontinuati k  as follows 

 



 ACTA WASAENSIA 21 

 

• If kn =  then  

o continuationk(o,pe) ⊇ { ∃|l  a data path p within o , not necessarily 

rooted at o , that is an instance of pe.l}  

o continuationk(o,pe) ⊇ { ∃⊥|  a data path nn ololop ,,,,, 110 �=  within 

o , that is an instance of pe and no  is an atomic object}. 

• Otherwise ( kif n < ) continuationk(o,pe) = continuation(o,pe). 

  

Example 3.3.  Consider the premiership object in Figure 3.1.  The following 

examples illustrate Definition 3.4. 

 

• Continuation1(premiership, Name) = {Official, Nickname, First, Last, ⊥ } 

• Continuation2(premiership, Club) = {Name, Player, Stadium, Captain} 

• Continuation2(premiership, Player.Name) = {First, Last, Nickname, ⊥ } 

 

There are two types of representative objects.  First, we have a full representative 

object (FRO), which is restricted to a particular object, and secondly, if the length 

of the simple path expression is given, then we have a degree-k representative 

object (k-RO).  The k-ROs are less complex than FROs and can be used to 

approximate FROs.  Formally, the definition is as follows. 

 

Definition 3.5.  Let o  be an object.  Then the function continuationo(o,pe) = 

continuation(o,pe), where pe  is a simple path expression, is a full representative 

object (FRO) for o . 

 

When the continuation function of Definition 3.5 is replaced by the koncontinuati  

function we get the following definition for a degree-k representative object: 

 



22 ACTA WASAENSIA 
 

Definition 3.6.  Let o  be an object and 1>k .  Then (o,pe)oncontinuati k
o  = 

(o,pe)oncontinuati k , where pe  is a simple path expression, is a degree-k 

representative object (k-RO) for o . 

 

k-ROs take usually less space than FROs and may be constructed faster.  

However, k-ROs only approximately support the schema discovery.  If the 

length of the simple path expression pe  is less than k, where k is the degree of 

the k-RO, the exact value of  (pe)oncontinuati o can be computed, and the k-RO 

provides the same support as a FRO.   However, if the length of pe  is at least k 

then the approximation of (pe)oncontinuati o  provided by the k-RO must be used.  

A description of the method of computing an approximation of 

(pe)oncontinuati o  from k-RO is given in Nestorov et al. (1997a). 

 

When a FRO is implemented in an OEM graph, the on(o,pe)continuati  is 

computed.  The FRO consist of an object and an algorithm for computing the 

function ooncontinuati .  The object is explored in a breadth first manner in order 

to find the instance data paths of pe .  If every such data path only the last 

object in the data path is considered.  Finally, we get the continuation of pe , 

which is the set of all the different labels of object references of those objects and 

possibly ⊥  if any of those objects is atomic.  The algorithm is presented in 

Nestorov et al. (1997a).  Formally, the implementation of FROs in OEM graph is 

as follows: 

 

Definition 3.7.  Let 1o  and 2o  be objects in OEM.  Then 1o  is a full 

representative object in OEM for 2o  if for any simple path expression pe  we 

have (pe)oncontinuati(pe)oncontinuati oo 21
= . 

 



 ACTA WASAENSIA 23 

 

Usually there are many FROs for a given o , including the object itself.  One of 

those FROs is minimal, i.e. there is one FRO for which the computation of the 

continuation function takes minimal time in proportion to the size of the object 

set.  

 

Definition 3.8.  Let oR  be a FRO (in OEM) for o .  Then oR  is a minimal FRO if 

any simple path expression nlllpe ... 21 �= , 0≥n , has at most one instance data 

path originating from oR  and ending with a complex object, and at most one 

instance data path originating from oR  and ending with an atomic object. 

 

In brief, the construction of a minimal FRO can be done by first creating a 

nondeterministic finite automaton (NFA) of a given object o , then 

determinizing and minimizing that NFA, and finally constructing a minimal 

FRO from that deterministic finite automaton (DFA). 

 

The construction of a NFA from an object in OEM is the following: the objects of 

the OEM graph correspond to the states and the object references and their 

labels correspond to the transitions and their respective letters.  There is also a 

function that maps all the objects within o  to the corresponding unique 

automaton states.  All the objects of the OEM are either complex or atomic.  There 

are also two sets of which the first one contains all the objects within o , and the 

other one contains all the different labels of the object references within o .  The 

determinization and minimization of the NFA is a well studied problem, so the 

readers are suggested to turn to Hopcroft & Ullman (1979) for a more detailed 

description. 

 

After the determinization and minimization of the NFA, the next phase is to 

construct the minimal FRO from the DFA.  In the transformation process from a 

DFA to an OEM object there is one major concern which is the consideration of 



24 ACTA WASAENSIA 
 

the states that have two different associations of objects, i.e. complex and atomic 

objects. 

 

The construction of a minimal FRO from the given DFA is associated with two 

functions, one called atomic_obj for mapping of a state to its corresponding 

atomic object, and another called complex_obj for mapping of a state to its 

corresponding complex object.  The rest of the construction work can be found 

in Nestorow et al. (1997a).  A proof of the correctness can also be found at the 

same source. 

 

3.2.  DataGuide  
 

A first example of the functionality of the theory of full representative objects 

has been presented in a system called Lore (McHugh et al. 1997).  In that system 

an overall description of the incomplete structure of an OEM database is 

presented with the help of a so-called DataGuide. 

 

A DataGuide has the same meaning as metadata in conventional database 

management systems, like relational and object-oriented systems.  DataGuides 

are stored as objects and they can be accessed by applications and query 

processors.  Because there is no structure in the data, the DataGuide conforms 

to data rather than forcing data to conform to the DataGuide.  The DataGuide is 

specially developed to be used with the Lore system.  However, DataGuides 

can be used with any graph-based data models.  Graph-structured databases 

and other related theoretical research is presented in Buneman et al. (1997).  

 

The basic theory of a DataGuide is presented in Goldman et al. (1997) and 

Goldman (2000).  There are also two other concepts, which are extensions of the 

primary DataGuide.  These are strong DataGuide (Goldman 2000) and 

approximate DataGuide Goldman et al. (1999).  A strong DataGuide supports 



 ACTA WASAENSIA 25 

 

annotations, i.e. a statement about the set of objects in the database reachable by 

a particular path.  An approximate DataGuide, in turn, relaxes some aspects of 

the definition of a DataGuide.  This inaccuracy is possible because all 

DataGuide paths do not need to exist in the original database.   

 

We have already given some definitions that are crucial for a schema for an 

OEM database, like simple path expression and data path.  In Figure 3.2 we 

have a sample of the OEM database of Figure 3.1.  We can observe, for example, 

path expressions Club.Name and Club.Player.Name both starting at object &0.   

 

	 

�����

�
�� ��
����

������� �

� ���

��� �

� �

� �

� � � ��

� ��

��� �

� " �  

� ���

� �'

� ��

��� �
�����


��� ��


� �" � " 

�����������

() ��������


***+ ����$,

(-�$

. �/���,
(�������, (-�����

��2 ��
,
(',

� � 

��� �

� ���

� ��� �!

�����

��
� �
� ���

 
 

Figure 3.2.  Sample of the premiership object of Figure 3.1. 

 

In Figure 3.2 Club.&1.Name.&2 and Club.&20.Player.&22.Name.&23 are examples 

of data paths of the object &0.  We can also see an instance of the data path 

Club.Name, i.e. Club.&1.Name.&2.  For a DataGuide we can define the so-called 

target set: 



26 ACTA WASAENSIA 
 

Definition 3.9.  In an OEM object s , a target set of a label path l  is a set t  of oids 

such that { }l.o .l..o.l.oo|lt n  of instancepath  data a is2211 �= .  That is, a target set t  

is the set of all objects that can be reached by traversing a given label path l  of 

s .  We write )(lTt s= .  We say that l  reaches any element of t , and likewise each 

element of t  is reachable via l  (Goldman 2000).  

 
For example, the target set of Club.Name in Figure 3.2 is {&2, &21, &25}.  Two 

different label paths may share the same target set.  In Figure 3.2 the label paths 

Club.Player.FormerClub and Club have the same target set i.e. {&1}. 

 

There are two properties to which a DataGuide must conform.  The first one is 

conciseness and the second is accuracy.   The third property of a DataGuide is 

that it should be convenient, i.e. a DataGuide must itself be an OEM object.  A 

DataGuide is concise if every unique label path of a source database is 

described exactly once, regardless of the number of them in the source 

database.  Accuracy means that there is no label path in the DataGuide that 

does not exist in the original source database.  A database that will be 

summarized is called as the source database, and the given source database is 

assumed to be identified by its root object.  So, the formal definition of a 

DataGuide is the following: 

 

Definition 3.10.  A DataGuide for an OEM source object s  is an OEM object d  

such that every label path of s  has exactly one data path instance in d , and 

every label path of d  is a label path of s  (Goldman 2000). 

 

Figure 3.3 shows a minimal FRO, i.e. a DataGuide of the source database of 

Figure 3.1.  Using this DataGuide we can check whether a given data path of 

length n exists in the original source database by examining only n objects from 

the root object in the DataGuide.  In our example we need only to examine the 

outgoing edges of objects &35, &36 to find out that the label path Club.Player 



 ACTA WASAENSIA 27 

 

exists in the database.  Similarly, we can follow any single instance of a label 

path l  in a DataGuide and reach some object o , so that the labels of the 

outgoing edges of that particular object o  represents all possible labels that 

could ever follow l  in the source database.  So the three different labels of the 

edges emanating from the object 40& , represent all possible labels that ever 

follow Captain in the source database.  In Figure 3.3 there are no atomic values, 

because a DataGuide is a structural summary of the source database (Nestorov 

et al. 1997a). 

 

� ���

#��$������ � � ������ �����


�����������

��� ���� �
��� ��


�����������

������� �

��� �

��
��
����

������� �
	 

�����

��� �

��� ��


�������
�
����

ppremiershiR

��
� �
����

&35

&36

&39&38&37 &40 &41

&42 &43 &44 &45 &46 &47 &48 &49

&50 &51 &52

&53 &54
 

 

Figure 3.3.  The minimal FRO (DataGuide) for the premiership object. 

(Nestorov et al. 1997a). 

 

Goldman (2000) points out two main drawbacks of DataGuides.  The first one is 

related to the annotations, i.e. a property of a set of objects that comprise the 

target set.  The problem with annotations is that, when multiple label paths 

reach the same object, we cannot say to which label path the annotation is 



28 ACTA WASAENSIA 
 

applied.  This problem has been solved by strong DataGuide which is also 

introduced in Goldman (2000). 

 

The second problem is related to the computation of a DataGuide. The 

computation of a DataGuide can be very expensive if there exists cycles in the 

structure of the source database.  In Goldman et al. (1999) the authors propose a 

solution to this problem in a form of an Approximate DataGuide (ADG).  An 

approximate DataGuide is like any other DataGuides, but it allows some degree 

of inaccuracy.   

 

The idea behind an approximate DataGuide is to identify “similar” parts of the 

DataGuide and merge them.  There are two main approaches to the 

approximation: Object Matching and Role Matching. 

 

According to the original definition of a DataGuide all the data paths of the 

source database must be found in the corresponding schema.  The approximate 

DataGuide relaxes this rule, i.e. there may be some paths in the schema that do 

not exist in the source database.   

