

UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATION ENGINEERING

Mohammed Assim Mohammed

PERFORMANCE ANALYSIS OF SECURITY MEASURES

IN NEAR FIELD COMMUNICATION

Master´s thesis for the degree of Master of Science in Technology submitted for

inspection, Vaasa, xx May, 2014.

Supervisor Prof. Timo Mantere

Instructor Tobias Glocker

ACKNOWLEDGEMENT

My sincere gratitude goes to Mr. Tobias Glocker, my instructor who has been a great

help to have in this project appear the way it is. Without him it would not be possible to

have this work done. Also I’d like to thank all the staff at the University of Vaasa for

providing me with the valuable knowledge that hugely participated in the creation of

this work. Finally thank all the people who have supported me in more ways than I

could imagine. My family for their never ending love and support, my friends for

believing in, and encouraging me to reach my goals. I am forever grateful.

I

Table of Contents

Abstract ... 1

1. Introduction ... 2

2. Literature Review .. 4

3. Technical Overview .. 8

3.1. RFID Overview .. 8

3.1.1. RFID components ... 8

3.1.2. Classification of RFID systems ... 9

3.1.3. RFID coupling mechanism .. 10

3.1.4. RFID frequency bands .. 12

3.1.5. RFID standards .. 14

3.2. NFC overview .. 14

3.2.1. NFC coding and bit representation .. 15

3.2.2. NFC characteristics (frequency and data rates) ... 16

3.2.3. Communication modes .. 17

3.2.4. NFC protocols ... 19

3.2.5. Frame formatting ... 21

3.2.6. Passive communication mode ... 21

3.2.7. Passive communication mode activation flow .. 23

2.2.8. Active communication mode ... 25

3.2.9. Active communication mode Activation flow .. 26

3.2.10. NFC communication modes .. 28

3.3. Smart Cards .. 30

3.3.1. Physical Properties .. 32

3.3.2. Smart Card Micro Controllers ... 33

3.3.3. Contactless Smart Cards .. 38

4. Practical Part ... 46

4.1. Encryption Algorithms ... 46

4.1.1. Caesar .. 46

4.1.2. DES/3DES ... 48

4.1.3. AES ... 50

4.1.4. Blowfish .. 51

4.1.5 Elliptic Curve Cryptography .. 54

II

4.2. Experimental Procedures .. 60

4.2.1. System Description ... 60

5. Results ... 64

5.1. Phase one results .. 64

5.1.1. Caesar .. 64

5.1.2. DES ... 70

4.1.3. 3DES ... 73

5.1.4. AES ... 79

5.1.5. Blowfish .. 86

5.2. Phase Two Results ... 95

5.3. Discussion .. 97

6. Conclusion ... 100

Future work ... 102

References ... 103

Appendices .. 107

Appendix 1: Caesar Source Code. ... 107

Appendix 2: DES Source Code. .. 109

Appendix 3: 3DES Source Code. .. 111

Appendix 4: AES Source Code. .. 113

Appendix 5: Blowfish Source Code. ... 115

Table of Figures
Figure 1. Distance and data rate difference of NFC ... 2
Figure 2. The Three Main Components of an RFID system. .. 8
Figure 3. RFID System classifications ... 9
Figure 4. Backscatter Coupling. .. 11
Figure 5. Capacitive Coupling. ... 11
Figure 6. Inductive Coupling. ... 12
Figure 7. Manchester Coding. ... 15
Figure 8. Modified Miller Coding. .. 16
Figure 9. Initialization and single device detection .. 20
Figure 10. Initiator and target general frame format. .. 21
Figure 11. Initialization step Short frame format at 106kbps. ... 21
Figure 12. Standard frame format at 106kbps. .. 21
Figure 13. Standard frame format. .. 22
Figure 14 Activation protocol in Passive communication mode ... 24
Figure 15. Activation protocol in Active communication mode ... 27
Figure 16. NFC Communication Modes ... 29

III

Figure 17. The ID-1 format as specified in ISO 7810 ... 32
Figure 18. components arrangement of a smart card microcontroller on the
silicon die ……………………………………………………………………………………….33
Figure 19. Memory types used in smart card microcontrollers. .. 36
Figure 20. the functional units of a high-performance smart card microcontroller 38
Figure 21. inlay foil for a contactless smart card with inductive coupling using an etched coil . 39
Figure 22. Several options for integrating a security component for NFC in a mobile device ... 44
Figure 23. The distribution of letters in a typical sample of English language text. 47
Figure 24. General description of DES encryption algorithm. .. 48
Figure 25. General description of DES encryption algorithm. .. 50
Figure 26. Blowfish Algorithm ... 53
Figure 27. Blowfish Algorithm ... 53
Figure 28. general flow chart of the used programs .. 61
Figure 29. Encryption time over 5 trials. ... 65
Figure 30. Decryption time over 5 trials. .. 65
Figure 31. Brute force attack time over 5 trials. .. 65
Figure 32. Encryption time over 5 trials. ... 68
Figure 33. Decryption time over 5 trials. .. 68
Figure 34. Brute force attack time over 5 trials. .. 68
Figure 35. Encryption and decryption average time for different Caesar shifts, text size 16 bytes
 ... 69
Figure 36. Encryption and decryption average time for different Caesar shifts, text size 1024
bytes .. 69
Figure 37. Brute Force Attack average times for different Caesar shifts, text size 16 and 1024
bytes. ... 69
Figure 38. Encryption and decryption trials for DES, text size 16 and 1024 bytes. 71
Figure 39. Brute Force Attack average times for DES, text size 16 and 1024 bytes. 71
Figure 40. Encryption and decryption average time for DES, text size 16 and 1024 bytes. 72
Figure 41. Brute Force attack average time for DES, text size 16 and 1024 bytes. 72
Figure 42. Encryption trials for 3DES, text size 16 with different key lengths. 76
Figure 43. Decryption trials for 3DES, text size 16 with different key lengths. 76
Figure 44. Brute Force attack trials for 3DES, text size 16 with different key lengths. 76
Figure 45. Encryption trials for 3DES, text size 1024 with different key lengths. 77
Figure 46. Decryption trials for 3DES, text size 1024 with different key lengths. 77
Figure 47. Brute Force attack trials for 3DES, text size 16 with different key lengths. 77
Figure 48. Encryption and decryption average time for 3DES, text size 16 and 1024 bytes with
different key lengths. ... 78
Figure 49. Brute Force attack average time for 3DES, text size 16 and 1024 bytes with different
key lengths. ... 78
Figure 50. Encryption trials for AES, text size 16 bytes with different key lengths. 83
Figure 51. Decryption trials for AES, text size 16 bytes with different key lengths. 83
Figure 52. Brute Force attack trials for AES, text size 16 bytes with different key lengths. 83
Figure 53. Encryption trials for AES, text size 1024 bytes with different key lengths. 84
Figure 54. Decryption trials for AES, text size 1024 bytes with different key lengths. 84
Figure 55. Brute Force attack trials for AES, text size 1024 bytes with different key lengths. .. 84

IV

Figure 56. Encryption and decryption average time for AES, text size 16 and 1024 bytes with
different key lengths. ... 85
Figure 57. Brute Force attack average time for AES, text size 16 and 1024 bytes with different
key lengths. ... 85
Figure 58. Encryption trials for Blowfish, text size 16 bytes with different key lengths. 90
Figure 59. Decryption trials for Blowfish, text size 16 bytes with different key lengths. 90
Figure 60. Brute Force attack trials for Blowfish, text size 16 bytes with different key lengths. 90
Figure 61. Encryption trials for Blowfish, text size 1024 bytes with different key lengths. 91
Figure 62. Decryption trials for Blowfish, text size 1024 bytes with different key lengths. 91
Figure 63. Brute Force attack trials for Blowfish, text size 1024 bytes with different key lengths.
 ... 91
Figure 64. Encryption and decryption average time for Blowfish, text size 16 and 1024 bytes
with different key lengths. ... 92
Figure 65. Brute Force attack average time for Blowfish, text size 16 and 1024 bytes with
different key lengths. ... 92
Figure 66. Average encryption time for all algorithms ... 93
Figure 67. Average decryption time for all algorithms ... 93
Figure 68. Average Brute force attack time for all algorithms .. 94
Figure 69. A snapshot form the oscilloscope the encryption time of DES on the Raspberry Pi. 96

Table of Tables
Table 1. Active and Passive RFID tags Comparison. ... 10
Table 2. Common RFID Operating Frequencies and Features ... 13
Table 3. Machester coding. ... 15
Table 4. NFC Characteristic .. 17
Table 5. Completed ISO/IEC standards for contactless smart cards. .. 40
Table 6. Comparing ECC keys with RSA keys ... 54
Table 7. ECC algorithms on different Platforms ... 55
Table 8. Encryption, decryption and brute force time for different shift on 16 bytes text 64
Table 9. Encryption, decryption and brute force time for different shift on 1024 bytes text 67
Table 10. Encryption, decryption and brute force time for DES on 16 bytes text 70
Table 11. Encryption, decryption and brute force time for DES on 1024 bytes text. 71
Table 12. Encryption, decryption and brute force time for 3DES on 16 bytes text with different
keys ... 73
Table 13. Encryption, decryption and brute force time for 3DES on 1024 bytes text with
different keys ... 75
Table 14. Encryption, decryption and brute force time for AES on 16 bytes text with different
keys ... 80
Table 15. Encryption, decryption and brute force time for AES on 1024 bytes text with different
keys ... 82
Table 16. Encryption, decryption and brute force time for AES on 16 bytes text with 87
Table 17. Encryption, decryption and brute force time for AES on 1024 bytes text with 89
Table 18. Average encryption and decryption time of 16 byte text on a Raspberry Pi 95
Table 19. comparison between encryption key and brute force attack key. 98

V

List of Abbreviation

3DES Triple Data Encryption Standard
AC Alternating Current
AES Advanced Encryption Standard
ASK Amplitude Shift Keying
Cm Centimeter
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CICC Close Inductive Coupling Card
CISC Complex Instruction Set Computer
CSMA Carrier Sense Multiple Access
DEP Data Exchange Protocol
DES Data Encryption Standard
DMA Direct Memory Access
ECC Elliptic Curves Cryptography
EPC Electronic Product Code
ETSI European Telecommunication Standards Institute
ECMA European Computer Manufacturers Association
EEPROM Electrically Erasable Read Only Memory
FCC Federal Communication Commission
FRAM Ferroelectric Random-Access Memory
GF Galois Field
GHz Giga Hertz
HF High Frequency
IEC International Electrotechnical Commission
ISO International Organization for Standardization
IDEA International Data Encryption Algorithm
I/O Input/Output
KHz Kilo Hertz
Kbps Kilo Bit Per Second
LF Low Frequencies
LEN Length
Man Manchester Coding
MHz Mega Hertz
Mod Modified
MSB Most Significant Byte
MMC MultiMedia Card
MMU Memory Management Unit
MicroSD Micro Secure Digital
NFC Near Field Communication

VI

NPU Numerical Processing Unit
NFCID Near Field Communication Identifier
NFCIP-1 Near Field Communication Interface and Protocol-1
NFCIP-2 Near Field Communication Interface and Protocol-2
OS Operating System
PCD Proximity Coupling Device
PICC Proximity Inductive Coupling Card
RF Radio Frequency
RAM Random Access Memory
RFU Reserved for Future Use
RISC Reduced Instruction Set Computer
ROM Read Only Memory
RNG Random Number Generator
RFCA Radio Frequency Collision Avoidance
RFID Radio Frequency Identification
SE Secure Element
SDD Single Device Detection
SIM Subscriber Identity Module
SWP Single Wire Protocol
SYNC Synchronization
TDMA Time Division Multiple Access
UHF Ultra High Frequency
USB Universal Series Bus
USIM Universal Subscriber Identity Module
VICC Vicinity Inductive Coupling Card
WLAN Wireless Local Area Network

1

University Of Vaasa
Faculty of Technology
Author: Mohammed Assim Mohammed
Topic of the Thesis Performance Analysis of Security Measure in Near

Field Communication
Name of the Supervisor Timo Mantere
Instructor: Tobias Glocker
Degree: Master of Science
Department: Department of Computing Science
Degree Program: Degree Program in Information Technology
Major Subject: Telecommunication Engineering
Year of Entering the University: 2011
Year of Completing the Thesis: 2014 Page: 116

Abstract

Nowadays near field communication are largely used in so many different applications

for the convenience and ease of use they provide. They store and exchange many

personal data, some of them requires more security than others, due to the value they

poses, such as banking information and personal identification. And maintaining high

level of security is task of the utmost priority.

The main focus of this thesis is establishing a knowledge base for different NFC/RFID

devices. Evaluating the different encryption algorithms used currently, based on their

encryption/decryption time, their immunity to brute force attack, and the amount of

power needed to execute them.

The encryption algorithms will be implemented using Python programing language and

tested on a windows computer in order to test their immunity against brute force attack.

Encryption/decryption time and the power usage will be tested on a Raspberry Pi, for

the similarities it has with modern mobile devices.

Keywords: Encryption, Decryption, Brute Force Attack, NFC, Security.

2

1. Introduction

Ever since Marconi proved the radio waves capability to provide a continuous contact in

1897, the wireless telecommunication revolution started (Hioki 2000). The speed at

which it grows has never been faster. Nowadays telecommunication has different

applications such as broadcasting to several receivers (TV and Radio), point to point

systems (control unit to machine), a point to multi point systems (cellular systems),

wireless networks and many others varying from long to short distance. The main focus

of this thesis is on Near Field Communication (NFC), a form of a short range

communication, analyzing the security techniques used.

NFC technology was developed by Sony and Philips - based on radio frequency

identification technology (RFID) - in order to share information at a maximum data rate

of 424kbps by providing a wireless communication link between devices separated by

less than 4 centimeters. NFC technology is compliant with RFID standards and

protocols.

Figure 1. Distance and data rate difference of NFC with other existing wireless technologies (NFC Forum)

3

The communication between the two devices requires at least one of them to be active.

Due to the simplicity of establishing a connection, this technology has potentials in

various applications such as ticketing, e-commerce, electronics keys and identifications,

and also complimenting many other wireless technologies such as Bluetooth and Wi-Fi.

NFC is compatible with other existing contactless infrastructure and it enables users to

use one device with different systems (NFC Specifications). NFC is based on RFID

technology, the main characteristic that differentiates NFC from RFID is that the new

technology prepares bidirectional data transmission between NFC equipped devices. For

the communication between the two devices it is just enough to bring them close

together or make them touch physically (Hossein 2012).

The main objective of this thesis is to analyze and examine the different security

techniques used, to ensure the integrity and safety of the shared information between

RFID enabled devices. The main focus is on encryptions algorithms.

To achieve this goal, a base of knowledge regarding NFC systems must be established.

Therefore, at first, there will be an introduction to the RFID systems, followed by a

technical overview for NFC systems and different operation modes.

4

2. Literature Review

NFC topic is still relatively new in the literature sense, and the idea in its basic form

developed from the older RFID communication systems. The advancement in mobile

computational power has facilitated the emergence of new application. Due to this

reason, most of the literature deals with application development and how it utilizes

NFC systems in different areas. Literature regarding NFC security is somewhat sparse

and about one fifth of all the literature regarding NFC is related to security. This is

mainly due to the nature of NFC systems, the close proximity provides a natural

immunity against several attacks, and partially due to the fact that NFC systems is still

new and not widely used in different areas communication and commerce.

Naser Hossein Motlagh details the NFC systems and the background from which it was

derived in his Master level thesis from the University of Vaasa. NFC stands for Near

Field Communication, and in definition it refers to short range wireless communication

technique operating on 13.6 MHz with 14 KHz bandwidth. Initially developed by Sony

and Philips and derived from RFID protocols, NFC devices are backward compatible

with other RFID enabled devices. The main advantage of NFC systems is the fast

detection and setup time. Hence it can be used to facilitate other forms of

communication such as Bluetooth or WLAN connection without any manual

configurations, by just simply bringing the two devices in close proximity to each other

and the connection is set. Other applications include Peer-to-Peer mode to transfer data

over the NFC connection, Reader/Writer mode in which an NFC enabled device can

manipulate the content stored in passive RFID tags or smart cards, and Card Emulator

mode, that allows the NFC enabled device to “mimic” a smart card so it could be read

by an external smart card reader (i.e. debt card reader). (Hossein 2012)

The paper “NFC Devices: Security and Privacy” by Madlmayer, Langer, Kantner and

Scharinger examines the issue of privacy and security, after a short introduction of NFC

systems and its component. Several key Scenario Cases were introduced, based on

them, threat model assumptions and suggestions were given, regardless of the actual

feasibility of the threats. Also, they have defined the trust levels of the NFC systems

components and how to improve them, what are the risks related to each component

itself, and the connection to other components. The proposed counter measures include

5

dynamic ID with no ID based services, a manual control to switch on/off NFC, which

includes a special mode (NFC flight mode). Other recommendations are related to the

secure element in the NFC systems, which include authenticating the application index

in the Secure element, managing the in device security, and finally integrating a security

layer for the peer to peer communication link. The assumptions made in this paper are

more focused on the integrity of the NFC system components, and they briefly outline

the possible attacks that might occur during the communication between two devices.

However, the attacks listed in this paper are generic and not intended for all wireless

systems, since some of them are not a threat to NFC systems due to the connection

nature of NFC systems (i.e. close proximity). (Madlmayer 2008)

Ernst Haselsteiner and Klemens Breitfuß from Philips Semiconductors published a

paper during Workshop on RFID Security RFIDSec (2006), under the name “Security

in Near Field Communication (NFC) Strengths and Weaknesses”. In their paper, they

briefly discussed the applications and operation modes, they also discussed the most

common threats for any wireless communication system, and how feasible they were to

NFC systems. Based on their research results they suggested solutions to mitigate them.

In their paper they stated that the nature of NFC was highly secure but not complete.

Also, they showed that the man in the middle attack was practically impossible, other

attacks like eavesdropping, and data corruption/data modification/insertion were

possible. These could be mitigated by using a secure channel. Using standard key

agreement protocols or a specific key agreement that is designed especially for NFC

systems would provide an improved level of security. However, their solutions require

both ends of the communication system to be always listening which in turn results in

more power consumption. Also, the asymmetrical keys agreements like Elliptic Curve

Cryptography or RSA require a higher processing power, which might not be available

in certain low cost NFC enabled devices. (Haselsteiner & Breitfuß 2006)

Gauthier Van Damme and Karel Wouters took a different approach with their paper

“Practical Experiences with NFC Security on mobile Phones” by designing a Secure

NFC Offline Payment Application, based on their analysis of different possible threats

and attacks. Also, they demonstrated the complexity and the byproducts of designing

an application where the security level and privacy integrity require the highest priority.

6

In their paper, they used two Nokia phones (6131 and 6212) running on Symbian S40.

They analyze the Secure Element available in the device, and how it affects the

transaction characteristics. Finally, they demonstrate the practical problems in the

implementation. Most of the problems they encountered are related to the programming

language used in the secure element, which increased the time of executing the

cryptographic protocols, and limited the programmers from optimizing the application.

(Van Damme & Wouters 2009)

Collin Mulliner presented a method of testing and analyzing the vulnerabilities and

possible attacks on NFC-enabled mobile phones through the application of Fuzzing

using NFC Tags. The NFC system itself was analyzed, along with the other

components which can be controlled via NFC, including Telephony subsystem and the

web browser. During the testing several attacks were possible, and a survey was made

among several service providers to check the feasibility and the impact of these attacks.

