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A B S T R A C T   

Optimal economic scheduling of microgrids with photovoltaic (PV) and wind generation has gained increased 
attention during recent years. Integration of renewable energy resources in microgrids requires increasingly 
active control and management of energy storages and demand response (DR). In this paper, a risk-based sto-
chastic optimal energy management model is developed for microgrid with renewables, energy storage and load 
control by time-of-use-based DR programs. Microgrid includes PV system, wind system, micro-turbine, fuel cell, 
electric vehicle (EV), and energy storage. Information-gap decision theory (IGDT) is employed to address the 
uncertainty of loads and to provide the operating strategies for the microgrid controllable energy resources. This 
proposed model has been solved as a mixed-integer non-linear programming (MINLP) in General Algebraic 
Modeling System (GAMS) software and simulation results in different conditions are studied and discussed. Three 
different risk management strategies have been studied such as risk-averse, risk-neutral and risk-seeker mode. 
The simulation results indicate that the impacts of risk-averseness or risk-seeker of the decision maker affect the 
system operation. For instance, the results showed the DR program’s role in risk-averse and risk-taking strategies, 
impacting consumption and costs. The proposed model ensures the risk-averse decision-maker that if the un-
certain parameter deviates within the optimum robustness region, the final cost will not exceed the critical cost. 
On the other hand, the risk-seeking decision-maker can reach lower final costs by accepting the risks if the 
uncertain parameter deviates favorably within the opportunity region. Decision-makers can manage risks by 
adjusting consumption. Thus, considering the cost of risk management is crucial, as it increases with robust or 
opportunistic approaches.   

1. Introduction 

In recent years, the world has been grappling with the challenge of 
diminishing fossil fuel reserves. To address this pressing issue, there has 
been a growing trend towards distributed energy resources and electric 
vehicles as viable alternatives. These two solutions have emerged as 
crucial components of the global response, offering a multitude of 
benefits and complementing each other in various ways. Distributed 
energy resources, such as solar panels, wind turbines, and microgrids, 
have gained significant attention due to their decentralized nature. 
Unlike traditional energy sources that rely on centralized power plants, 
distributed energy resources empower individuals, communities, and 
businesses to generate their own clean and renewable energy. This 

decentralized approach not only reduces dependence on fossil fuels but 
also enhances energy resilience and security, allowing for a more sus-
tainable and self-sufficient energy ecosystem. Electric vehicles (EVs), on 
the other hand, have rapidly emerged as a game-changer in the trans-
portation sector. With zero tailpipe emissions, EVs offer a cleaner and 
greener alternative to conventional internal combustion engine vehicles. 
They contribute to mitigating air pollution, reducing greenhouse gas 
emissions, and combating climate change. Additionally, EVs also present 
opportunities for integrating with the electricity grid through vehicle-to- 
grid (V2G) technology, enabling bidirectional energy flow and grid 
stabilization. This synergy between EVs and distributed energy re-
sources paves the way for a more efficient and flexible energy system. 
Furthermore, the features of distributed energy resources and electric 
vehicles make them highly compatible and mutually reinforcing. The 
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intermittent nature of renewable energy generation can be com-
plemented by the ability of EVs to store and discharge electricity, 
effectively acting as mobile energy storage devices. This enables EVs to 
serve as a flexible energy resource, providing grid services, balancing 
supply and demand, and supporting the integration of renewable energy 
sources into the grid. Moreover, the expanding charging infrastructure 
for EVs can also leverage the excess electricity generated by distributed 
energy resources, maximizing their utilization and further promoting 
sustainable energy practices. Distributed generation (DG) units can play 
a significant role in the modern energy systems. On the other hand the 
increased penetration of electric vehicles has gained attention in recent 
years. Potentially controlled charging of EVs can provide different 
flexibility services in power systems for transmission and distribution 
system operator needs. Electric vehicles together with other energy re-
sources have been studied from different perspectives in literature. For 
example, in [1] an improved method was presented for a smart parking 
lot with hydrogen storage system (HSS). This model consisted of an 
electrolyzer, a hydrogen storage tank, and fuel cell as well as load de-
mand considering technical and economic constraints. On the other 
hand, by implementing the population-based technique and particle 
swarm optimization (PSO) algorithm, the cost of operation in the dis-
tribution system could be minimized. With the aim of optimally 

managing the energy of intelligent parking lot containing local dis-
patchable generators and renewable resources, demand response pro-
gramming has been used in [2]. According to this study, the load curve 
was flattened and the operation cost of charging and discharging intel-
ligent parking lot, cost of the upstream grid and local dispatchable 
generators have been minimized. In [3], an intelligent parking lot -based 
on solar photovoltaic, was studied. In this model, the economic and 
environmental performances of the parking lot have been boosted, and 
the total emission and operation cost of intelligent parking have been 
decreased. It is worth to mention that fuzzy decision making and 
weighted sum algorithms have been utilized for solving such a problem 
with multiple objective functions. Authors in [4] have proposed an 
optimization model based on genetic algorithm which maximizes the 
solar energy generation. Besides that, the electric vehicles with various 
charging methods were harmonized by solar resources in [4]. A bi- 
objective optimization model has been proposed for better environ-
mental performance and economical operation of the intelligent parking 
lot in [5], where the impact of time-of-use (TOU) rates of demand 
response program has been assessed. In [6], a comprehensive review 
about using solar system in electric vehicle’s parking lots has been 
presented. In the mentioned study, environmental, technical, and 
financial aspects of electric vehicle parking lots have been studied and 

Nomenclature 

CostTotal The total operation cost of microgrid (€) 
CostDER the total cost of distributed generation resources (€) 
CostESS the total operation cost of storage (€) 
CostGRID the total cost of power exchange with the upstream grid (€) 
CostIMP the amount of total cost related to the imported amount of 

power from the grid (€) 
RevEXP the amount of obtained profit from the exported amount of 

power to the grid (kW) 
PPVrooftop

t,s is the output power of the PV system in each scenario (kW) 
PWINDout

t,s the output power of the wind turbine (kW) 
PFU

t the output power of the fuel cell (kW) 
PMT

t the output power of the micro turbine (kW) 
PESS

t,dis the discharge power of storage (kW) 
PIMP

t,s the imported amount of power from the grid (kW) 
PEXP

t,s The exported power to the grid (kW) 

Pl,DRP
t the amount of load with regarding demand response 

program (kW) 
Pchev

t the charging power of EV(kW) 
Pdchev

t the discharging power of EV (kW) 
Ppv

stc output of the power of the PV system at the standard 
condition and the maximum power point (kW) 

