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A B S T R A C T   

This paper explores whether the overall evolution of Bitcoin log-prices would manifest a log- 
period power-law singularity (LPPLS) signature, eventually resulting in the arrival of a finite- 
time singularity. Calibrating the LPPLS model using daily data on Bitcoin covering the 
2011—2023 period, this study indeed finds evidence for a strong LPPLS signature suggesting the 
arrival of a spontaneous singularity in the year 2129. Further striking evidence suggests that 
Bitcoin will experience what we term a close-to-singularity-condition near to the year 2050—a 
remarkable coincidence with the recently documented arrival of a finite-time singularity in U.S. 
equities.   

1. Introduction 

Reoccurring bubble formations appear to be a stylized fact of cryptocurrencies (Kyriazis et al., 2020). Kyriazis et al. (2020) 
highlight that the log-period power-law singularity (LPPLS) model is a typical tool to identify such bubble formations. Also, Wheatley 
et al. (2019) model universal super-exponential unsustainable growth manifested in the price evolution of Bitcoin with LPPLS models 
which parsimoniously capture diverse positive feedback phenomena, such as herding and imitation. Wheatley et al. (2019) show that 
the LPPLS model provides an ex-ante warning of market instabilities. In their study, the authors use hourly data on Bitcoin from 
January 1, 2012 to January 8, 2018 and identify five bubble formations which ended on 18 Aug 2012, 11 Apr 2013, 23 Nov 2013, 18 
Dec 2017, and 18 Dec 2017. 

Relatedly, Shu and Zhu (2020) propose a novel adaptive multilevel time series detection methodology based on the LPPLS model to 
detect bubble formations in the cryptocurrency market and demonstrate that their method provides real-time detection of bubbles. 
Interestingly, Wang et al. (2022) examine price bubbles in the NFT and DeFi markets and conclude that these markets exhibit some 
intrinsic value and should not be dismissed as simply bubbles. Further, Chaim and Laurini’s (2019) study—entitled “Is Bitcoin a 
bubble?”—uses daily price data between January 2013 and September 2018 and finds mixed results. Specifically, their results suggest 
the existence of a bubble in Bitcoin prices from early 2013 to mid-2014, but, interestingly, not in late 2017. Is Bitcoin in the process of a 
long-lasting bubble formation? This is a question which still remains unanswered. The present study attempts to fill this gap in the 
literature. 
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Whereas earlier studies focused on exploring temporary episodes of bubble formations, this study exclusively takes a coarse- 
grained perspective like Johansen and Sornette (2001), who were the first to fit the LPPLS model to U.S. equity data using the 
overall available data from 1790 to 1999. The authors found that the dynamics of equities are compatible with a spontaneous sin-
gularity occurring around 2052, signaling an abrupt transition into a new regime. Likewise, we consider the whole information set 
derived from all available data on Bitcoin log-prices to explore whether Bitcoin is in the process of a long-lasting bubble formation. In 
doing so, we add to the existing literature by answering the following important question: Does Bitcoin serve as a meaningful tool for 
long-term investments? This is not a trivial question because recent literature documented that Bitcoin rather serves as an investment 
tool as opposed to serving as a medium of exchange (Baur et al., 2018). 

Employing daily data on Bitcoin over the January 1, 2011 to September 17, 2023 period, we calibrate the LPPLS model using the 
methodological approach recently proposed by Grobys (2023). To test whether the LPPLS signature is statistically significant, we 
implement the residual test proposed by Lin et al. (2014). As an additional robustness check, we also explore whether log-prices of 
Bitcoin exhibit explosiveness (Grobys, 2023). 

