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Abstract

Introduction: Particularly within the Internet of Medical Things (IoMT) context, skin

lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency

of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin

lesions from dermoscopy images, this study focuses on using hybrid deep learning

techniques.

Method: This research uses a hybrid deep learning model that combines two cutting-

edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for

semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise

location of a skin lesion, the MRCNN is used for border delineation. We amass a huge,

annotated collection of dermoscopy images for thorough model training. The hybrid

deep learning model to capture subtle representations of the images is trained from

start to finish using this dataset.

Results: The experimental results using dermoscopy images show that the suggested

hybrid method outperforms the current state-of-the-art methods. The model’s capac-

ity to segment lesions into distinct groups is demonstrated by a segmentation accuracy

measurement of 95.49 percent. In addition, the classification of skin lesions shows

great accuracy and dependability, which is a notable advancement over traditional

methods. The model is put through its paces on the ISIC 2020 Challenge dataset,

scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT,

segmentation and classificationmodels perform exceptionally well.

Conclusion: In conclusion, this paper’s hybrid deep learning strategy is highly effec-

tive in skin lesion segmentation and classification. The results show that themodel has

the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms

the current gold standards. The excellent results obtained on the ISIC 2020 Challenge

dataset further confirm the viability and superiority of the suggestedmethodology for

skin lesion analysis.
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1 INTRODUCTION

Too much sun exposure increases your risk of developing melanoma,

a form of skin cancer affecting individuals of all ages. Although it

accounts for only 1% of all cases, it can quickly spread to other body

parts if left untreated. The use of solariums and tanning beds has been

linked to a 47% increase in the incidence of melanoma during the past

decade, according to the statistics.1 In the United States, 196 060 new

cases of melanoma were diagnosed in 2020, resulting in 6850 deaths.

According to theWorld Health Organization (WHO), 9500 Americans

are diagnosed with skin cancer daily.2 It is common practice for der-

matologists and other medical experts to spot skin cancer simply by

looking at the affected area. The dermatologist will thoroughly exam-

ine any moles, growths, or lesions that may be precursors to skin

cancer. To give you the most complete analysis possible, they may

employ dermatoscopes and other tools. The dermatologist looks at the

skin lesions to determine their symmetry, border smoothness, color

uniformity, size range, and pace of change. The letters ABCDE stand

for “asymmetry, border irregularity, color variation, diameter, and evo-

lution,” which together characterize these characteristics. While these

signs can aid in a diagnosis, nothing beats the dermatologist’s train-

ing and expertise in skin cancer. Chemiluminescence microscopy, or

dermoscopy, is another commonmethod.3

Connected medical equipment and software that share data over

the Internet are collectively known as the “Internet of Medical Things”

(IoMT).4 Wearable fitness trackers, remote patient monitoring sys-

tems, smartmedical implants, andhealthcare-related smartphoneapps

all fall under this technology category. The IoMT has been a game-

changer in the medical field by supplying real-time patient data and

empowering doctors to provide better care and see better patient

results.5–7 This technology is essential in today’s healthcare systems

because of its ability to expand patient access to care, lower hospi-

talization rates, and increase the prevalence of preventative medicine

through constant monitoring.

With the help of IoMT, medical equipment, wearable sensors, and

healthcare networks can all work together to keep tabs on their

patients around the clock.8 IoMT sensors and devices can provide

real-time information on a wide range of skin characteristics and

lesions, making them suitable for early cancer detection. This ongo-

ing flow of information can teach deep learning algorithms to spot

even the smallest changes in skin lesions, allowing for more rapid

and accurate diagnosis.9 This facilitates earlier detection of skin

malignancies and equips individuals to take charge of their health

through regular, noninvasive examinations. In addition, IoMT paves

the door for telemedicine, which allows patients to consult with

dermatologists remotely, increases the number of readily available

specialists, and guarantees that patients receive treatment quickly.10

With IoMT and deep learning, skin cancer detection could be greatly

enhanced, allowing for earlier diagnosis and treatment for many more

people.11,12

In dermoscopy, a tiny region of skin is magnified and illuminated

with the help of handheld equipment called a dermatoscopy. This

procedure makes better observation and identification of the pigment

network, vascular patterns, and other structures associated with skin

cancer possible. Reducing the amount of difference between sam-

ples is possible through the use of computer-based classification.13

Computer-aided dermatological image categorization methods have

been evolving to address data deficiency and imaging complexity.

Dermoscopy is used to collect photographs of the skin, while a

biopsy and a microscope are required to obtain images of other

medical structures.14 State-of-the-art methods for skin image classi-

fication entailed extensive preprocessing, segmentation, and feature

extraction. Extensive work in medical image processing has focused

on skin cancer categorization to facilitate early identification and

better precise diagnosis. The difficulty of differentiating malignant

from benign skin lesions has prompted the development of several

cutting-edge techniques. Convolutional Neural Networks (CNNs)15,16

and other deep learning algorithms17–22 have shown great progress

in various skin cancer classifications, with excellent accuracy and

robustness. Extraction of discriminative features from photos of skin

lesions has been used to obtain outstanding classification results using

DenseNet,23 InceptionNet,24 and ResNet.25 In addition, ensemble

learning approaches have been used to improve classification perfor-

mance by combining the strengths of numerous classifiers into a single

model. These techniques have already proven their worth in dealing

with the complexity and variability of skin lesion images.