Tc
t,s temperature of cells in the PV system 

SOCt the SOC of EV (kWh) 
SOCArive

t the SOC of EV upon the arrival time (kWh) 
the maximum correlated value. 
λPV the operation cost of the PV system (€ct/kWh) 
λWIND the operation cost of the wind turbine (€ct/kWh) 
λFU the operation cost of the fuel cell (€ct/kWh) 
λMT the operation cost of micro turbine (€ct/kWh) 
SUCMT the cost of turning on the microturbine (€) 
SDCMT the cost of turning off the microturbine (€) 
SUCFU the cost of turning on the fuel cell (€) 
SDCFU the cost of turning off the fuel cell (€) 
λESS the operation cost of the ESS (€ct/kWh) 

λIMP
t the imported power price (€ct/kWh) 

λEXP
t the exported power price (€ct/kWh) 

PIMP
Min the minimum imported power from the grid (kW) 

PIMP
Max the maximum imported power from the grid (kW) 

PEXP
Min the minimum exported power from the grid (kW) 

PEXP
Max the maximum exported power from the grid (kW) 

PMT
Min the minimum limitations of micro turbine (kW) 

PMT
Max The maximum limitations of micro turbine (kW) 

PFU
Min The minimum limitation power of fuel cell (kW) 

PFU
Max the maximum limitation power of fuel cell (kW) 

PESS
t the capacity of the ESS 

ηch The charging rates of ESS % 
ηdis The discharging rates of ESS % 
PESS

Min The minimum capacity of ESS (kW) 
PESS

Max The maximum capacity of ESS (kW) 
npv

se shows the PV panel numbers that are installed in series 
npv

pa indicates the PV panel numbers that are installed in 
parallel 

Id,s The direct normal irradiance 
θφ the incidence angle of solar radiation on a tilted surface are 

modeled 
Idif ,s diffuse horizontal irradiance 
φ the tilted angle 
ρ the surrounding reflection 
Ig,s the global horizontal irradiance 
ψ the coefficient related to the PV system’s temperature 
Ta

t,s the ambient nominal temperatures (◦C) 
NCT the cell nominal temperatures (◦C) 
ηchev

t The charging ratios of EV % 
ηdchev

t The discharging ratios of EV % 
SOCArive

Max the maximum correlated value (kWh) 
SOCDep

t the SOC of EV upon departure SOC of EV upon departure 
(kWh) 

SOCDep
desired the SOC of EV upon desired SOC of EV upon departure 

(kWh)  
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discussed. 
Many reviews and previous research have been made related to 

modeling of EV charging and PV power production. However, there still 
exists lack of knowledge about the opportunities of their combined 
modeling. For instance, in [7], PV power production ramp-rate 
modeling besides quantifying the aggregate clear-sky index on city- 
scale have been considered accurately in order to fill these research 
gaps. Electric power capacity of EV parking lot with PV sunshade novel 
mathematic models have been presented in [8], where the efficiency of 
battery charger on the amount of demand during charging time has been 
studied. In [9], a two-stage stochastic model for day-ahead risk con-
strained scheduling of components in a multi-energy microgrid has been 
suggested. These components include renewable resources, charging 
stations for EVs and hydrogen vehicles, combined heat and power 
(CHP), hydrogen electrolyzers, boilers, cryptocurrency miners, elec-
trical storage system, thermal storage system, HSS, DR programs, and 
pool markets. Demand uncertainty, EVCS and HVCS, CM, PV and wind 
generation, as well as the cost of electricity purchased from the pool 
market, have all been considered. The proposed model’s goal was to 
reduce expected operation costs. A proposed operation strategy for the 
solar-powered EV parking lots has been provided in [10]. The model 
maximizes the benefits while also taking the comfort of the EV owner 
into consideration when the EV parking lots participate in several en-
ergy and ancillary service marketplaces, including the implications of 
capacity fees. Numerous factors, including weather patterns and EV 
owners’ unpredictable schedules, are taken into account in the sug-
gested concept and design. 

For Parking Lot Aggregators (PLA), [11] presented a multi-stage 
stochastic-based structure to integrate plug-in electrical vehicle (PEV) 
flexibility into the power system. The suggested method traded the 
PEVs’ flexibility in the short-term electricity market on three trading 
stages, including the day-ahead, adjustment, and balancing markets, 
from 24 h prior to the energy delivery time until almost real-time. A 
data-driven strategy was developed to extract PEV behavior in Shopping 
Center Parking Lots. There was an obvious requirement for near real- 
time optimization, and the recommended data-driven strategy made it 
possible to optimize the charging/discharging operation of a large 
number of PEVs with low time and computational loads. By trading 
integrated flexibility across three levels of the energy market, the PLA 
increased market players’ profits rather than providing subsidies for 
responsive PEV owners. The suggested strategy gave electricity markets 
functional flexibility in addition to maximizing the income of PEV 
owners. [12] concentrated on the optimal operation of power, heat, and 
hydrogen-based microgrid combined with solar energy and PEV to 
reduce daily costs taking heating, electrical loads, and industrial 
hydrogen application into account. In order to increase the system’s 
flexibility, PEV was considered in the integrated scheduling of power, 
heat, and hydrogen-based microgrid. Additionally, the risk of random 
parameters was managed, and the uncertainty of the predicted cost 
reduced, using the risk assessment based on the conditional value-at-risk 
(CVaR) criterion. 

The authors in [13] developed a stochastic-interval model for 
scheduling photovoltaic-assisted charging stations, incorporating solar 
generation and energy price uncertainties. The model solved mixed- 
integer linear programming and quadratic programming problems and 
was validated through a benchmark case study. In [14] multiple elec-
tricity‑hydrogen integrated charging stations (EHI-CSs) were considered 
as a single entity, managed by an aggregator through controllable fa-
cilities and adjustment methods. A two-stage energy management sys-
tem (EMS) coordinated day-ahead scheduling and real-time dispatch, 
optimizing costs for the EHI-CSs unit. 

A finite-horizon Markov decision process model for optimal man-
agement of PV-assisted EV charging stations was developed in [15]. The 
model utilized vehicle-to-grid (V2G) technology, accounting for fluctu-
ating power prices and unpredictable parking habits. It employed a 
modified bounded real-time dynamic programming algorithm for 

computational efficiency. [16] introduced an operation approach for a 
grid-connected microgrid with high RES and EV integration. It 
employed a two-stage strategy based on day-ahead and real-time energy 
markets. A multi-layer energy management system guided the micro-
grid, considering operational expenses, network constraints, distributed 
generations, energy storage systems, and EV parking capacities. Un-
certainties in load, renewable power, energy prices, and EV parameters 
were addressed using stochastic programming. This approach combined 
Monte Carlo simulation with a fast backward/forward method, allowing 
for effective modeling of these uncertainties. 