This study has some important contributions. First, it extends the literature on bubble formations in cryptocurrencies (i.e., Kyriazis 
et al., 2020; Wheatley et al., 2019). Whereas earlier studies focused on specific temporary episodes, this study makes use of the whole 
information embedded in the log-prices of Bitcoin. Next, another strand of literature is devoted to analyzing the underlying mechanism 
that could explain the pricing of Bitcoin. For instance, de la Horra et al. (2019) argue that whereas Bitcoin is not demanded as a 
safe-haven commodity or a medium of exchange, in the short term, the demand for Bitcoin is mainly driven by speculation. We argue 
that evidence for a finite-time singularity in the distant future could indicate that Bitcoin’s price evolution is driven by herding and 
imitation, in line with the theory of the LPPLS methodology, as detailed in Sornette (2017). Finally, the present study complements the 
literature on investigating the potential arrival of finite-time singularities in the dynamics of the socio-economic data. Johansen and 
Sornette (2001) were the first to explore the potential arrival of finite-time singularities in the dynamics of the world population and 
some important financial indices. In a recent study, Grobys (2023) performs a scientific replication of Johansen and Sornette’s (2001) 
study and finds virtually identical results—that is, the arrival of a spontaneous singularity occurring around the year 2050 signaling an 
abrupt transition into a new regime. What do the data on Bitcoin tell us? This is the first study that sheds light on this issue. 

2. Data 

Data on Bitcoin covering the period January 1, 2011 until September 17, 2023 were downloaded from investing.com.2 The overall 
sample comprises 4643 daily observations. Descriptive statistics of Bitcoin log-returns are reported in Table A.1 in the appendix. 

3. Methodology 

3.1. Implementing the LPPLS model using daily Bitcoin log-prices 

Following Sornette (2017), a simple power-law model for financial log-prices is given by 

ln[p(t)] = A + B(tc − t)β
, (1)  

where ln [p(t)] is the logarithm of a financial asset (e.g., Bitcoin) at time t, tc is the critical time, A is the expected value of the financial 
asset as it approaches tc, B defines the exposure to faster-than-exponential growth, and β is the power-law exponent controlling faster- 
than-exponential price growth. The critical time tc indicates a regime change, manifested in a change from super-exponential growth to 
a lower growth and the end of the accelerating oscillations (Zhang et al., 2016). Following Sornette (2017), this model specification 
requires the following constraints: 

A > 0,

B < 0,

0.1 ≤ β ≤ 0.9.

Furthermore, Sornette (2017) highlights that the simple power-law model of Eq. (1) needs to be extended by accounting for pe-
riodic oscillations: 

ln[p(t)] = A + B(tc − t)β
[1+Ccos(ωln(tc − t) +ϕ)], (2)  

where C denotes the exposure the log-periodic oscillations around the power-law singular growth, ω denotes the angular log-frequency 
of oscillations during the formation of the bubble, ϕ is the phase parameter, and all other notations are as previously defined. Whereas 
Sornette (2017) documents that ϕ cannot be meaningfully restricted, the present research requires |C| < 1, and imposes the constraint 
5 ≤ ω ≤ 15 (Grobys, 2023). Implementing the LPPLS model of Eq. (2) requires several model parameters Φ = (A, B, tc, β, C, ϕ) to be 

2 Since investing.com did not provide any longer data on Bitcoin for the ex-ante January 1, 2012 period, we obtained data for January 1, 2011 
until December 31, 2011 from Grobys (2021), who retrieved those data from investing.com when it was still available. 
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estimated using a highly non-linear model. This study follows a recently proposed approach to calibrate the LPPLS model (Grobys, 
2023): First, we set A = ln [p(T)], where p(T) denotes the logarithm of the financial asset at time t, and optimize four models by using 
Eq. (1), where only the starting values for β vary; that is, β ∈ {0.2, 0.4, 0.6, 0.8}. Moreover, we set B = − 1, and tc = T + 1. Then, we use 
the non-linear solver provided from Microsoft Excel to find optimal solutions for each model specification. Since we use daily data on 
Bitcoin and 4643 observations, tc = T + 1 = 12.7180. 

We select the model generating the minimum sum of squared residuals (SSR) with corresponding optimal parameter vector Φ∗
1 =

(A∗, B∗, t∗c , β∗). The numerical values of Φ∗
1 are then used as the initial values in the second step of the optimization procedure. 