The testing device was again the Nokia 6313 running the Symbian S40 operating

system. As discussed previously, the OS has several limitations that brings to the

forefront vulnerabilities in the security and allows different exploits to occur. (Mulliner

2009)

There are several factors that affect the amount of publications regarding the security

analysis of NFC systems. First, the lack of standardization makes testing, and

developing solutions for security and privacy measures more complicated and less

efficient. For example, Mulliner used the Nokia 6313 device running Symiban S40 and

Van Damme & Wouters used the same device. Even though both papers were

completed in the same year, the testing methods were different, and the focus/purpose

of the research examined different points of view within the security aspect of NFC.

The second factor refers to the variety of operating systems, the different processing

power and the different programming languages. This factor hinders the researchers

from reaching a general solution for a certain application mode. (Mulliner 2009), (Van

Damme & Wouters 2009)

7

Most publications are focused on applications within the reader/writer

communication mode (Proximity Coupling Device, PCD), mainly reading and

writing on passive tags. However, the main focus of this research is to examine

the different encryption algorithms used in NFC enabled devices regardless of

the operation mode to assess the encryption/decryption time and power

consumption in NFC enabled devices, as well as their immunity to brute force

attacks.

8

3. Technical Overview

3.1. RFID Overview

RFID systems use Radio Frequencies for communication in order to identify the tagged

objects. When a tagged object enters the read vicinity of the interrogator, the reader

initializes the communication by sending a signal. The tag receives this signal and uses

it as an energy source to send back the stored data. Tags can hold different types of data

about the tagged object; these data can include the serial number, time stamps, and

configurations and so on.

Based on the frequency used in the RFID systems (tags and interrogator design), the

range of communication may vary in range. Low frequencies (LF) and high frequencies

(HF) have short identification ranges, but low cost. Ultra High Frequencies (UHF) and

microwave frequency band are used in long ranges and high data handling rate (Balanis

2005).

3.1.1. RFID components

A RFID system consists of three main components. A transponder (tag), a reader

(interrogator) and a controller, as shown in Figure 2

Figure 2. The Three Main Components of an RFID system.

The reader (interrogator) is a read/write device. It contains an RF module for

transmitting and receiving signals, attached to the RF module is the control electronic

module and an antenna. The Tag (Transponder) is a semiconductor chip attached to an

9

antenna. Each tag contains a unique serial identification number which facilitate the

communication with the reader.

The RFID reader is connected to the workstation where a specific control application is

running (e.g. computer), where software commands and database are stored. The RFID

reader sends the data information alongside the Clock and energy (in case of passive

tag) to be received by the tag.

3.1.2. Classification of RFID systems

The RFID systems are classified according to two parameters, one is energy source, and

the other is the used frequency band.

Passive mode of communication is when the received signal is used to energize the

transponder. That means that the tag does not include any independent energy source.

Active mode is when the tag circuit includes an independent energy source. These two

types can be divided by the frequencies used for communication, as it is seen in Figure

3.

Figure 3. RFID System classifications (Atmel 2010: p45)

Passive tags are physically smaller and less expensive than active tags, due to the lack

of a power source. Each mode of communication has its own pros and cons, and it is up

to the system designer to choose which tag type is more suitable. Table 1 illustrates the

difference between active and passive mode.

10

Table 1. Active and Passive RFID tags Comparison.

Features Passive RFID Active RFID

Power

Source
External (Reader Provided) Internal (Battery)

Tag

Readability

Only within the area covered by the

reader typically up to 3 meters

Can provide signal over an extended

range, typically up to 100 meters

Energy
A passive tag is energized only when

there is a reader present
An active tag is always energized

Magnetic

Field

Strength

High, since the tag draws power from

the electromagnetic field provided by

the reader

Low, since the tag emits signals

using internal battery source

Shelf Life
Very high, in ideal case does not expire

over the life time

Limited to about 5 years (The life of

a battery)

Data

Storage
Limited data storage, typically 128 bytes Can store larger amount of data

Size Small Depends on the battery size

Cost Cheap Expensive

3.1.3. RFID coupling mechanism

Based on the application and the distance separating the reader and tag, several coupling

types and mechanism exists, to each method its own different features. The three main

mechanism of coupling which allows the reader and the tag to communicate are

backscatter coupling, capacitive coupling and inductive coupling.

RFID Backscatter coupling: The reader propagates radio signals outside the near field

region. The tag receives the signal and uses it to energize the embedded chip and

reflects the rest of the signal as data. This type of coupling is used for medium distance

between the reader and the tag. Figure 4 demonstrates backscatter coupling (Cisco Wi-

Fi Location-Based Services 4.1 Design 2008:158).

11

Figure 4. Backscatter Coupling.

RFID capacitive coupling: as the name implies, the coupling is done by utilizing the

capacitive effect, this technique is most suitable for short range communication. The

capacitance between the reader and tag provides a conducting capacitor, through which

a signal can be transmitted, although an earth return is required. The AC signal

generated by the reader is receive and rectified within the RFID tag and used to power

the circuits within the tag. Again the data is returned to the RFID reader by modulating

the load. Figure 5 is an illustration of capacitive coupling (Gorferay Card Service Co.

Ltd)

Figure 5. Capacitive Coupling.

12

RFID inductive coupling: this technique achieves coupling by utilizing mutual

inductance between the reader and the tag circuits. Inductive coupling is also suitable

for short range coupling. It can be used for a slightly longer range than capacitive tags.

RFID inductive coupling requires that both the tag and the reader to have induction or

"antenna" coils. When the tag is placed close enough to the reader, the field from the

reader’s coil will couple to the field from the tag’s coil. A voltage will be induced in the

tag that will be rectified and used to power the tag circuitry. Inductive Coupling is

illustrated in Figure 6 (Glover 2006).

Figure 6. Inductive Coupling.

3.1.4. RFID frequency bands

As stated earlier, the frequency bands at which the RFID system operates defines its

range and classification. RFID systems operate in the unlicensed radio frequency bands

known as ISM (Industrial, Scientific and Medical) but the precise frequencies which are

defined for RFID may vary depending on the regulations in different countries. These

frequency bands are listed in Table 2.

13

Table 2. Common RFID Operating Frequencies and Features

Band
LF (Low

Frequency)

HF (High

Frequency)

UHF (Ultra High

Frequency)
Microwave

Frequency 30 – 300kHz 3 – 30MHz 300MHz – 3GHz 2 – 30 GHz

Typical RFID

Frequency
125-134-KHz 135.6MHz

433MHz/865-956

MHz
2.45Ghz

Approximate

Read Range

Less than 0.5

meter
Up to 1.5 meter

Up to 100

meter/0.5-5 meter

respectively

Up to 10 meters

Data Transfer

Rate

Less than

1kbps
Around 25kbps 30kbps Up to 100kbps

Characteristic

Short range

low data

transfer rate,

penetrates

water but not

metals

Higher ranges,

reasonable data rate

(similar to GSM

phone), penetrates

water but not metals

Long range, high

data transfer rate,

concurrent read of

<100 items,

cannot penetrate

water or metals

Long range, high

data transfer

rate, cannot

penetrate water

or metals

Applications
Animal ID, car

immobilisers

Smart labels,

contactless travel

cards, access &

security

Specialist animal

tracking, logistics

Moving vehicle

tolls

LF and HF RFID systems are used for near field communication and the inductive

coupling mechanism. UHF and higher frequencies RFID systems are used for far field

communication with the backscattering coupling.

14

3.1.5. RFID standards

None of the applied standards in RFID systems is universal. These standards may be

categorized into four levels of international, national, industry and association level.

These standards cover four key areas of RFID application:

• Air interface standards which are used for basic tag to reader communication

• Data content and encoding i.e. the format of the codes used in tags

• Conformance which means testing the RFID system

• Interoperability between applications and RFID system

There are several standards that define the development of RFID technologies such as:

• International Organization of Standardization (ISO)

• Electronic Product Code (EPC)

• European Telecommunication Standards Institute (ETSI)

• Federal Communication Commission (FCC)

Each of the standardization organization mentioned above defines a set of standards for

different RFID applications while ISO supports the required standard for RFID

frequencies under series of ISO 18000 which are known as Air Interface Family.

3.2. NFC overview

Sony and Philips were the first to develop and initiate the NFC technology. Derived

from RFID and with new added interface and protocols, NFC devices are still

compatible with RFID technology.

Several differences separate NFC devices from RFID devices, bidirectional data transfer

is one of them, also peer to peer communication, where in passive mode only one

device produces the required radio frequency for the communication and the other

device utilizes the load modulation for data transmission (Hossein 2012). The device

that starts the communication is called “initiator” and the receiver is called “Target”.

15

3.2.1. NFC coding and bit representation

NFC utilizes Manchester coding and modified miller coding schemes to encode the

commands, responses and data transaction. Manchester coding is one of the most

common coding techniques applied nowadays, due to its many characteristics. An

important characteristic is called “self-clocking”, that allows it to be used in inductive

and capacitive coupling. Also, the clock signal can be recovered from the encoded data.

Another property is bandwidth efficiency. Less bandwidth is needed to achieve a certain

data rate, although it may be vulnerable to frequency errors and jitter in the

sender/receiver reference clock.

Manchester code ensures frequent line voltage transitions (in the middle of each bit

duration), directly proportional to the clock rate; this helps clock recovery. Also, it

means that this coding method has two possible transitions at the middle of a symbol

period. Manchester coding is shown in both Table 3 and Figure 7.

Table 3. Machester coding.

Original Data Clock Manchester Value

0 0 0

0 1 1

1 0 1

1 1 0

Figure 7. Manchester Coding.

16

Modified Miller Coding is another coding method used in NFC enabled devices. Ones

and zeros are defined by the position of the pulse during one bit duration.

For logic one, the transition from HIGH to LOW happens in the middle of the bit

duration, the pulse occurs in the second half of the bit period. For logic zero, a pulse

shall occur at the beginning of the bit period. But when the ZERO bit is preceded by the

ONE bit, no pulse shall occur during this ZERO, as it is shown in Figure 8 (Standard

ECMA-373 2012).

Figure 8. Modified Miller Coding.

3.2.2. NFC characteristics (frequency and data rates)

NFC is designed for short range communications - maximum theoretical range of 20 cm

but practically around 4 cm - operating in the globally available unlicensed band of

13.56 MHz with a bandwidth of 14 KHz. It supports data rates of 106 kbps, 212 kbps,

and 424kbps. Higher bit rates are possible depending on future development. NFC uses

half duplex channel (same frequency is used for sending and receiving data). To prevent

collision, NFC devices utilize Carrier Sense Multiple Access (CSMA) protocol. NFC

characteristics are presented in Table 4.

17

Table 4. NFC Characteristic

Rate Speed Active Device Passive Device Description

fCLK/128 106 Mod. Miller,

100% ASK

Man, 10%

ASK

The sent signal is the product of an AND

operation between the coded data using

modified miller bit and the clock signal.

The length of the modified miller bit

coded pulse varies between 7 and 45

cycles long.

fCLK/64 212 Man, 10%

ASK

Man, 10%

ASK

The sent signal is the product of an XOR

operation between the data coded using

Manchester Bit-Coding and the Clock

Signal.

fCLK/32 424 Man, 10%

ASK

Man, 10%

ASK

The same as 212 Kbps Data Rate.

3.2.3. Communication modes

As in RFID devices, NFC has two modes of communication, depending on the device

itself. If the device can generate its own radio frequency field, then it is called active,

otherwise it is passive. Active communication mode occurs when two active devices

communicate with each other, passive mode requires one active device.

The International Standard specifies requirements for modulation, bit rates and bit

coding. In addition, it specifies requirements for the start of communication, the end of

communication, the bit and byte representation, the framing and error detection, the

single device detection, the protocol and parameter selection, and the data exchange and

de-selection of Near Field Communication Interface and Protocol (NFCIP-1) devices

(ISO/IEC 18092 2013(E)). The transaction of commands, responses, and data starts with

the devices initialisation and end with the device de-selection, in alternating or half

duplex channel.

The devices are capable of establishing the transaction using 106/kbps, 212/kbps, or

424/kbps. The initiator selects one of those bit rates, the bit rate may be changed during

18

the transaction using certain commands and protocols. However, the mode of the

communication (active or passive) cannot be changed.

In the Active communication mode, both the initiator and the target use their own RF

field to communicate. The initiator starts the NFC protocol (NFCIP-1) transaction. The

target responds to an initiator command in the active communication mode by

modulating its own RF field. (ISO/IEC 18092 2013(E))

• 106 Kbps data transmission (low rate)

The initial speed of any transaction is always the lowest rate possible of 106

Kbps. At this rate the initiator apply 100% ASK modulation to generate the

required pulse (Hossein 2012). The coding technique used for this rate is the

modified miller coding. The serial data transmission systems send the least

significant byte first (LSB) followed by the rest of the data.

• 212/424 Kbps data transmission (high rate)

The modulation scheme used for these rates is still ASK. However, the index is

different, for these rates the modulation indexes are 8% and 30% of the

operating field. The serial data transmission systems send the most significant

byte first (MSB) followed by the rest of the data, also the reserve polarity in the

amplitude of the Manchester symbols is allowed. The target shall respond with

the same load modulation scheme but the bit duration must be altered to the

actual bit rate (Ecma 2004).

In the passive communication mode, the initiator generates the RF field and starts the

transaction. The target responds to the initiator command in the passive communication

mode by modulating the initiators’ RF field, which is referred to as load modulation

(ISO/IEC 18092 2013(E)).

The communication between the initiator and the target follows the same procedures as

in the active mode (since the initiator generates its own RF field). The response from the

target to the initiator; however, it follows different procedures.

The target responds by load modulation which generates a sub carrier with frequency of

(fs=fCLK/16). The load modulated signal’s amplitude has to be greater than the existing

19

magnetic field strength threshold. The signal is coded using Manchester coding, and the

bytes are encoded with LSB first for the lower data rate (106 kbps) and MSB first for

the high bit rates (212 and 424 kbps).

3.2.4. NFC protocols

All NFC enabled devices are in target state by default, to preserve power and not to

disturb any on-going communication in the vicinity. All NFC devices will not generate

an RF field. The device changes its state upon a request from the control unit (program

on the mobile device or computer) to be an initiator, the program determines the

communication mode and the data rate. The initiator use collision avoidance protocol to

detect any existing radio field before initiating communication with the target, the target

device waits for the initiator field to respond.

In collision avoidance procedure, the initiator “listens” and tries to detect if there is any

other RF field. After a certain amount of time known as the guard time, the device can

initiate communication if no RF field is detected in order to prevent disturbing other

NFC devices. If two or more targets answer the initiator’s field simultaneously then a

collision will be detected and simply the frames will be discarded. Collision avoidance

is defined to avoid similar issues and to minimize disturbance with other on-going

communications at the same frequency, the initiator should not generate any RF field

until the time of the existing field is terminated (ETSI 2003). Figure 9 describes the

general initialization and single device detection (SDD) for the active and passive

communication mode at different transfer speeds.

20

Protocol
A

ctivation
Param

eter
Selection

D
ata Exchange

Protocol
D

e-A
ctivation

In
iti

al
iz

at
io

n
Tr

an
sp

or
t

Figure 9. Initialization and single device detection (Near Field Communication -Interface and Protocol (NFCIP-1))

21

3.2.5. Frame formatting

The data exchanged in NFC vary from one to another depending on the source (initiator

or target) and on the mode of communication (active or passive). For each type, the data

is grouped in what is called frames. The basic frame format for the initiator and target is

shown in the Figure 10.

Start of communication (START) Information End of communication (END)
Figure 10. Initiator and target general frame format.

3.2.6. Passive communication mode

In initialization and single device detection for 106 kbps in passive mode, two frame

formats are used at the 106kbps data rate. The short format which consists of 7 bits is

used in the initialization step. The initialization short frame is presented in Figure 11.

 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6

START Commands END
Figure 11. Initialization step Short frame format at 106kbps.

After the initialization step, standard frame format is used for data transfer at 106 kbps,

the standard frame format is shown in the Figure 12.

SB LEN CMD0 CMD1 Byte 0 Byte 1 Byte 2 …… Byte n E1
Figure 12. Standard frame format at 106kbps.

SB byte stands for “Start Byte” in the data exchange protocol at fc/128 and is set to

0xF0. LEN defines the length of the transport data field plus 1, and E1 declares the end

of transmission.

Initialization and single device detection for 212 & 424 kbps in passive communication

mode starts once the carrier frequency field is detected. The communication starts with

Transport Data Field

22

the minimum preamble sequence of 48 bits Manchester encoded ZERO. The end of the

communication is declared in the length field of the frame.

The frame format consists of Preamble, SYNC, Length, Payload, and CRC fields. They

are defined in Figure 13 (Near Field Communication -Interface and Protocol (NFCIP-

1)).

Preamble SYNC Length Payload CRC
Figure 13. Standard frame format.

Preamble: 48 bits minimum all logical ZEROs. Its function is to signal the beginning of

communication.

SYNC: bytes. The 1st byte of the SYNC is ‘B2’ and the 2nd byte is ‘4D’. This frame is

to synchronize the field frequency with target clock frequency.

Length: an 8-bit field and it is set equal to the number of bytes to be transmitted in

Payload plus 1. The range of the Length is between 2 and 255. Other settings are

reserved for future use “RFU”.

Payload: consists of N number of bytes of data.

CRC: Are the cyclic redundancy check bits.

Basic method of single device detection (SDD) at 212 and 424 kbps is the Time Slot

method. The initiator sends polling requests, the target responds at random in each time

slot. The target’s identification number for passive communication mode (NFCID2) will

be read by the initiator. Once the NFCID2 data from the target is obtained, in the

operating field, the initiator can communicate with multiple targets.

In order to find a target, the initiator sends a Polling Request frame, which is a standard

frame format with predefined parameters and values such as the synchronization bits

and the payload.

Similar to the polling request, the polling request response is also a standard frame with

some predefined parameters. Instead of the regular values in the payload, the polling

23

request response payload consists of one byte set to ‘01’, the NFCID2 data, and the Pad

information which shall be ignored for data interchange. Other differences in the length

segment and CRC bits. Synchronization bits and preamble are the same in the polling

request and the polling request response.

3.2.7. Passive communication mode activation flow

The initiator performs the initial RF collision avoidance sequence. After that, it

performs the initialization and single device detection for passive communication mode

at a chosen transfer speed. The target checks the protocol at different transfer speed

according to the attribute request. If the attribute request is not supported by the target,

the target may fall back to the initialization and single device detection. The attribute

response is sent by the target as an answer to the attribute request sent by the initiator.

The target shall only answer if the request is received directly after the selection. If the

target supports any changeable parameter in the attribute request, a parameter selection

request may be used by the initiator as the next command after receiving the attribute

request to change parameters. The target response to the initiator request, but if it does

not support the change of parameters, then the target does not need to compliment on

the request of the initiator. The data exchange transport protocol will be active now and

the transparent data will be sent.

The Initiator activation sequence for a target in the passive communication mode is seen

in Figure 14 (ISO/IEC 18092 2013)

24

Figure 14 Activation protocol in Passive communication mode

25

2.2.8. Active communication mode

In the initialization stage, the application controls the device and switches to initiator for

active communication mode, choosing one of the three data rates. The active

communication mode RF with collision avoidance works in the following way. First the

initiator performs an initial RF collision avoidance, by first sending the “attribute

request” command in the active communication mode at the selected transfer speed.

Second, the initiator switches off the RF field in order to allow the target to perform the

response RF collision avoidance, the target sends “attribute response” command in the

same speed chosen by the initiator and switches off the RF field. Then the initiator

performs the response RF collision avoidance. After that, the initiator sends “the

parameter selection request” in order to change parameter or sends the “data exchange

protocol” to start the data exchange protocol.