 

When an approximate DataGuide is created with the object matching method, 

(Goldman et al. 1999) the target set of the objects is considered.  Every path of 

the DataGuide points to some target set, but in object matching we allow 

DataGuide paths to point to the same object when their target sets are “almost” 

similar.  Two target sets X  and Y  are defined to be similar when 

( )YXYX ,max/∩  is above a threshold θ .   

 
Role matching is the second method for the creation of an approximate 

DataGuide.  In this method DataGuide objects are merged based on the label 

paths i.e. the roles.  If the function ),( 21 ppM  returns True for label paths 1p  and 



 ACTA WASAENSIA 29 

 

2p , then the paths 1p  and 2p  point to the same ADG object.  This merging 

process, in turn, can be done with two different ways.  In suffix matching the 

function ),( 21 ppM  returns True if and only if the last labels of 1p  and 2p  are 

equal. 

 

The other method, called Path-Cycle Matching, addresses the problem caused by 

cyclic databases.  Cycles in a database cause the paths to grow too large before 

reaching an identical target set.  The solution for this kind of problem is to add 

a heuristic into the algorithm.  If a specific label can be seen more than once on 

the path starting from the root, we can assume that this is a “semantic” cycle 

and the paths can be merged.  The path-cycle matching function ),( 21 ppM  

returns True if and only if 1p  is a prefix of 2p  (or 2p  is a prefix of 1p ) and the 

last labels of  1p  and 2p  are the same (Goldman et al. 1999). 

 

The choice between a DataGuide and an approximate DataGuide is the same as 

if we have to choose between accuracy and efficiency.  If we want to have an 

accurate but maybe inefficient schema we use a DataGuide, but if some 

inaccuracy is allowed then we choose an approximate DataGuide.  It is also 

possible to combine some of the techniques.   

 



30 ACTA WASAENSIA 
 

4.  ADAJACENCY RELATION SYSTEM 
 

In traditional database management systems, the data is formally separated 

from the specification of its schema, or structure.  The main purpose of the 

schema is to serve the query processor, but it also helps the user to understand 

the structure of the database.  As we already know, a semistructured database 

does not have a schema, or if there is a schema, it is incomplete or irregular.  

Since a schema can prominently facilitate the query performance and help to 

avoid exhaustive searches, it is very important that all the information about the 

structure of the semistructured data can be discovered.   

 

Schema discovery from semistructured data has been under intensive 

investigation since the middle of the 90’s.  In Section 2 we presented some 

examples and results of such investigations.  We also noticed that there were 

some shortcomings, like inaccuracy after merging parts of the schema and large 

schemas caused by cyclic structures. 

 

An early work of applying adjacencies has presented in Ni & Bloor (1994).  

Their work considers boundary data structures, which normally are built on 

relations between faces, edges and vertices.  The novel idea of adjacencies 

between these entities is furthermore developed in Wanne (1998) and Wanne et 

al. (1999).  In the following chapters we will briefly present those concepts of 

the Adjacency Relation System (ARS) that are necessary to understand our 

proposal of a schema for semistructured data.  The same concepts are 

somewhat modified later in this work in order to make them suit better to our 

purposes. 

 

Our work on a schema for semistructured data is based on adjacencies between 

edges.  In our proposal we consider an adjacency as an interrelationship 

between two consecutive edges, and it is defined with the help of the node 



 ACTA WASAENSIA 31 

 

between them, whereas in Wanne et al. (1999) the adjacency is defined between 

elements of different types.  Formally an Adjacency Relation System is (Wanne 

et al. 1999) as follows: 

 

Definition 4.1.  The adjacency relation system (ARS) is a pair ( RA, ) where 

},,,{ 21 nAAA �=A , 1≥n , is a set containing pairwise disjoint finite nonempty 

sets and }},,2,1{,|{ njiRij �∈=R  is a set of relations, where each ijR  is a 

relation on ji AA × . 

 

If ijm Ryxyxyx ∈),(,),,(),,( 21 �  are all the pairs of relation ijR  having x  as the 

first component, then each element ),,2,1( mkyk �=  is said to be adjacent with 

the element x .  Furthermore, denote by )(xAd j  the set },,,{ 21 myyy �  (Wanne et 

al. 1999). 

 

We assume that the elements of each set iA , ni ,,2,1 �= , represent entities of a 

certain type iT .  The adjacency between elements can also be defined with the 

help of the so-called adjacency defining sets ( τ )  as follows.  Associate with 

each index pair },,2,1{, nji �∈  a set },{},,2,1{ jinK −⊆ �  of indices and a set of 

entity types }|{
~

KkTT kij ∈= . 

 

Elements iAx ∈ , jAy ∈ , where },,2,1{, nji �∈  and yx ≠ , are said to be adjacent 

with respect to a set of entity types φ≠∈= }|{
~

KkTT kij  if for each Kk ∈  there is an 

element kAz ∈  such that )(zAdx i∈  and )(zAdy j∈ .  The set ijT
~

 is called the 

adjacency defining set between the elements of iA  and jA .  For an adjacency 

relation system associated with adjacency defining sets (ARST), we use the notion 

),,( τRA , where τ  refers to the set of adjacency defining sets. 



32 ACTA WASAENSIA 
 

Definition 4.2. An ARST ),,( τRA  is said to be unique if for each pair 

},,2,1{, nji �∈  of integers such that the corresponding adjacency defining set 

ijT
~

 is nonempty and for all elements iAx ∈ , jAy ∈ , x  and y  are adjacent if and 

only if they are adjacent with respect to ijT
~

. 

 

Consider (Figure 4.1) a set of relations },,,,,,,,{ 332313232221131211 RRRRRRRRR=R , 

where 

 

)},(),,{( 122111 xxxxR = , 

)},(),,(),,(),,{( 2222122112 xyyxxyyxR = , 

)},(),,(),,(),,{( 2222211213 xzzxxzzxR = , 

)},(),,{( 122133 zzzzR = , 

φ===== 3231232221 RRRRR . 

 

and the adjacency defining sets 

 

}{ 211

~

TT = , 

}{ 133

~

TT = , 

φ======= 32233113211222 TTTTTTT . 

 

We can see that elements 1x  and 2x , 121 , Axx ∈ , are adjacent with each other as 

well as 1z  and 2z , 321 , Azz ∈ .  The adjacency is defined via the relation 11R  for 1x  

and 2x , and via the relation 33R  for 1z  and 2z , and on the other hand, also with 

respect to the adjacency defining sets 
~

11T  and 
~

33T .  If there are no other non-

empty adjacency defining sets, the ARST considered is unique.  

 



 ACTA WASAENSIA 33 

 

)( 11 TA

)( 22 TA )( 33 TA

1x 2x

1y 2y 3y 1z 2z
 

 

Figure 4.1.  Directed graph illustrating the relations presented above. 

 

We can use the notation ji TT →  for a relation type to indicate that the relations 

ijR  are defined on ji AA × .  Furthermore, we can consider sets of relation types  

 

}),(|{ SjiTT ji ∈→ , 

 

where },,2,1{},,2,1{ nnS �� ×⊆ .  For an ARST ),,( τRA , denote by SR |  the 

restriction of R  on S , i.e.  }),(|{| SjiRS ij ∈∈= RR  (Linna et al. 2003). 

 

Definition 4.3.  A relation sr TT →  is determined uniquely by the relation 

combination }{ S|(i,j)TT ji ∈→  if for any unique ARST ),,( τRA  there is no other 

unique ARST ( ,�, 'RA ) such that |S|S 'RR =  but '
rsrs RR ≠  (Wanne et al. 1999). 

 
One of the problems with DataGuides is their size.  In this work we consider 

also that problem, because even if the relation combination is valid, it should be 

as small as possible.  A relation combination is valid and minimal when the 

number of relations in the combination is as small as possible. 

 

Definition 4.4.    Given the entity types nTT ,,1 � , a set },,2,1{},,2,1{ nnS �� ×⊆ , 

and adjacency defining sets τ .  A relation combination }),(|{ SjiTT ji ∈→  is 



34 ACTA WASAENSIA 
 

said to be valid if for any unique ARST ),,( τRA  there is no other unique ARST 

( ,�, 'RA ) such that '|S|S RR = .  Otherwise the relation combination is said to be 

non-valid. 

 

Let us consider an ARST associated with planar graphs.  We have the entities V  

(vertices), E (edges) and F  (faces).   Denote e.g. VT =1 , ET =2  and FT =3 .  

Relation combination of two relations, where the entity E  occurs twice, i.e. the 

combination },{ FEEV →→  and its symmetric variants },{ EFEV →→  

},{ FEVE →→  },{ EFVE →→  are minimal valid combinations (Wanne et al. 

1999).  

 

Next we will give a theorems of Wanne et al. (1999) that will be referenced later 

on in this work. 

 

Theorem 4.1.  Let ),, τRA(  be a unique ARST  with n types nTT ,,1 � , such that 

0
~

≠iiT  for ni ,,2,1 �= .  A relation combination  

 

 },,,,,,{
2211 rr kjkikjkikjki TTTTTTTTTTTT →→→→→→ �  

 

ji ≠ , rkkji ,,, 1 �≠ , determines uniquely the relations ji TT →  and ij TT →  if 

and only if φ≠ijT
~

 and },,{
1

~

rkkij TTT �⊆  (Wanne et al. 1999). 



 ACTA WASAENSIA 35 

 

5.  SCHEMA PROPOSAL FOR SEMISTRUCTURED DATA 
 
In structured database systems the main purpose of the schema is to describe 

the structure of the data.  This in turn is a prerequisite that the query languages 

can access data efficiently.  In this Section we will give our definition of 

semistructured data, show how to determine the degree of given data structure, 

and finally present our proposal of a schema for semistructured data. 

 

5.1.  Definition of Semistructured Data  
 

According to Wanne et al. (1999) some relations of a given data structure are 

derivable from a set of stored relations.    Each relation determined uniquely by 

a given relation combination is said to be derivable from the given relation 

combination.  If a relation combination determines uniquely all other relations 

then it is said to be valid.  This means that we have all relations of a data 

structure and the degree of the structure is one (1).   

 

Example 5.1. Consider an ARST ),,( τRA , where the relations are as follows 

(Figure 5.1): 

 

)},(),,{( 122111 xxxxR = , 

φ=22R , 

)},(),,{( 122133 zzzzR = , 

)},(),,(),,(),,{( 3222211112 yxyxyxyxR = , 

)},(),,(),,(),,{( 2322121121 xyxyxyxyR = , 

)},(),,{( 221213 zxzxR = , 

)},(),,{( 222131 xzxzR = , 

)},(),,(),,{( 13122123 zyzyzyR = , 



36 ACTA WASAENSIA 
 

)},(),,(),,{( 12312132 yzyzyzR = , 

 

and the adjacency defining sets are 

 

}{},{ 133

~

211

~

TTTT == , 

φ======= 32

~

23

~

31

~

13

~

21

~

12

~

22

~

TTTTTTT . 

 

x1 x2

)1(1 TA

)2(2 TA )3(3 TA

y1

y2

y3 z1

z2

 
 

Figure 5.1.  Undirected graph illustrating the relations of Example 5.1. 

 

Let )}3,2(),2,1{(=S , then },{}),(|{| 2312 RRSjiRS ij =∈∈= RR . 