Specifically, employing Φ∗
1 as initial values for model 2 in Eq. (2) and setting C = ϕ = 0, model 2 is then optimized for varying values ω; 

that is, ω ∈ {5, 6, …, 14, 15}. Optimizing model 2, requires the following constraints: 

tc ≥ T + 1,

0.1 ≤ β ≤ 0.9,

5 ≤ ω ≤ 15.

As initial values for the second-stage optimization, Φ∗
2 = (Φ∗

1,C,ω, ϕ) is used with starting values Φ∗
1 = (A∗, B∗, t∗c , β∗) and C = ϕ 

= 0, for each given ω ∈ {5, 6, …, 14, 15}. Again, model 2 in Eq. (2) is optimized using Microsoft Excel’s non-linear solver. Thus, we 
obtain eleven optimized parameter vectors Φ∗∗

2,j = (A∗∗
j , B∗∗

j , t∗∗c,j , β∗∗
j ,C∗∗

j , ω∗∗
j , ϕ∗∗

j ) with j = 1, …, 11. We select the optimal model with 
respect to the minimum SSR generated. 

3.2. Robustness checks 

3.2.1. Residuals tests 
To address the so-called spurious regression problem, we investigate whether the residual process exhibits stationarity (Lin et al., 

2014). Hence, the stationarity of the LPPLS model residuals is tested employing the standard augmented Dickey-Fuller (ADF) test 
(Grobys 2023). Calibrations with the 99 % confidence level of stationarity of the residuals derived from the parametrization Φ∗∗

2,j are 
considered statistically significant (Jiang et al., 2010). The ADF test is implemented by running the regression: 

Δet = δ0 + δ1t + δ2ut− 1 + γ1Δut− 1 + … + γpΔut− p + ϵt, (3)  

where et = pt − mt defines the difference between the log-prices of Bitcoin and the calibrated optimal model using the parameter vector 

Table 1 
Calibrating the simple power-law model for Bitcoin log-prices using daily data from January 2011—September 2023 
A simple power-law model for Bitcoin log-prices is given by: 
ln [p(t)] = A + B(tc − t)β, 
where ln [p(t)] is the logarithm of Bitcoin at time t, tc is the critical time, A is the expected value of Bitcoin as it approaches tc, B defines the exposure to 
faster-than-exponential growth, and β is the power-law exponent controlling faster-than-exponential price growth. This model specification requires 
the following constraints: 
A > 0, 
B < 0, 
0.1 ≤ β ≤ 0.9. 
Following Grobys (2023), we set A = ln [p(T)], where p(T) denotes the logarithm of Bitcoin at time t. Then, four models are optimized by using the 
Equation above. For each model, the starting values for β vary; that is, β ∈ {0.2, 0.4, 0.6, 0.8}. Moreover, we set B = − 1, and tc = T + 1. Then we use 
the non-linear solver provided from MS Excel to find optimal solutions for each model specification. Since we use daily data on Bitcoin and 4643 
observations, tc = T + 1 = 12.7180. We select the model generating the minimum sum of squared residuals (SSR) with corresponding optimal 
parameter vector Φ∗

1 = (A∗, B∗, t∗c , β∗). This table reports the corresponding model estimates. The optimal model is highlighted in bold figures.  

Panel A. Initial parameter values for model 1. 

Model 1 2 3 4 

A 10.1862 10.1862 10.1862 10.1862 
B − 1 − 1 − 1 ¡1 
tc 12.7180 12.7180 12.7180 12.7180 
β 0.2 0.4 0.6 0.8 
SSR 52,141.8505 36,406.2981 19,749.2681 13,692.9510  

Panel B. Optimized parameter values for model 1. 

Model 1 2 3 4 

A* 76.7464 78.8064 52.7676 127.4716 
B* ¡1.4604 − 1.9965 − 1.2762 − 2.5204 
t∗c 86.1646 83.4791 59.7431 131.2962 
β* 0.8828 0.8245 0.9000 0.8010 
SSR 4912.0205 4937.7198 4924.3482 4915.8808  
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Φ∗∗
2,j, t denotes a time trend, and εt is assumed to be a white noise process. Note that Eq. (3), δ0 = δ1 = 0 defines a model specification 

with no deterministic terms, whereas δ1 = 0 defines a model with a constant term only, and the parameters γ1,…, γp measure exposures 
to Δut − 1,…, Δut − p. Note that the parametrization δ0 = δ1 = 0 corresponds to a random walk as the null model, whereas the 
parametrization δ1 = 0 corresponds to a random walk with a drift as the null model. The optimal lag-order p is selected in line with the 
Schwarz Criterion (Grobys, 2023). 