In case of two targets or more in the field, the initiator chooses only one target and

ignores the others. And if the two targets answer in the exact same time period, the

initiator will discard targets as it will detect a collision and will resend the “attribute

request” as described earlier.

The transport protocol is handled in three stages: first is the Activation of the protocol,

which includes the Request for Attributes and the Parameter Selection. The second

stage is the data exchange protocol, and finally the deactivation of the protocol

including the Deselect and the Release.

The position of the data field varies depending on the data transfer rate, for each data

rate the frame format is different. The transport data rate field contains the mandatory

command bytes and the data bytes.

26

3.2.9. Active communication mode Activation flow

In active communication mode, the initiator at first performs an initial RF Collision

avoidance sequence, and then it will switch to active communication mode and select

the transfer speed. After that, the initiator sends an attribute request. The target in the

operating field will send a response to the initiator request, in case more than one target

responded, the initiator will detect a collision and the attribute request will be re-sent.

Once one target responds successfully, the device is selected and the initiator may send

a parameter selection request depending on the attribute response sent by the target,

otherwise if the target does not support any changeable parameter, it does not need to

complement on the initiator request. The Initiator activation sequence for a target in the

active communication mode is shown in Figure 15 (ISO/IEC 18092 2013).

27

Figure 15. Activation protocol in Active communication mode

28

3.2.10. NFC communication modes

NFC Interface and Protocol (NFCIP-1) is defined by ECMA-340 and ISO/IEC-18092,

which presents the operation modes of NFC devices – passive or active – and the

transfer speed rates. This protocol alongside the ISO14443 (Contactless card standard)

and ISO 15693 (Vicinity cards) have been expanded to the Near Field Communication

Interface and Protocol-2 (NFCIP-2) to form The EMCA-352 (ISO/IEC-21481) standard.

In this way any NFCIP-2 compliant device is compatible with all devices

communicating on 13.4MHz. These standards led to three basics communication

modes, Peer-to-peer, Read/Write, and Card Emulation mode. (Van Damme and Wouters

2009)

Peer to Peer (Near Field Communication, NFC) is the classic mode of communication.

By holding to active devices in each other’s operating range, a connection is established

on the link level, allowing data to transfer at rate up to 424Kbps. This mode follows the

Master/Slave principle of communication.

In Read/Write Reader/Writer Mode (Proximity Coupling Device, PCD), when passive

NFC compatible tag or a passive smart card is in the range of an active NFC capable

device, the active device switches to be an initiator. The tag is energized, the initiator is

able to read data from the tag, and write data as well. Depending on the running

application, data transfer rate depends on the tags properties; 106Kbps is supported in

this mode.

Card Emulator (Proximity Inductive Coupling Card, PICC) mode is at which the NFC

enabled device acts as smart card following ISO 14443 Protocols. An external NFC

reader will “see” the device as a smart card, and the reader is able to read information

from device.

Figure 16 illustrates the differences in the communication modes.

29

Figure 16. NFC Communication Modes

30

3.3. Smart Cards

The vast variety of applications served by smart cards makes categorizing them a hard

task. However, there are two properties that help separating the smart cards into major

categories; these are processing power, and connection type.

Memory cards are the first type of smart cards and they were used for telephone

applications, as prepaid cards. The value was stored electronically in the chip, and it

was decreased every time the card is used. Security measures were added to the cards in

this application to eliminate manipulation and any other exploits. These pre-paid cards

were used as a one-time use only, once the balance stored in the cards is depleted, the

cards cannot be recharged and are no longer useful.

The main advantage of this type of cards is the simplicity of its implementation, which

makes the cost to manufacture them very low. However, since they cannot be reused

again once empty, they must be discarded. Memory cards have limited functionality due

to their simplicity, protecting the stored data is possible, but they are mainly used in

application where low cost is the primary concern.

The other type is processor cards. As the name implies, these cards contain embedded

processors. The embedded processor and memory in the cards make them flexible to

serve more applications due to their ability to store secret keys securely and execute

modern cryptographic algorithms. The only restriction on the functionality of the card is

the available resources – memory and computing power – otherwise, the developer can

program the card as needed. The most wide spread application of processor cards is

their use as access medium for the European Digital Mobile Telephone system (GSM),

partially because of the high security level that they can achieve while accessing the

mobile telephone network. The other main reason is that they have provided new

possibilities for both the network operators and service providers to sell their products

separately. Other applications of processor cards mainly demand a high level of

security, such as personal identification in some restricted areas or on some computers

or equipment, banking information for credit or debit cards are also another field where

processor cards are used.

31

The ability to perform cryptographic algorithms and the ability to securely store

confidential data are the essential advantages of processor cards makes use processor

cards in new application is inevitable. The steady decline of production cost due to mass

production and ongoing technological progress helps further expands the use of smart

cards.

The previous two types of smart cards are based on the processing power abilities of the

card. Another property which can be used to categorize smart cards is the connection

type. This includes contact and contactless cards

Contact Cards need to have a physical connection with the terminal. This connection is

done via the connection plate in the card. Through this connection the card is energized

and can transfer data from and to the terminal. Contact cards can be memory cards or

processor cards, depending on the application and where the card is used.

Contactless cards do not need a physical connection with the terminal. The connection

between contactless cards and the terminal is established though an RF link.

Inexpensive, mature, and mass produced contactless cards are available nowadays in

both memory cards and processor cards forms. This is the result of the rapid progress in

integrated circuit technology and the dramatic decrease in power consumption, allowing

the energy and data to be transferred to and from the card without any electrical contact.

Contactless cards range of operation is limited to few centimeters for power

conservation reasons, it is possible to extend this range up to a meter away from the

terminal, however the close range of operation increases the contactless cards security

level. An attacker can read the content of the card and might even manipulate it without

the knowledge of the card owner, if the range was relatively longer.

Dual interface cards are considered to be a possible solution to this particular problem.

However, operation over a long distance should be prevented due to the high risk of

security breach. Contactless smart cards are suitable for applications that demand quick

identification, such as access control, public transportations, airline tickets and luggage

identification and many others. (Rankl & Effing 2010: p9)

32

3.3.1. Physical Properties

The smart cards physical properties determines the cards format, material, placement of

different components such as magnetic strips, chip module and its connections and

many others. The card can also include embossing, holograms and other features.

The application where the smart card is used dictates many of its physical attributes. For

example, if the operation environment is subject to high ambient temperatures, then

both the smart card's body as well as the embedded microcontroller, must meet all the

relevant requirements, individually and collectively.

The most notable property of the smart card is its format. This format is standardized by

ISO7810 also known as “ID-1 Format”, as shown in the Figure 17. (ISO 7810)

Figure 17. The ID-1 format as specified in ISO 7810.

However, this standard was issued in 1985, and at that time the idea of adding an

integrated circuit to a card was not available. With the large variety of cards, each card

has distinct dimensions to suit a particular application, it is not easy to determine

whether a card is an ID-1 smart card or not. Besides having an integrated chip, an easy

way to identify a smart card is to measure the card’s thickness - contactless smart cards

33

may not have a visible circuit on their surface - if its 0.76 mm then the card is a smart

card (in reference to ISO 7810 Standards).

Other factors related to the card body, construction and material are determined by the

designated function of that particular card. The mechanical attributes are also

considered when manufacturing a card, depending on the environment at which the card

is expected to operate. In order to protect the card from getting damaged, several

properties must be inspected to ensure a high level of quality. These tests include

mechanical robustness of the card, temperature resistance, electrostatic discharge,

electromagnetic susceptibility, and many others.

3.3.2. Smart Card Micro Controllers

The key component of any smart card is the embedded microcontroller. It controls,

initiates, and monitors all of the card's electrical activities. The smart cards

microcontrollers have the setup of a full computer, they have a processor, memory

(RAM, ROM EEPROM), and input and output interface to external devices. This

hardware configuration must be governed by a suitably adapted and configured

operating system which is tailored to fit different applications such as payments or

telecommunication. Figure 18 illustrates the basic building blocks of a microcontroller.

Figure 18. possible arrangement for essential functional components of a simple smart card microcontroller on the
 silicon die

34

The microcontrollers used in smart cards are not standard, widely available units, they

are specially designed to serve a particular purpose. Some of the components from

which the microcontrollers are made of however are already developed items for other

ends, for example, the processors used in smart cards are not special designs, but instead

proven components that have been used in other areas for a long time. Reasons behind

this approach beside the high expense needed, is the complexity of developing a brand

new processor with no suitable libraries and no available operating systems. Also, the

processor in the microcontroller is not a special design, in addition to the stated reasons,

the processor is the most important part of the microcontroller, and that’s why it must be

very reliable. Older processors which have been tested and proven reliable are used.

(Rankl & Effing 2010: p73)

Several factors must be taken into consideration in the development of microcontrollers,

to name a few:

Manufacturing costs, the structure width and the area of the microcontroller chip on the

silicon wafer are the most critical factors regarding the manufacturing cost. Constant

efforts are made to minimize the cost by reducing the chip area, also omitting any

unnecessary additional components that occupy space without any useful functionality.

Functionality, this reason is closely related to the previous one. The area of the chip is

very limited, and therefore only the components that provide the needed functionalities

are included along the essential blocks of the microcontroller, anything else is omitted.

Security, smart cards provide tamper-proof storage of user and account

identity. Smart cards also provide vital components of system security for the

exchange of data throughout various types of networks. They protect against a

full range of security threats, from careless storage of user passwords to

sophisticated system hacks. Multifunction cards can also serve as network

system access and store values and other data. (Smart card security basics,

Cardlogix publication 2009)

Chip area is not only important from the cost point of view, but also from quality

reasons, larger chips are more prone to be mechanically damaged. Smart cards are

meant to be used in various situation hence, it is important that the card can handle

35

mechanical stress, most importantly the chip must handle a certain degree of mechanical

stress, the finest hairline crack in the chip is sufficient to render the smart card useless.

In order to analyze the microcontrollers used in smart cards, it is necessary to analyze

the components from which it is made. This include the processor, memory types,

input/output interface and any other additional items used for a particular functionality

A typical microcontroller used in smart card application is an 8-bit processor with

complex instruction set computer architecture (CISC). It has a memory capacity of 50-

100 KB. And it is used without any significant limitations, which means it needs several

clock cycles to execute each machine instruction and usually has a very large instruction

set.

However 8-bit processors are not the only type of processors used in smart cards

microcontrollers. To handle more complex tasks, 16-bit processors are used. They are

based on architecture similar to RSIC architecture (‘RISC’ stands for ‘reduced-

instruction-set computer’).

More recently, the highest performance possible can be attained from using 32-bit

processors in smart cards microcontrollers. The direction of the development is heading

towards 32-bits processors, due to the need for improved performance and for managing

larger memories. The key selection criteria for processors include code density, power

consumption, and resistance to attacks.

8-bits processors provide a solid basis for inexpensive microcontrollers at the lower end

of the performance scale. Their power consumption and the area they occupy on the die

are smaller compared to the 32-bits processor. However, 32-bits processors are needed

for the more demanding application, for the processing power they can provide, with

their broad bus structures and more elaborate internal components. (Rankl & Effing

2010: p82)

The other major component that affects the performance of the microcontroller is the

memory. Different memory types are used in the microcontroller for various tasks, some

of which are not essentials but to provide certain functionality. Different types of

memory are illustrated in Figure 19.

36

Figure 19. Memory types used in smart card microcontrollers. PROM and EPROM are normally not used in modern
 microcontrollers. FRAM is presently used relatively rarely in smart cards

The main two types of memory are separated by the way they maintain the data stored

on them. Volatile memory requires power to maintain the stored information. It retains

its contents while powered, but when power is interrupted stored data is immediately

lost. Non-Volatile Memory on the other hand maintains its content even when

unpowered.

RAM is an abbreviation for (Random-Access Memory) and it is a volatile memory. The

number of accesses to the memory content is unlimited, the content can be modified by

the running program as much as needed, as long the supply voltage is uninterrupted, the

content of the memory will be intact.

ROM stands for Read-Only Memory. This type of memory can only be read and cannot

be written, supply voltage is not needed to retain the data. A smart card’s ROM contains

most of the operating system routines, as well as various test and diagnostic functions.

These programs are built into the chip by its manufacturer when it is fabricated.

EEPROM (Electrically Erasable Read-Only Memory) is technically more complex than

ROM or RAM, it is used to store all the programs and data that need to be modified or

deleted at some time. Its function resembles the hard drive function in a computer, since

it retains data in the absence of power and the data can be altered as necessary.

The main goal is to minimize the required RAM and EEPROM in order to save space

on the chip, since the RAM and EEPROM requires more space. As a rule of thumb, a

RAM cell occupies about four times as much space as an EEPROM cell, which in turn

37

occupies four times as much space as a ROM cell. Other types of memory might be

used to provide a certain function, such as flash EEPROM “Flash memory” or FRAM

“Ferroelectric Random-Access Memory”. (Rankl & Effing 2010: p83)

Supplementary hardware are added in order to meet some requirements which the

standard components cannot meet using only software. These requirements might not be

fundamental tasks that are not possible to be done using software, but enhancement to

improve the execution time and the power consumption. Some of these additional

features include communication with a USB interface, Communication with MMC

“MultiMedia Card”, the USB hardware enables the higher-level software layer to select

a large number of configuration settings for the driver software. Like USB, MMC

entails a large amount of additional hardware in the smart card microcontroller.

Communication with Single Wire Protocol (SWP). This is used for communication

between a SIM and an NFC controller in a mobile telephone.

Additional components include a Timer, CRC “Cyclic Redundancy Check” Calculation

Unit, a Random Number Generator, for security reasons all modern smart card

microcontrollers have hardware random number generators.

In performance demanding application, clock generator and clock multiplier are used.

The processing power is proportional to the clock frequency, doubling the clock

frequency will roughly double the performance of the processor. However due to

current consumption and other compatibility issues, it is not always possible to

maximize the clock frequency. Other components for improving the performance

include DMA (Direct Memory Access), MMU (Memory Management Unit), Java

Accelerator, Coprocessors for symmetric and/or asymmetric cryptographic algorithms,

and many others. Figure 20 illustrates a block diagram of high performance smart card

microcontroller.

38

Figure 20. the usual functional units of a high-performance smart card microcontroller

3.3.3. Contactless Smart Cards

Contactless Smart cards refers to cards that do not require an electrical connection with

the terminal to exchange data, power, and clock signal. All transmissions are done

wirelessly over a short distance. Contactless smart cards must follow the smart cards

standard - ID-1 format. The lack of electrical connection alongside the infeasibility of

adding batteries to the card means the only way to transfer power to the card is via using

the passive technique, in which the terminal provides the power signal through

electromagnetic waves and the smart cards harness this power. This could be done in

several ways, the most commonly used methods are radio waves or microwaves, optical

transmission, capacitive coupling, and inductive coupling.

39

The main interests lies within the capacitive and inductive coupling since they are the

most suitable for the flat shapes of the smart cards, also they are similar to the coupling

techniques used in NFC devices. As seen in Figure 21.

Figure 21. An inlay foil for a contactless smart card with inductive coupling using an etched coil

All cards that employ inductive coupling share the same principle. Coils enclose a large

area of the cards are incorporated in the cards body, they serve as the antenna for

receiving the power signal and also for sending and receiving data signals from and to

the card. The coils are connected to one or more chip depending on the design of the

smart card. (Rankl & Effing 2010: p285)

Capacitive coupling utilizes a different technique to achieve coupling. Conductive

surfaces are incorporated in the cards body and in the terminal as well. These surfaces

act as the two sides of a capacitor when the card is in close proximity to the terminal.

The capacitance that can be obtained depends on the sizes of the coupling surfaces and

the distance of the separation, but since the size of the card is limited by the ID-1

Format standards, considering the manufacturing costs, several picofarads can be

obtained from a card manufactured at an acceptable level of cost and effort. This is not

enough to power the microcontroller inside the smart card, hence this method is used

only for data transmission, while the operating power is obtained by an inductive

coupling. This mixed method is standardized in ISO/IEC 10536 for close-coupling

cards, and as the name suggests, this method is limited to short coupling distances.

For collision avoidance two standards have been defined in ISO/IEC 14443-3, both

based on time division multiple access (TDMA), they ensure that individual cards have

40

different timing behaviors, so they can be distinguished from one another at the

terminal.

Due to the large number of applications in which contactless smart cards can be used,

also the different optimization and customization each application requires. ISO and

IEC began a standardization process for contactless smart cards in 1988.

Contactless smart cards can operate in range of one centimeter to one meter, this range

has a significant effect on the transmission of power and data. Consequently, it is not

possible to cover all contactless cards by one standard which offers technical solution to

all of the requirements needed from the various applications. Presently, there are three

different standards describing the contactless cards, each one is defined for a specific

distance range, as mentioned in Table 5

Table 5. Completed ISO/IEC standards for contactless smart cards. Each standard consists of several parts

Standard Type of contactless smart card Range Category

ISO/IEC 10536 Close coupling (CICC) ≈ 1 cm Close Coupling Cards

ISO/IEC 14443 Proximity coupling (PICC) ≈ 10 cm Remote Coupling Cards

ISO/IEC 15693 Vicinity coupling (VICC) ≈ 1 m Remote Coupling Cards

Close integrated circuit cards (ISO/IEC 14443)

Close coupling utilizes capacitive coupling for data transmission and inductive coupling

for powering the integrated circuit in the cards body. The ISO/IEC 10536 standard is

designated for “Slot or surface operation”. Indicating the card must be inserted in a slot

or laid on a marked area of the terminal, due to its short range (maximum of 1 cm).

The term “remote Coupling” encompasses smart cards that can transmit data over a

range extending from few centimeters to approximately one meter from the terminal.

Inserting the card or laying it on the marked surface on the terminal is not required,

offering more flexibility and various applications. Examples of such applications are

access control, vehicle identification, electronic tickets, local public transport, ski

passes, airline tickets, electronic purses, and baggage identification. (Rankl & Effing

2010: p296). The diversity of these applications requires many different technical

41

implementations. The ISO/IEC 14443 and ISO/IEC 15633 standards address coupling

ranges up to 10 cm and 1 m, respectively.

Proximity integrated circuit cards (ISO/IEC 14443)

The ISO/IEC 14443 standard, which is titled ‘Identification cards – Contactless

integrated circuits cards – Proximity cards’, describes the properties and operating

principles of contactless smart cards with a range of approximately 10 cm. The amount

of power that can be transmitted over this range is sufficient to operate a

microprocessor. A large number of contactless cards have also contacts in addition to

coupling components, in order to make them compatible with an existing infrastructure

for contact cards. This type of cards is called “dual-interface cards”. The ISO/IEC

14443 standard is formulated such that it is compatible with ISO/IEC 7816 (the standard

for contact smart cards) at the application level, to ensure the formats for exchanging

data between the card and the terminal are the same. Hence commands and data can be

exchanged between the card and the reader using the contact or the contactless interface.

(Rankl & Effing 2010: p297)

The maximum operational range is 10 cm might not be suitable for all applications, but

it has other advantages which make these Proximity cards useful. The short range of

operation provides a certain amount of protection against undesired access to the card.

Large antennas in the immediate vicinity of a terminal are necessary for eavesdropping

on data transmissions, this could hardly be installed in an unobtrusive manner. In

addition to encryption and authentication, the immunity against attacks is very robust.

Several amendments were introduced to the standard in order to increase the data rate

among other requirements. The clarity of the standard is reduced by the large number of

amendments. Therefore, the responsible ISO/IEC group is working on a revised version

of the standard.