In [17], presented a flexible multi-objective optimization method-
ology for vehicle-to-grid and grid-to-vehicle technologies. It considered 
techno-economic and environmental factors, including PEV battery life 
cycle, charging/discharging patterns, and driving behaviors. Simula-
tions on an IEEE 69-bus test system aimed to minimize operating costs 
and CO2 emissions using the Firefly algorithm within a stochastic 
optimization framework. Furthermore, a probabilistic energy capacity 
model of EV parking lot has presented in [18], the sequential Monte- 
Carlo simulations has been used to determine the available storage ca-
pacity of a sample parking lot. In order to model the diverse un-
certainties such as the plug-in hybrid electric vehicles, the amount of 
available energy in the battery upon the arrival time, a real-time energy 
management algorithm has been utilized to minimize the overall daily 
cost of charging the plug-in hybrid electric vehicles and impact of 
charging park on the main grid in [19]. For determining the adoptive 
price of charging and discharging prices in [20], a cooperative game 
model has been employed to maximize the utilities’ profit, and minimize 
the parking lots cost. Electric vehicles, supported with solar system, 
have been optimally scheduled in [21]. By using the solar system, the 
imported power from the grid during the high peak pricing period has 
been minimized thus, the profit of the parking lot owner has been 
increased. 

The authors in [22] proposed a model to find the optimum size of the 
renewable energy resources, i.e. PV and energy storage unit in the 
charging system of the EVs. They solve this problem using the PSO 
approach. The objective function of this model includes the grid tariff, 
EV demand and buying/selling prices of the renewable energy re-
sources. A taxonomy table is provided to compare some of the recent 
similar models with the current proposed microgrid in Table 1. It can be 
seen that all of these papers offer approaches to integrating RESs and 
EVs into power systems, but they also exhibit certain limitations that our 
proposed model addresses. The authors in [1] and [2] consider vehicle- 
to-grid technologies and DERs like PV and wind, but they do not fully 
account for uncertainties in load and other RESs. The authors in [3] 
includes wind as a DER and also have EVs, but it overlooks PV and de-
mand response programs. Meanwhile, [4] focuses solely on cost reduc-
tion, without considering any DERs or uncertainties in load. Regarding 
the uncertainty consideration, the authors in [5] take into account un-
certainties in load and includes ESS and RESs, but they do not consider 
PV, wind, DRP, and EVs. On the other hand, our proposed model takes a 
comprehensive approach by considering a wide range of energy sources 
and uncertainties. It includes uncertainties in load, PV, and wind as 
DERs, which provides a more holistic view of the power system. In 
addition, it includes DRP, EVs, and ESS to main objective of maxi-
mizing/minimizing the horizon of the uncertainty in the robustness/ 
opportunity region towards optimizing the microgrid operation. 

This paper develops an optimization framework for risk-based inte-
gration of distributed generation units and DR into operation of micro-
grids under and stochastic environment. In order to model the 
uncertainties and renewable units and load in microgrid, scenario-based 
method and information gap decision theory are implemented. The 
proposed model would benefit from the flexibility of energy resources 
like EV and DR to result in the least operation cost for the operation of 
microgrid under the mentioned uncertainties. 

The main contributions of this model are listed in bullets as follows: 
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• Innovative Optimization Framework: This model presents an opti-
mization framework for risk-based integration of DERs and DR into 
the operation of microgrids. This approach ensures a more reliable 
and efficient operation of microgrids, even under a stochastic 
environment. 

• Advanced Methodologies for Uncertainty Modeling: The model em-
ploys a scenario-based method and information gap decision theory 
to effectively handle the uncertainties associated with renewable 
units and load in the microgrid that can be useful for the decision- 
makers with complete and incomplete information.  

• Leveraging Flexibility of Energy Resources: The proposed model 
optimizes the use of flexible energy resources like electric vehicles 
and demand response. This results in the least operation cost for the 
operation of the microgrid under the mentioned uncertainties, 
leading to significant cost savings and efficient operation of 
microgrids. 

2. Information-gap approach 

In the information-gap approach, the main objective is to maximize 
the uncertainty horizon the horizon of the uncertainty, while guaran-
teeing reaching to a certain amount of the expected objective value. In 
this model, a series of the uncertain parameters are considered to be 
known by the decision maker. Thus, the optimization process will find a 
solution that at least the predetermined expected profit is achieved. 
Three components are required in the information-gap approaches are 
explained briefly, as follows [31]:  

1) System Model: In the IGDT method, there is an input/output system 
denoted as R(q,u) which is called as the system model. The system 
model represents the amount of profit of the decision maker. In R(q, 
u), q is used to indicate the decision variable and u is employed to 
represent the uncertain parameter. Hence, the system model in the 
information-gap approach is a function that is dependent to the de-
cision variable and the uncertain parameter. R(q,u) in our work is the 
operation cost of the microgrid.  

2) Uncertainty Model: Characterization of the uncertainty model, 
denoted as U(α,u͂), in the information-gap approach can be done 
through various models. Various uncertainty models used in IGDT 
based programs are named and explained in detail in [32]. We are 
using one of the most common uncertainty models in our problem 
formulation that is named fractional uncertainty model, which its 
mathematical representation is written down below: 

U(α, ũ) =
{

u : |
u − ũ

ũ
| ≤ α

}
,α ≥ 0 (1) 

According to Eq. (1), U(α, ũ) shows the gap that is between the un-
certain parameter, i.e. u, and the forecasted or expected amount of the 
correlated uncertain parameter, i.e. ũ. It is important to note that ũ is 

known by the decision maker. α indicates the horizon of the uncertainty. 
As the horizon of the uncertain parameter increases, greater ranges for 
the α is expected. It should be noted that the uncertainty model in the 
info-gap approach has the Contraction and Nesting nature [33]. The 
second important note about the uncertainty model is that due to the 
variable characteristic of α, the upper and lower bound of the horizon of 
the uncertainty will be found by the solver. In other words, the length of 
the uncertainty horizon is indicated by the amount of the uncertainty 
parameter. Fig. 1 tries to clarify the uncertainty horizon using the IGDT 
method. It can be seen that the decision-maker is trying to extend the 
uncertainty horizons of as much as possible while the observed cost does 
not exceed the critical cost.  