3.2.2. Testing for explosiveness in log-prices of Bitcoin 
Grobys (2023) notes that faster-than-exponential growth in the underlying price series of a financial asset should be able to detect 

using the regression model of Eq. (3) fitted to differenced log-prices of Bitcoin, that is: 

Δpt = φ0 + φ1t + φ2pt− 1 + φ3Δpt− 1 + … + φp+2Δpt− p + et, (4)  

where pt denotes the log-prices of Bitcoin, t denotes a time trend and et is assumed to be a white noise process. Faster-than-exponential 
growth should be manifested in φ2 < 0 in association with φ1 > 0. Again, the optimal lag-order p is selected in line with the Schwarz 
Criterion. 

4. Results 

Panel A of Table 1 documents the initial parameter values for each model specification using Eq. (1), whereas Panel B of Table 1 
reports the optimized parameters. Interestingly, regardless of the initial parametrization, the optimized β is β* > 0.80 for all optimized 
models which is indeed a strong commonality. Next, Φ∗

1 is given by (A∗, B∗, t∗c , β∗) = (76.7464, − 1.4604, 86.1646, 0.8828) and 
used in the next stage of the optimization. 

We use Φ∗
1 as starting values for (A, B, tc, β, C, ϕ) in association with C = ϕ = 0 and optimize model 2 (e.g., Eq. (2)) for varying values 

of ω; that is, ω ∈ {5, 6, …, 14, 15}. To compute optimal values for the parameter vector Φ∗∗
2 , we employ Microsoft Excel’s non-linear 

solver. Panel A of Table 2 reports the initial parameter values used in optimization procedure for model 2, whereas Panel B of Table 2 
reports the optimized parameter values. We observe from Panel A of Table 2 that the input parameterization, given by Φ∗

2 = (A∗, B∗, t∗c ,
β∗, C,ω, ϕ) = (76.7464, − 1.4604, 86.1646, 0.8828, 0, 11, 0), results in the optimized parameterization for model 2 giving the 

least SSR (e.g.,SSR = 2615.2660), where A** = 126.8880, B** = − 4.0553, t∗∗c = 118.1294, β** = 0.7511, C** = 0.1498, ω** = 8.3886, 
and ϕ** = 7.5415. Strikingly, the optimal model 2 suggests that the finite-time singularity occurs at t∗∗c = 118.1294, which corresponds 
in the notation here to 38,501 units of time (e.g., days) in the future. Since our sample ends at time t = 12.71527, our model estimates a 
finite-time singularity to occur in the year 2129.1945—that is, mid-March 2129. 

Next, Fig. 1 plots the optimal optimized model 2 denoted as Model* and the second best fit for model 2 (Model**) along with the 
natural logarithm of Bitcoin prices, ln [p(t)]. Moreover, Fig. 2 plots the residuals covering the in-sample period. The residuals, εt, are 
defined as εt = ln[p(t)] − ̂ln[p(t)], where ̂ln[p(t)] is the prediction of model 2 using the optimal parameter vector Φ∗∗

2 . From Fig. 1 we 
observe that both optimized models suggest that Bitcoin prices reach a close-to-zero-price condition in approximately the year 2045. 

Next, Table 3 reports the results from three different ADF tests. Table 3 shows that in models 2 and 3 the parameters modeling the 
constant, or constant and time trend are statistically not different from zero. Hence, we infer that model 1 is the relevant model 
specification used for statistical inference. We observe from Table 3 that λ̂ADF = − 2.8629 and statistically significant on at least a 1 % 
level (p-value is 0.0041) suggesting a statistically significant LPPLS signature (Lin et al., 2014). 