 

Let ( τ,, 'RA ) be another ARST where 'R  contains the same relations as R  

except the relation on 22 AA ×  which is defined by  

 

)},(),,{( 1221
'
22 yyyyR = . 

 

As in Example 5.1 it can be deduced that the ARST ( τ,, 'RA ) is unique.  Since 

SS || 'RR = , the relation combination },{ 3221 TTTT →→  is not valid. 

 



 ACTA WASAENSIA 37 

 

Now, e.g. the relation 31 TT →  is not uniquely determined.  Namely, if ( τ,, 'RA ) 

is another ARST, where 'R  contains the same relations as R  except the 

relations on 31 AA ×  and on 13 AA × , which are defined by 

 

)},(),,{( 2111
'
13 zxzxR =  and )},(),,{( 1211

'
31 xzxzR = . 

 

Now we will define the notion of the degree of the data structure (Linna et al. 

2003). 

 

Let C  be a subset of all possible relations of the form 'TT → , where T and 'T  

are types.  Denote by C  the number of relations in C .  Let 'C  be a relation 

combination such that 'CC ∪  is valid and  valid}is |min{'
ii CCCC ∪= .  

Denote ')min( CC = .  In other words, )min(C  is the minimum number of 

relations, which is needed to complete C  to a valid relation combination. 

 

Denote by )(CD  the set of all relations, which can be derived uniquely from C . 

Obviously, )(CDC ⊆ .  The degree of a relation combination C  is defined as the 

ratio 

 

lations of all rethe number

D(C)
Deg(C) = . 

 

According to the definition, it holds that 1)(0 ≤≤ CDeg  for each relation 

combination C . 

 

Definition 5.1.  Let C  be the relation combination describing the given data 

structure.  The data structure is said to be 

 



38 ACTA WASAENSIA 
 

( i ) structured, if 1)( =CDeg ; 

( ii ) unstructured, if 0)( =CDeg ; 

( iii ) semistructured, if 1)(0 << CDeg . 

 

Note that obviously, 1)( =CDeg  if and only if C  is valid. 

 

In the following example (Wanne 1998) it is shown (Figure 5.2) that if we know 

the relations VF →  and EV → , i.e. },{ EVVFC →→= , then we can always 

derive the relations FV → , VE →  and VV → .  In Wanne (1998) it is also 

shown that relations EFFEEEFF →→→→ ,,,  can not be derived.  This 

means that ,,,,{)( VEFVEVVFCD →→→→=  }VV → .  Thus the degree of 

C  is 56.09/5)( ==CDeg . 

 

V

E

F

 

 

Figure 5.2.  Three entities ),,( FVE   and nine adjacent relations.  

 

If e.g. },{ FEEVC →→= , it can be shown that )(CD contains all the nine 

relations and thus 19/9)( ==CDeg , and the relation combination C  is valid.  If 

on the other hand },,{ EEVFEVC →→→= , it can be shown that  

 

},,,,,{)( VVFVVEEEVFEVDC →→→→→→=  . 

 



 ACTA WASAENSIA 39 

 

Thus the degree of C  in this case is 67.09/6)( ==CDeg . 

 

In Figure 5.3 (Goldman 2000) we have a typical situation in which an OEM 

source database is depicted with two DataGuides.  As we have found out in the 

previous sections it is fully possible that there are one, two or more DataGuides 

of one and the same source database.  When we merge the lower parts of the 

DataGuides of Figure 5.3a and Figure 5.3b, i.e. the paths C.D, we loose some 

accuracy. 

  

B BA

C C C

D D D

(a)

1

2 3 4

5 6 7

8 9 10

A

C C

DD

B

(b)

11

12 13

14 15

16 17

A B

C

D

(c )

18

19

20

21

 
 

Figure 5.3.  A source and two DataGuides (Goldman 2000). 

 

If we wish to keep additional information in a DataGuide, like annotations e.g. 

statistical odds that an object reachable via l has any outgoing edges with a 

specific label (Goldman 2000), then we cannot say to which label path the 

annotation is applied.  Referring to Figure 5.3c, we see that label paths A.C and 

B.C both reach the same object.  Thus, if we store an annotation on object 20, we 

cannot know if the annotation applies to label path A.C, label path B.C or both. 

The DataGuide of Figure 5.3c is minimal.  In the DataGuide in Figure 5.3b, 

however, we have two distinct objects for the two label paths, so we can 



40 ACTA WASAENSIA 
 

correctly separate the annotation, but the DataGuide in Figure 5.3b is not any 

more minimal. 

 

This is a situation in which the use of AdSchema, defined in detail later on, is a 

clear advantage.  When the source database of Figure 5.3a is depicted with the 

AdSchema we will have a schema that is minimal, and the problem concerning 

annotations can be avoided.  Besides, the AdSchema conforms initially to the 

same requirements as a strong DataGuide.  By using AdSchema we can increase 

efficiency because the schema need not to be rebuilt in order to make it 

minimal.  An AdSchema of the database of Figure 5.3 is depicted in Figure 5.4.  

The interrelationship between the types B and D is left out because the type C is 

an interrelationship defining type. 

 

A B

C D
 

Figure 5.4.  An AdSchema of the source database of Figure 5.3. 

 

The graphs of Figure 5.3 can also be seen from another point of view.  We can 

consider the number of the relations, i.e. the degree of the structure, so the three 

graphs of Figure 5.3 can be interpreted as follows.  In Figure 5.3a we have 12 

relations altogether.  The relations are BA → , CA → , CB → , DC → , DA →  

and DB → , and their symmetric relations.  Of those relations BA →  is an 

empty relation (as well as its symmetric version).  The relations DA →  and 

DB →  have an interrelationship defining type, which in this case is the type C.  

If the self-relations, i.e. AA → , BB → , CC →  and DD →  had been included 

then we should have had 16 relations altogether, but because the self-relations 

are insignificant to the result they are left out. 

 



 ACTA WASAENSIA 41 

 

In Figure 5.3b we have the same 12 relations.  The number of relations is the 

same because each relation is depicted only once, and in Figure 5.3a there are 

two paths that have the same edge labels.  Also here the self-relations are 

omitted.  In both of these cases (Figures 5.3a and 5.3b) the degree of the data 

structure is 0.112/12)( ==CDeg , which means that the structure of the data is 

quite high.  

 

In Figure 5.3c the number of relations is smaller and so is the degree of C .  The 

known relations in Figure 5.3c are BA → , CA → , CB → , DC → , DA →  and 

DB → .  Here again, we consider also the symmetric variants of each of the 

relations.  So the total number of relations here is 12.  However, in this case 

there are a few unknown relations.  The relations DA →  and DB →  are not 

known as well as the relations CA → , CB → .  The degree of the data structure 

is 33,012/4)( ==CDeg . 

 

1

2 3 4 5

6 7 8 9 10 1311 12

A A A A

B B B BC C C C

A B

C

(a) (b)  
Figure 5.5.  An example of the sizes of the source database (a) and the 

corresponding AdSchema (b). 

 

In Figure 5.5a there is a sample OEM database.  We can see that there are four 

edges emanating from the root node labelled with a letter A. From each of the 

nodes 2, 3, 4 and 5 there are two outgoing edges labelled with letters B and C.  

The relations in that graph are BA → , CA → , CB → , AB → , AC → , BC → , 

AA → , BB →  and CC → , so we have 9 relations altogether.  Of these 



42 ACTA WASAENSIA 
 

relations we omit the self-relations.  The degree of the data structure is 

0.16/6)( ==CDeg . 

 

In Figure 5.5b we have the graph of Figure 5.5a presented with an AdSchema.  

The schema is simple and there are only three types with two interrelationships 

between them.  The total number of relations is the same as in Figure 5.5a, but 

only two of them are needed because the rest of them can be derived.  The 

schema is minimal and there is no confusion about interpretation of it. 

 

As a conclusion of these examples we can say that, in most cases, if a 

semistructured database is presented with an AdSchema the size of the new 

schema is smaller than the original database, and it is also minimal.  The 

AdSchema also fulfils the requirements of a strong DataGuide.  As we can 

derive some relations from the known ones, we do not need to store all 

relations we know, and still we can keep the same level of accuracy as if all the 

relations were stored.   

 

5.2.  Determining of the Degree of a Data Structure 
 

First we give an algorithm for the determining of the degree of a given data 

structure C , given as a set of relations. 

 
Let entity types nTT ,,1 � , a set },,2,1{},,2,1{ nnS �� ×⊆  and adjacency defining 

sets τ  be given.  Consider the relation combination }),(|{ SjiTTC ji ∈→= .  By 

the symmetry, we may assume that for each pair Sji ∈),(  also Sij ∈),( .  The 

Degree Testing Algorithm is the following: 

 

Step 0. Let the pairs Sji ∈),(  be marked pairs and all the other pairs 

unmarked pairs. 



 ACTA WASAENSIA 43 

 

Step 1. Search for each unmarked pair Sji ∉),( , such that there exists 

an integer jik ,≠  for which Ski ∈),(  and Skj ∈),( .  If such a 

pair and an integer are found, goto Step 2.  Otherwise goto Step 

3. 

Step 2. Find all integers rkk �,1 , 1≥r , such that Skjki ss ∈),(),,(  for 

rs ≤≤1 .  If for at least one s , rs ≤≤1 , we have ijk TT
s

~

∈  and 

},,,{
21

~

rkkkij TTTT �⊆ , then include relations ji TT →  and ij TT →  

in the relation combination, i.e. add the pairs ),( ji  and ),( ij  to 

the set S  and goto Step 1.  If there is no such integer s , then 

goto Step 1. 

Step 3. Let 1C  be the set of all new relations derived by Step 2.  The 

degree of the given data structure C  is 

 

2
1

n

CC
Deg(C)

+
=  

and the set of all obtained relations is 1CC ∪ . 

 

Theorem 5.1.  The determining of the degree of semistructured data is a 

decidable question. 

 

Proof: 

We will show that the above algorithm decides the question. 

 

The purpose of Steps 1 and 2 is to decide if the present relation combination 

determines uniquely at least one new relation.  If in Step 1 no pair Sji ∈),( , 

ji ≠ , such that there exists an integer jik ,≠  for which Ski ∈),(  and Skj ∈),(  

is found, then, by Theorem 4.1, no further relation can be derived from the 



44 ACTA WASAENSIA 
 

obtained relations.  Thus we know the set 1C  of all new relations derivable from 

the set C  and can go to Step 3 and calculate the degree of C . 

 

If in Step 1 at least one pair Sji ∉),( , ji ≠ , satisfying the given property was 

found and the assumptions of Step 2 are satisfied then the new relations ji TT →  

and ij TT →  are derivable by Theorem 4.1 and they are added to the set of 

previous relations S .  The procedure, i.e. Step 1, is then repeated for finding all 

possible new relations.  If, conversely, the assumptions of Theorem 4.1 are not 

satisfied in Step 2, make the pair ( ji, ) marked and go to Step 1.  This proves 

that the algorithm is working correctly.  

 

Illustrate the Degree Testing Algorithm by the following example.  Let VT =1 , 

ET =2  and FT =3  be the types of vertices, edges and faces in the case of planar 

graphs.  In the usual interpretation of planar graphs 

 

 }{11 ETT VV

~~

==  

 },{22 FVTT EE

~~

==  (winged-edge interpretation) 

 }{33 ETT FF

~~

==  

 φ==== 2112

~

EV

~

VE

~~

TTTT  

 φ==== 3223

~

FE

~

EF

~~

TTTT  

 }{3113 ETTTT
~

FV

~

VF

~~

====  

 

Let now the relation combination be },{ VFEVC →→= .  By the symmetry, the 

relations VE →  and FV →  belong also to )(CD .  Thus we may assume at this 

stage that )}1,3(),3,1(),1,2(),2,1{(=S . 