3) Performance Requirement: Various performance models can be 
specified within the info-gap approach based on the strategy that the 
decision maker considers for the risk management. In this context, 
we have considered robustness function as the performance model 
because of its capability to specify the worst-case scenarios. For the 
risk-averse decision makers, implementation of the robustness 
function as the performance model in IGDT approach is a proper 
option. This performance model operates in a way that to make the 
decision maker immune against the deviations of the uncertain 
parameter that are not favorable. In this work, performance model is 
denoted by ᾶ(q, rc)α̃(q, rc), which its definition is explained as fol-
lows: The maximum amount of the uncertain parameter, i.e. αα, 
while fulfilling the minimum requirement of the expected cost of the 
microgrid in the favorable way: 

α(q, rc) = maxα{α : {minimum requirment rc is always fulfilled} } (2)  

where rc is considered as the critical profit of the performance model 
which is assumed to be at least equal or even better than the expected 
amount. 

Table 1 
A comparison of the similar models with the proposed approach.  

No. Uncertainty DRP EV ESS DERs Objective function 

Load PV Wind EV RESs μ-turbine fuel 
cell 

PV wind 

[23] ✓ ✓ ✓ ✓ ⨯ ✓ ⨯ ✓ ✓ ✓ ✓ Minimize two objective functions including the operating costs and CO2 
emissions 

[24] ⨯ ⨯ ✓ ✓ ✓ ✓ ✓ ⨯ ✓ ⨯ ⨯ Reduce generation costs and emissions 
[25] – ⨯ – ✓ ⨯ ✓ ⨯ ✓ ⨯ ⨯ ⨯ Reduce the total costs 
[26] ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ✓ ✓ ⨯ ✓ Reduce the cost 
[27] ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ ✓ ⨯ ⨯ ⨯ Maximizing profit 
[28] ⨯ ⨯ ⨯ – ⨯ ✓ ⨯ ✓ ✓ ⨯ ⨯ Adjust the energy consumption in three market floors 
[29] ⨯ ⨯ – ✓ ⨯ ✓ ⨯ ✓ ⨯ ⨯ ⨯ Maximize profits 
[30] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ✓ Minimizing expected operation cost 
Model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Maximizing the robustness region/Minimizing the opportunity region  

Fig. 1. Illustrating a simple fractional uncertainty model for robustness 
IGDT method. 
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3. Problem formulation 

The components of the studied microgrid system are shown in Fig. 2 
including electrical energy storage unit, combined EV and PV unit, a fuel 
cell unit, a micro-turbine and wind generator. The energy flow of the 
electrical energy storage is bidirectional and it means that it can be 
charged through the microgrid components including the distributed 
generation units, renewable energy resources and also upstream grid. 
Moreover, it can be discharged to cover a certain percentage of the load, 
approximately 30 %. The objective of this proposed model is to mini-
mize the total costs of the studied microgrid. 

The objective function of the studied problem, presented in Eqs. (3)– 
(9), is to minimize the operating cost of the microgrid including solar 
system, EV, wind, microturbine, fuel cell and storage. 

Min obj = CostTotal = CostDER +CostESS +CostGRID (3)  

where, obj is the objective function, CostTotal is the total operation cost of 
microgrid, CostDER is the total cost of distributed generation resources, 
CostESS is the total operation cost of storage, CostGRID is the total cost of 
power exchange with the upstream grid. 

The operation cost of the distributed generation units in the micro-
grid under study is presented in Eq. (4). 

CostDER =

{
∑SE

S
Πs

∑T

t

(
PPVrooftop

t,s λPV +PWINDout
t,s λWIND +PFU

t λFU +PMT
t λMT

)

+ SUCMT + SDCMT + SUCFU + SDCFU

}

(4)  

where PFU
t is the output power of the fuel cell, λFU is the operation cost of 

the fuel cell, PMT
t is the output power of the micro turbine, λMT is the 

operation cost of micro turbine, SUCMT is the cost of turning on the 
microturbine, SDCMT is the cost of turning off the microturbine, SUCFU is 
the cost of turning on the fuel cell, SDCFU is the cost of turning off the 
fuel cell. 

3.1. Energy storage 

The operation cost of the storage system in the microgrid under study 
is presented in Eq. (5). 

CostESS =
∑T

t

(
PESS

t,ch λESS
)

(5)  

where, PESS
t,dis is the discharge power of storage, λESS is the operation cost 

of the ESS. 

3.2. Upstream grid 

The power exchange cost with the upstream network is given in Eqs. 
(6)–(8). 

CostGRID = CostIMP − RevEXP (6)  

where, CostIMP indicates the amount of total cost related to the imported 
amount of power from the grid, while RevEXP shows the amount of ob-
tained profit from the exported amount of power to the grid. 

CostIMP =
∑SE

S
Πs

∑T

t

(
PIMP

t,s λIMP
t

)
(7)  

where, PIMP
t,s indicates the imported amount of power from the grid, λIMP

t 

is the imported power price. 

RevEXP =
∑SE

S
Πs

∑T

t

(
PEXP

t,s λEXP
t

)
(8)  

where, PEXP
t,s is exported power to the grid, λEXP

t is the exported power 
price. 

Upstream network constraints are presented in Eqs. (9)–(11). 

PIMP
Min IIMP

t ≤ PIMP
t,s ≤ PIMP

MaxI
IMP
t (9)  

where, PIMP
Min and, PIMP

Max indicate the corresponding limitations of the im-
ported power from the grid and, IIMP

t is a binary variable indicating the 
status of import of power. 

Fig. 2. The studied microgrid.  
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PEXP
Min IEXP

t ≤ PEXP
t,s ≤ PEXP

MaxIEXP
t (10)  

where, PEXP
Min and, PEXP

Max indicate the corresponding limitations of the 
exported power from the grid and, IEXP

t is a binary variable indicating the 
status of export of power. 

It should be noted that according to Eq. (11), the power cannot be 
imported or exported at the same time, therefore: 

IIMP
t + IEXP

t ≤ 1 (11)  

3.3. Energy balance constraint 

As a principle in any energy systems, the sum of the power produced 
by generation units must be equal to the demand. Electric power balance 
equation in the microgrid system based on solar EV, wind, micro-
turbines, fuel cells and storage in Eq. (12) is given. 

Pl,DRP
t +PESS

t,ch +Pchev
t +PEXP

t,s = PMT
t +PPV rooftop

t,s +PWIND out
t,s +PFU

t

+PIMP
t,s +PESS

t,dis +Pdchev
t

(12)  

where, PPVrooftop
t,s is the output power of the PV system in each scenario, 

PWINDout
t,s is the output power of the wind turbine in each scenario, Pl,DRP

t is 
the amount of load with regarding demand response program, Pchev

t is the 
charging power of EV and Pdchev

t is the discharging power of EV. 