42

Vicinity integrated circuit cards (ISO/IEC 15693)

ISO/IEC 15693, ‘Identification cards – Contactless integrated circuits cards –Vicinity

cards’, describes the properties and operating modes of contactless smart cards with a

range up to 1 meter. Complying with ISO/IEC 14443, the minimum activation field

strength needed for vicinity cards is reduced, due to the restriction on the maximum

allowable magnetic field strength. The reduced field strength leads to inefficient power

to operate the microcontrollers in the cards. For that reason, only simple memory ICs

with relatively simple security logic (a state machine) can be used. There is also a

security issue associated with the larger working range. Thus it is possible for a terminal

to establish a connection to a card without the desire or knowledge of the cardholder.

Whether such undesired and unnoticed card accesses pose security risks depends on the

application. (Rankl & Effing 2010: p344)

NEAR FIELD COMMUNICATION (NFC)

Proximity Coupling Cards and Near Field Communication (NFC) share the same

standards (ISO/IEC 14443). Although NFC has some other standards on its own, the

overlapping of these two technologies in several applications is the main reason to study

them in parallel. Just as in Proximity coupling cards, the short range of operation in

NFC devices prevents unintentional data transfer between equipment and terminal and

is thus suitable for use in many applications with relatively simple security mechanisms.

NFC Protocols has been covered in the previous titles.

The use of NFC devices on contactless terminals is possible, because contactless

terminals are not dependent on the ID-1 Card Format. Instead NFC device must be

located within range of the terminal. NFC devices, contactless cards and contactless

terminals support the ISO/IEC 14443 standards. (Rankl & Effing 2010: p348)

One of the main target applications for NFC technology is contactless payment using

mobile devices. To achieve that goal, security component in the NFC-capable mobile

device is a prerequisite for mobile payment. Three options for integrating a security

component in a mobile device are currently under discussion.

43

The first two options share the same concept of integrating a security component in the

mobile device (Secure Element). The first option this element could be an already

approved smart card microcontroller to host the payment application. The

microcontroller is permanently integrated in the mobile device. To achieve the same

security level as with a corresponding smart card. One problem with this solution is

maintaining the interchangeability of the mobile equipment, since the application is

permanently tied to the equipment. In the second option the secure element is an

external secure memory card (such as a secure microSD card). In this case, the security

chip is stored in the memory card next to the flash memory. The user can transfer the

payment application to a different mobile device by changing the memory card.

In the third option, the secure element is not a part of the mobile device, the SIM or

USIM card contains the payment application. The application can be stored directly in

the SIM microcontroller or in a supplementary security chip in the SIM or USIM

module. A supplementary security chip has the advantage that only this chip needs to be

certified.

In any case, it is necessary to devise a solution for secure loading and personalization of

the payment application in the security component. This process must be performed by

a trustworthy entity that is certified for payment systems. (Rankl & Effing 2010: p351).

Several examples are displayed in Figure 22.

44

Figure 22. Several options for integrating a security component for NFC in a mobile device

45

The expanding spread of NFC and RFID systems in different applications necessitate

the use of security measures to protect against attempted attacks. Modern encryption

and authentication protocols employ suitable algorithms to prevent unauthorized access

or use of the RFID systems. High-security RFID systems must have a defense against

the following individual attacks:

• Skimming of a data carrier in order to clone and/or modify data.

• Placing a foreign data carrier within the interrogation zone of a reader with the

intention of gaining unauthorized access to a building or receiving services without

payment.

• Eavesdropping on radio communications and replaying the data, in order to imitate a

genuine data carrier ‘replay and fraud’.

Consideration should be given to cryptographic functions when selecting a suitable

RFID system. Applications that do not require a security function (e.g. industrial

automation, tool recognition) would be made unnecessarily expensive by the

incorporation of cryptographic procedures. On the other hand, in high-security

applications (e.g. ticketing, payment systems) the omission of cryptographic procedures

can be a very expensive oversight if manipulated transponders are used to gain access to

services without authorization. (Finkenzeller 2010: p226)

Within the scope of this work, several algorithms will be analyzed from different point

of view. In order to establish a basic understanding of the cryptographic abilities of

RFID tags, NFC tags and smart cards. Tests will include brute force attack, encryption

and decryption times, power consumed during encryption and decryption, and an

overall performance analysis.

46

4. Practical Part

4.1. Encryption Algorithms

The wide variety of Cryptographic algorithms can be split into two major categories,

symmetric and asymmetric. Symmetric algorithms use the same key for encryption and

decryption, while asymmetric algorithms (which were first postulated in 1976 by

Whitfield Diffie and Martin E. Hellman) use different keys for encryption and

decryption.

The algorithms chosen to be tested are Caesar, DES/3DES, AES, and Blowfish.

4.1.1. Caesar

Also known as Shift cipher, Caesar cipher is one of the oldest and most known

encryption techniques. In which each letter is “shifted” by a fixed number of

letters, so a shift of 3 will make the letter “a” become “d”. The method is

named after Julius Caesar, who used it in his private correspondence. In the

original form the range of letter which can be shifted was limited to the number

of letters in the alphabet. Nowadays although the Caesar cipher is considered

the weakest form of encryption, in the computer world the shift range is wider

than the original, at a range of (32-126), it includes letters, numbers, and

special symbols such as “#” and “space”. the minimum effort needed to break

the code is the main reason why the Caesar cipher is not used. Applying brute

force attack on the ciphered text can resolve in finding the key. Even without

the use of a computer, a brute force attack on a Caesar ciphered text is carried

out by either shifting the ciphered text one letter at a time until the right key is

found, or by using frequency analysis which will even shorten the time needed

for breaking the code. In each language there are several letters which are used

more than others, in the English language for example the letter “e” is the most

reoccurring letter in the alphabet and by graphing the most occurring letter in a

ciphered text to the most occurring letter in a certain language, and the code is

47

broken. Figure 23 display the frequency of letters in the English language.

(http://en.wikipedia.org/wiki/Caesar_cipher)

Figure 23. The distribution of letters in a typical sample of English language text.

48

4.1.2. DES/3DES

Developed by IBM in collaboration with the US National Bureau of Standards (NBS)

and published in 1977 as the FIPS 46 standard. DES was fashioned in accordance with

Kerckhoff’s principle, which meant it could be published without impairing its security.

DES is a symmetric block encryption algorithm that does not expand the ciphertext,

which means that the plaintext and ciphertext blocks have the same size. The block size

is 64 bits (8 bytes), which is also the key size, although only 56 of these bits are used as

the actual key. Coding is done in 19 phases of substitution and permutation operations.

The Figure 24 illustrate the general phases in the DES encryption.

(http://dc242.4shared.com/doc/ZDomPSx_/preview.html)

Figure 24. General description of DES encryption algorithm.

49

Before the encryption starts, the key is extended from 56 bits to 64 bits, and then

rotating the key generates a new keys Ki for each phase (i = 1, . . . , 16).

The text is permutated in the first phase of the encryption, after that the rounds of

permutations, begins, using the corresponding Ki generated from the originally extended

key. After 16 round of permutation, the two halves of the block (two 32 bits blocks) are

interchanged, and in the final phase, the first permutation is revered.

The security of DES can be increased by triple DES coding “3DES”. In 3DES, two keys

K1 and K2 are needed. The way to change DES to 3DES is firstly the Plaintext block is

coded by K1. Secondly, Result is decoded by K2. (Note as K2 is the wrong key, the

result is not the original text but even more mixed.). And finally the previous result is

coded again by K1. This is the result of 3DES. Decoding is done in reverse order using

the same keys. (Penttonen 2011)

50

4.1.3. AES

AES is a symmetric block encryption algorithm with a block length of 128 bits (16

bytes) that can be used with three different key sizes, thus called AES-128, AES-192 or

AES-256, depending on the key size (the number denote the key size). AES is suitable

for hardware implementation, and can also be implemented in software running on low-

performance 8-bit processors or high-performance 16-bit and 32-bit processors.

The size of the key space of AES with a 128-bit key is 2128 (≈ 3.4×1038), which is a

factor of 4.7×1021 larger than the key space of DES with a 56-bit key. The larger key

space of the AES grants higher security level against known attacks.

The basic structure of AES is substitution-permutation network. The cipher takes the

plaintext block size of 128 bits. The key sizes can be 128, 192 or 256 bits. (Wikipedia

AES 2012a.)

Figure 25 illustrates the general steps of encrypting plain text using AES with different

key sizes.

(http://developer.amd.com/resources/documentation-articles/articles- whitepapers/bulk-

encryption-on-gpus.)

Figure 25. General description of DES encryption algorithm.

51

Key expansion means that the provided key as input is expanded into an array of forty-

four 32-bit words. Four distinct words (128 bits) serve as a round key for each round.

There are 10-14 rounds in AES depending on the key size, each round has several steps:

• Substitute bytes: Uses a Substitution box to perform a byte-by-byte substitution of the

block.

• ShiftRows: is the row forward shift process. The first row remains the same. For the

second row, shift to left 1-byte circular. For the third row, shift to left 2-byte circular.

Then the fourth row, shift to left 3-byte circular.

• MixColumns: is a forward mix column transformation. A substitution that makes use

of arithmetic over Galois Field (28)

• AddRoundKey: A bitwise XOR of the current block with a portion of the expanded

key.

The final round is different because it omits the “mix columns” step.

The round key is used only in the “AddRoundKey” step, which is why the cipher begins

and ends with an “AddRoundKey” step. Any other step applied at the beginning or end,

is reversible without knowledge of the key and so would add no security.

As with most block ciphers, the decryption algorithm makes use of the expanded key in

reverse order. However, the decryption algorithm is not identical to the encryption

algorithm. This is a consequence of the particular structure of AES. (Stalling 2010)

4.1.4. Blowfish

Blowfish is a substitute for the DES and IDEA encryption algorithm. It is a symmetrical

block cipher (secret or private key), use that a variable key length from 32 to 448 bits.

(The U.S. government prohibits the encryption output software to use the key which

key-length is more than 40, unless special-purpose software).

52

Blowfish algorithm is an alternative encryption method, proposed in 1993 by Bruce

Schneier. After the birth of the 32-bit processor, the speed of blowfish algorithm in the

encryption beyond the DES attracted the attention of the people. Blowfish is a not

registered patent, it can be used free.

There are some features of blowfish:

• Blowfish is fast, can be executed in 18 clock cycle in a 32-bit processor.

• Blowfish needs only 5 KB of memory to implement

• Blowfish is considered secure due to the key’s adjustable length (32-448)

• Encryption consist 16+1 phases, each phase consists of ⊕, + and S-box

operation

• Decryption is identical to encryption; keys are used in inverse order. (Penttonen

2009: p35.)

(Qian 2013)

53

Figure 26 and 27 shows the round function (Feistel function) of Blowfish encryption.

(http://www.embedded.com/design/configurable-systems/4024599/Encrypting-data-

with-the-Blowfish-algorithm)

Figure 27. Blowfish Algorithm

Figure 26. Blowfish Algorithm

54

4.1.5 Elliptic Curve Cryptography

Although elliptic curves cryptography will not be tested within the scope of this work,

basic concepts will be illustrated for future references and work. Unlike the previous

encryption algorithms, Elliptic Curves Cryptography (ECC) is an asymmetrical

encryption algorithm.

Proposed in 1985 by Victor Miller and Neal Koblitz independently, ECC is considered

more efficient than other asymmetrical encryption algorithms such as RSA, for the same

level of encryption strength, ECC requires a smaller key size than RSA, which yields to

faster encryption, lower power consumption and lower processing power.

Table 6 illustrates the keys sizes of ECC and RSA encryption algorithms, corresponding

to similar encryption strength.

Table 6. Comparing ECC keys with RSA keys (Qian 2013)

ECC Key Length

(bits)

RSA Key Length

(bits)

Crack Time /MIPS

(years)

ECC/RSA key length

rate

106 512 104 5:1

160 1024 1011 7:1

210 2048 1020 10:1

600 21000 1078 35:1

This cryptographic strength and the relatively small size of the keys are the

reasons why ECC systems are used in the smart card environment. Table 7

shows different generation and verification time on different platforms.

55

Table 7. ECC algorithms on different Platforms (Rankl and Effing 2010)

Implementation

Generate a 160-

bit signature

Verify a 160-

bit signature

Smart card with 3.5-MHz clock and 8-bit processor 1 s 4s

Smart card with 3.5-MHz clock and numeric coprocessor 150 ms 450 ms

PC (Pentium III, 500 MHz) 10 ms 20 ms

Elliptic curves are continuous planar curves that satisfy the equation y2 = x3 + ax + b in

a finite three-dimensional space. No point on the curve is allowed to be a singularity,

which for example means that 4a2 + 27b2 ≠ 0. The finite bodies GF(p), GF(2n) and

GF(pn) are used in cryptography, where p is a prime number and n is a positive integer

greater than 1.

In order to describe the ECC algorithm, Weierstrass equation is commonly used.

𝑦2 + 𝑎𝑥𝑦 + 𝑏𝑦 = 𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 (1)

a, b, c, d are real numbers and x, y take the values of real numbers, for simplicity, the

equation is reduced to

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (2)

To plot this equation, y is computed as

𝑦 = √𝑥3 + 𝑎𝑥 + 𝑏 (3)

For given values of and, the plot consists of positive and negative values of for each

value of y. Thus, each curve is symmetric about y=0. This yields for any specific value

of a and b, there is a set of points (E) which satisfy the equation number (X3), this set

(E) also include a point called O, which is called the “zero point” or “point at infinity”

which serves as the identity element of the group.

There are several implementations which use ECC as a foundation such as Elgamal

ECC and Deffie-Hellman which is described in the following steps

56

A large integer Q is chosen, Q must a prime or an integer in the form of 2m. The a and b

parameters of the equation (X3) must be applied in order to generate a group of points

Eq(a,b). In the next step a base point G= (x1 , y1) in Eq (a,b)is selected, whose order is

larger than value n. A key exchange between user Person A and B is described as follow

Person A Key Generation

Select private 𝑛𝑎 where 𝑛𝑎 < 𝑛

Calculate public Pa 𝑃𝑎 = 𝑛𝑎 × 𝐺

Person B Key Generation

Select private 𝑛𝑏 where 𝑛𝑏 < 𝑛

Calculate public 𝑃𝑏 𝑃𝑏 = 𝑛𝑏 × 𝐺

User A Calculate the secret key

𝐾 = 𝑛𝑎 × 𝑃𝑏 (4)

User B Calculate the secret key

𝐾 = 𝑛𝑏 × 𝑃𝑎 (5)

ECC Diffie-Hellman Key Exchange (Stallings 2011: 343).

ECC Encryption and Decryption

An Elliptic curve is chose over a certain Galois Field (e.g. GF(2m)), the preparation

assignments are:

• Select GF(p)

• Select elliptic curve (e)

• Select base point G(x,y)

• Applied algorithm for transforming plaintext into the points of elliptic curve,

called encryption process

57

• Generating the private and public keys between sender A and receiver B. Select

one private key n, calculate the public key 𝑃 = 𝑛𝐺 = 𝑛(𝑥,𝑦). For A, the private

key is na, and the public key is 𝑃𝑎 = 𝑛𝑎𝐺 = 𝑛𝑎(𝑥,𝑦). For B, the private key is B

n and the public key is 𝑃𝑏 = 𝑛𝑏𝐺 = 𝑛𝑏(𝑥, 𝑦)

Encryption: A sends encrypted message to B

• Choose random number k 1 ≤ 𝑘 ≤ 𝑝 − 1

• Get the corresponding points (xm , ym) by encoding the plaintext;

• Calculate the cipher text 𝐶𝑚 = {𝑘(𝑥, 𝑦), (𝑥𝑚,𝑦𝑚) + 𝑘𝑃𝑏}, and the cipher text here

turns into two points on the elliptic curve.

Decryption: B decrypts the received message from A:

• Calculation

o �(𝑥𝑚,𝑦𝑚) + 𝑘𝑃𝑚� − 𝑛𝑏(𝑘𝐺) (6)

o = �(𝑥𝑚,𝑦𝑚) + 𝑘�𝑛𝑏(𝑥,𝑦)�� − 𝑛𝑏�𝑘(𝑥, 𝑦)� (7)

o = (𝑥𝑚,𝑦𝑚) + 𝑘𝑛𝑏(𝑥, 𝑦) − 𝑛𝑏𝑘(𝑥,𝑦) (8)

o = (𝑥𝑚,𝑦𝑚)

• Get the corresponding plaintext by decoding the points (xm,ym).

The study and implementation of elliptic curve cryptography is now becoming a focus

in public-key cryptosystems. Its relies on the difficulty to solve the discrete logarithm of

the elliptic curve Abelian group.

They way RFID systems (tags, smart cards, NFC devices) utilize these encryption

algorithms is by employing them in “Mutual Authentication” procedure. Mutual

authentication means that both the reader and the target authenticate one another. The

reader authenticates the target in order to protect the application from “manipulation”

using falsified data. Likewise, the target must protect the data stored in it from

skimming or overwriting by unauthorized readers.

58

Based on the application at which the RFID system is deployed, the mutual

authentication can be either symmetrical or asymmetrical (symmetrical or asymmetrical

encryption). Mutual symmetrical authentication is used in applications where the

number or transponders (targets) are limited, and all the transponders and readers that

form part of an application possess a single identical cryptographical key K, once the

transponder is detected by the reader, the reader sends a (GET_CHALLANGE)

command to the transponder. The transponder responds to the command, by generating

a random number RA and sends it to the reader in a (response → Challenge-response)

procedure. The reader now generates a random number RB. Using the common secret

key K and a common key algorithm ek, the reader calculates an encrypted data block

(token 1), which contains both random numbers and additional control data, and sends

this data block to the transponder.

𝑇𝑜𝑘𝑒𝑛 1 = 𝑒𝑘(|𝑅𝐵||𝑅𝐴||𝐼𝐷𝐴|𝑇𝑒𝑥𝑡1) (9)

The transponder decrypts the received token, and checks if the random number

contained in the plaintext 𝑅�́� correspond to the original random number 𝑅𝐴. If they are

equal, the transponder confirms that the two common keys are the same (the

transponder’s key and the reader’s key).

Another random number RA2 is generated in the transponder and this is used to calculate

an encrypted data block (token 2), which also contains RB and control data. Token 2 is

sent from the transponder to the reader.

𝑇𝑜𝑘𝑒𝑛 2 = 𝑒𝑘(|𝑅𝐴2||𝑅𝐵|𝑇𝑒𝑥𝑡2) (10)

The reader decrypts the received token (token 2) and checks if the received random

number within the token 𝑅𝐵́ is equal to the random number generated at the reader RB.

If the two figures correspond, then the reader is satisfied that the common key has been

proven. Transponder and reader have thus ascertained that they belong to the same

system and further communication between the two parties is thus is authenticated and

valid. (Finkenzeller 2010)

59

The mutual authentication has several advantages:

• The secret key is never transmitted, only the numbers encrypted using the secret

key are exchanged.

• The random numbers are always encrypted at the same time. To minimize the

possibility of calculating the secret key from invers transformation using RA to

obtain Token 1.

• The authentication process is not limited to a specific encryption algorithm

(mutual symmetrical authentication process must use symmetrical encryption

algorithm).

• The use of two different random numbers from two different sources ensures

safety against “replay attacks”, eliminating the possibility of recording the

authentication sequence.

Mutual symmetrical authentication process is not suitable in applications where the

number of transponders (targets) is vast, which will increase the probability of the secret

key being discovered, because such transponders are accessible to an uncontrolled

numbers.