 



 ACTA WASAENSIA 45 

 

Consider in Step 1 the pair S∈)1,1( , i.e. the relation VV → .  Since S∈)2,1( , i.e. 

CEV ∈→ , and S∈)1,2( , i.e. CVE ∈→  go to Step 2 with 2=k .  There are two 

integers sk  such that ),1( sk , Sk s ∈),1( , namely 21 =k  corresponding to E  and 

31 =k  corresponding to F .  Since },{ VETE VV ⊂∈ , i.e. },{
211

11

~

kkk TTTT ⊂∈ , we 

can include the relation VV →  in the relation combination and go back to Step 

1.  For the unmarked pair )2,2(  there is an integer 1=k  such that Sk ∈),2( .  

There is only one integer sk , namely 1=sk , such that that Sk s ∈),2( .  Now we 

have },{
~

FVTV EE =∈ , i.e. 22

~

TT
sk ∈  but }.{},{22

~

skTFVT ⊆=   Similar deduction 

holds also for the pair )3,3( .  Thus the relations EE →  and FF →  do not 

belong to )(CD .  Consider finally the unmarked pair )3,2( , i.e. the pair ),( FE .  

In this case for 1=k  we have S∈)1,3(),1,2( , i.e. SVFVE ∈→→ , , and we can 

go to Step 2.  Since φ=== EFij TTT
~

23

~~

, the pair )3,2( , i.e. the relation FE →  

(and EF → ), does not belong to )(CD .  Since there are no other candidates to 

)(CD  left, we can deduce that },,{1 VVFVVEC →→→=  and so  

 

 56,09
5

3
32

)( 22
1 ==+=

+
=

n

CC
CDeg . 

 

The Degree Testing Algorithm enables the definition of a general query based 

on the given data structure, i.e. on the given relation combination C .    We now 

give a definition for the general query.  

 

5.3.  General Query 
 

Given an ARST ),,( τRA , a relation combination C  and an element x  of type 

X , find the set xY  of all elements of type Y  such that  

 



46 ACTA WASAENSIA 
 

(i)   the relation )(CDYX ∈→  and 

(ii)  ABRyx ∈),( for all xYy ∈ , where A∈BA,  and elements of A  are of 

type X  and elements of B  are  of type Y . 

 

Note that in (i) the set )(CD  of relations can be determined by the preceding 

algorithm.  

 

It can be shown that this general definition of a query includes e.g. all the 

special queries introduced in Ni et al. (1994), namely the queries such as direct 

query, inverse query, self queries, direct transitive query, inverse transitive 

query, and indirect transitive queries. 

 

5.4.  Algorithms 
 

In the following sections we will present three algorithms.  The first two 

algorithms are based on the algorithms of Töyli (2002), whereas the third 

algorithm is developed in this work.  The aim of the first two algorithms is to 

show that it is possible to model data of different structures with the adjacency 

model.  The third algorithm creates a new schema of a source database, which is 

a semistructured database. 

 

5.4.1.  Modeling of Relational Data 
 

In Buneman et al. (1996) the authors show that relational databases are easily 

encoded as trees.  In this subsection we show that relational databases can also 

be encoded with the adjacency model.  We will go through the process in which 

we convert a relational model into the adjacency model.  In order to succeed 

with this process we expect that the data in the relational model is normalized, 

at least to the 3rd normal form.  The process during which we proceed from the 



 ACTA WASAENSIA 47 

 

relational model into the adjacency model is quite straightforward.  It consists 

of nine steps, which are given here: 

 

Step 1. Select an attribute (column) from a table. 

Step 2. Create a corresponding type. 

Step 3. Repeat steps 1 and 2 until all the distinct tables and attributes 

are handled. 

Step 4. Remove those types which have been created of the secondary 

keys, if any. 

Step 5. Take a primary key and define it as an adjacency defining type. 

Step 6. Repeat step 5 until all the distinct primary keys are defined as 

adjacency defining types. 

Step 7. Create an adjacency between an element of a type and an 

element of its corresponding adjacency defining type (i.e. 

between an attribute and the primary key of a table). 

Step 8. Repeat step 7 until all the adjacencies are created between the 

elements and their adjacency defining sets. 

Step 9. Create all other wanted adjacencies between the types. 

 

In Step 1, if there are multiple tables in our relational database, we select first 

one table from which we start the conversion process.  Actually, it does not 

matter which table we select, but it could be a good advice to choose the one 

which have the most attributes.  Next we will choose one attribute of that table 

and proceed to the next step.  

 

In Step 2 we create a new type of the attribute we have just selected in step one.  

When we name a new type, it is advisable to use the column name of that 

attribute as a type name.  Often the column name is representational of the 

content of that particular attribute, and on the other side we can avoid 

conflicting names between the types.  The type and the length of the attributes 



48 ACTA WASAENSIA 
 

are insignificant, because the Adjacency Model treats all data equally, i.e. the 

type names and the adjacencies between them are the only significant matters. 

 

In Step 3 we repeat the two previous steps.  However, as soon as all the 

attributes of one table are treated, we take another table under consideration.  

As long as we repeat steps one and two we do not need to be concerned if there 

are more than one type with the same name, because these extra types are 

removed in the next step. 

 

Now the primary phase of the conversion process is completed.  After all the 

tables and all the attributes are considered we enter the next step.  We have as 

many types as we had columns in the original database.  However, some of 

them describe one and the same attribute.  In Step 4 we remove all those 

duplicate attributes that have been created of the secondary keys of the tables, 

because they all have a corresponding type created of the primary key.  Finally, 

there should not be duplicate types supposing the source database is at least in 

3rd normal form. 

 

In the theory of the Adjacency Relation Systems (Wanne 1998) there is one 

concept called an adjacency defining set.  In this fifth Step we consider these 

sets.  Every distinct attribute of a primary key, sometimes the primary key 

consists of two or more attributes, can be defined as an adjacency defining type.  

So we will go through all types and check if it is a part of a primary key or not.  

If it is, then that particular type can be used to define adjacency between two or 

more types of the same table.  If the same type is used as a secondary key in 

another table of the source database, then it can define adjacencies also between 

types created of attributes of two or more tables. 

 

In Step 6 we repeat the procedure of step five and select another type which is a 

part of a primary key of any table of the source database.  This new type will 



 ACTA WASAENSIA 49 

 

also be defined as an adjacency defining type.  This step will be repeated until 

all adjacency defining types are found and declared. 

 

In the previous steps we have concentrated on the types of the adjacency 

model.  Next we will consider the elements of the types.  In the relational model 

adjacencies are defined with relationships between the tables of the database.  

In the adjacency model the adjacency is defined with the help of the adjacency 

defining types.  Moreover, the adjacency is created on the element level, not on 

the type level. 

 

In Step 7 we draw a line, i.e. a relation between an element of a type and an 

element of its corresponding adjacency defining type.  We must remember here 

that we are not connecting elements based on their values, but according to the 

adjacency they have as attributes in the same table.  The attributes, which have 

been declared as secondary keys in the source database, connect the types taken 

from different tables. 

 

In Step 8 we repeat the procedure of Step 7 until all the adjacencies between the 

elements of the different types are created.  When we are finished with our 

work all elements of every distinct type are in relation with some other element.  

Some elements are adjacent with two or more elements, others has only one 

adjacent element.  In the first case we consider elements of adjacency defining 

types and in the other case elements of the ordinary types, i.e. adjacencies 

between the attributes within a table. 

  

In Step 9 we considered all those adjacencies that are for some reason not 

considered yet. 

 

Before we go on with another algorithm for semistructured data we will give an 

example of how the algorithm presented above works.  The example database 



50 ACTA WASAENSIA 
 

contains three tables with ten attributes, so our adjacency model will contain 

only eight types, because the secondary keys are removed.   

 

In Figure 5.6 the three tables are Order, Bill and Customer.  Each of the tables 

have records (rows) with a number of attributes (columns) and relationships 

which are composed with the primary keys (Ord_No, Bill_No and Cust_No) and 

the secondary keys (Bill_No and Cust_No).  None of the attributes have null 

values.   

 

Order
Ord_No Bill_No Sum Date

10 100 330,00 31.10.2000
11 101 20,00 1.11.2000
20 110 1 000,00 15.11.2000

Bill
Bill_No Cust_No Delivery

100 10 yes
101 10 yes
110 15 no

Customer
Cust_No Adress Phone

10 Street 1 12 345 670
11 Road 66 33 377 880
15 Avenue 99 55 555 555

Relations

 
 

Figure 5.6.  Customer Order System – an example of a relational database. 

 

As mentioned above, we start by picking up attributes from the tables of the 

relational model and create types of them one at a time.  In our example we 

have the attributes Ord_No, Bill_No, Sum and Date in the Order table and 

Bill_No, Cust_No etc. in the tables Bill and Customer.  After the first three steps 

we have ten types, some of which are duplicates. 

 



 ACTA WASAENSIA 51 

 

In step four we eliminate those duplicate types which are declared as secondary 

keys, in this case the types Bill_No and Cust_No.  So, at the end, we have only 

eight types left, Ord_No, Bill_No, Sum, Date, Cust_No, Delivery, Address and 

Phone.  The next steps, steps five and six, check the primary keys and define 

them as adjacency defining types.  There are three of them, i.e. Ord_No, Bill_No 

and Cust_No. 

 

After that it is quite simple to create the adjacencies between the elements of the 

adjacency defining types and the elements of those types which are adjacent 

with them, like the elements of Ord_No/Bill_No, Ord_No/Sum and 

Ord_No/Date.  The same thing will be done with the other adjacency defining 

sets and their corresponding types. 

 

Now we have managed all the steps except the last one.  In the last step, step 

nine, we create the rest of the adjacencies, if there are any.  In most of the cases 

we have succeeded to create all the adjacencies, because the relations between 

the tables are mostly implemented with the help of the primary and secondary 

keys.  When we eliminated the secondary keys we had only the primary keys 

left, and with them we, in the adjacency model, could create the adjacencies 

necessary for our purposes.   If there are any non-key relations in the relational 

model, we will add them into our representation. 

 

In Figure 5.7 we have presented the relational database of Figure 5.6 with the 

adjacency model.  There are only eight types left: Ord_No, Bill_No, Sum, Delivery 

etc., which represent the attributes of the tables.  Each type contains elements, 

which in turn, correspond the values of those attributes, like Order_No: 10, 11, 

20; Delivery: yes, no etc..  The relationships between the elements of different 

types are represented with directed edges; for example the upper part of Figure 

5.7 represents the relationships ( NoOrdDateR _, , NoOrdNoBillR _,_  and NoOrdSumR _, ) of the 

attributes of the table Order of Figure 5.6.   



52 ACTA WASAENSIA 
 

Bill_No

Sum

Ord_No

Phone

Date

Cust_No

Delivery

Adress

10 11 20

100 101 110

330,00
20,00 1 000,0031.10.2000

15.11.2000

10 15

Yes

Street 1
Road 66

Avenue 99 12345670

33377880

55555555

11

 
 

Figure 5.7.  The relational database of Figure 5.15 represented with the 

Adjacency Model. 