Table 4 reports the results from analyzing the presence of faster-than-exponential growth in the underlying log-price process 
(Grobys, 2023). Table 4 shows that φ̂2 is statistically significantly negative on a 1 % level, whereas φ̂1 is statistically significantly 
positive on a 10 % level. Since Grobys (2023) requires that φ̂1 > 0 and φ̂2 < 0, we test the joint hypothesis: 

H0 : φ̂1 = φ̂2 = 0 versus H1 : φ̂1 > 0 and φ̂2 < 0.

The test statistic λ is under the null hypothesis asymptotically distributed as χ2(2). We find that ̂λ = 14.5645 > 5.99146 = χ2
0.95(2); 

hence, we strongly reject the null hypothesis (p-value is 0.0007). Moreover, from Table 4 it becomes evident that the estimated ADF 
test statistic corresponding to ̂λADF = − 2.7883 does not reject the null model as indicated by the p-value corresponding to 0.2016. Thus, 
the overall evidence suggests here that log-prices of Bitcoin indeed exhibit explosive random walk behavior—a necessary condition for 
log-periodicity (Grobys, 2023). 

5. Discussion and concluding remarks 

Our findings indicated a strong LPPLS signature predicting the arrival of a singularity condition by March 2129. Accounting for 
uncertainty in point estimation, we cannot reject the hypothesis that the arrival of the finite-time singularity coincides with the time 
when the last Bitcoin will be mined—that is by 2140.3 It is interesting to note that some scholars noted that when the revenues do not 
any longer cover the costs, miners might have no further incentives to put effort in maintaining the blockchain—a situation where 
Bitcoin could be expected to go bust Taleb (2021). 

3 Using the approach in Grobys (2023), the standard deviation of t∗∗c is estimated at σ̂ t∗∗c = 11.2321. 
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Table 2 
Calibrating the log-periodic power-law singularity model for daily Bitcoin data over the 2011—2023 period 
In line with Sornette (2017, p. 335), the log-period power-law singularity (LPPLS) model is given by, 
ln [p(t)] = A + B(tc − t)β[1 + Ccos(ωln (tc − t) + ϕ)], 
with A > 0, B < 0, and 0.1 ≤ β ≤ 0.9, and A is the expected value of Bitcoin in logarithm, B measures the exposure to faster-than-exponential growth, β is the power-law exponent controlling faster than 
exponential price growth, C measures the exposure responsible for periodic oscillations, ω is the angular frequency of the log-periodic oscillations during the bubble formation, and ϕ is the phase 
parameter. We require |C| < 1 and impose the constraint 5 ≤ ω ≤ 15. We use the optimal values for Φ∗

1 = (76.7464, 1.4604, 86.1646, 0.8828) from the first estimation step. Using in addition C = ϕ = 0, 
the log-period power-law singularity model (model 2) is then optimized for varying values ω, that is, ω ∈ {5, 6, …, 14, 15}. Whereas Panel A of Table 2 reports the corresponding input parameters used to 
start the optimization procedure, Panel B of Table 2 reports the optimized parameters using the following constraints: 
tc ≥ T + 1, 
0.1 ≤ β ≤ 0.9, 
5 ≤ ω ≤ 15. 
Note that the parameter ϕ remains unconstrained which is in line with Sornette (2017, p. 336). The parameters are obtained using Microsoft Excel’s non-linear solver. The sample period is from January 1, 
2011 to September 17, 2023 comprising 4643 daily observations. The optimal model is highlighted in bold figures.  

Panel A. Initial parameter values for model 2. 

Specification 1 2 3 4 5 6 7 8 9 10 11 

A* 76.7464 76.7464 76.7464 76.7464 76.7464 76.7464 76.7464 76.7464 76.7464 76.7464 76.7464 
B* − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 − 1.4604 
t∗c 86.1646 86.1646 86.1646 86.1646 86.1646 86.1646 86.1646 86.1646 86.1646 86.1646 86.1646 
β* 0.8828 0.8828 0.8828 0.8828 0.8828 0.8828 0.8828 0.8828 0.8828 0.8828 0.8828 
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
ω 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 
ϕ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
SSR 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205 4912.0205  

Panel B. Optimized parameter values for model 2. 