Authentication using a derived key can provide a significant improvement on mutual

symmetrical authentication, by securing each transponder with a different cryptological

key. To achieve this, the serial number of each transponder is read out during its

production. A key KX is calculated (→ derived) using a cryptological algorithm and a

master key KM, and the transponder is thus initialized. Each transponder thus receives a

key linked to its own ID number and the master key KM.

The mutual authentication begins by the reader requesting the ID number of the

transponder. In a special security module in the reader - the Security Authentication

Module (S.A.M) - the transponder’s specific key is calculated using the master key KM,

so that this can be used to initiate the authentication procedure. The S.A.M normally

takes the form of a smart card with contacts incorporating a cryptoprocessor, which

means that the stored master key can never be read. (Finkenzeller 2010)

60

4.2. Experimental Procedures

The aforementioned cryptographic algorithms will be tested in order to determine

encryption and decryption times for different key lengths and different text sizes. As

well as robustness against brute force attacks. Also the amount of power required for

each operation.

4.2.1. System Description

The system consists of model B Raspberry Pi with Broadcom BCM2835 SoC, 700 MHz

low power ARM1176JZE-F processor, and 512 MB SDRAM, running Raspbian

operating system. SainSmart Mifare RC522 Card Read Antenna RF RFID Reader IC

Card Proximity Module, 13.56MHz is connected to the system as the RFID reader.

The other device is a computer with a 64-bit Intel Core i7-4700MQ CPU clocked at 2.4

GHz, and 8 Gb of Ram, the operating system is 64-bit windows 8.1. the computer is

used to mainly test the immunity of the encryption algorithms against brute force

attacks, as well as to give context to the results obtained from the Raspberry Pi.

The software implementation of the encryption algorithms is done using python script, a

separate program is written for each different encryption algorithms. The source codes

can be found in the appendix. Figure 28 illustrates the general flowchart of the

program.

The chosen algorithms are Caesar, DES, 3DES, AES, and Blowfish. Caesar is chosen

for the sole purpose of illustrating the basic concept of encryption and decryption. DES,

3DES and AES are used currently in different applications where RFID systems are

implemented, note that DES was used before it was replaced by 3DES and AES. And

Blowfish is chosen for the flexible range of key sizes that can be used.

61

Figure 28. general flow chart of the used programs

62

Each algorithm will be run multiple times, with different key lengths and different text

sizes. For each combination the test will be done five times, an average will be used to

determine the final value. The same texts will be used and all tests are done under

similar conditions.

The testing experiments are divided into two phases; phase one which is done using the

windows machine. The results obtained are used as a reference to the one obtained from

the Raspberry Pi. These tests are designed to take time measurement only, using the

timer function provided by the Python libraries.

Phase two is redoing the same tests on the Raspberry Pi, the only difference is instead of

entering the plain/cipher text manually, it will be read/written directly from/to the tags,

the rest of the process is identical to the ones done on the windows machine.

Phase one tests are

1- Caesar 5 shifts 8- AES 24 byte key length

2- Caesar 10 shifts 9- AES 32 byte key length

3- Caesar 15 shits 10- Blowfish 8 byte key length

4- Des 8 bytes key length 11- Blowfish 16 byte key length

5- 3DES 16 bytes key length 12- Blowfish 24 byte key length

6- 3DES 24 byte Key length 13- Blowfish 32 byte key length

7- AES 16 byte key length

These tests are done over two different text sizes (16 bytes and 1024 bytes) and they

include encryption time, decryption time, and brute force attack.

The text samples are

16 bytes : hello world!!

1024 bytes: The Snapdragon 810 replaces the 805 as the top of the line chipset. It

features four Cortex-A57 and four Cortex-A53 processor cores. Those are the Cortex-

A15 and A7 replacements respectively, but the A57 should offer a 25-55% increase in

performance at the cost of just 20% increase in power consumption. And the power

63

consumption will probably actually be even as the 20% difference will be offset by the

use of a 20nm manufacturing process.

The way the two new chipsets work is that the CPU cores are divided into two groups.

All cores can work at the same time, but cores in a group must use the same frequency.

This differs from the Krait designs where the clock speed of each core can be set

individually.

In terms of GPU, the Snapdragon 810 has a brand new Adreno 430, which is advertised

as 30% faster than the Adreno 420, which in turn is 40% faster than the Adreno 330

found in current Snapdragon 800/801 chipsets.The end result is something like an 80%

performance increase over the current generation. filler

(http://www.gsmarena.com/qualcomm_unveils_snapdragon_810_and_808_64bit_chips

ets-news-8241.php)

The results will be divided according to their respective algorithms in the results

chapter.

Phase two is oriented towards the Raspberry Pi, since the Raspberry Pi platform share

similar CPU architecture with modern mobile phones (ARM CPU Architecture), it can

be used to represent a mobile device, the encryption and decryption tests will be

conducted on the Raspberry Pi in order to obtain time measurements and power

consumption measurements.

The key space used in the encryption algorithms is limited to decimal numbers, also the

all brute force attacks on all algorithms will succeed in deciphering the encrypted text

after one billion attempts. The reasons for this design choice are to compare different

algorithms with different key lengths equally, since a larger key length by one byte

multiplies the key space by ten times. Also, to check if different key lengths for the

same algorithm, has any effect on encryption and decryption times.

64

5. Results

5.1. Phase one results

Phase one results are results obtained from running the algorithms on the computer

machine.

5.1.1. Caesar

The cipher texts for the 16 bytes plain text are

5 shifts: mjqqt%|twqi&&

10 shifts: rovvy*"y|vn++

15 shifts: wt{{~/'~"{s00

Table 8 displays encryption, decryption and brute force attack results. While Figures 29,

30, 31 show these times in relationship to each other’s.

Table 8. Encryption, decryption and brute force time for different shift on 16 bytes text

16

Bytes

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt

5 2.3093E-5 1.3257E-5 3.5495E-5 1.2402E-5 1.2402E-5 1.9330E-5 1.0104E-5

10 1.5396E-5 1.3685E-5 1.3685E-5 1.2402E-5 1.2402E-5 1.3514E-5 1.2321E-6

15 1.3685E-5 3.1646E-5 1.3685E-5 1.5396E-5 2.3093E-5 1.9501E-5 7.8250E-6

Decrypt

5 3.0791E-5 2.7370E-5 4.2338E-5 1.2830E-5 1.2830E-5 2.5232E-5 1.2607E-5

10 2.5659E-5 3.6778E-5 1.7534E-5 3.1646E-5 3.7206E-5 2.9765E-5 8.2848E-6

15 4.0199E-5 1.3685E-5 1.3257E-5 1.3257E-5 1.4968E-5 1.9073E-5 1.1831E-5

Brute

Force

Attack

5 6.7710E-3 9.3836E-3 1.0559E-2 1.1595E-2 1.4095E-2 1.0481E-2 2.7052E-3

10 2.4662E-2 2.2888E-2 2.2311E-2 2.2778E-2 2.3723E-2 2.3272E-2 9.2901E-4

15 2.2498E-2 2.2599E-2 2.2942E-2 2.3755E-2 2.2604E-2 2.2880E-2 5.1726E-4

65

Figure 29. Encryption time over 5 trials.

Figure 30. Decryption time over 5 trials.

Figure 31. Brute force attack time over 5 trials.

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

0 1 2 3 4 5 6

5
10
15

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

4.5E-05

0 1 2 3 4 5 6

5
10
15

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

0 1 2 3 4 5 6

5
10
15Se

co
nd

s
Se

co
nd

s
Se

co
nd

s

Trials

Trials

Trials

66

The cipher texts for the 1024 bytes plain text are

5 shifts:

Ymj%Xsfuiwflts%=65%wjuqfhjx%ymj%=5:%fx%ymj%ytu%tk%ymj%qnsj%hmnuxjy

3%Ny%kjfyzwjx%ktzw%Htwyj}2F:<%fsi%ktzw%Htwyj}2F:8%uwthjxxtw%htwjx3%

Ymtxj%fwj%ymj%Htwyj}2F6:%fsi%F<%wjuqfhjrjsyx%wjxujhyn{jq~1%gzy%ymj%

F:<%xmtzqi%tkkjw%f%7:2::*%nshwjfxj%ns%ujwktwrfshj%fy%ymj%htxy%tk%ozxy

%75*%nshwjfxj%ns%ut|jw%htsxzruynts3%Fsi%ymj%ut|jw%htsxzruynts%|nqq%uwtg

fgq~%fhyzfqq~%gj%j{js%fx%ymj%75*%inkkjwjshj%|nqq%gj%tkkxjy%g~%ymj%zx

j%tk%f%75sr%rfszkfhyzwnsl%uwthjxx3

10 shifts:

^ro*]xkzn|kqyx*B;:*|ozvkmo}*~ro*B:?*k}*~ro*~yz*yp*~ro*vsxo*mrsz}o~8*S~*pok

~ |o}*py |*My|~o#7K?A*kxn*py

|*My|~o#7K?=*z|ymo}}y|*my|o}8*^ry}o*k|o*~ro*My|~o#7K;?*kxn*KA*|ozvkmowo

x~}*|o}zom~s!ov$6*l ~*~ro*K?A*}ry

vn*yppo|*k*<?7??/*sxm|ok}o*sx*zo|py|wkxmo*k~*~ro*my}~*yp*t

}~*<:/*sxm|ok}o*sx*zy"o|*myx} wz~syx8*Kxn*~ro*zy"o|*myx}

wz~syx*"svv*z|ylklv$*km~

kvv$*lo*o!ox*k}*~ro*<:/*nsppo|oxmo*"svv*lo*ypp}o~*l$*~ro* }o*yp*k*<:xw*wkx

pkm~ |sxq*z|ymo}}8

15 shifts:

cwt/b}p s"pv~}/G@?/"t {prt#/$wt/G?D/p#/$wt/$~ /~u/$wt/{x}t/rwx

#t$=/X$/utp$%"t#/u~%"/R~"$t(<PDF/p}s/u~%"/R~"$t(<PDB/

"~rt##~"/r~"t#=/cw~#t/p"t/$wt/R~"$t(<P@D/p}s/PF/"t {prt|t}$#/"t#

tr$x&t{);/q%$/$wt/PDF/#w~%{s/~uut"/p/AD<DD4/x}r"tp#t/x}/

t"u~"|p}rt/p$/$wt/r~#$/~u/y%#$/A?4/x}r"tp#t/x}/ ~'t"/r~}#%| $x~}=/P}s/$wt/

~'t"/r~}#%| $x~}/'x{{/

"~qpq{)/pr$%p{{)/qt/t&t}/p#/$wt/A?4/sxuut"t}rt/'x{{/qt/~uu#t$/q)/$wt/%#t/~u/p/A?}|/|

p}%upr$%"x}v/ "~rt##=

67

Table 9 displays encryption, decryption and brute force attack results. While Figures 32,

33, 34 show these times in relationship to each other’s.

Table 9. Encryption, decryption and brute force time for different shift on 1024 bytes text

1024

Bytes

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt

5 2.4676E-4 2.3564E-4 2.7284E-4 2.4462E-4 1.9244E-4 2.3846E-4 2.9216E-5

10 2.2965E-4 2.1939E-4 2.6472E-4 3.0834E-4 1.9287E-4 2.4299E-4 4.4692E-5

15 2.3264E-4 2.4034E-4 2.4248E-4 2.4633E-4 2.5103E-4 2.4256E-4 6.8784E-6

Decrypt

5 2.3222E-4 2.7199E-4 2.4889E-4 2.2837E-4 1.9073E-4 2.3444E-4 2.9878E-5

10 2.5060E-4 2.7755E-4 1.9458E-4 2.7755E-4 1.9031E-4 2.3812E-4 4.3147E-5

15 2.3222E-4 2.3778E-4 2.4291E-4 2.2751E-4 2.3179E-4 2.3444E-4 5.9749E-6

Brute

Force

Attack

5 1.9052E-2 1.9383E-2 2.0368E-2 1.9394E-2 1.9366E-2 1.9513E-2 4.9916E-4

10 3.2252E-2 3.0454E-2 2.8768E-2 2.9402E-2 2.9597E-2 3.0095E-2 1.3484E-3

15 1.9719E-2 1.9395E-2 1.9985E-2 2.0172E-2 2.4259E-2 2.0706E-2 2.0078E-3

68

Figure 32. Encryption time over 5 trials.

Figure 33. Decryption time over 5 trials.

Figure 34. Brute force attack time over 5 trials.

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

0 1 2 3 4 5 6

5
10
15

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 1 2 3 4 5 6

5
10
10

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 1 2 3 4 5 6

5
10
15Se

co
nd

s
Se

co
nd

s
Se

co
nd

s

Trials

Trials

Trials

69

Figures 35, 36, summarize the encryption and decryption times, while Figure 37 shows

the brute force attack times

Figure 35. Encryption and decryption average time for 5, 10 and 15 Caesar shifts, text size 16 bytes

Figure 36. Encryption and decryption average time for 5, 10 and 15 Caesar shifts, text size 1024 bytes

Figure 37. Brute Force Attack average times for 5, 10 and 15 Caesar shifts, text size 16 and 1024 bytes.

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

Encryption Decryption

5

10

15

2.30E-04

2.35E-04

2.40E-04

2.45E-04

Encryption Decryption

5

10

15

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

Brute Force Attack 16 Brute Force Attack 1024

5

10

15

Se
co

nd
s

Se
co

nd
s

Se
co

nd
s

70

5.1.2. DES

DES has a fixed Key length of 8 bytes.

Used Key: 999999999

The cipher text for the 16 bytes plain text is

HNWuF7O23BJTtYvDiF2Jgg==

Tables 10 and 11 displays encryption, decryption and brute force attack results. While

Figures 38 and 39 show these times in relationship to each other’s.

Table 10. Encryption, decryption and brute force time for DES on 16 bytes text

16

Bytes

Text

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt 8B 1.2274E-4 5.0035E-5 5.2601E-5 5.1318E-5 5.1318E-5 6.5602E-5 3.1952E-5

Decrypt 8B 4.9608E-5 4.9180E-5 5.0891E-5 5.0035E-5 5.1318E-5 5.0206E-5 8.8680E-7

Brute

Force

Attack

8B 1.0559E+3
1.0190E+

3
1.0347E+3 1.0182E+3

1.0201E+

3
1.0296E+3

1.6206E+

1

The cipher text for the 1024 bytes plain text is

82NYhRrd7EYnjHLoHYfx9J5HDf9BO/0/9ygzB/KKWN/HGaIkQeedKanDQSkulkTlR

O8tbeQw0OQmcJuAMgz08TLikX+Ep1x7BK0Ut3K7L4KQvpGD1UmkvTwuMdgeG

CMzaYuw4RYuJW020bVObj9jfQz3ShC/VjmytXvU71h63jec9ASIhjYb5Z9XzdFnvw

VihZYhT+HrAo4LhEUJxbVmLEnvRPaxnyNzXUMQyfthdKBCCZVkouSwc4hk9dIf7

DeBNLhZYXcF/MP++h2hp2tfRM6zyIt+8W5DnMN8UNcMLx2V9Q5yMrUon1gfQk

DuA0vR+jopUPsajAdlHd6P9spG707+uUePCQMk4DvccPuRs0WV9Q5yMrUon7jqXS

pZ2c7sJ0OkbC3lpz87dmwu1oHtSVnnu84YIEPR90rOTN05UteMMv2n0sHVykNyz2c

au2aw0ABPLyNs/WiyIfLx6Hr/WG7wB+TIgw1obldfgdRV/QZ45Ax7pFaZLQx3qkmd

ctnHesNrypXfX4TC9HQnL4NUfQ1bQgXi+lejpMeavcQQkMjt9RuB9yBV/8xrakaL3N

AXShrZOymPiUb22pt2EbfvBw==

71

Table 11. Encryption, decryption and brute force time for DES on 1024 bytes text.

1024

Bytes

Text

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt 8B 1.7106E-4 1.7491E-4 1.5652E-4 1.5652E-4 6.6286E-5 1.4506E-4 4.4819E-5

Decrypt 8B 1.4968E-4 1.5823E-4 6.3293E-5 1.3300E-4 1.3172E-4 1.2718E-4 3.7438E-5

Brute

Force

Attack

8B
1.7489E+

3
1.7025E+3 1.7036E+3 1.6935E+3

1.7017E+

3

1.7101E+

3

2.2098E+

1

Figure 38. Encryption and decryption trials for DES, text size 16 and 1024 bytes.

Figure 39. Brute Force Attack average times for DES, text size 16 and 1024 bytes.

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

0 2 4 6

encryption 16 bytes

decryption 16 bytes

encryption 1024
bytes
decryption 1024

0.0

0.5

1.0

1.5

2.0

0 2 4 6

Th
ou

sa
nd

 S
ec

on
ds

Brute Force Attack 16 bytes

Brute Force Attack 1024
Bytes

Trials

Se
co

nd
s

Trials

72

Figures 40, summarizes the encryption and decryption times, while Figure 41 shows the

brute force attack times.

Figure 40. Encryption and decryption average time for DES, text size 16 and 1024 bytes.

Figure 41. Brute Force attack average time for DES, text size 16 and 1024 bytes.

0.0E+00
2.0E-05
4.0E-05
6.0E-05
8.0E-05
1.0E-04
1.2E-04
1.4E-04
1.6E-04

16 Bytes Text 1024 Bytes Text

Encryption

Decryption

0.0

0.5

1.0

1.5

2.0

16 Bytes Text 1024 Bytes Text

Th
ou

sa
nd

 S
ec

on
ds

Brute Force 8 Bytes Key

Brute Force 8 Bytes Key

Se
co

nd
s

73

4.1.3. 3DES

Two keys were used 16 bytes (0000000099999999) and 24 bytes

(000000000000000099999999)

The cipher texts for the 16 bytes plain text is

16 bytes key:

Bhtbz0KjVIne2AxRxFMO3A==

24 bytes key:

HNWuF7O23BJTtYvDiF2Jgg==

Tables 12 and 13 displays encryption, decryption and brute force attack results. While

Figures 42 to 47 show these times in relationship to each other’s.