3.4. Distributed generation 

The generated power by the distributed generation units must be 
between the maximum limits of the unit. The constraints on the power 
production of distributed generation units are presented in Eqs. (13)– 
(19). Eq. (7) represents the minimum and maximum amount of the MT 
that can generate. The ramp-up and ramp-down limitations are also 
given in Eqs. (14) and (15). In addition, Eqs. (16) and (17) present the 
minimum up and down times of the micro-turbine, respectively. The 
linear model of the minimum up and down times of the unit is also 
indicated in (18) and (19). 

PMT
MinUMT

t ≤ PMT
t ≤ PMT

MaxU
MT
t (13)  

PMT
t − PMT

t− 1 ≤ RU UMT
t (14)  

PMT
t− 1 − PMT

t ≤ RD UMT
t (15)  

UMT
t − UMT

t− 1 ≤ UMT
t+UPf

(16)  

UMT
t− 1 − UMT

t ≤ UMT
t+DNf

(17)  

UPf =

{
f f ≤ MUT
0 f > MUT (18)  

DNf =

{
f f ≤ MDT
0 f > MDT (19)  

where, PMT
Min and, PMT

Max are the minimum and maximum limitations of 
micro turbine respectively. MUT/MDT is the minimum up/down time of 
micro-turbine. UMT

t is a binary variable indicating if the micro-turbine is 
on or off. RU/DN are the ramp up/down rates of micro-turbine. DNf/UPf 

are auxiliary variable for linear modeling minimum down/up time of MT. 
The output of the wind unit is calculated through Eq. (20). 

PWind out
t,s = PWind

t,s (20)  

PFU
Min ≤ PFU

t ≤ PFU
Max (21)  

where, PFU
Min and, PFU

Max are the minimum and maximum limitation power 

of fuel cell respectively. 

3.5. Energy storage 

The storage system used in the studied network is modeled by (22)– 
(26). The amount of energy in the battery is indicated by Eq. (22) and is 
limited by Eq. (23). 

PESS
t = PESS

t− 1 +PESS
t,ch ηch − PESS

t,dis1
/

ηdis (22)  

PESS
Min ≤ PESS

t ≤ PESS
Max (23)  

where, PESS
t is the capacity of the ESS, ηch and, ηdis are charging and 

discharging rates of ESS respectively, PESS
Min and, PESS

Max are minimum and 
maximum capacity of ESS respectively. 

The charging and discharging powers of ESS are constrained by (24)– 
(25). 

0 ≤ PESS
t,ch ≤ PMax

t,ch Ich
t (24)  

0 ≤ PESS
t,dis ≤ PMax

t,dis Idis
t (25) 

Eq. (26) is employed to prevent simultaneous charge and discharge 
of the battery. 

Ich
t + Idis

t ≤ 1 (26) 

This paper utilizes the TOU demand response program as an effective 
tool to reduce power consumption during peak times. The main purpose 
of this program is to modify the power consumption pattern to flatten 
the load curve and reduce the operation cost of energy systems. 

Under TOU program, energy consumption shifts from peak to non- 
peak periods, which reduces total consumer payment for power con-
sumption. This program is modeled through Eqs. (27)–(29). 

Pl,DRP
t = Pl

t +DRPt (27)  

− DRPMaxPl
t ≤ DRPt ≤ +DRPMaxPl

t (28)  

∑T

t
DRPt = 0 (29)  

3.6. Photovoltaic (PV) system 

The significant role of renewable energy resources like PV system in 
the operation of the power system cannot be disregarded. However, the 
main issue of the energy generation from the renewable energy re-
sources is their generation fluctuations. Hence, considering an accurate 
model of PV system considering this characteristic is essential in order to 
observe more realistic results. Thus, an accurate model of PV generation 
in the proposed methodology is presented. In this model, the generation 
output of the PV system is a function that is directly related to the many 
real factors such solar irradiance, number of PV panels in series or 
parallel and the temperature of each cell. The full modeling of the PV 
system is presented in (30)–(32) [34], [35]. 

Ppv
t,s =Ppv

stcn
pv
se npv

pa

⎛

⎜
⎜
⎝

Id,scosθφ + Idif ,s

(
1+cosφ

2

)

+ρIg,s

(
1− cosφ

2

)

1000

⎞

⎟
⎟
⎠

[
1 − ψ

(
Tc

t,s − 25
)]

(30) 

In (30), Ppv
stc indicates output of the power of the PV system at the 

standard condition and the maximum power point. Moreover, npv
se shows 

the PV panel numbers that are installed in series and npv
pa indicates the PV 

panel numbers that are installed in parallel. The direct normal irradi-
ance and the incidence angle of solar radiation on a tilted surface are 
modeled through Id,s and θφ, respectively. While Idif ,s is diffuse horizontal 
irradiance, φ shows the tilted angle, the surrounding reflection is shown 
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by ρ, Ig,s is the global horizontal irradiance, ψ is the coefficient related to 
the PV system’s temperature and finally, temperature of cells in the PV 
system is addressed by Tc

t,s. It should be noted that the cells temperature 
has a direct relation with the temperature of ambient that is represented 
in (31). In this equation, the ambient and the cell nominal temperatures 
are denoted by Ta

t,s and NCT. 

Tc
t,s = Ta

t,s +

⎛

⎜
⎜
⎝

Id,scosθφ + Idif ,s

(
1+cosφ

2

)

+ ρIg,s

(
1− cosφ

2

)

800

⎞

⎟
⎟
⎠(NCT − 20) (31) 

It should be noted that the PV system power generation should be 
limited according to the its legal nominal range as declared in (32). 

PPV
t,s ≤ Pmppt

t,max (32)  

3.7. Electric vehicle model 

The proposed integrated EV model is mathematically formulated in 
(33)–(35). The energy consumption process can be optimized in RCs 
through optimal charge and discharge procedure of EVs. While there are 
some restrictions that are required to be considered in order to make the 
model as realistic as possible such as EVs availability, charging/dis-
charging ratios and etc. Thus, in the proposed integrated EV model, total 
charged power of EV is addressed in (33). According to this equation, the 
total charged power of EV cannot be greater than maximum charging 
capacity if it is available for the EV to be charged. Similarly, in (34), the 
total discharged power of EV cannot be greater than maximum dis-
charging capacity if it is available for the EV to be discharged. It should 
be mentioned that it is not possible for the EV to be charged and dis-
charged simultaneously. Therefore, Eq. (35) is being employed to model 
this limitation. Bch

t and Bdch
t are binary variables which indicate that if 

the EV is in charging or discharging mode, respectively. Mt binary var-
iable, which is 1 if the EV is in the PL; otherwise, 0. 