Specification 1 2 3 4 5 6 7 8 9 10 11 

A** 59.2430 29.0586 70.8339 61.8564 70.8738 70.5542 126.8880 76.7677 94.9734 57.4199 78.2214 
B** − 1.5858 − 1.8182 − 1.5858 − 1.5720 − 1.4470 − 1.4768 ¡4.0553 − 1.4491 − 2.3051 − 1.4320 − 1.4613 
t∗∗c 76.8495 94.2558 78.6440 84.9817 81.7461 81.5568 118.1294 85.6672 90.1272 86.1470 87.6251 
β** 0.9000 0.7197 0.9000 0.8545 0.9000 0.8912 0.7511 0.9000 0.8341 0.8279 0.8930 
C** 0.2964 − 0.5683 − 0.1562 0.1769 0.1091 − 0.0959 0.1498 0.0707 − 0.0593 0.0833 0.0506 
ω** 5.1862 6.0020 7.3373 7.9839 9.4543 10.1893 8.3886 12.2070 12.7084 13.6729 15.0000 
ϕ** − 0.0032 − 1.3802 − 0.0023 − 0.1235 − 0.0049 − 0.0020 7.5415 0.0073 0.1503 0.1979 0.0038 
SSR 2616.7693 2632.7546 2619.3739 2631.4499 2628.9593 2634.0421 2615.2660 2637.4825 2628.9567 2700.7138 2653.9617  
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Fig. 1. Bitcoin prices in logarithms and optimized model 2 using daily data for the period January 1, 2011 until September 17, 2023 
This figure shows two optimized models along with the natural logarithm of Bitcoin prices denoted as ln [p(t)]. The evolution of Bitcoin prices in 
natural logarithms is highlighted as the grey curve. Model* denotes the model generating the best fit with parametrization: 
Φ∗∗

2 = (126.8880, − 4.0553, 118.1294, 0.7511, 0.1498, 8.3886, 7.5415).The corresponding time-series evolution of that model is highlighted as 
the black curve. Moreover, Model ** denotes the model generating the second best fit with parametrization: 
Φ∗∗

2 = (59.2430, − 1.5858, 76.8495, 0.9000, 0.2964, 5.1862, − 0.0032). 
The corresponding time-series evolution of that model is highlighted as the dashed black curve. The in-sample period is from January 1, 2011 until 
September 17, 2023 comprising 4643 daily observations. 

Fig. 2. Residuals of the calibrated optimal log-periodic power-law singularity model 
This figure plots the residuals, εt, of Model* which offers the best fit. The in-sample period is from January 1, 2011 until September 17, 2023 
comprising 4643 daily observations. 

Table 3 
Testing for unit-roots in the residuals of the optimal model 2 
We use the residuals from Model* denoted as et and implement the augmented Dickey-Fuller (ADF) test by running the following test regression: 
Δet = δ0 + δ1t + δ2ut − 1 + γ1Δut − 1 + … + γpΔut − p + εt, 
where et = pt − mt defines the difference between the log-prices of Bitcoin and calibrated optimal model 2 using the parametrization Φ∗∗

2 = (126.8880,
− 4.0553, 118.1294, 0.7511, 0.1498, 8.3886, 7.5415), t denotes a time trend, and εt is assumed to be a white noise process. Note that in this 

regression model, δ0 = δ1 = 0 defines the model specification where no deterministic terms are accounted for, whereas δ1 = 0 defines the model 
specification exhibiting a constant term only. Furthermore, the parameters γ1,…, γp measure the exposure to the autoregressive variables, Δut − 1,…, 
Δut − p. It is noteworthy that the parametrization δ0 = δ1 = 0 corresponds to a random walk as the null model, whereas the parametrization δ1 =

0 corresponds to a random walk with a drift as the null model. Thus, we carry out three different versions of the ADF test. For all model specifications, 
the optimal lag-order p is selected in line with the Schwarz Criterion. The sample period is from January 1, 2011 to September 17, 2023 comprising 
4643 daily observations.  