Table 12. Encryption, decryption and brute force time for 3DES on 16 bytes text with different keys

16

Bytes

Text

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt
16B 6.4148E-5 6.4148E-5 1.0135E-4 6.4576E-5 8.6386E-5 7.6122E-5 1.7045E-5

24B 6.6286E-5 1.2872E-4 6.3720E-5 6.5431E-5 6.2437E-5 7.7320E-5 2.8774E-5

Decrypt
16B 6.1582E-5 1.3813E-4 1.3813E-4 6.4148E-5 6.2865E-5 9.2972E-5 4.1235E-5

24B 6.3293E-5 1.1333E-4 8.5103E-5 6.5003E-5 6.1582E-5 7.7662E-5 2.2095E-5

Brute

Force

Attack

16B
1.7335E+

3
1.7348E+3 1.7464E+3

1.7313E+

3

1.6750E+

3
1.7242E+3 2.8131E+1

24B
1.7388E+

3
1.7811E+3 1.7294E+3

1.7420E+

3

1.7333E+

3
1.7449E+3 2.0802E+1

74

The cipher text for the 1024 bytes plain text is

16 bytes key:

Qi0Vrm9TY8lu8/rTr545PoPy0olth+beJ9245U5R2SNrGJvWUIwlj5fgijdWUiRLtTh1h

2hyxCK+La+96bRshAmnR0GSzUs0aH5f/e6J1oOZ+xW3Hcf0ebjg5BiD84teDa7HsVx

xPvCohUEWZ1MFRkn50qR5byh2tTHucYQeONT7QUMKZ/MqXDjJP6vpsLCe2bB4

oJtCiDD6VVlOEz/1YDPsRRg2LZHafzeYI4YCEUudLTomFxWwXDnKDsZLFX5hqx

RKJBcJGw+M2U2Kf27kBbIwzV7RDvN3uLApVTleO2j96hxVtjGZlNkpxeoRX/7Rw

u1MzIZc60Bv4oDXjYYuvvAVoWw4mqWumdzRUQ9y+3T96hxVtjGZlMkWzTCv3z

JYH+NF9xZUMUdR1uygrPuaZe8GgtL06dJsZuXb80KavKBTTDJyKbawln1NUFGN

YHkLcgrJHwaYdw/8OJsreSWYl2VdRFdZOHGEK/7tKr65n+6hrjl1XkA+PhJHSf62m

bbz7G2wfIMDygQv4hrofGnw7+Ys4cPFfeF6K1QqGjW2QHfphGkZc5wnJtcT8556yf

MCG3b0h83FbZowQ0NTce3Hkw==

24 bytes key:

82NYhRrd7EYnjHLoHYfx9J5HDf9BO/0/9ygzB/KKWN/HGaIkQeedKanDQSkulkTlR

O8tbeQw0OQmcJuAMgz08TLikX+Ep1x7BK0Ut3K7L4KQvpGD1UmkvTwuMdgeG

CMzaYuw4RYuJW020bVObj9jfQz3ShC/VjmytXvU71h63jec9ASIhjYb5Z9XzdFnvw

VihZYhT+HrAo4LhEUJxbVmLEnvRPaxnyNzXUMQyfthdKBCCZVkouSwc4hk9dIf7

DeBNLhZYXcF/MP++h2hp2tfRM6zyIt+8W5DnMN8UNcMLx2V9Q5yMrUon1gfQk

DuA0vR+jopUPsajAdlHd6P9spG707+uUePCQMk4DvccPuRs0WV9Q5yMrUon7jqXS

pZ2c7sJ0OkbC3lpz87dmwu1oHtSVnnu84YIEPR90rOTN05UteMMv2n0sHVykNyz2c

au2aw0ABPLyNs/WiyIfLx6Hr/WG7wB+TIgw1obldfgdRV/QZ45Ax7pFaZLQx3qkmd

ctnHesNrypXfX4TC9HQnL4NUfQ1bQgXi+lejpMeavcQQkMjt9RuB9yBV/8xrakaL3N

AXShrZOymPiUb22pt2EbfvBw==

75

Table 13. Encryption, decryption and brute force time for 3DES on 1024 bytes text with different keys

1024

Bytes

Text

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt
16B 1.9715E-4 1.8261E-4 1.3086E-4 2.0356E-04 9.1090E-5 1.6105E-4 4.8427E-5

24B 2.3778E-4 2.2024E-4 1.9159E-4 2.0827E-04 1.2915E-4 1.9740E-4 4.1718E-5

Decrypt
16B 1.7662E-4 1.9587E-4 1.9672E-4 9.0235E-05 1.9244E-4 1.7038E-4 4.5531E-5

24B 1.7149E-4 1.7577E-4 1.1205E-4 9.2373E-05 9.1090E-5 1.2855E-4 4.2004E-5

Brute

Force

Attack

16B
3.5570E+

3

3.4344E+

3

3.3370E+

3

3.4656E+0

3

3.5697E+

3
3.4727E+3

9.5458E+

1

24B
3.4481E+

3

3.5587E+

3

3.4563E+

3

3.3912E+0

3

3.3853E+

3
3.4479E+3

6.9799E+

1

76

Figure 42. Encryption trials for 3DES, text size 16 with different key lengths.

Figure 43. Decryption trials for 3DES, text size 16 with different key lengths.

Figure 44. Brute Force attack trials for 3DES, text size 16 with different key lengths.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

0 1 2 3 4 5 6

16 byte key encryption

24 byte key encryption

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

0 1 2 3 4 5 6

16 byte key decryption

24 byte key deccryption

1.66E+03

1.68E+03

1.70E+03

1.72E+03

1.74E+03

1.76E+03

1.78E+03

1.80E+03

0 2 4 6

16 byte key Brute Force

24 byte key Brute ForceSe
co

nd
s

Se
co

nd
s

Se
co

nd
s

Trials

Trials

Trials

77

Figure 45. Encryption trials for 3DES, text size 1024 with different key lengths.

Figure 46. Decryption trials for 3DES, text size 1024 with different key lengths.

Figure 47. Brute Force attack trials for 3DES, text size 16 with different key lengths.

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 1 2 3 4 5 6

16 byte key encryption

24 byte key encryption

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 1 2 3 4 5 6

16 byte key decryption

24 byte key deccryption

3.30

3.35

3.40

3.45

3.50

3.55

3.60

0 1 2 3 4 5 6

Th
ou

sa
nd

 S
ec

on
ds

16 byte key Brute Force

24 byte key Brute Force

Se
co

nd
s

Se
co

nd
s

Trials

Trials

Trials

78

Figures 48, summarizes the encryption and decryption times, while Figure 49 shows the

brute force attack times

Figure 48. Encryption and decryption average time for 3DES, text size 16 and 1024 bytes with different key lengths.

Figure 49. Brute Force attack average time for 3DES, text size 16 and 1024 bytes with different key lengths.

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

16 Bytes Text 1024 Bytes Text

Encryption 16 bytes Key

Encryption 24 bytes Key

Decryption 16 bytes Key

Decryption 24 bytes Key

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16 Bytes Text 1024 Bytes Text

Th
ou

sa
nd

 S
ec

on
ds

Brute Force 16 bytes Key

Brute Force 24 bytes Key

Se
co

nd
s

79

5.1.4. AES

Three keys were used, 16 bytes (0000000099999999), 24 bytes

(000000000000000099999999) and 32 bytes Key

(00000000000000000000000099999999)

The cipher texts for the 16 bytes plain text is

16 bytes key:

wDK4q4b/9obx2h3aiTd0yg==

24 bytes key:

SljuwU1LoTjXx2Imtsruqg==

32 bytes key:

cy6ikfCY3ITpKNT7s9mbdg==

Tables 14 and 15 displays encryption, decryption and brute force attack results. While

Figures 50 to 55 show these times in relationship to each other’s.

80

Table 14. Encryption, decryption and brute force time for AES on 16 bytes text with different keys

16

Bytes

Text

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt

16B 3.6350E-5 9.4084E-5 9.3441E-6 9.3441E-6 3.5923E-5 3.7009E-5 3.4604E-5

24B 3.7206E-5 1.0178E-4 3.5923E-5 3.5068E-5 3.6778E-5 4.9351E-5 2.9321E-5

32B 3.6350E-5 7.4412E-5 7.4839E-5 3.9772E-5 3.6778E-5 5.2430E-5 2.0305E-5

Decrypt

16B 3.5923E-5 8.6386E-5 4.3193E-5 3.6778E-5 3.5068E-5 4.7469E-5 2.1990E-5

24B 3.3785E-5 8.4248E-5 3.5495E-5 3.2929E-5 3.3785E-5 4.4048E-5 2.2491E-5

32B 4.4904E-5 9.3228E-5 4.8752E-5 3.4640E-5 3.5923E-5 5.1489E-5 2.4079E-5

Brute

Force

Attack

16B 7.1090E+2
7.0100E+

2

7.0048E+

2
6.8354E+2

6.9876E+

2

6.9894E+

2

9.8328E+

0

24B 7.2169E+2
7.0812E+

2

7.1690E+

2
7.6204E+2

7.2928E+

2

7.2761E+

2

2.0724E+

1

32B 7.0765E+2
7.0546E+

2

7.0697E+

2
7.2328E+2

7.0933E+

2

7.1054E+

2

7.2545E+

0

The cipher text for the 1024 bytes plain text is

16 bytes key:

zWC/iVNmmiQ5H7Ps9AXw/olW6UEP/azYRRLkWoNTEDBRX6lQIZOPUIJj1t/yIB

BXsUjXoQaeeOMVCW76i8zUcJaSHPgp8C0O7pFG/2GkMEuIBBmDrKecA0mHkW

9nd0YraAKzSEKC3RUVlBonIVSwfihDHURBS769A7b5+YhbhrnCSioez8MAQscXC

jbzhTPPPELcNszf7mtE6bKPewbZdZHkFS2HaqO4Ywm+C39pxATl0fO69owel6QI2

GgvC3jWLJmB9m0Fv87hujGnNwH0zdS8g1gNFhylz5UnWHdOMfc3IMQB2UmCtG

kEbJRDS6amDgMG5xJLijtQKH4fXcal6URZv2CpE3Yvnz+lM7VRJwOvFZhamyHqB

fKzIMArU8J+RU5ll5CSfQTJqFe1aXLuNCNOlnSX1YJZW+bgtvIFleYp55fzr6twl1fjG

VCV9IWtruYw97HHeJsjK11GUlpXt+0+ziv4EfxN8ZBLeiojdPUXN31MmpJIX6skEX

b++xVfdudO0S8BDArOdIGyoj5PLv7BX97hq823Xh6xrei7Do55r06wNFxL+TiqeN9N

DZh0kgc2PFmPyafXlStowR4sSw==

81

24 bytes key:

Y0kE9N/ubtssitqMWSOgN3VRkiWRy2nqosdy6fUENdUA4ER3YEbVF1cRhEcRbRV

bKh54/YtPOHEtgTLZZNsMexwwIqpATwu6KtWEB9BabZkC5AUG0W7fFOeOA1Bi

spWzKL8rSeYRhuX3/xStURTAGYFn/mFfuDSN+ghPuxdOAmqAtpxxmnWg5hsPwld

NONshDnHKF1VjabYMVdbL/qnyfecfNp919tF4+VIGrxUZT6sorF3YuFW4jAroCcGx

2F6nud8nup3kD+6zfrCDBbRjG50i7eOru29G167tYEw94ZB/1LNguISsw5YXdO8/FHi

W3lxsI4/JHjMTuKCJo4lQFYUV0Vlv2vqNfvg76S6uR8SI9eO678GDK1K491QSs+e5

RMSnDxZI7zPcjtcLJkvR+6zJzklsDUAQ1KuzLVqmk9EZih9oYz7ex+Xzvx0BmT9NO

m/EtbtDRy1tzRKmo7gARPW5tlnSM74kzspJ4eZAgwQvwXpP9uOrQlfRVp0A8lbgE

WbAfFBundXqzNGhfK8CVbz+8O24KKzOxhls72kMWw04afk0eJMAB3HAG7SEwo

qawqf/V08YQycn2J77pvQPRw==

32 bytes key:

Kj0oKoHIxriUn80oqeLDNnWLXrgLw6A9h1vHJV691qL35ulMDv0OmvsQtF1wcspu/

d8SbXmMScm/s5a/SgK3FqKhc5opf/f9ZaAYfhZTggwy3rsu+RA+wyUkfONeNVe7gH

3BalEiOUrkR4SJA5WiC4XDHMvlHK5YiI8AbeIFjc98EH2OmToqBTJfR3CyWuoLo

E0WDte+4aZmsbgwk/kKSdXwHv4RqS0TH6D5qg4xZ7q0Af+ppF2Z50LHIqS2wfr9Z

ZUG6kRYKpBqqQ9CH2JdTPVQTuOYtiqwhfuVS24zDkrGrSxcJJVBhnngIS8fzJ6D6

TulQYoghDhajRwypEc6yBNU1wdtMGRoli9X+HCK6K9LHQPlcK/NtHuRPDiMbaro

MLvsPuwhgRuEfPr9kx/iT2sGrkZVAU0LqcaDwF41b2t6UZgGnUiR/AE9Z31qEV7Dp

T2t589Dk0aHLWU90Z4hqVDBU59MP8Vx9PlLTcocLEthZ7xZP0Pi4xT9LoTNGb0R

uPIBCSdH4aKQ+JO9nBzN2m/FstP0OPrMLxCXpaS2WlJ7boAcFpvzcMICwT1vkUX

0an68eX0t4rIqLRd6bK3IFw==

82

Table 15. Encryption, decryption and brute force time for AES on 1024 bytes text with different keys

1024

Bytes

Text

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt

16B 3.7206E-5 9.9643E-5 3.5495E-5 3.6778E-5 3.6778E-5 4.9180E-5 2.8217E-5

24B 1.1932E-4 4.7897E-5 4.5759E-5 1.2958E-4 4.3193E-5 7.7149E-5 4.3362E-5

32B 1.3300E-4 1.2659E-4 1.3172E-4 1.3599E-4 4.5331E-5 1.1453E-4 3.8830E-5

Decrypt

16B 3.6778E-5 3.4212E-5 3.6350E-5 3.5923E-5 3.4640E-5 3.5581E-5 1.1070E-6

24B 1.1461E-4 1.1974E-4 4.2338E-5 1.1974E-4 4.1910E-5 8.7669E-5 4.1630E-5

32B 1.5182E-4 9.9215E-5 4.6187E-5 1.1932E-4 4.0627E-5 9.1432E-5 4.7730E-5

Brute

Force

Attack

16B 1.1192E+3
1.1025E+

3

1.0945E+

3

1.0795E+

3

1.0860E+

3

1.0963E+

3
1.5426E+1

24B 1.1774E+3
1.1715E+

3

1.1694E+

3

1.1702E+

3

1.1783E+

3

1.1734E+

3
4.1944E+0

32B 1.1508E+3
1.1621E+

3

1.1508E+

3

1.1453E+

3

1.1524E+

3

1.1523E+

3
6.1072E+0

83

Figure 50. Encryption trials for AES, text size 16 bytes with different key lengths.

Figure 51. Decryption trials for AES, text size 16 bytes with different key lengths.

Figure 52. Brute Force attack trials for AES, text size 16 bytes with different key lengths.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

0 1 2 3 4 5 6

16 Byte Key

24 Byte Key

32 Byte Key

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

0 1 2 3 4 5 6

16 Byte Key

24 Byte Key

32 Byte Key

0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77

0 1 2 3 4 5 6

Th
ou

sa
nd

 S
ec

on
ds

16 Byte Key

24 Byte Key

32 Byte Key

Se
co

nd
s

Se
co

nd
s

Trials

Trials

Trials

84

Figure 53. Encryption trials for AES, text size 1024 bytes with different key lengths.

Figure 54. Decryption trials for AES, text size 1024 bytes with different key lengths.

Figure 55. Brute Force attack trials for AES, text size 1024 bytes with different key lengths.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

0 1 2 3 4 5 6

16 Byte Key

24 Byte Key

32 Byte Key

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

0 1 2 3 4 5 6

16 Byte Key

24 Byte Key

32 Byte Key

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

0 1 2 3 4 5 6

Th
ou

sa
nd

 S
ec

on
ds

16 Byte Key

24 Byte Key

32 Byte Key

Se
co

nd
s

Se
co

nd
s

Trials

Trials

Trials

85

Figures 56, summarizes the encryption and decryption times, while Figure 57 shows the

brute force attack times

Figure 56. Encryption and decryption average time for AES, text size 16 and 1024 bytes with different key lengths.

Figure 57. Brute Force attack average time for AES, text size 16 and 1024 bytes with different key lengths.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

16 Bytes Text 1024 Bytes Text

Encryption, 16 Byte Key

Encryption, 24 Byte Key

Encryption, 32 Byte Key

Decryption, 16 Byte Key

Decryption, 24 Byte Key

Decryption, 32 Byte Key

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 Bytes Text 1024 Bytes Text

Th
ou

sa
nd

 S
ec

on
ds

Brute Force, 16 Byte Key

Brute Force, 24 Byte Key

Brute Force, 32 Byte Key

Se
co

nd
s

86

 5.1.5. Blowfish

Four keys were used, 8 bytes (999999999), 16 bytes (0000000099999999), 24 bytes

(000000000000000099999999) and 32 bytes Key

(00000000000000000000000099999999)

The cipher texts for the 16 bytes plain text is

8 bytes key:

wyRRejFc9Yy1z1IfDaRZJg==

16 bytes key:

DeYwqctCGMsQQIPGzR96Ww==

24 bytes key:

Pswz+4rotXkJkwgiFxe7oA==

32 bytes key:

zBt04o6V+444fWI7IB8UrQ==

Tables 16 and 17 displays encryption, decryption and brute force attack results. While

Figures 58 to 63 show these times in relationship to each other’s.

87

Table 16. Encryption, decryption and brute force time for AES on 16 bytes text with

16

Bytes

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt

8B 1.2659E-4 6.8852E-5 6.8424E-5 6.9280E-5 7.6978E-5 8.2024E-5 2.5160E-5

16B 6.9707E-5 1.2872E-4 9.1945E-5 7.0135E-5 6.8852E-5 8.5873E-5 2.5845E-5

24B 7.0990E-5 7.0135E-5 8.8524E-5 7.0563E-5 7.0990E-5 7.4241E-5 7.9926E-6

32B 7.0135E-5 7.8260E-5 6.6714E-5 7.0990E-5 1.0349E-4 7.7918E-5 1.4902E-5

Decrypt

8B 6.8424E-5 1.3129E-4 6.7569E-5 6.9280E-5 6.5859E-5 8.0484E-5 2.8429E-5

16B 6.5431E-5 1.1718E-4 6.7997E-5 6.7569E-5 6.8424E-5 7.7320E-5 2.2311E-5

24B 1.0306E-4 1.6123E-4 6.7997E-5 6.6714E-5 6.6714E-5 9.3143E-5 4.1119E-5

32B 6.9280E-5 6.6286E-5 1.2017E-4 9.0662E-5 6.8424E-5 8.2965E-5 2.3024E-5

Brute

Force

Attack

8B
4.2154E+

3

4.0620E+

3

4.0671E+

3

4.0477E+

3

4.2266E+

3

4.1238E+

3
8.9157E+1

16B
4.1933E+

3

4.2197E+

3

4.2157E+

3

4.0569E+

3

4.0494E+

3

4.1470E+

3
8.6298E+1

24B
4.0835E+

3

4.2635E+

3

4.2534E+

3

4.2655E+

3

4.2619E+

3

4.2256E+

3
7.9562E+1

32B
4.2441E+

3

4.2535E+

3

4.2335E+

3

4.2665E+

3

4.2759E+

3

4.2547E+

3
1.6978E+1

The cipher texts for the 1024 bytes plain text is

8 bytes key:

33bhZbLL4sz+RtER2tmMV2Orw4i5zlCr20lLhw1qmk1YFxO4tcWpTuLr0T2QOEmq

ZZeLwOz7L5HNHMhjU4eQZ1UMH5+ypSqYBKDm8LWZ0xGhfOtNeoCqzLiH0wY

ePx7wsMI+c7lbayykYTpZ+AfhIiaQnvwwhTw+XKv7c2ktYvWOow6rREp55sK5Ysbk

6fu5HnzdU8nrkTLqC9IVqbc9qp0Ttjarq8hvXyuTM6NJi6YwAOAhs5KQiVhEXAvn4

EzFXk/xVo1kJhT8JF8iyLi1+QFUdTZK0rkL7MMAAON6qbEoXH9Qf7PVF6sW57h5

hki+BYCYGQ6261X3bqsa/qdthIeOt7lMDsPlkz/5Ebr1daEoXH9Qf7PVF/lYmuoyRky

88

K2pRXVL2XdrioNufEJ92N+tvP5pbvzx32XRFEsqm+Mwfyv7o9g0FjJW5YTnG7CMI

LfoFuDAiin5lkhB9PfQNksJpMtAXGmZ5Cx5O11JM0thxbxb8WRRnuM+TlkA52895

01o0MFyOvN2ijhKVrXyjUTK041rfZw57Nn10wLBZNGxD90sZH86BMkb6Pp/swvr7

4h8+ORPPdz6eQ750Kbfp4TA==

16 bytes key:

GOBFgaym3wYkmZU430AoyCuWSYihIODiUbxlZf88Ysb+FcHzWVOHjIFDSUf8sa

IW+I6YdvGGZoPSbCdn4Bl00BwRrgPqLJxgN9sDBOjE+jnqTyMKH77htMVIpIVbjj0

QRHpsEl5WIp4rruFU1I+Qz+neUUXip80bekw/5fvWEIC/zxFEaL49e6JQKT6lGj2Y8

YvgTAmzRHdUz3lSl4qbCOeC+6oFeS3ZAE01boCzXmqtLA2k8d655PTNwcbCvzP6

S3YLfNTiONSfPWByOTJY6LFDeBEXvVwTp+iLPRU/pNcJiYG/1T5qrqioT8d3vnp7

Z1Wuriwx9fGRwea0QfHGSXhAk2OrO1f7RuipTUzOG00JiYG/1T5qroZztUdbhOq9Sj

t5GUjF18NY8dR88Bwbf5esFzDpR6U2MCcQMjAIhFPhvC3Bv5vJGS8odDVuMJKH

o6IOKbd1VnDXK7cr+juBojaKmRvDwwfI2rwNcVyS3o+GmTxwvTbwj/TyawFpkxpq

H8wz7iu3t9nqW60ojf5N+2NF1brSQvw3yCZ11eyBLk9OxKWXDvDkzT6ehxYMUCz

6bnGhN+Cig7srDxy53LUr8w==

24 bytes key:

Dw3vfDqI8KImvut/+lYnOzaYzEZCb12HQPe/ZAEWSrbu1v2kJYUr80yQwtyL0EuGF

1XAPnIdMrrLDTei16lkdM3SeutLGRLhvcKolK0VPWvQEL1vG52gHFwTt7Ex340UF

NeHQCQ7GMaMs2LllutSYo2f4gsuW/nQrw1cjajwRo7LeLIz1Rso3bv6TBCTz2qVN1

5Rw2M52tdMs5z9a7/bJj3E2YlRu3s+/NpHJ4WJmp8BDQyxQqgHb7EYvl0vYEgRmT

wnsOP5kYEZRzcGyLALhH3glbqdEpXEPzyZOo9vBtwmAl+0ywYVJcre3L2CksUZ5

RerYwUusNW4HKPXPn+jaxzUXef/irKL4cQl1p9AYKUmAl+0ywYVJYfWQ8UYKh

lXT/vdPd+6JoWIz8K3Zvu4X63Q4BX1KMLUxnsafbAoaUiK6qQU9lIYkroRRVGZqp

v/oZGiXW6Xba1Z5IWdpD7SPPT2WYWZzdxxOIKRvMkhO+oVgpG+arrGxh14koha

RD/o+Udrq4U4wNVOXa6gmytowqziO95Pe3p9C4BsOsuH/lbnMCbTr/6aYqgYtErSy

Rm44qG+BIhAOHr/7obh20VehA==

32 bytes key:

3k8ZEI1TiFArEXX5aN9I5RvcGERSJ3KBcc51zDK08vF5yUNeRMXCSU2gPwybNSr

3rRStrj+Sb+I4amOlJfCZYDwZT9XiO0tTrDm+gn65/q/Fde5APp+TLMaYIfCflznUe1L

89

3jSS6DpWcUILgyis43q1K39FJaMS8U8+SAdojD/wyDFIhBENMnh8Gfobexk/tsvKTa

Pv83YYyHTPhzuvjQtccsWkNja7S6jAtFi+W6hHHmmxTAW2H3QbiDLDdNfgMS1p

RrE6BO3bmRp6db9+BYj5DF1HC8NkZtAlLcYnAkmTX2Oa2nUX3IwcLpJ16bd8dU

UceJ0PlNrJIFoSfV9GJgS3Kj4/eAKS7xg3BRhHDig7X2Oa2nUX3I5Fx6HMwT/iQu8k

U8E2LXIYm9fv/7MjWl+ZWED8c+JKWiBpyXQuUm2QLVnvwD+nBLIHOSM36TIy

ACBO/h6sqM5sekAYi9i8x5ZBvOe/E5GqNqIkp0CxhFz3bojs1GG3OoIS6WOyBw18L

1uTj+8/pp5ClqI0ZctQzteIq4QJyY7++gqsifjY2s2YXT1k3dPmqytDBGCv37tBHSOng+

n5NsnKazG3/7hntlw==

Table 17. Encryption, decryption and brute force time for AES on 1024 bytes text with

1024

Bytes

Key

Size
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

Encrypt

8B 1.5224E-4 1.5267E-4 1.4284E-4 1.5310E-4 1.3899E-4 1.4797E-4 6.5906E-6

16B 1.6465E-4 1.4412E-4 1.4626E-4 1.4711E-4 1.3899E-4 1.4822E-4 9.7078E-6

24B 1.7277E-4 1.3941E-4 9.8360E-5 1.6037E-4 7.8260E-5 1.2984E-4 4.0368E-5

32B 1.4284E-4 1.3642E-4 7.7833E-5 1.4326E-4 8.2109E-5 1.1649E-4 3.3484E-5

Decrypt

8B 1.5567E-4 1.3770E-4 7.5267E-5 7.4412E-5 7.5267E-5 1.0366E-4 3.9785E-5

16B 1.4626E-4 1.2830E-4 1.4540E-4 7.5267E-5 1.2231E-4 1.2351E-4 2.8933E-5

24B 1.4711E-4 1.5053E-4 8.1682E-5 7.3556E-5 7.4412E-5 1.0546E-4 3.9730E-5

32B 1.4497E-4 1.7405E-4 1.3257E-4 1.4925E-4 1.4540E-4 1.4925E-4 1.5219E-5

Brute

Force

Attack

8B
4.7120E+

3

4.7290E+

3

4.5738E+

3

4.6334E+

3

4.6419E+

3

4.6580E+

3
6.3054E+1

16B
4.7072E+

3

4.6979E+

3

4.7228E+

3

4.6187E+

3

4.6543E+

3

4.6802E+

3
4.2764E+1

24B
4.8397E+

3

4.8007E+

3

4.6669E+

3

4.7148E+

3

4.6264E+

3

4.7297E+

3
8.9419E+1

32B
4.8605E+

3

4.8630E+

3

4.7852E+

3

4.6898E+

3

4.6704E+

3

4.7738E+

3
9.1331E+1

90

Figure 58. Encryption trials for Blowfish, text size 16 bytes with different key lengths.

Figure 59. Decryption trials for Blowfish, text size 16 bytes with different key lengths.

Figure 60. Brute Force attack trials for Blowfish, text size 16 bytes with different key lengths.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

0 1 2 3 4 5 6

8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

0.0E+00
2.0E-05
4.0E-05
6.0E-05
8.0E-05
1.0E-04
1.2E-04
1.4E-04
1.6E-04
1.8E-04

0 1 2 3 4 5 6

8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

4.00

4.05

4.10

4.15

4.20

4.25

4.30

0 1 2 3 4 5 6

Th
ou

sa
nd

 S
ec

on
ds

 8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

Se
co

nd
s

Se
co

nd
s

Trials

Trials

Trials

91

Figure 61. Encryption trials for Blowfish, text size 1024 bytes with different key lengths.

Figure 62. Decryption trials for Blowfish, text size 1024 bytes with different key lengths.

Figure 63. Brute Force attack trials for Blowfish, text size 1024 bytes with different key lengths.

0.0E+00
2.0E-05
4.0E-05
6.0E-05
8.0E-05
1.0E-04
1.2E-04
1.4E-04
1.6E-04
1.8E-04
2.0E-04

0 1 2 3 4 5 6

8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

0.0E+00
2.0E-05
4.0E-05
6.0E-05
8.0E-05
1.0E-04
1.2E-04
1.4E-04
1.6E-04
1.8E-04
2.0E-04

0 1 2 3 4 5 6

8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

4.55

4.60

4.65

4.70

4.75

4.80

4.85

4.90

0 1 2 3 4 5 6

Th
ou

sa
nd

 S
ec

on
ds

 8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

Se
co

nd
s

Se
co

nd
s

Trials

Trials

Trials

92

Figures 64, summarizes the encryption and decryption times, while Figure 65 shows the

brute force attack times

Figure 64. Encryption and decryption average time for Blowfish, text size 16 and 1024 bytes with different key
lengths.

Figure 65. Brute Force attack average time for Blowfish, text size 16 and 1024 bytes with different key lengths.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

16 Bytes Text 1024 Bytes Text

Encryption, 8 Byte Key

Encryption, 16 Byte Key

Encryption, 24 Byte Key

Encryption, 32 Byte Key

Decryption, 8 Byte Key

Decryption, 16 Byte Key

Decryption, 24 Byte Key

Decryption, 32 Byte Key

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

16 Bytes Text 1024 Bytes Text

Th
ou

sa
nd

 S
ec

on
ds

8 Byte Key

16 Byte Key

24 Byte Key

32 Byte Key

Se
co

nd
s

93

Figure 65, 66, and 67 shows a general view for the average time of encryption,

decryption and brute force attack times for all the algorithms with different key lengths

for texts sizes 16 and 1024 respectively.

Figure 66. Average encryption time for all algorithms

Figure 67. Average decryption time for all algorithms

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

16 Bytes 1024 Bytes

Caesar 5

Caesar 10

Caesar 15

DES

3DES 16 Byte

3DES 24 Byte

AES 16 Byte

AES 24 Byte

AES 32 Byte

Blowfish 8 Byte

Blowfish 16 Byte

Blowfish 24 Byte

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

16 Bytes 1024 Bytes

Caesar 5

Caesar 10

Caesar 15

DES

3DES 16 Byte

3DES 24 Byte

AES 16 Byte

AES 24 Byte

AES 32 Byte

Blowfish 8 Byte

Blowfish 16 Byte

Blowfish 24 Byte

Blowfish 32 Byte

Se
co

nd
s

Se
co

nd
s

94

Figure 68. Average Brute force attack time for all algorithms

0.0

1.0

2.0

3.0

4.0

5.0

6.0

16 Bytes 1024 Bytes

T
ho

us
an

d
Se

co
nd

s

Caesar 5

Caesar 10

Caesar 15

DES

3DES 16 Byte

3DES 24 Byte

AES 16 Byte

AES 24 Byte

AES 32 Byte

Blowfish 8 Byte

Blowfish 16 Byte

Blowfish 24 Byte

Blowfish 32 Byte

95

5.2. Phase Two Results

Phase two results are obtained from running the algorithms on the Raspberry Pi

Due to the similar architecture of the Raspberry Pi and modern mobile phones, the

Raspberry Pi can be considered as an entry level smart phone. Hence, the brute force

attack trials will not be conducted, encryption and decryption times and power

consumption are more important in a mobile application.

The power consumption reading was taken using a multi-meter connected in series to

the general purpose input/output pins (GPIO pins). The readings were taken during the

idle state (running the graphical user interface, and from the command line) and while

running the algorithms, the difference between the two reading is the amount of currents

drawn by the device to execute the algorithms. The idle state gave an average reading of

355mA, and for all the algorithms the average current reading was 400mA, with

maximum current value of 419mA, the CPU usage reached 100% when executing the

algorithms, these readings was consistent for algorithms running in the terminal in the

graphical user interface and in the command line environment.

Time trials results of for encryption and decryption are displayed in Table 17.

Table 18. Average encryption and decryption time of 16 byte text on a Raspberry Pi

Algorithms Key Size Encryption Average (seconds) Decryption Average (seconds)

Caesar

5 shifts 0.0011 0.0012

10 shifts 0.0013 0.0013

15 shifts 0.001 0.0008

DES 8 Bytes 0.00165 0.0017

3DES
16 Bytes 0.0016 0.0017

24 Bytes 0.0018 0.00185

AES

16 Bytes 0.0015 0.0015

24 Bytes 0.0015 0.00175

32 Bytes 0.0015 0.0015

Blowfish

8 Bytes 0.0019 0.00185

16 Bytes 0.0018 0.00165

24 Bytes 0.00165 0.00185

32 Bytes 0.0019 0.0018

96

These results were recorded using an oscilloscope, since the Raspberry Pi does not has a

precise timer function. Figure 69 shows a snapshot of the oscilloscope recording the

encryption time for the DES algorithm

Figure 69. A snapshot form the oscilloscope showing the encryption time of DES on the Raspberry Pi.

97

5.3. Discussion

The discussion will be separated into parts according to the encryption algorithms.

There are several points to be mentioned regarding the testing process and the obtained

results:

• Phase one tests were conducted on a general purpose laptop computer, with

preloaded operating system and different programs running in the background, it

was not possible to obtain identical testing conditions.

• The different programs running at the same time yields a more accurate results,

since some of the NFC devices has an operating system running on them, with

background processes running while the device is either encrypting or

decrypting data.

• The reduced key space is important for two reasons

o It allows obtaining results with the given time

o It simplified the brute force attack algorithm.

• Due to time constrains, it was not possible to run the tests more than five times

per algorithm, the average time for running the brute force attack on the

windows computer was 271406.678170143 seconds which is equal roughly to

75 hours of consecutive non interrupted running time.

Caesar: Caesar encryption algorithms is significantly affected by the text size, for the

small text, Caesar had the fastest in encryption and decryption times, however with the

larger text size, it had the slowest encryption and decryption time. The brute force attack

times were consistently the shortest of all the encryption algorithms, by a significant

margin.

DES: DES key is 8 bytes long, with parity bits at the end of each byte, this reduces the

total possible key space, in the brute force attack test that was conducted. The used key

for encryption was (99999999). However, the key that was used to successfully decrypt

the cipher text was (88888888). This can be explained in Table 19.

98

Table 19. comparison between encryption key and brute force attack key.

Cipher

Key
00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001

Used

Key
0000100X 0000100X 0000100X 0000100X 0000100X 0000100X 0000100X 0000100X

Brute

Force

Key

00001000 00001000 00001000 00001000 00001000 00001000 00001000 00001000

This property of DES significantly reduces the available key space from 264 to 256. And

this not a specific case for the reduced key space, it is true for all possible key space

used for DES algorithm.

3DES: this algorithm is an improvement over the standard DES, as seen in the results,

the brute force time is improved over the time needed to break DES given the same

amount of trials. There is an increase in encryption and decryption times over standard

DES. However, the increase in encryption and decryption times when compared to the

increase in the needed time to brute force an encrypted text is smaller. The key used for

the successful brute force attack was identical to the key used for encryption. 3DES

consists of three DES phases, for encrypting, it encrypts with the first key, decrypts with

the second key, and encrypts again with the third key. And the decryption process is the

executed in a reverse order. For a key length of 16 bytes, the first and third key are the

same, while in 24 bytes key length, each key is different, and that is why it is not

possible to expand the key to more than 24 bytes.

AES: except for Caesar, AES is the fastest algorithms for encryption and decryption

even when using the longest key length possible, however this speed is also reflected on

the brute force attack time. The AES encryption and decryption time is significantly

affected by the plain text size, for the 16 bytes text, the encryption and decryption time

differences were very small, these differences increased with the increase of the plain

text size. The text size had no noticeable effect one the brute force attack time with

different key sizes.

Blowfish: encryption times for the different key lengths had almost an inverse relation,

the smaller the key, the longer it takes to encrypt, this is true for both text sizes tested,

99

the relation between decryption times and key lengths are different, with smaller texts,

the decryption times were close to each other, and with the larger text size, the largest

key length had the largest decryption time. The inconsistent results can be explained by

the status of the machine running the algorithms with different programs running in the

background, the difference between the longest and shortest decryption times for the

small text however is 15 micro seconds, and for the larger text the difference is 45

micro seconds

The encryption and decryption times obtained from the Raspberry Pi have a much

smaller difference between different algorithms (maximum difference for encryption

times was 0.0008 seconds and for decryption times 0.00105 seconds), compared to the

average encryption and decryption times.

100

6. Conclusion

Choosing the suitable encryption algorithm for any application is subject to several

factors, the level of security needed, the amount of available memory, the available time

for encryption and decryption and many others.

Based on the conducted tests and obtained results, several conclusions can be made

about all the test encryption algorithms.

The Caesar encryption algorithm has the worst performance out of the tested

algorithms, it had the longest encryption and decryption time, and the least immunity

against the brute force attack, also it does not change the basic structure of the text, does

not hide the frequency of the symbols in the text, and since it is based on substitution, it

does not have a key. The Caesar algorithm is not suitable as a modern encryption

algorithm, no matter what application it is used for. It does however provide a

convenient way for cryptography and help familiarize some basic concepts for

educational purposes.

Based on the results DES is more secure against brute force attack than AES, given the

same number of trials, which is DES major weakness, the limited key space makes

calculating the key an easier task, which is helped by the reduction in the key space due

to the exclusion of the parity bits.

AES security is based on the significantly larger key space compared to DES. For the

same key used for both algorithms (setting the rest of the AES bytes in the key to zero)

AES encrypted text can deciphered faster than a text encrypted with DES, however, this

can be mitigated using a longer key, for each byte, the brute force attack time needed to

decipher an encrypted text is multiplied approximately by ten times.

The short encryption and decryption time of the AES is another important advantage,

from the current consumption readings, a shorter encryption and decryption time means

less energy used, which helps in a device that runs on limited power supply such as a

mobile phone powered by a battery.

3DES is an improvement over standard DES, by expanding the key space. And just as

in AES, the immunity against brute force attack can be improved by utilizing the rest of

101

the available bytes in the key. However, due to the smaller key space (24 bytes against

32), AES can offer a better immunity. But comparing both algorithms using a similar

key, based on the results, 3DES is more secure than AES.

3DES is useful in applications where memory is a scars resource, and it is also suitable

for systems that are based on DES, which can be upgraded to 3DES with minimum

modifications.

Blowfish performed very well in all three tests with all different key lengths, it had the

largest brute force attack time even when the smallest key length was used. Encryption

and decryption times were less than the ones obtained from 3DES, and the brute force

attack times where similar for the same key when different text sizes were used.

The flexibility Blowfish offer from the key length size is a very important advantage.

Larger keys can be used according to the level of security needed, since based on the

results, the immunity against brute force attacks is increased by increasing the key size,

so increasing the key length and utilizing the all available bytes in the key can yield to a

very robust and secure encryption, without compromising the encryption and decryption

times.

Based on the results obtained from the tests on the computer and on the Raspberry Pi,

blowfish encryption algorithm is recommended for applications with high security

requirements, and the flexible key lengths makes it suitable for applications with limited

memory.

102

Future work

The future work could involve observing the effect different encryption modes have on

the encryption and decryption times, such as Cipher-block chaining, and Cipher

feedback, as well as the effect they have on the immunity against brute force attacks.

Different encryptions should also be considered such as elliptic curve cryptography,

Twofish and Threefish, with larger key space if possible.

Designing a dedicated system for testing the encryption algorithms with different

programming language might also be considered, in order to minimize the background

application interference.

Different attacks can be considered beside the brute force attacks, focusing on one

encryption algorithm at a time.

Using an actual smartphone instead of the Raspberry Pi for testing different encryption

algorithms, can yield a more accurate reading on the encryption and decryption times,

as well as a precise reading for the power consumption.

103

References

Atmel (2010). Considerations for RFID Technology Selection [online] [cited 12 Feb.