Pchev
t ≤ Pchev

max Bch
t Mt (33)  

Pdchev
t ≤ Pdchev

max Bdch
t Mt (34)  

Bch
t +Bdch

t ≤ Mt (35) 

There is an important concept in the EV system that is state of charge 
(SOC) of the EV. SOC is highly dependent on the situation of the EV in 
the previous time interval and charging or discharging modes. In order 
to consider SOC in the proposed EV system, constraints (31)–(35) have 
been taken into account. In Eq. (31), the SOC of EV is denoted by SOCt. 
The charging and discharging ratios of EV is denoted by ηchev

t and ηdchev
t , 

respectively. 

SOCt = SOCt− 1 +Pchev
t ηchev

t −
Pdchev

t

ηdchev
t

(36) 

The SOC of EV has a capacity which cannot surpass or be less than 
this range which is presented in (32). 

SOCMin ≤ SOCt ≤ SOCMax (37) 

The arrival and departure time conditions of the EVs from the 
charging station are expressed in (38)–(40). To make our model more 
comprehensive, various driving patterns are essential to be considered. 
To this end, a scenario-based approach has been taken into account. The 
scenario generation method is considered based on a stochastic nature of 
the values of SOCs upon arrival time of EVs to the charging station. In 
Eq. (38), the SOC of EV upon the arrival time is denoted by SOCArive

t and 
the maximum correlated value is indicated by SOCArive

Max . Finally, SOCDep
t 

and SOCDep
desired terms are addressing the SOC of EV upon departure and 

desired SOC of EV upon departure. 

SOCArrive
t ≤ SOCArrive

Max (38)  

SOCDep
t ≤ SOCDep

desired (39)  

SOCDep
desired = SOCMax (40) 

In this part, the uncertainty of the load is taken into account. The 
procedure of the proposed stochastic-IGDT is shown in a flowchart, i.e., 
Fig. 3. In the schematic, the cost deviation factor (σ), representing the 
level of risk or uncertainty in the operation cost, is required to updated 
iteratively for different risk levels. The deviation factor is a value be-
tween 0 and 1. Depending on the chosen strategy (Risk-averse or Risk- 
seeker), the model optimizes the operation of the microgrid by maxi-
mizing the uncertain robust region (for risk-averse) or the uncertain 
opportunistic region (for risk-seeker). Therefore, IGDT robustness 
strategy is suitable for risk-averse decision-makers and IGDT opportu-
nity strategy is suitable for risk-seeking decision-makers. 

Thus, the problem formulation for the robustness strategy is pre-
sented as follows: 

Max α (41)  

s.t. (42)  

Max
{

OC* =
(
CostDER +CostESS +CostGRID) } (43)  

OC* ≤ OCCr = (1+ σ)OC0 (44)  

(1 − α)P̃Load
t ≤ PLoad

t ≤ (1+ α)P̃Load
t (45)  

(2) − (40) (46)  

where the objective function of this strategy is maximizing the horizon 
of the uncertain parameter, i.e., α, while assuring the decision-maker 
that the cost of the model will not be higher than the critical cost, 
OCCr. This critical cost is calculated through the objective function of the 
deterministic stage and the deviation factor (σ). The level of risk- 
averseness is determined through the deviation factor which is a value 
between 0 and 1 as an input parameter. For higher protection against the 
uncertain parameter, the higher values of σ σ should be selected. Eq. 
(40) indicates that the worse-case scenario of the load uncertainty oc-

curs when PLoad
s.t = (1 + α)P̃Load.

s.t 

. The observed value for load is denoted by Pload
t and P̃

load
t is the ex-

pected values for the uncertain parameter. The rest of the constraints 
remain unchanged similar to the deterministic stage. 

In addition, the risk-seeking decision-makers can choose IGDT op-
portunity strategy to evaluate the possibility of reaching lower cost if the 
favorable deviations in the uncertain parameter happen. To this end, the 
minimum horizon of uncertainty, i.e., β should be find through the 
optimization model that is presented as follows: 

min β (47)s.t. 

min OC* =
(
CostDER +CostESS +CostGRID) (48)  

OC* ≤ OCTr = (1 − σ)OC0 (49)  

(1 − β)P̃
Load
t ≤ PLoad

t ≤ (1+ β)P̃
Load
t (50)  

(2) − (40) (51) 

In the IGDT opportunity strategy, the objective function is finding the 
minimum horizon of the uncertainty that if the load (uncertain param-
eter) deviates favorably, lower or equal costs than the target cost, denoted 
by OCCr can be achieved by the risk-seeking decision-maker. The target 
cost is calculated through OCTr = (1 − σ)OC0, where OC0 is the objective 
function of the deterministic problem formulation and σ is the deviation 
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factor that shows the risk level that is explained in the above section. In 
order to be able to reach to the lower costs than the target cost, it is 
required that the observed values of the uncertain parameter be equal to 

the best-case scenario, i.e., Pload
t = (1 − β)P̃

load
t . The rest of the constraints 

remain unchanged similar to the deterministic stage. 

4. Case study 

4.1. Data preparation 

Technical limitations and prices and operation costs of distributed 

Fig. 3. The schematic of the proposed stochastic-IGDT approach.  
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generation units in the microgrid are listed in Table 2 [35], [36]. 

4.2. Simulation results 

The proposed model is formulated as mixed-integer non-linear pro-
gramming (MINLP) problem in mathematical-based tool, GAMS soft-
ware. The proposed model is solved using both SBB and DICOPT 
commercial solvers. Some of the most important and significant results 

of the simulated model is demonstrated for different risk levels including 
risk-averse, risk-neutral and risk-seeker decision maker. The generated 
amount of power by PV unit is depicted in Fig. 4. The uncertainty of PV, 
its amount is constant in all conditions. According to the result, it is 
obvious that as expected, this generation is directly related to solar ra-
diation and it reaches its maximum during mid-day for several scenarios 
that are generated through the Monte-Carlo approach. 

Fig. 5 shows the degree of uncertainty studied against different 
critical costs. As can be seen, when uncertainty is not considered σ = 0, 
the critical cost is equal to the total cost obtained in deterministic mode. 
However, by increasing the amount of σ, which leads to an increase in 
the critical cost OCCr = (1 + σ)OC0, a larger amount of α is obtained, so 
if the decision maker wants to increase the amount of risk aversion, it 
must choose larger σ, which leads to an increase in the critical cost. 
However, it is possible to achieve a higher uncertainty interval, for 
example, when σ = 0.3 is chosen, the critical cost is equal to €849.226, 
which is obtained by α from the solution of the model, it is equal to 
0.078, that is, if the observed loads values deviate 7.8 % higher than the 
expected values, the decision maker is sure that the final total cost will 
not be higher than €849.226. 