 

The types Bill_No, Sum and Date are adjacent with each other with respect to the 

adjacency defining type, which in this case, is the Ord_No.  So we can denote the 

adjacency defining sets with NoBillSumT _,

~

= }{ _ NoOrdT , NoBillDateT _,

~

= }{ _

~

NoOrdT  and 

DateSumT ,

~

= }{ _ NoOrdT .  Additionally, we can see that the elements of the type 

Bill_No are adjacent with the elements of the type Ord_No (e.g. 

)10(100 _ NoBillAd∈ ) and so do the elements of the types Sum and Date (e.g. 

)10(00.330 SumAd∈ , )10(2001.10.31 DateAd∈ ).  These adjacencies are defined by 

the adjacency defining sets, not with respect to the values of the corresponding 

types. 



 ACTA WASAENSIA 53 

 

The adjacencies, which we have shown above, were implemented between the 

types taken from one and the same table.  It is equally possible to define 

adjacencies between types taken from two different tables.  In our example the 

type Bill_No is an attribute of two tables, Order and Bill, so we can define the 

adjacency between the tables in the adjacency model, e.g. )100(10 _ NoCustAd∈  and 

)10(100 _ NoBillAd∈ .  The rest of Figure 5.7 can be represented equally applying 

the definitions above. 

 

The algorithm we have presented above is quite straightforward, because the 

underlying data model is based on a fixed schema.  However, the amount of 

data that do not have a fixed schema increases rapidly.  Our next algorithm is 

developed to manage such data.  The algorithm reads a tree or a graph-like 

structure and creates an adjacency model of it.  With this algorithm we want to 

show that semistructured data can be modelled with the adjacency model. 

 

5.4.2.  Modeling of an Object Exchange Model 
 
In this Section we will present our algorithm that converts an Object Change 

Model (McHugh 1997) to an adjacency model.  We have chosen this model 

because it is most widely used, and the DataGuide schema is also based on this 

same model.  The conversion process from the OEM model into the adjacency 

model differs in some aspects from the process of the relational model.  The 

main principle is that every edge of the source database corresponds to one 

type of the adjacency model, and every node of the source database 

corresponds to a relation between two elements of two different types.  The 

conversion between the models proceeds as follows: 

 

Step 1. If there is an incoming edge into the root node of the graph, 

create a new type of it. 

Step 2. Select an edge from the graph. 



54 ACTA WASAENSIA 
 

Step 3. Create a new type of the edge. 

Step 4. Repeat steps 2 and 3 until all distinct edges are handled. 

Step 5. Select a type, which has two or more distinct types that are 

adjacent with it, and define it as an adjacency defining type. 

Step 6. Repeat step 5 until all such types are handled. 

Step 7. Create an adjacency between an element of an atomic type (a 

type which does not have other types that are adjacent with it) 

and an element of its corresponding adjacency defining type. 

Step 8. Repeat step 7 until all the elements of the atomic types are 

handled. 

Step 9. Draw the adjacencies between the elements of the adjacency 

defining types according to the original graph. 

 

Very often the root node has an incoming edge. This edge is considered first in  

Step 1, where we create a new type of it.  Most often that particular edge has a 

name already and we can use it, but if it is not named then we can use what 

ever name we want.  However, we must think out the name well so that there 

would not be any conflicts between the names of the other edge of the 

semistructured database.  If there is no incoming edge, we can directly move on 

to the next step. 

 

In Step 2 we select one of the edges of the semistructured database.  If we make 

the selection for the first time we take an edge emanating from the root node, 

otherwise we can select any of the remaining edges we have not visited yet.  

Our algorithm uses the depth-first search, so we know exactly those edges that 

are already picked up. 

 

In Step 3 we create a new type of the label of the last selected edge.  In the 

conversion process from the relational model to the adjacency model duplicate 



 ACTA WASAENSIA 55 

 

types were allowed and removed later, but because our algorithm keeps track 

of the edges handled, we will not face the same problem here.   

 

Step 4 repeats the three previous steps and uses the DFS to manage all the 

edges of the source database.  Because we use a commonly proven search 

method in our algorithm even the cycles will not cause any problem. 

 

In Steps 5 and 6 we define the adjacency defining types.  As a rule of thumb we 

can say that all those edges of the semistructured database that end to a node 

that have outgoing edges can be defined as such.  These two steps will be 

repeated until all such types are defined. 

 

Here we end the first phase of our algorithm.  All types are created and all 

adjacency defining types are defined.  In the next three steps we finish the 

conversion process by drawing the relations, i.e. the adjacencies between the 

elements of the types.  When we consider the Object Exchange Model, the 

elements of the types consist of the object identifiers of the nodes to which the 

incoming edges are connected.  Basically, if we have three edges with the same 

name, then we have only one type with that name and three object identifiers as 

elements within that type. 

 

In Steps 7 and 8 we create the relations, i.e. an adjacencies, between elements of 

the different types.  In this and the next step we consider only adjacencies 

between atomic types and adjacency defining types.  The elements, between 

which the relation is created, can be determined according to the inner nodes of 

the source database.  The incoming edge to the inner node is defined as an 

adjacency defining type, and the object identifier of that node is the starting 

element.  The outgoing edge, which is an atomic type in the adjacency model, 

points to a node, and the object identifier of that node is the ending element of 



56 ACTA WASAENSIA 
 

the relation.  When we have concluded these two steps, we have created all the 

adjacencies between the adjacency defining types and the atomic types.   

 

In Step 9 we create the adjacencies between the adjacency defining types.  These 

types are inner nodes in the source database.  The relation in the adjacency 

model is drawn from a type which is created of the label of the incoming edge 

of the inner node, and the relation ends to a type which is created from the label 

of the outgoing edge of the same inner node.  The relation is, of course, an 

adjacency between the elements of the named types. 

 

Finally, when all the types are considered the semistructured model is 

converted to an adjacency model.  The number of types in our model is less (in 

general) than the number of edge labels in the source database, because the 

edges with the same label are considered as one type.  

 

Next we will take some examples of the conversion process.  We will consider 

here two different examples and give a brief explanation of the process. We will 

start with an OEM database (Figure 5.8) presented by McHugh, Widom, 

Abiteboul, Luo & Rajaraman (1998).  In Figure 5.9 we have the same database 

represented with the adjacency model.  

 

In Figure 5.8 we can see that there is a named input edge, which is called DB, so 

the first type is created of it.  After that we go through the whole graph with the 

depth first search and select all distinct edges, and create corresponding types 

of their labels, like Movie, Actor, Title etc.  Next we define the adjacency defining 

types.  In this first example the adjacency defining types include e.g. the types 

Movie, Actor and Price.  Next we create the adjacencies from the elements of the 

adjacency defining types to the elements of their corresponding adjacent types 

like the relations between Name - Actor, Currency - Price, etc.  Finally we create 

the adjacencies between the adjacency defining sets (Movie – Actor, Movie – Title 



 ACTA WASAENSIA 57 

 

etc.).  All special cases, if any, are handled separately after we have finished the 

standard procedure.  In Figure 5.8 the edge with the label References between 

the two Movie types is a special case which will be considered later in this 

example.   

 

 

Figure 5.8.  An OEM database (McHugh et al. 1998). 

 

In Figure 5.9 there are thirteen distinct types with adjacency defining types and 

ordinary types.  If we take the type Actor, we can see that some of the elements 

of the types Name and Character are  adjacent with each other with respect to the 

type Actor ( }{
~

ActorcterName,Chara TT = ).  The elements of the types Year, Title, Writer 

and Price are adjacent with each other with respect to the type Movie, so we can 

write Movie ( }{,

~

MovieYearActor TT = , }{,

~

MovieTitleActor TT =  etc.).  For example Harrison 

Ford is the name (&17) of the Actor (&6) who plays in Movie (&2).  We can also 

see that the Character (&18) Deccard is played by an Actor (&6) whose Name is 

Harrison Ford (&17), because the adjacency of these two types is defined by the 

type Actor.  The adjacency between the elements of the types Name and Actor, 

e.g. )6(&17& NameAd∈  is defined directly by the relation without any adjacency 

defining type. 



58 ACTA WASAENSIA 
 

&3 &4&2

&16&6 &13

Movie

&14
&5 &9

Actor Title

&10

Writer

&25&17 &21

Name

&26&18 &22

Character

&15
&8

&11

Price

&7 &12

Year

&20

Currency &19

Amount

&23

Original

&24

AKA

&1

DB

 
 

Figure 5.9.  An OEM database of Figure 5.8 modelled by the Adjacency Model. 

 

In Figure 5.9 the types Title and Price have elements with two different 

expressions.  First, they both have elements that do not have adjacencies with 

other elements and secondly, they have elements with adjacencies with other 

elements.  For example, the element &5 of the type Title do not have adjacent 

elements, whereas the element &14 has two adjacent elements (i.e. 

)14(&24& AKAAd∈  and )14(&23& OriginalAd∈ ).  This kind of structures make 

semistructured data difficult to model with the common data models, but as we 

can see we can present structures like this with the adjacency model. 

 



 ACTA WASAENSIA 59 

 

The edge labelled References in Figure 5.8 is not depicted as a distinct type in the 

adjacency model, because there is a more natural way to represent it.  It can be 

represented with only one type by defining a relation between the two elements 

&2 and &3 of the type Movie.  With this method we can reduce the number of 

distinct types. 

 

Our next example deals with the semistructured data graph of Figure 5.10.  It 

represents an OEM database, which contains information about the Stanford 

Database Group (McHugh et. al 1997).  In principle it has the same structure as 

the OEM database of Figure 5.8 but there is one significant difference.  The 

graph contains a cycle between the two nodes &4 and &5 with edges labelled 

Member and Project. 

 

 
 

Figure 5.10.  An OEM database with a cycle between the nodes &4 and &5 

(McHugh et al. 1997). 

 

In the adjacency model of Figure 5.11 the adjacency is defined with relations 

between the elements ojectMemberR Pr,  and MemberojectR ,Pr .  In this case we can use also 

an adjacency defining type, i.e. the DBGroup.  Both of the types Member and 



60 ACTA WASAENSIA 
 

Project have an element (&4 and &5) that is adjacent with an element (&1)  of 

the adjacency defining type DBGroup, i.e. }{Pr

~

DBGroupojectMember, TT = .  

 

&5 &6&3 &4&2

Member Project

&12

Name

&13

Age

&14

Office

&19

Building &20

Room

&1

DBGroup

&15

Title

&16

 
 

Figure 5.11.  The cycles of Figure 5.10 presented with the Adjacency Model. 

 

Since )1(&6,&5& Pr ojectAd∈  in Figure 5.11, the elements &5 and &6 are adjacent 

with each other with respect to ojectojectT Pr,Pr

~

.  This kind of adjacency is typical in 

the context of semistructured data when we have a distinct root node (here 

DBGroup).  The same thing can be found between the types Project and Member, 

where )4(&6,&5& Pr ojectAd∈ .   

 
 
 
 



 ACTA WASAENSIA 61 

 

5.5.  Definition of an Adjacency Schema 
 

In this Section we present our proposal of a schema for semistructured data.  

Although our work follows the theory of Wanne (1998) and Wanne et al. (1999), 

there is one exception in that our proposal concerns the adjacency between the 

types and not between the individual elements of the types, which is the case in 

Wanne (1998).  This means new formulations of some of the definitions 

introduced in Wanne (1998) and Wanne et al. (1999).  These will be presented in 

this section. 