2012]. Available from the Internet <URL:

http://www.docstoc.com/docs/44727761/Considerations-for-RFID-Technology-

Selection>

Balanis, Constantine A. (2005). Antenna Theory: Analysis and Design. John Wiley and

Sons, Inc. 1136 p. ISBN: 978-0-471-66782-7.

Beazley, David and Brian K. Jones (2013). Python Cookbook 3rd Edition, O’reily,

 ISBN:978-1-449-34037-7

Burkard, Simon (2013). Near Field Communication in Smartphones. Berlin Institute of

 Technology, Germany Available from the Internet <URL https://www.snet.tu-

 berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-

 smartphones_burkard.pdf

Cisco (2008). Wi-Fi Location-Based Services 4.1 Design Guide.158 p. Available from

 the Internet <URL:

 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Mobility/WiFiLBS-

 DG.pdf

Cardlogix (2009). Smart Card Security Basics. Cardlogix publication . Available from

 the Internet <URL:www.smartcardbasics.com

ETSI (2003). Near Field Communication (NFC)IP-1 : Interface and Protocol (NFCIP-

 1).[online] [cited 8 May. 2012]. Available from the Internet

 <URL:http://www.etsi.org/deliver/etsi_ts/102100_102199/102190/01.01.01_60/

 ts_102190v010101p.pdf>

Finkenzeller, Klaus (2010). RFID HANDBOOK 3rd edition. Wiltshire, UK. John Wiley

 & Sons. ISBN 978-0-470-69506-7

http://www.docstoc.com/docs/44727761/Considerations-for-RFID-Technology-Selection
http://www.docstoc.com/docs/44727761/Considerations-for-RFID-Technology-Selection
https://www.snet.tu-/
https://www.snet.tu-/
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Mobility/WiFiLBS-
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Mobility/WiFiLBS-
http://www.smartcardbasics.com/

104

Gatliff, Bill (2003). Encrypting data with the Blowfish algorithm. Available from the

 Internet <URL:http://www.embedded.com/design/configurable-

 systems/4024599/Encrypting-data-with-the-Blowfish-algorithm

Hioki, Warren (2000). Telecommunications. 4th Ed. New Jersey, USA: Prentice Hall.

 ISBN: 013020031X.

Hossein Motlagh, Naser (2012). Near Field Communications (NFC) a Technical

 Overview. University of Vaasa

Haselsteiner, Ernst & Klemens Breitfuß (2006). Security in Near Field

 Communication (NFC). [online] [cited 8 May. 2012]. Available from the

 Internet <URL:http://ece.wpi.edu/~dchasaki/papers/Security%20in%20NFC.pdf

ISO/IEC 7810 (2002). Identification cards — Physical characteristics

ISO/IEC 14443-3 (1999). Identification cards - Contactless integrated circuit(s) cards-

 Proximity cards - Part 3: Initialization and anti-collision

ISO/IEC 14443-3 (1998). Identification cards - Contactless integrated circuit(s) cards-

 Proximity cards - Part 4: Transmission Protocol

ISO/IEC 15693-3 (2007). Identification cards - Contactless integrated circuit(s) cards -

 Vicinity cards - Part 3: Anti-collision and transmission protocol

ISO/IEC 18092 (2013). Information technology - Telecommunications and information

 exchange between systems - Near Field Communication - Interface and Protocol

 (NFCIP-1)

Madlmayr, G. J. Langer, C. Kantner & J Scharinger (2008). NFC Devices: Security

 and Privacy . Univ. of Applied Science of Upper Austria, The Third

 International Conference on Availability, Reliability and Security, Barcelona

 Available from the Internet

http://www.embedded.com/design/configurable-systems/4024599/Encrypting-data-with-the-Blowfish-algorithm

105

 <URL:http://ieeexplore.ieee.org.proxy.tritonia.fi/xpl/articleDetails.jsp?tp=&arnu

 mber=4529403&queryText%3DNFC+Devices%3A+Security+and+Privacy

Martelli, Alex (2003), Python in a Nutshell 2nd edition, O’riely. ISBN:978-0-596-

 10046-9

Mulliner, Collin (2009). Vulnerability Analysis and Attacks on NFC-enabled Mobile

 Phones. IWSS March 2009 Fukuoka Japan. Available from the Internet

 <URL:http://www.mulliner.org/nfc/

Rankl , Wolfgang & Wolfgang Effing (2010). Smart Card Handbook. 4th Edition, John

 Wiley & Sons. ISBN: 978-0-470-74367-6

Penttonen, Martti (2011). Data Security. University of Eastern Finland

Qian, Yang (2013). Applied Cryptography in Embedded Systems. University of Vaasa

Stalling, William (2011). Cryptography and Network Security, 5th Edition. Prentice

 Hall.

Standard ECMA-373 (2012). Near Field Communication Wired Interface (NFC-WI),

 2nd Edition.

Ul-Haq, Salman, Jawad Masood, Aamir Majeed & Usman Aziz (2011). Bulk

 Encryption on GPUS. Available from the Internet <URL:

 http://developer.amd.com/resources/documentation-articles/articles-

 whitepapers/bulk-encryption-on-gpus/

Van Damme, Gauthier & Karel Wouters (2009). Practical Experiences with NFC

 Security on mobile Phones. Katholieke Universiteit Leuven. Available from the

 Internet<URL:http://www.cosic.esat.kuleuven.be/publications/article-1288.pdf

http://developer.amd.com/resources/documentation-articles/articles-

106

www.gsmarena.com/qualcomm_unveils_snapdragon_810_and_808_64bit_chipset

 s-news-8241.php

http://www.gsmarena.com/qualcomm_unveils_snapdragon_810_and_808_64bit_chipset
http://www.gsmarena.com/qualcomm_unveils_snapdragon_810_and_808_64bit_chipset

107

Appendices

Appendix 1: Caesar Source Code.

 ## ##
 ## Caesar by Mohammed A. Mohammed ##
 ## ##
#######################################

import time
import timeit

this function is for deciding whether the user wants to encrypt or decrypt
def getMode():
 while True:
 print('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?')
 mode = input()
 if mode in 'e d b'.split():
 return mode
 else:
 print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.')

#this funiction is for the user to input the plain/ciphered text
def text():
 print('Enter text:')
 return input()

#this funiction is for choosing the key
def getKey():
 key = 0
 while True:
 print('Enter the key number')
 key = int(input())
 key = key%95 # the key is set in module 95 so it will cover the range of all ASCII values
without exceeding it
 return key

#this funiction is for the encryption/decryption
def getTranslatedMessage(mode, text, key):
 start = time.clock()
 if mode[0] != 'b':
 if mode[0] == 'd':
 key = -key # since the encryption and decryption is Caesar are the exact opposite, the if
statment only flips the sign of the key
 translated = ''

 for symbol in text:
 num = ord(symbol) # getting the numerical value for the symbols (between 32-126)
 mnum = num-32 # tranfaring the value of the symbol before shifting it to the range of
(0-94)

108

 msnum = (mnum+key)%95 # shifting the modified value of the key within the allowed
range (0-94)
 snum = msnum+32 # returning the value to the ASCII range (32-126)
 translated += chr(snum) # adding the new value to the new sring
 end = time.clock()
 print ("execution time is", end-start)
 return translated

mode = getMode()
text = text()
if mode[0] != "b":
 key = getKey()
 print('Your translated text is:')
 print(getTranslatedMessage(mode, text, key))
else:
 print("enter a part of the plain text")
 text2 = input("")
 for key in range (0, 95, 1):
 start = time.clock()
 translated = ("")
 for symbol in text:
 num = ord(symbol)
 mnum = num-32
 msnum = (mnum+key)%95
 snum = msnum+32
 translated += chr(snum)

 if translated.find(text2) != -1:
 print ("\nthe key is =",key)
 print ("\nand the palin text is:\n")
 print (translated)
 end = time.clock()
 print ("execution time is", end-start)

109

Appendix 2: DES Source Code.

######################################
 ## ##
 ## DES by Mohammed A. Mohammed ##
 ## ##
######################################

import time
import timeit
from Crypto.Cipher import DES #encryption is used for disguising data
import os # os is for urandom, which is an accepted producer of randomness that is suitable for
cryptology.
import base64

print ("key size is fixed at 8 Bytes including parities (56 bits effective)")
size = 8

key = '99999999'
cipher = DES.new(key)
BS = 8
ciphertext = ""
testtext = ""

deciding to encrypt, decrypt, or brute force a text.
def getMode():
 while True:
 mode = input('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n')
 if mode in 'e d b'.split():
 return mode
 else:
 print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n')

encryption function
def encrypt(text):
 start = time.clock()
 length = len(plaintext)
 pad = lambda s: s + (BS - len(s) % BS) * ('~')
 paddedtext = pad(plaintext)
 encrypted = DES.new(key, DES.MODE_ECB)
 ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("utf-8")
 end = time.clock()
 print ("execution time is", end-start)
 return ciphertext

decryption function
def decrypt(text):
 start = time.clock()
 decrypted = DES.new(key, DES.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("utf-8")
 l = paddedtext.count ('~')
 end = time.clock()

110

 print ("execution time is", end-start)
 return paddedtext[:len(paddedtext)-l]

brute force attack function
first part, generating the test keys
def testkeys ():
 start = time.clock()
 for i in range (100000000):
 temp = '{:08d}'.format (i)
 if (brute(temp)) == 1:
 end = time.clock()
 print ("execution time is", end-start)
 break

second part, checking the test keys to decrypt the cipher text
def brute(testkey):
 testkey = format (testkey)
 decrypted = DES.new(testkey, DES.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("latin-1")

 if paddedtext.find(testtext) != -1:
 print ("the key is ",testkey)
 l = paddedtext.count ('~')
 print (paddedtext[:len(paddedtext)-l])
 return 1
 else:
 return 0

the begining of the program
mode = getMode()

print ("key is:", key)

if mode[0] == 'e':
 plaintext = input("Enter the plaintext: ")
 encrypted = encrypt(plaintext)
 print ("encrypted:", encrypted)

elif mode [0] == 'd':
 cipher = input("Enter the ciphertext: ")
 decrypted = decrypt(cipher)
 print ("decrypted:\n", decrypted)

else:
 cipher = input("Enter the ciphertext: ")
 testtext = input("enter a part of the plain text: ")
 testkeys ()

111

Appendix 3: 3DES Source Code.

 ## ##
 ## 3DES by Mohammed A. Mohammed ##
 ## ##

import time
import timeit
from Crypto.Cipher import DES3 #encryption is used for disguising data
import os # os is for urandom, which is an accepted producer of randomness that is suitable for
cryptology.
import base64

print ("choose key size")
size = int(input())
while not (size in [16,24]):
 print("wrong key size")
 print ("choose a suitable key size")
 size = int(input())

key = '0000000099999999'
cipher = DES3.new(key)
BS = 8
ciphertext = ""
testtext = ""

deciding to encrypt, decrypt, or brute force a text.
def getMode():
 while True:
 mode = input('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n')
 if mode in 'e d b'.split():
 return mode
 else:
 print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n')

encryption function
def encrypt(text):
 start = time.clock()
 length = len(plaintext)
 pad = lambda s: s + (BS - len(s) % BS) * ('~')
 paddedtext = pad(plaintext)
 encrypted = DES3.new(key, DES3.MODE_ECB)
 ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("utf-8")
 end = time.clock()
 print ("execution time is", end-start)
 return ciphertext

decryption function
def decrypt(text):

112

 start = time.clock()
 decrypted = DES3.new(key, DES3.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("utf-8")
 l = paddedtext.count ('~')
 end = time.clock()
 print ("execution time is", end-start)
 return paddedtext[:len(paddedtext)-l]

brute force attack function
first part, generating the test keys
def testkeys ():
 start = time.clock()
 for i in range (10000000000000000):
 temp = '{:016d}'.format (i)
 if (brute(temp)) == 1:
 end = time.clock()
 print ("execution time is", end-start)
 break

second part, checking the test keys to decrypt the cipher text
def brute(testkey):
 testkey = format (testkey)
 decrypted = DES3.new(testkey, DES3.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("latin-1")

 if paddedtext.find(testtext) != -1:
 print ("the key is ",testkey)
 l = paddedtext.count ('~')
 print (paddedtext[:len(paddedtext)-l])
 return 1
 else:
 return 0

the begining of the program
mode = getMode()

print ("key is:", key)

if mode[0] == 'e':
 plaintext = input("Enter the plaintext: ")
 encrypted = encrypt(plaintext)
 print ("encrypted:", encrypted)

elif mode [0] == 'd':
 cipher = input("Enter the ciphertext: ")
 decrypted = decrypt(cipher)
 print ("decrypted:\n", decrypted)

else:
 cipher = input("Enter the ciphertext: ")
 testtext = input("enter a part of the plain text: ")
 testkeys ()

113

Appendix 4: AES Source Code.

######################################
 ## ##
 ## AES by Mohammed A. Mohammed ##
 ## ##
######################################

import time
import timeit
from Crypto.Cipher import AES #encryption is used for disguising data
import os # os is for urandom, which is an accepted producer of randomness that is suitable for
cryptology.
import base64

print ("choose key size")
size = int(input())
while not (size in [16,24,32]):
 print("wrong key size")
 print ("choose a suitable key size")
 size = int(input())

key = '0000000099999999'
cipher = AES.new(key)
BS = 16
ciphertext = ""
testtext = ""

deciding to encrypt, decrypt, or brute force a text.
def getMode():
 while True:
 mode = input('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n')
 if mode in 'e d b'.split():
 return mode
 else:
 print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n')

encryption function
def encrypt(text):
 start = time.clock()
 length = len(plaintext)
 pad = lambda s: s + (BS - len(s) % BS) * ('~')
 paddedtext = pad(plaintext)
 encrypted = AES.new(key, AES.MODE_ECB)
 ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("utf-8")
 end = time.clock()
 print ("execution time is", end-start)
 return ciphertext

decryption function
def decrypt(text):
 start = time.clock()

114

 decrypted = AES.new(key, AES.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("utf-8")
 l = paddedtext.count ('~')
 end = time.clock()
 print ("execution time is", end-start)
 return paddedtext[:len(paddedtext)-l]

brute force attack function
first part, generating the test keys
def testkeys ():
 start = time.clock()
 for i in range (10000000000000000):
 temp = '{:016d}'.format (i)
 if (brute(temp)) == 1:
 end = time.clock()
 print ("execution time is", end-start)
 break

second part, checking the test keys to decrypt the cipher text
def brute(testkey):
 testkey = format (testkey)
 decrypted = AES.new(testkey, AES.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("latin-1")

 if paddedtext.find(testtext) != -1:
 print ("the key is ",testkey)
 l = paddedtext.count ('~')
 print (paddedtext[:len(paddedtext)-l])
 return 1
 else:
 return 0

the begining of the program
mode = getMode()

print ("key is:", key)

if mode[0] == 'e':
 plaintext = input("Enter the plaintext: ")
 encrypted = encrypt(plaintext)
 print ("encrypted:", encrypted)

elif mode [0] == 'd':
 cipher = input("Enter the ciphertext: ")
 decrypted = decrypt(cipher)
 print ("decrypted:\n", decrypted)

else:
 cipher = input("Enter the ciphertext: ")
 testtext = input("enter a part of the plain text: ")
 testkeys ()

115

Appendix 5: Blowfish Source Code.

 ## ##
 ## Blowfish by Mohammed A. Mohammed ##
 ## ##

import time
import timeit
from Crypto.Cipher import #encryption is used for disguising data
import os # os is for urandom, which is an accepted producer of randomness that is suitable for
cryptology.
import base64

print ("choose key size")
size = int(input())
while not (size in range (4, 57)):
 print("wrong key size")
 print ("choose a suitable key size")
 size = int(input())

key = '99999999'
cipher = Blowfish.new(key)
BS = 8
ciphertext = ""
testtext = ""

deciding to encrypt, decrypt, or brute force a text.
def getMode():
 while True:
 mode = input('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n')
 if mode in 'e d b'.split():
 return mode
 else:
 print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n')

encryption function
def encrypt(text):
 start = time.clock()
 length = len(plaintext)
 pad = lambda s: s + (BS - len(s) % BS) * ('~')
 paddedtext = pad(plaintext)
 encrypted = Blowfish.new(key, Blowfish.MODE_ECB)
 ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("utf-8")
 end = time.clock()
 print ("execution time is", end-start)
 return ciphertext

decryption function
def decrypt(text):
 start = time.clock()

116

 decrypted = Blowfish.new(key, Blowfish.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("utf-8")
 l = paddedtext.count ('~')
 end = time.clock()
 print ("execution time is", end-start)
 return paddedtext[:len(paddedtext)-l]

brute force attack function
first part, generating the test keys
def testkeys ():
 start = time.clock()
 for i in range (10000000000000000):
 temp = '{:08d}'.format (i)
 if (brute(temp)) == 1:
 end = time.clock()
 print ("execution time is", end-start)
 break

second part, checking the test keys to decrypt the cipher text
def brute(testkey):
 testkey = format (testkey)
 decrypted = Blowfish.new(testkey, Blowfish.MODE_ECB)
 paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("latin-1")

 if paddedtext.find(testtext) != -1:
 print ("the key is ",testkey)
 l = paddedtext.count ('~')
 print (paddedtext[:len(paddedtext)-l])
 return 1
 else:
 return 0

the begining of the program
mode = getMode()

print ("key is:", key)

if mode[0] == 'e':
 plaintext = input("Enter the plaintext: ")
 encrypted = encrypt(plaintext)
 print ("encrypted:", encrypted)

elif mode [0] == 'd':
 cipher = input("Enter the ciphertext: ")
 decrypted = decrypt(cipher)
 print ("decrypted:\n", decrypted)

else:
 cipher = input("Enter the ciphertext: ")
 testtext = input("enter a part of the plain text: ")
 testkeys ()

	Abstract
	1. Introduction
	2. Literature Review
	3. Technical Overview
	3.1. RFID Overview
	3.1.1. RFID components
	3.1.2. Classification of RFID systems
	3.1.3. RFID coupling mechanism
	3.1.4. RFID frequency bands
	3.1.5. RFID standards

	3.2. NFC overview
	3.2.1. NFC coding and bit representation
	3.2.2. NFC characteristics (frequency and data rates)
	3.2.3. Communication modes
	3.2.4. NFC protocols
	3.2.5. Frame formatting
	3.2.6. Passive communication mode
	3.2.7. Passive communication mode activation flow
	2.2.8. Active communication mode
	3.2.9. Active communication mode Activation flow
	3.2.10. NFC communication modes

	3.3. Smart Cards
	3.3.1. Physical Properties
	3.3.2. Smart Card Micro Controllers
	3.3.3. Contactless Smart Cards
	Close integrated circuit cards (ISO/IEC 14443)
	Proximity integrated circuit cards (ISO/IEC 14443)
	Vicinity integrated circuit cards (ISO/IEC 15693)
	NEAR FIELD COMMUNICATION (NFC)

	4. Practical Part
	4.1. Encryption Algorithms
	4.1.1. Caesar
	4.1.2. DES/3DES
	4.1.3. AES
	4.1.4. Blowfish
	4.1.5 Elliptic Curve Cryptography

	4.2. Experimental Procedures
	4.2.1. System Description

	5. Results
	5.1. Phase one results
	5.1.1. Caesar
	5.1.2. DES
	4.1.3. 3DES
	5.1.4. AES
	5.1.5. Blowfish

	5.2. Phase Two Results
	5.3. Discussion

	6. Conclusion
	Future work

	References
	Appendices
	Appendix 1: Caesar Source Code.
	Appendix 2: DES Source Code.
	Appendix 3: 3DES Source Code.
	Appendix 4: AES Source Code.
	Appendix 5: Blowfish Source Code.