The next figure shows the amount of uncertainty of the load against 
different target costs in a risk-seeking strategy. According to Fig. 6, when 
the uncertainty is not considered, the amount of the total cost is equal to 
the cost obtained in deterministic mode that is €654.02, but with the 
increase of σ, the target cost decreases, which is desirable for a decision 
maker with high risk-seeking attitude: OCTa = (1 − σ)OC0. In this for-
mula, σ is the risk level indicator which is a number between zero and 
one. The closer to zero, the less willing the decision maker is to take 
risks, and vice versa. For instance, when σ = 0.3 is selected, the target 
price is equal to €457.88, which in this case, the horizon of uncertainty, 
i.e. β is equal to 0.083, which means that if the amount of observed loads 
is at least 8.3 % lower than the amount of expected loads, it is possible 
for the decision maker to achieve to the target cost equal to €457.88. 

The discharged power of EV to the microgrid in the studied 24 h is 
shown in Fig. 7. As depicted in figure, the amount of power when the 
decision maker is risk taker is maximum. As the risk-seeker decision 
maker desire to gain more profit, hence the amount of the discharged 
power through EV to the microgrid is higher than others. 

The energy of storage in risk-averse, risk-neutral and risk-seeker 
modes is depicted in Fig. 8. In the risk-averse mode, the ESS stores the 
maximum amount of energy. This is expected as the decision maker 
wants to avoid any uncertainty that could lead to system loss. The high 
storage level acts as a buffer, ensuring that there is always enough en-
ergy to meet demand, even if power generation fluctuates. However, the 
amount of stored energy decreases around mid-day. This could be due to 
the increased power generation from the PV unit during this time, 
reducing the need for energy from storage. While the risk-seeking mode 
has the least amount of energy storage. The decision maker is willing to 
take on more risk for potential higher returns. This could mean relying 
more on utilization of real-time power generation rather than stored 
energy to have a positive impact on reaching to the target costs while 
accepting the risk. 

Fig. 9 presents the results of the generated power through micro- 
turbine. It can be seen that the decision maker is prioritizing stability 
and risk mitigation over potential high returns in power generation from 
the micro-turbine. This is evident from the higher power production in 
the risk-averse mode compared to the risk-seeker mode. In the risk- 
averse mode, the decision maker opts to use the micro-turbine more 
frequently, thereby ensuring a steady and reliable power supply which 
can minimize the risk of load loss in the microgrid. On the other hand, 
the risk-seeker mode seems to be used less frequently, resulting in lower 
power production. This could be due to the decision maker’s willingness 
to take on more risk for the potential of achieving much lower final 
costs. 

As highlighted in the problem formulation section, the proposed 
model integrates the demand response program (DRP) to effectively 

Table 2 
Technical limitations and prices and operation costs of distributed generation 
units.  

Micro turbine Unit Value 

SUCMT €ct  0.96 
SDCMT €ct  0.96 
PMT

Min kW  6 
PMT

Max kW  30 
λMT €/kWh  0.457   

Fuel cell Unit Value 

SUCFU €ct  1.65 
SDCMT €ct  1.65 
PFU

Min kW  3 
PFU

Max kW  30 
λFU €/kWh  0.294   

PV system Unit Value 

λPV €ct/kWh  2.584 
Ppv

stc kW  0.26 
npv

se –  12 
npv

pa –  1 
NOCT ◦C  46 
ρ –  0.2 
α ◦C  0.0045   

Upper network Unit Value 

PIMP
Min kW  − 30 

PIMP
Max kW  30 

PEXP
Min kW  − 30 

PEXP
Max kW  30   

Wind Unit Value 

λWIND (€ct/kWh) 1.073   

ESS Unit Value 

λESS (€ct/kWh)  0.38 
ηch %  0.9 
ηdis %  0.9 
PESS

Max kW  30 
PESS

Min kW  − 30   

EV Unit Value 

ηchev
t %  90 

ηdchev
t %  80 

Pchev
Max kW  2.3 

Pdchev
Max kW  2.3 

SOCMin kWh  0.6 
SOCMax kWh  3 
SOCArive

Max kWh  0.6 

SOCDep
desired 

kWh  2.3  
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minimize costs associated with the objective function. Fig. 10 visually 
represents the load variations before and after the implementation of the 
DRP. Notably, the initial load curve exhibits two prominent peaks at 10 

AM and 7 PM. However, the introduction of the DRP brings about a 
noticeable shift in the consumption pattern, resulting in reduced energy 
usage during peak hours. Moreover, the figure exemplifies the applica-
tion of the DRP in both risk-averse and risk-taking strategies. In the risk- 

Fig. 4. The amount of generated power by PV unit.  

Fig. 5. The optimum robustness function value for various critical costs in a 
risk-averse strategy. 

Fig. 6. The optimum opportunity function value for various critical costs in a risk-seeking strategy.  

Fig. 7. Discharge power of the EV for three different risk levels: risk-averse, 
risk-neutral and risk-seeker. 
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averse mode, decision makers opt to increase consumption in order to 
mitigate the risk of a substantial discrepancy between power supply and 
demand. Nonetheless, this increase in consumption subsequently leads 
to higher overall costs. In contrast, in the risk-taking strategy, decision 
makers willingly looking for the potential of reducing consumption 
during the peak period and increase on the off-peak period in order to 
use the advantage of lower energy supplying costs, thus it can desire to 
achieve a more pronounced reduction in the final cost of the objective 
function through the implementation of the DRP. 

Another parameter that is required to be considered in this modeling 
is the cost that the risk management model imposes on the system. For 
this purpose, the cost of implementing the robust strategy and the op-
portunity strategy are presented in Figs. 11 and 12. to calculate this cost 
the robust strategy is equal to Rcost = OC0 − OCcr(σ) and for opportunity 
strategy is equal to Ocost = OC0 − OCTr(σ) the objective function is equal 
to OC0 when uncertainty is not considered and the objective function is 
equal to OCr(σ) when the uncertainty parameter of the observed load is 
equal to the expected value. In this case, for different σ function, 
different objectives are obtained which difference OC0 is equal to Rcost , 

in the same way Ocost is calculated for the opportunity strategy. The 
figures provide clear evidence that as the decision-making stage aims to 
enhance the model’s resilience to load uncertainty or pursue a more 
opportunistic approach, the cost of risk management also increases. 
However, it is crucial to acknowledge that there is a point where the cost 
of implementing risk management becomes prohibitively high, 
rendering it ineffective for decision making. 