 

As a consequence of the fact that we consider a schema for a database we do not 

need to show the atomic objects, i.e. the values of the source database.  This 

means that the schema becomes more simplified.  The values of the atomic 

objects can be stored in a common data store, like a relational or object 

database, and hence can be accessed by e.g. with SQL. 

  

In Figure 5.12a there is a part of a semistructured database.  The database graph 

consists of nodes and labeled edges.  The nodes do not have any object 

identifications.  In Figure 5.12b the same graph is depicted with an Adjacency 

Schema, which consists of types and interrelationships between them.  

Intuitively, in Figure 5.12a, the meaning of a relationship between two 

consecutive objects is defined with the help of a labelled edge, whereas in an 

Adjacency Schema the relationship between two interrelated types is defined 

with respect to a node of a database graph. 

 

Definition 5.1. An Adjacency Schema (AdSchema) is a pair ( RT A , ), where 

{ }nA TTT ,,, 21 �=T , 1≥n , is a set of types, and }},,2,1{|{ niRi �∈=R , where 

each ))(,( iii TIrTR = , and )( iTIr  denotes a subset of AT . 

 



62 ACTA WASAENSIA 
 

�3T nT

1T

2T

 

�

1T

2T
3T

nT

 

a b 
 

Figure 5.12.  A part of a data graph depicted with an Adjacency Schema. 

 

Definition 5.2.  If R∈= }),,,{,(
21 miiiii TTTTR � , then each type ),,2,1( mkTk �=  is 

said to be interrelated to the type iT .  Furthermore, denote by )( iTIr  the set 

},,,{
21 miii TTT � .  Since it is possible that jii =  for some mj ,,1 �= , the relation iR  

means that a type iT  is interrelated to itself.  This is a special case in a data 

graph where the start and end node of an edge are the same. 

 

We use the notion ji TT →  to show the interrelationship between types, like iT  

and jT .  If we have semistructured data that contains elements of type iT  and 

jT  and if the elements of these two types are adjacent with each other, then we 

can denote that by ji TT → .  This means that )( ij TIrT ∈  and the 

interrelationship of the elements can be  represented also as a pair of elements 

(Wanne 1998).  

 

All known approaches, including approximate DataGuides (Goldman 2000), 

consider directed graphs as schemas for semistructured databases.  In our 

approach we consider symmetric relations between the types and so there is no 

predefined order between the types of the schema.  This makes it possible that 

we can traverse the data structure in both directions.   

 



 ACTA WASAENSIA 63 

 

Definition 5.3.  An Adjacency Schema ( RT A , ) is said to be symmetric if for each 

pair of types it holds that )( ji TIrT ∈  if and only if )( ij TIrT ∈ . 

 

The number of the nodes in a semistructured database graph can vary from 

only a few nodes to a large number of them.  The number of nodes is not a 

problem, but it would be more convenient if some of the relations could be left 

out of the schema, i.e. they could be derived from the known ones.  We can use 

the interrelationship between some particular types when the relation is 

defined with respect to a third type. 

 

Definition 5.4. In the case of a symmetric Adjacency Schema, the types 

Aji TT T∈,  are said to be interrelated with respect to a type kT , AkT T∈ , 

},{},,2,1{ jink −∈ � , if )( ik TIrT ∈  and )( jk TIrT ∈ .  The type kT  is called an 

interrelationship defining type.   

 

In Figure 5.13  the types 1T  and 3T  are interrelated to each other with respect to 

the type 2T , in notation }{ 213

~

TT = .  If ji =  the type is adjacent with itself. 

 

In Figure 5.13 we can see a schema with j  types and the interrelationships 

between them.  As we can see there are many interrelationships drawn between 

the types, but many of them are unnecessary because they can be derived from 

the already known interrelationships, i.e. there is a minimal set of relations that 

need to be stored. 

 

In Goldman (2000) there is a concept called a data path, which is a sequence of 

one or more dot-separated labels nlll ,..,. 21 �  starting from an object o .  In our 

work the corresponding concept is realized with transitively interrelated types.  



64 ACTA WASAENSIA 
 

Transitively interrelated types are types that are adjacent with each other with 

respect to a set of consecutive intermediate types. 

 

. . .

1+iT 2+iT
3+iTiT jT

 

 

Figure 5.13.  A valid structure containing interrelationships between a set of 

types. 

 

Definition 5.5.  Two types iT  and jT , ji ≠  are transitively interrelated if there 

are one or more consecutive intermediate types between them, such that iT  

and kT  are interrelated with respect to a type 1−kT  for jiik ,,3,2 �++= . 

 

Consider the case of Figure 5.14.  It has the same set of types as is shown in 

Figure 5.13 but the number of interrelationships is lesser.  The interrelationship 

types are as in the previous definition.   

 

iT jT

. . .

2+iT 3+iT1+iT

 
 

Figure 5.14.  A minimal set of interrelationships of the types of Figure 5.13. 

 

The fact that some of the interrelationships can be derived tends to decrease the 

size of AdSchema.  So, we need to find the optimal combination of the 



 ACTA WASAENSIA 65 

 

interrelationships to form the base set from which the remaining relations can 

be derived.  

 

If we can find a relation combination that is minimal and valid, then the rest of 

the interrelationships can be derived from the known interrelationships and the 

database schema can be reduced without loosing its accuracy.  In Wanne (1998) 

the validity of a relation combination is defined between the elements of 

adjacent types but here we just notice that if a relation combination is valid, 

then it uniquely defines the interrelationships of all types. 

 

In Figure 5.15 we have a schema with six relations, },,,,, 654321 RRRRR{R=R , i.e. 

}),{,( 4211 TTTR = , }),,{,( 43122 TTTTR = , }){,( 233 TTR = , }),,,{,( 652144 TTTTTR = , 

}){,( 455 TTR =  and }){,( 466 TTR = .  The combination of three relations 21, RR   and 

4R  form a valid combination. This means that the rest of the relations can be 

derived with the help of these relations. 

 

1T

2T

3T

4T

5T

6T

 
Figure 5.15.  An example of a valid schema. 

 



66 ACTA WASAENSIA 
 

When we think of the relation combinations that should be stored we 

sometimes have to select between two or more alternatives.  In Figure 5.16 we 

have such a situation.  There are three different relation combinations from 

which we can choose.  First we have the relations { }421 ,, RRRR = , where 

}){,( 121 TTR = , }){,( 322 TTR =  and }){,( 424 TTR = , the second relation combination 

is },, '
4

'
3

'
2

' RR{RR =  where the relations are }){,( 31
'
2 TTR = , }){,( 23

'
3 TTR =  and 

}){,( 42
'
4 TTR = , and the third },, ''

4
''

3
''

1
'' RR{RR = , where the relations are 

}){,( 21
''

1 TTR = , }){,( 31
''

3 TTR =  and }){,( 42
''

4 TTR = .  The choice between these 

relation combinations must be done with respect to the efficiency aspect.  The 

most efficient is the relation combination R  i.e. { }421 ,, RRRR = .  With this 

solution the interrelationship between the types 1T  and 3T  can be left out of the 

schema,  because that particular interrelationship can be defined with respect to 

the type 2T , which is an interrelationship defining type. 

 

1T

2T 3T4T

 
 

Figure 5.16.  Selection problem of the minimal valid relation combination. 

 

This relation combination is the most efficient because if we start from 2T  we 

can retrieve all the types 1T ,  3T  and 4T  with one direct access. 

 

 

 



 ACTA WASAENSIA 67 

 

5.6.  Examples 
 

In this Section we give some examples of how different parts of a 

semistructured database can be depicted with an AdSchema.  In Figure 3.1 we 

have a semistructured database called premiership (Nestorov et al. 1997) some 

parts of which we presented with the help of an AdSchema. 

 

First, in Figure 5.17a we have the first part of the premiership object starting 

from the root node &0.  It presents a data path &0.Club.&1.Name.&2.Offical.&3.  

This data path can be constructed with an AdSchema depicted in Figure 5.17b 

consisting of three types Club, Name and Official and the relations between 

them. 

 

��� �

� ���

&0

&1

&2

&3

	 

����

a

 

 

��� �

� ���

b

	 

����

 

 

Figure 5.17. A portion of a graph of Figure 2.1 depicted with  an AdSchema  

 

Next we will extend Figure 5.17a with a new type called Player and its successor 

Nationality (Figure 5.18a).  The second data path is &0.Club.&1.Player.&14. 

Nationality.&19.  Player is the second edge emanating from the edge Club, which 

means that we have to insert the type Player into the schema as well as its 

successor Nationality (Figure 5.18b). 

 



68 ACTA WASAENSIA 
 

��� � � ����


� ���

&0

&1

&2 &14

&3 &19

	 

���� �����������

a  

 

��� �

� ���

� ����


b

	 

���� �����������

 

 

Figure 5.18.  Adjacency of types Name and Player defined with respect to a third 

type Club. 

 

The types Club, Name and Player are interrelationship defining types, which 

means that we do not need to draw an interrelationship between the types 

Name and  Player.  Besides, we need not to have the interrelationships between 

the types Club and Nationality or between the types Club and Official either 

because they are also interrelated with each other with respect to the types 

Player and Name, respectively. 

 

In Figure 5.19a the edge Name  has two different expressions.  In the first case it 

is a complex object and in the second case it is an atomic object.  Both of these 

expressions are allowed in an OEM graph.  This deviation does not pose any 

problem in AdSchema, because we have only one type for each occurrence of 

the Name object.  The corresponding AdSchema is depicted in Figure 5.19b, in 

which we can see that the types Club and Name are again interrelationship 

defining types as in Figure 5.18b, although the situation is somewhat different. 

 

This is one characteristic of the AdSchema that makes it possible to increase the 

degree of the data structure, i.e. some relations between the types can be 

derived from the existing, stored interrelationships.   



 ACTA WASAENSIA 69 

 

� ���

��� �� ����


��
�� ����

��� �

&0

&1

&25&14

&15

&16 &17

&24

� ���

a  

��� �

� ���

� ����


b

��
�� ����

 

 

Figure 5.19.  Two different occurrences of the edge Name depicted with an 

AdSchema. 

 

In Figure 5.19b the interrelationships }){,(3 PlayerNameR =  and 

}){,(4 NamePlayerR =  can be derived with the help of the interrelationships 

}){lub,(1 NameCR =  and }){lub,(2 PlayerCR = .  We can also use the symmetric 

variants of the named interrelationships 1R  and 2R .  Also the interrelationship 

between the types First and  Last can be derived based on the same definition. 

 

Next we will consider cycles.  In Figure 5.20b we can see how a cycle of a 

premiership object (Nestorov et al. 1997) is implemeted with the AdSchema.  We 

can see that the types Club and FormerClub are interrelated to each other with 

respect to the type Player.  There is also a interrelationship between the types 

Player and FormerClub, but we need not to show it in the AdSchema.  The reason 

is the interrelationship defining set Player.  It can be used to derive the missing 

interrelationship between the types Club and FormerClub. 



70 ACTA WASAENSIA 
 

� ���

�����


��
� �
� ���

&0

&1

&14

� ���

&24

&28

��
� �
� ���

�����


a  

��
� �
� ���

� ���

�����


b  
 

Figure 5.20.  Representing cycles with the AdSchema. 