Model δ̂0 δ̂1 δ̂2 λ̂ADF p-value lags 

1   − 0.0027*** 
(− 2.8629) 

− 2.8629*** 0.0041 0 

2 0.0004 
(0.5016)  

− 0.0028*** 
(− 2.8656) 

− 2.8656** 0.0495 0 

3 0.0016 
(1.1031) 

− 5.29E-07 
(− 0.9841) 

− 0.0027*** 
(− 2.8528) 

− 2.8528 0.1783 0 

** Statistically significant on a 5 % level. 
*** Statistically significant on a 1 % level. 
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Further, recent literature documented that Bitcoin is mainly used an investment as opposed to a medium of exchange (e.g., Baur 
et al., 2018; Baur and Dimpfl, 2021). What is the problem with Bitcoin from an investment perspective? The present study adds to the 
literature by providing evidence that investors, who wish to employ Bitcoin as a long-term investment, may face a fallacy due to the 
expected arrival of a finite singularity in the future suggesting an expected final value of zero. 

Another novel finding is here that the LPPLS model predicts that Bitcoin prices will reach a local minimum by the end of February 
2045, coinciding with the spontaneous singularity in U.S. equities around the year 2050 (Grobys, 2023). Further, the evidence suggests 
that Bitcoin is subject to accumulated herding and imitation. We argue that a finite-time singularity in the distant future supports the 
literature documenting that the demand for Bitcoin arises from speculation (e.g., Grobys and Junttila, 2021), whereas our findings 
appear to be contrary to the view that the demand may be driven by expectations regarding Bitcoin’s future utility as a medium of 
exchange (e.g., de la Horra et al., 2019). 

Finally, Chaim and Laurini’s (2019) finding that Bitcoin prices do not show a bubble formation in late 2017 could be a manifes-
tation of sample-specificity because the results of the present study show that after accounting for all available data, a long-lasting 
bubble formation in Bitcoin prices—incorporating the 2017 period—is indeed detectable. Likewise, the intrinsic value of the NFT 
and DeFi markets, as documented in Wang et al. (2022), could be a manifestation of data availability. Do these markets still exhibit 
intrinsic value when taking a coarse-grained perspective? Future research needs to explore this issue in more detail. 
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Appendix  

Table A.1 
Descriptive statistics of daily Bitcoin log-returns 
This table reports the decretive statistics of Bit-
coin log-returns. Data on Bitcoin covering the 
period January 1, 2011 until September 17, 2023 
were downloaded from investing.com.   

BTC log-returns 

Mean 0.24537 
Median 0.04212 
Maximum 42.2857 
Minimum − 49.7032 
Std. Dev. 4.9138 
Skewness − 0.3587 
Kurtosis 17.3512 
Jarque-Bera 39,934.8000 
Probability 0.0000 
Observations 4642  

Table 4 
Testing for explosiveness in the evolution of the log-prices of Bitcoin 
We use the differenced log-prices of Bitcoin denoted as Δpt and implement the augmented Dickey-Fuller (ADF) test using the following regression: 
Δpt = φ0 + φ1t + φ2pt − 1 + φ3Δpt − 1 + … + φp + 2Δpt − p + et, 
where t denotes a time trend and et is assumed to be a white noise process. Faster-than-exponential growth should be manifested in φ2 < 0 in as-
sociation with φ1 > 0. According to Grobys (2023), faster-than-exponential growth should be manifested in φ2 < 0 in association with φ1 > 0. The 
optimal lag-order p is selected in line with the Schwarz Criterion. The sample period is from January 1, 2011 to September 17, 2023 comprising 4643 
daily observations.   

φ̂1 φ̂2 λ̂ADF p-value lags 

0.0098*** 
(4.7625) 

2.75E-06* 
(1.7379) 

− 0.0020*** 
(− 2.7883) 

− 2.7883*** 0.2016 0 

*Statistically significant on a 10 % level. 
** Statistically significant on a 5 % level. 
*** Statistically significant on a 1 % level. 
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