In this part, the variations in microgrid costs under various observed 
scenarios that we considered for our uncertain parameter, load. For this 
purpose, manipulated load forecasts have been employed to generate 
simulated loads, which are then used to analyze the effects of deviations 
in observed loads from forecasted loads. The potential cost for the 
operator using the robust model, represented by OC*, is determined 
using these simulated loads. The robust schedules are established by 
solving the models with an arbitrary value of σ = 0.42, taking into ac-
count the depicted forecast loads. In this scenario, the robustness 
parameter α is set at 0.108. If the hourly forecast errors are kept below 
10.8 % for the robust model, it ensures that the maximum cost is (1 +
0.42) OC0 = €934. 

Fig. 8. The amount of stored energy in the energy storage with three different risk levels: risk-averse, risk-neutral and risk-seeker.  

Fig. 9. The amount of generated power of the micro-turbine for three different modes: risk-averse, risk-neutral and risk-seeker.  

S. Seyedeh-Barhagh et al.                                                                                                                                                                                                                     



Journal of Energy Storage 86 (2024) 111306

12

We are considering three different scenarios for observed load 
pattern. In the 1st scenario, the values of the simulated loads exceed 
those of the forecasted loads, yet they remain within the robustness 
region, α = 0.108. Then, in the 2nd scenario, the simulated loads are 
distributed randomly, but they are still confined within the robustness 
region. Finally, at the last scenario, at hours 19 and 20, the simulated 
loads significantly surpass the upper limit of the robustness region, 

reaching 1100 kW. During the remaining hours, the load values are 
randomly generated exceeding their forecasted values but still within 
the robustness region. 

Table 3 presents the results for OC* based on the previously 
mentioned three scenarios. Hours 19 and 20 in scenario 3 have been 
specifically selected to study the effect of load spikes on the proposed 
IGDT-based problem. The table reveals that for the first two scenarios, 
where the loads are within the robustness region, the critical cost of the 
robust model, i.e., OC* < €934, is not exceeded. However, for scenario 3, 
where some of the load exceeds the robustness region, the critical cost is 
not guaranteed. This is due to the fact that the loads outside the 
robustness region are significantly higher than the forecasted values, 
resulting in the critical cost not being achieved. 

Most of the similar models considering uncertain parameters are 
modeled on a scenario-based approaches. These methods assume that 
the uncertain parameter is characterized by a specific probability dis-
tribution function (PDF, such as a normal PDF, and the optimization 
problem is solved using scenario generation (creating scenarios for each 
probability). The primary objective in these problems is to minimize cost 
across different scenarios. However, in the current paper, it is assumed 
that no PDF is available for the load. Thus, the problem is not solved 
with scenario-based methods for the load uncertainty, and the main goal 
is not to minimize cost but to identify the highest load variations, such 
that the scheduling cost is less than the operator’s expected value. As a 
result, the method proposed in this paper cannot be compared with any 
other methods presented. As highlighted in the paper, the IGDT method 
would be extremely beneficial in problems with uncertain parameters 
that are associated with incomplete information. The proposed model in 
this paper is subject to load uncertainty with incomplete information, as 
it is not possible to use any specific PDF for load demand. While the 
uncertainty posed from the renewable generations are modeled through 
stochastic programming. Therefore, proposing a stochastic-IGDT 
approach can be beneficial to address both types of the uncertain pa-
rameters including with some information (wind and solar generation) 
and a parameter without complete information (load) [37]. 

Fig. 10. The impact of DRP on the load profile for three different strategies: risk-averse, risk-neutral and risk-seeker vs. the initial load pattern.  

Fig. 11. The robustness cost for different values of the horizon of the uncer-
tainty of the load parameter. 

Fig. 12. The robustness cost for different values of the horizon of the uncer-
tainty of the load parameter. 

Table 3 
After-the-fact analysis using simulated loads.  

Load scenario (kW) OC* (€) 

1st scenario  913 
2nd scenario  854 
3rd scenario  1121  
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5. Conclusion 

Electrification and dependence on reliable electricity supply in 
different areas requires increased resiliency supporting technical solu-
tions from the energy systems with simultaneous consideration of eco-
nomic aspects as well. One of the most proper solutions to this end is 
utilization of microgrids in the energy systems. In this paper, a stochastic 
optimal operation of microgrid including renewable recourses, energy 
storage and DR programs has been proposed. The studied microgrid 
included PV system, wind system, micro-turbine, fuel cell, EV, and en-
ergy storage. The load was considered as the uncertain parameter and its 
uncertainty has been addressed through the information-gap decision 
theory approach. Furthermore, the uncertainties of wind and PV units 
are modeled with a scenario-based approach. 

Three different strategies were studied i.e. risk-averse, risk-neutral 
and risk-seeker mode. The impacts of risk-averseness or risk-seeking of 
the decision maker affect the system operation. For instance, the amount 
of energy storage when the decision maker takes risk averse strategy is 
the maximum as expected. Since in this mode, it is desired to avoid any 
uncertainty that leads to loss to the system. Therefore, it will try to store 
its maximum capacity of energy to this end. Moreover, the study dem-
onstrates the DRP’s use in both risk-averse and risk-taking approaches, 
affecting consumption and overall costs. Decision makers can mitigate 
risks through increased consumption or seek cost reduction by reducing 
consumption using the DRP. Moreover, it is shown that the decision- 
maker’s risk attitude has a significant impact on the microgrid’s costs. 
When the decision-maker adopts a risk-averse strategy, the final total 
costs will be higher as they tend to pay more to balance the power from 
DERs and the upstream network, making the system more robust against 
the uncertainty of load consumption. On the other hand, if the decision- 
maker adopts a risk-taking strategy, the final costs are lower as they gain 
benefits through a possible decrease in the load, thus reducing the total 
costs of the microgrid which is dependent on the total consumed load. 
Therefore, the decision-maker’s risk attitude directly influences the 
operational costs of the microgrid. Finally, the importance of consid-
ering the cost imposed by the risk management model is essential to be 
considered. As results demonstrated, if robust or opportunistic approach 
is pursued, there would be a risk management cost that increases. Thus, 
the decision-maker should consider this cost upon choosing the level of 
risk-averseness or risk-seeking. An after-the-fact analysis approach is 
also employed to demonstrate the effectiveness of the proposed model. 
Based on the findings of this study, future work can focus on evaluating 
the impacts of utilized technologies such as ESS, EV, RESs on the resil-
ience of microgrids under different risk profiles. 
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