  

5.7  Creating an AdSchema from Semistructured Data 
 

In this Section we present an algorithm for schema creation for semistructured 

data.  The original source database is read in a depth-first fashion.  Every label 

path is considered and all distinct edges are read and new types are created 

from them.  Equally all the interrelationships between the types are created of 

the nodes of the source database.  We use a hash table where all the object and 

edges are stored.  The hash table is used in order to prevent multiple types with 

same name to be inserted into our AdSchema.  We also create a starting type 

(usually the incoming edge to the root node) because in this way we can avoid 

disconnected types.  Next we go through the steps of the algorithm (Figure 

5.21). 

 

The first six lines represent the initialization phase of our algorithm.  On line 1 

we have the name of the algorithm.  Line 2 contains the input file to our 

algorithm.  It is a semistructured database and will have the object identifier of 

the root node o of the source database as a starting point.  On line 3 the output 

file is introduced.  It is the AdSchema.  On line 5 a hash table is declared .  The 

purpose of the hash table is to map the objects/edges of the source database to 



 ACTA WASAENSIA 71 

 

the types of the AdSchema.  On line 6 a global type called ads is created.  This 

variable contains the first type that will be inserted into the new AdSchema.  

Usually it is an edge that comes into the root node.   

 

 

Figure 5.21.  An algorithm to create an Adjacency Schema. 

 

Line 8 starts the making of the AdSchema.  The method MakeAdSchema contains 

the object identifier of the root node as a parameter.  On line 9, the first new 

type, i.e. the label of the first edge is assigned into the ads variable.  Line 10 

makes the first insertion into the hash table with the method Insert() of the 

object targetHash.  The insertion contains the object identifier of the root node 

and the label of the first edge.  After that, on line 11, we call the recursive part of 

that algorithm called RecursiveMake().  

 



72 ACTA WASAENSIA 
 

The effective work is done on lines 14 through 26.  On these lines all the nodes 

and edges of the source database are stored in the hash table, and above all, the 

types and the interrelationships between them are appended to the current 

schema. 

 

Line 14 is the header of the RecursiveMake method.  It contains as parameters the 

object identifier and the name of the edge.  When we call this method for the 

first time, the object identifier is the identifier of the root node and the name of 

the edge is the label of the incoming edge to the root node.  On line 15 we save 

all the object identifier and edge label pairs of the children of each object in t1.   

 

On lines 16 through 26 we have a for-each loop that searches through the hash 

table and checks if the given object identifiers are already stored there.  In a 

semistructured database there can be several edges with the same edge label 

but with different object identifiers.  On line 16 we consider unique edge labels 

but take into consideration all the object identifiers.  Line 16 starts the for-each 

loop.  On line 17 the object identifiers of the edge label are picked up and stored 

to the variable t2, and on line 18 we search the hash table for the object 

identifiers of the variable t2.  The used method of the object targetHash is called 

Lookup().  The result of the search is stored to the variable d2. 

 

Lines 19 through 26 check if the given objects are found in the hash table or not.  

If an object identifier is found we add on line 20 an edge from the second last 

inserted type to the last inserted type.  On the other hand, if we cannot find the 

search object from the hash table (line 21), we add a new type to the schema 

(line 22).  This new type will then be added to the hash table on line 23.  Also 

the set of object identifiers assigned to that edge are added to the hash table.  

After that, on line 24, a new interrelationship is added between the two last 

added types.  Finally, a new recursive call is made on line 25, and all the rest of 

the types and the interrelationships between them are added to the schema. 



 ACTA WASAENSIA 73 

 

Next we will consider an example of how our algorithm works.  In Figure 5.22 

there is a part of an OEM database of restaurants and bars (Goldman 2000).   

There are two Restaurants with some detailed information and one Bar without 

any additional information.  The Owner of one restaurant is the same as the 

Manager of the other restaurant.  The leaf nodes have some data. 

 

Nam e

BarRestaurant

Entree

Restaurant

Entree Entree
Nam ePhone

Owner Manager

1

2 3 4

5 8 9 10 116 7

Chill’s Burger 555-1234 Sm ith Darbar Lam b
Curry

Beef
Curry

Rose &
Crown

 
 

Figure 5.22.  A sample OEM database of restaurants and bars (Goldman 2000). 

 

In Figure 5.23 we have the corresponding AdSchema of Figure 5.22.  When we 

create an AdSchema of Figure 5.22 we can see that there are as many types in it 

as there are distinct edges in DataGuide.  In addition, our AdSchema has an 

extra type (Entry) which does not exist in the DataGuide or in the original 

source database.  

 

In our algorithm the source database with an object identifier o contains the 

input data.  The output of the algorithm is the schema of Figure 5.23.  First, in 

the method MakeAdSchema(), we assign the type Entry as a new type to the 

variable ads.  We insert the type Entry and the object identifier 1 to the hash 

table and start the RecursiveMake() method. 

 



74 ACTA WASAENSIA 
 

-�����
���

7�


) �����

	 2 ��


���
�

���
��

�����

��� �

 
Figure 5.23.  An Adjacency Schema of the sample OEM database of Figure 5.22. 

 

When we enter to the method RecursiveMake() we assign the <label, object 

identifier> pairs {(Restaurant,2),(Restaurant,3)} to the variable p.  After that, for 

each unique label in p, we assign the object identifiers to the variable t2.  t2 will 

contain the set {2,3}.  Next we will use the method Lookup() of the object 

targetHash to lookup if the objects are already in the hash table.  The result will 

be assigned to the variable d2.  If the objects are not found, then d2 will be 

assigned to the next new type, which in this case will be Restaurant.  The object 

identifiers and the new type will then be added to the hash table.  This will 

again be done with the Insert() method.  A new interrelationship is added 

between the Entry type and the Restaurant type, and the RecursiveMake() method 

will be called again with new parameters.   

 

In this second call of the method t1 contains the object identifiers {2,3} and d1 

contains the type Restaurant.  The variable p will now contain the following 

<label, object identifier> pairs: {(Name,5),(Entree,6),(Phone,7),(Owner,8),(Manager, 

8),(Name,9),(Entree,10),(Entree,11)}.  Now, for each unique label, we go through 

the same procedure.  We start with label Name and assign the object identifiers 

(5,9) to variable t2, try to find them in the hash table and if not found, we create 

a new type, add the type and the object identifiers to the hash table and finally 



 ACTA WASAENSIA 75 

 

create a new relation between the second last and the last types.  This procedure 

will go on until all unique edges and the interrelationships between them are 

added to the AdSchema. 

 

This example is a very simple example and its only purpose is to show that the 

algorithm works.  The only speciality is that the two edges Owner and Manager 

present one and the same person.  In the source database this means that the 

corresponding edges end to the same node.  In the AdSchema this can be 

presented without any specific structural problem. 



76 ACTA WASAENSIA 
 

6.  CONCLUSIONS AND FUTURE WORK 
 

6.1.  Conclusions  
 

Our research hypotheses stated that it is possible to construct a schema for 

semistructured data based on the theory of the Adjacency Relation Systems, 

and that the size of it can be decreased without loosing much of its accuracy.  

As we have finished our work and given answers to the research questions we 

can state the following. 

 

The first research question about the adequacy of the theory of the Adjacency 

Relation Systems to be used as a foundation for an Adjacency Schema was 

answered positively.  This means that the theory is solid and can be used with 

some smaller changes also with a schema construction for semistructured data.  

It also turned out, as we stated in the second research question, that it is 

possible to develop an algorithm that generates the schema from the original 

source database. 

 

The third question about the fulfillment of the requirements imposed for a 

schema for semistructured data is partly answered, but this question is still 

open.  We need empirical results to answer this question in full, so in future this 

is one of the areas we will concentrate. 

 

The fourth research question about the minimal and accurate schema is also 

partly open.  The schema creation algorithm constructs a schema that contains 

only distinct types which means that the schema is minimal.  In most cases it 

also shares the idea of a strong DataGuide in that there is only one “label path” 

in the adjacency schema to each of the types. 

 



 ACTA WASAENSIA 77 

 

6.2.  Summary of Contributions 
 
The main contributions of this work are the schema proposal for semistructured 

data, an accurate definition of semistructured data and an algorithm for 

calculating its degree as well as a general query for a given relation 

combination.  We also contribute with algorithms for the modelling of relation 

and semistructured data as well as with an algorithm for construction of an 

adjacency schema for semistructured data. 

 

The accurate definition of the semistructured data helps us to determine the 

degree of the semistructured data.  It states clearly that the degree is between 

zero and one, and that it can be completed up to one, which means that the 

structure is valid.  The degree calculating algorithm connects our work to the 

theory of the Adjacency Relation Systems.  It calculates the degree from a set of 

given relations and their adjacency defining sets.  The calculated degree can 

furthermore be increased if we use the known relations to derive new ones.  

The definition of semistructured data and the calculation algorithm show that 

the theory of Adjacency Relation Systems could be applied in our work.  

 

The general query presented in this work is a first attempt to develop a query 

that could use the structure of the adjacency schema to find the information 

wanted by a user.  However, the general query has not been developed to the 

point in which the whole benefit of it could be used. 

 

The main contribution of this paper is the schema proposal for semistructured 

data.  This proposal follows the same principles imposed for the existing 

schemas, like DataGuide.  The results we have obtained in our investigations 

are very encouraging.  We have shown that the adjacency schema can be used 

as a schema for semistructured data, however the test examples could be more 



78 ACTA WASAENSIA 
 

numerous.  This means that more extensive conclusions should not be drawn 

before more support for our investigations can be shown. 

 

The schema construction algorithm presented in this work is important because 

it shows that the theory behind the adjacency schema can be utilized in practice.  

This statement gives us a good base for our future work in this area.  The other 

algorithms presented here support the same thing although they consider the 

modelling of semistructured data.   

 

If we compare our results with the results obtained by other researchers there 

are two points that are worth mentioning.  First we can say that as far as we 

know there has not been an exact definition of semistructured data which is 

general enough.  In our work we give the limits between which semistructured 

data should lie and a motivation for such a convention.  Secondly is the schema 

for semistructured data.  As we have described in the earlier sections of this 

work there is one schema for semistructured data that has reached the position 

of a de facto standard.  Compared with that schema it is hard to come up with 

new proposals.  However, we have presented our proposal because we believe 

that there is potential in it.  There are aspects in the current schemas that need 

improvements and when we have developed the theory of the adjacency 

schema we have emphasized these facts. 

 

6.3.  Future Research 
 

As it has tuned out in the earlier sections there are some subjects that need more 

and deeper investigation.  The presented schema proposal is our first attempt to 

give a structure for semistructured data but we lack some experimental results 

of the effectiveness of our proposal.  It will be one of the first things to be 

considered in future.   

 



 ACTA WASAENSIA 79 

 

Another thing that has not been considered in our work is the modification of 

the schema.  The schema must be consistent even when the source database 

changes.  These changes in the structure of the schema must be handled with 

the construction algorithm.  In this stage our algorithm does not handle changes 

in the structure of the source database so the second subject to be covered in 

future is the algorithm.  Furthermore, the algorithm should also be able to 

handle different versions of semistructured data which is not the case right 

now.  The algorithm must be made more flexible so that it can handle cycles 

and other exceptions in the structure of the source database.  

 

Finally, the subject of queries has not been considered very much in this work.  

In the adjacency relation systems there are queries whose appropriateness 

should be tested in this context.  As the queries are relatively simple there 

should not be much work to adapt them to be used with the adjacency schema.  

However, modification of these queries will be on the list of our future work. 

 



80 ACTA WASAENSIA 
 

REFERENCES 
 
Abiteboul, S. (1997).  Querying Semi-Structured Data.  In Proceedings of 

International Conference on Database Theory [online] [cited: 2005-06-01], 
1–18.  Available: ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/ 
GemoReport-103.ps.gz. 

 
Abiteboul, S., P. Buneman & D. Suciu (2000).  Data on the Web.  From Relations to 

Semistructured Data and XML.  San Francisco, USA: Morgan Kaufman 
Publishers.  258 p.  ISBN 1-55860-622-X. 

 
Broekstra, J., C. Fluit, & F. van Harmelen (2000). The State of the Art on 

Representation and Query Languages for Semistructured Data. On-To-
Knowledge (EU-IST-199910132) [online] [cited: 2005-06-01].  
Available: http://www.ontoknowledge.org/downl/del8.pdf. 

 
Buneman, P. (1997).  Semistructured Data.  In Proceedings of the Sixteenth ACM 

SIGACT-SIGMOD-SIGART Symposium on Principles of Database 
Systems [online] [cited: 2005-06-01], 117–121.  Available: http://db. 
cis.upenn.edu/DL/97/Tutorial-Peter/tutorial-semi-pods.ps.gz. 

 
Buneman, P., S. Davidson, G. Hillebrand & D. Suciu (1996).  A Query Language 

and Optimization Techniques for Unstructured Data.  In Proceedings 
of ACM-SIGMOD International Conference on Management of Data 
[online] [cited: 2005-06-01], 505–516. Available: http://db.cis.upenn. 
edu/DL/96/UnQL/UnQL.ps.gz. 

 
Buneman, P., S. Davidson, M. Fernandez & D. Suciu (1997).  Adding Structure 

to Unstructured Data.  In Proceedings of the International Conference on 
Database Theory [online] [cited: 2005-06-01], 336–350.  Available: http: 
//www.cis.upenn.edu/~db/sue/ICDT96.pdf. 

 
Buneman, P., M. Fernandez & D. Suciu (2000).  UnQL: A Query Language and 

Algebra for Semistructured Data Based on Structural Recursion.  In 
Very Large Data Bases, VLDB Journal [online] [cited: 2005-06-01].  
Available:  http://db.cis.upenn.edu/DL/vldbjournal00.ps.gz. 

 
Cong, G., L. Yi, B. Liu & K. Wang (2002). Discovering Frequent Substructures 

from Hierarchical Semi-structured Data.  In Proceedings of the Second 
SIAM International Conference on Data Mining, SDM.  Hyatt Regency, 
Crystal City, Arlington, VA, USA [online] [cited: 2005-06-01].  
Available:  http://www.cs.sfu.ca/~wangk/pub/siam02.pdf. 

 



 ACTA WASAENSIA 81 

 

Goldman, R. (2000).  Integrated Query and Search of Databases, XML, and the Web.  
Thesis.  Stanford University, Department of Computer Science 
[online] [cited: 2005-06-01].  Available: http://infolab.stanford.edu/ 
~widom/theses/goldman.ps. 

 
Goldman, R. & J. Widom (1997).  DataGuides: Enabling Query Formulation and 

Optimization in Semistructured Databases.  In Proceedings of the 
Twenty-Third International Conference on Very Large Data Bases [online] 
[cited: 2005-06-01], 436–445.  Available: http://www-db.stanford.edu 
/pub/papers/dataguide_vldb97.ps. 

 
Goldman, R., J. McHugh & J. Widom (1999).  From Semistructured Data to 

XML: Migrating the Lore Data Model and Query Language.  In 
Proceedings of the Second International Workshop on the Web and 
Databases (WebDB'99) [online] [cited: 2006-06-01], 25–30.  Available: 
http://www-db.stanford.edu/pub/papers/xml.ps. 

 
Goldman, R. & J. Widom (1999).  Approximate DataGuides.  In Proceedings of the 

Workshop on Query Processing for Semistructured Data and Non-Standard 
Data Formats.  Jerusalem, Israel [online] [cited: 2005-06-02]. Available: 
http://dbpubs.stanford.edu/pub/showDoc.Fulltext?lang=en&doc=
1999-56&format=pdf&compression=&name=1999-56.pdf. 

 
Goodrich, M. & R. Tamassia (1998).  Data Structures and Algorithms in Java.  New 

York etc.:  John Wiley & Sons, Inc. 738 p.  ISBN 0-471-19308-9.  
 
Hacid, M-S., F. Soualmia & F. Toumani (2000).  Schema Extraction for 

Semistructured Data. In Proceedings of the 2000 International Workshop 
on Description Logics (DL'2000).  Aachen, Germany [online] [cited: 
2005-06-01], 133–142.  Available: http://www710.univ-lyon1.fr/ 
~dbkrr/publications.htm. 

 
Hopcroft, J. E. & J. D. Ullman (1979).  Introduction to Automata Theory, Languages, 

and Computation.  Menlo Park, California etc.: Addison-Wesley.  418 
p.  ISBN 0-201-02988-X. 

 
Linna, M., M. Wanne & J. Töyli (2003). Completion of the Incomplete Data 

Structure.  In Proceedings of the Second IASTED International Conference 
on Information and Knowledge Sharing, Scottsdale, AZ, USA [online] 
[cited: 2005-06-02]. Available: http://www.uwasa.fi/~jt/IKS_2003. 
pdf. 

 



82 ACTA WASAENSIA 
 

McHugh, J., S. Abiteboul, R. Goldman, D. Quass & J. Widom (1997).  Lore: A 
Database Management System for Semistructured Data.  SIGMOD 
Record 26:3 [online] [cited: 2005-06-01], 54–66.  Available: http:// 
www-db.stanford.edu/pub/papers/lore97.ps. 

 
McHugh, J., J. Widom, S. Abiteboul, Q. Luo & A. Rajaraman (1998).  Indexing 

Semistructured Data.  Technical Report, the Stanford Database Group 
[online] [cited: 2005-06-03].  Available: http://www-db.stanford.edu 
/lore/pubs/semiindexing98.pdf. 

 
Nestorov, S., J. Ullman, J. Wiener & S. Chawathe (1997a).  Representative 

Objects: Concise Representations of Semistructured, Hierarchical 
Data.  In Proceedings of the 13th International Conference on Data 
Engineering (ICDE'97), Birmingham, England [online] [cited: 2005-06-
01].  Available: http://www-db.stanford.edu/pub/papers/represen 
tative-object.ps. 

 
Nestorov, S., S. Abiteboul & R. Motwani (1997b).  Inferring Structure in 

Semistructured Data. ACM SIGMOD Record 26:4 [online] [cited: 2005-
06-01], 39–43.  Available: ftp://ftp.inria.fr/INRIA/Projects/gemo/ 
gemo/GemoReport-122.ps.gz. 

 
Nestorov, S., S. Abiteboul & R. Motwani (1998). Extracting Schema from 

Semistructured Data. In Proceedings of the 1998 ACM SIGMOD 
International Conference on Management of Data 27:2 [online] [cited: 
2005-06-01].  Available: ftp://ftp.inria.fr/INRIA/Projects/gemo/ 
gemo/GemoReport-152.ps.gz. 

 
Ni, X & S. Bloor (1994).  Performance Evaluation of Boundary Data Structures.  

IEEE Computer Graphics and Applications 14:6 [online] [cited: 2005-06-
02], 66–77.  Available: http://ieeexplore.ieee.org/iel1/38/7784/0032 
9098.pdf?tp=&arnumber=329098&isnumber=7784. 

 
Papakonstantinou, Y., H. Garcia-Molina & J. Widom (1995). Object Exchange 

Across Heterogeneous Information Sources.  In Proceedings of the 
International Conference on Data Engineering (ICDE), Taipei, Taiwan 
[online] [cited: 2005-06-02].  Available:  http://dbpubs.stanford.edu/ 
pub/showDoc.Fulltext?lang=en&doc=1995-6&format=pdf&compre 
ssion=&name=1995-6.pdf 

 
Thierry-Mieg, J. & R. Durbin (1992).  Syntactic Definitions for the ACeDB Data 

Base Manager. Technical Report, MRC-LMB xx.92, MRC Laboratory 
for Molecular Biology, Cambridge, UK. 

 



 ACTA WASAENSIA 83 

 

Töyli, J. (2002).  Modeling Semistructured Data by the Adjacency Model. Licentiate 
thesis, University of Vaasa [online] [cited: 2005-06-02].  Available:  
http://www.uwasa.fi/~jt/lisuri.pdf. 

 
Töyli, J., M. Linna & M. Wanne (2002a).  Modeling Relational Data by the 

Adjacency Model. In Proceedings of the Fourth International Conference 
on Enterprise Information Systems.  Universidad de Castilla-La 
Mancha, Ciudad Real - Spain [online] [cited: 2005-06-02], 296–301.   
Available:  http://www.uwasa.fi/~jt/ICEIS_2002.pdf. 

 
Töyli, J., M. Linna & M. Wanne (2002b).  Modeling Semistructured Data by the 

Adjacency Model. In Proceedings of the Fifth Joint Conference on 
Knowledge-Based Software Engineering.  University of Maribor, 
Maribor - Slovenia [online] [cited: 2005-06-02], 282–290.  Available:  
http://www.uwasa.fi/~jt/JCKBSE_2002.pdf. 

 
Wang, K. & H.Q. Liu (1997).  Schema Discovery for Semistructured Data. In 

Proceeding of the International Conference on Knowledge Discovery and 
Data Mining.  Newport Beach, AAAI [online] [cited: 2005-06-01], 271–
274.  Available:  http://www.cs.sfu.ca/~wangk/pub/kdd1.ps. 

 
Wang, K. & H.Q. Liu (1998a).  Discovering Typical Structures of Documents: a 

Road Map Approach.  In Proceedings of the 27th Annual International 
ACM SIGIR Conference on Research and Development in Information 
Retrieval [online] [cited: 2005-06-01], 146–154.  Available: http:// 
www.cs.sfu.ca/~wangk/pub/sigir.pdf. 

 
Wang, K. & H.Q. Liu (2000a).  Discovering Structural Association of 

Semistructured Data. IEEE Transactions on Knowledge and Data 
Engineering, 12:3 [online] [cited: 2005-06-01], 353–371.  Available:  
http://www.cs.sfu.ca/~wangk/pub/tkde98.pdf. 

 
Wang, Q.Y., J. X. Yu & K. F. Wong (2000b).  Approximate Graph Schema 

Extraction for Semi-Structured Data. In Proceedings of Seventh 
International Conference on Extending Database Technology (EDBT).  
302–316.  Germany: Springer, Konstanz. 

 
Wanne, M. (1998).  Adjacency Relation Systems.  Acta Wasaensia 60.  Computer 

Science 1.  University of Vaasa, Vaasa. 
 
Wanne, M. & M. Linna (1999).  A General Model for Adjacency.  Fundamenta 

Informaticae 38, 39–50. 
 



84 ACTA WASAENSIA 
 

World Wide Web Consortium (2004). Extensible markup Language (XML) 1.1. 
[online] [cited:2006-01-24] Available: http://www.w3.org/TR/ 
2004/REC-xml11-20040204/. 