Accurate skin lesion segmentation and classification approaches to

enhance skin cancer diagnosis are the focus of this study. While deep

learning hasmade great strides, it still has a longway to go before it can

reliably segment skin lesions and achieve high classification accuracy.

Artifacts such as hairs and other undesired features in the photos may

cause existing approaches to perform poorly throughout the segmen-

tation process. In addition, the discriminative features included in the

segmented regions may need to be utilized more by the classification

models, resulting in poorer classification accuracy.

Therefore, the purpose of this study is to present a mask-region

CNNhybrid approach to accurate skin lesion segmentation, with a spe-

cial emphasis on the global thresholding technique for getting rid of

unwanted hairs and aberrations. In addition, a transfer learning tech-

nique involving the Residual Neural Network (ResNet) is employed

to guarantee correct classification. The proposed method is supe-

rior to previous state-of-the-art methodologies in classifying skin

lesions. This research addresses these concerns and contributes to the

improvement of skin cancer diagnostic methods.

Themain contribution of this research is described as follows:

∙ This research introduces an accurate and automated skin lesion seg-

mentation technique that effectively removes unwanted artifacts,

including hair, usingMRCNN.

∙ The studyemploys theResNetmodel to classify skin lesions, utilizing

a transfer learning approach to achieve highly accurate classification

results.

∙ The research provides a comprehensive comparison of the pro-

posed methodology with existing techniques for segmenting and
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classifying skin lesions, highlighting the advancements and benefits

of the novel approach.

Here is the rest of the paper: The literature review can be found

in Section 2. The third section explains the materials and procedures

used. Experiment details, together with analysis and commentary, can

be found in Section 4. Sections 5 and 6 represent the summary and the

research needs, respectively.

2 LITERATURE REVIEW

One form of skin cancer that causes malignant tumors on the skin

is melanoma. Photographs taken using a dermatological lens can

cause skin cancer. Using machine learning to identify skin cancer with

high classification accuracy is based on high-performance images.

Texture analysis with the GLCM (Gray Level Co-occurrence Matrix)

was applied by Sheha et al.13 on photos from 2016 and medical

clinics to automatically distinguish between melanocytic nevus and

malignant melanoma. A Fisher score ranking was used to choose the

12 most important characteristics in the two classification strategies.

Classification 1 used automatic multilayer perceptron (AMLP), which

correctly identified skin cancer 76% of the time during testing; Clas-

sification 2 used multilayer perceptron (MLP), which was successful

92% of the time. For melanoma skin cancer identification on skin

cancer photos from the dataset, Garg et al.1 presented the ABCD rule

technique, which evaluated the skin lesion on different parameters,

including asymmetry, border irregularity, color, and diameter. Before

segmenting the image using Otsu thresholding, the pixel values of the

cancerous zone were modified with MATLAB tools such as IMFILTER,

IMADJUST, and the median filter. The cancer lesions were then clas-

sified with 91.6% accuracy using an abbreviated version of the ABCD

rule, where each letter was given a different weight.

Ioannis Giotis et al.26 presented the decision system MED NODE,

which uses color and textural information on dermoscopy images of

skin cancer. The lesions were divided into two groups using k-means

clustering. Visual diagnostic characteristics, color features, and color-

textual features were used to classify segmented lesions with a 59%

accuracy rate utilizing Color Image Analysis Learning Vector Quanti-

zation (CIA-LVQ), Cluster-based Adaptive Metric (CLAM), and color

features. Taufiq et al.27 developed the m-skin app for smartphones to

aid in the detection of melanoma skin cancer at an early stage. The

used skin photos were generously donated by the Clinic and Poliklinik

for Dermatology and Allergology at Germany’s Technische Universi-

tat Munchen. After utilizing the Grab Cut method24 to segment the

skin cancer lesions, an SVM classifier correctly identified 80% of the

cases. Using standard classifiers andmanually crafted features, Hardie

et al.28 successfully segmented malignant regions with support vector

machine (SVM) regression, achieving an accuracy of 70.10%. An SVM

classifier labeled the lesions with 200 manually generated features,

five-fold cross-validation, and validation image recall.

A study presented an automated skin cancer classification method

using a Residual Deep Convolutional Neural Network (RDCNN) for

the most frequent type. RDCNN was painstakingly trained and tested

using six skin cancer datasets: PH2, DermIS, Quest, MED-NODE,

ISIC2016, ISIC2017, and ISIC2018, with three experiments. First,

unfiltered dataset photos were tested; second, segmented images. A

model from the second trial was retrained with a different dataset

in the third. The proposed RDCNN outperformed previous deep

convolutional networks in skin lesion categorization.29 As computer-

aided skin lesion diagnosis methods gained popularity, the second

study thoroughly analyzed 53 classical machine learning and 49 deep

learning studies from reliable databases over the previous 5 years

to assess their accuracy. This review examined skin lesion segmen-

tation and classification problems such as limited datasets, ad hoc

picture selection, and potential racial biases by comparing contribu-

tions, methodologies, and outcomes.30 Finally, the authors introduced

a novel deep CNN-based method. This method segmented the region

of interest, augmented ROI photos, and used deep convolutional net-

work architectures, including AlexNet, ResNet101, and GoogleNet,

for lesion identification in skin color photographs. The modified

GoogleNet achieved 99.29, 99.15, and 98.14% classification accura-

cies for MED-NODE, DermIS & DermQuest, and ISIC 2017 datasets,

respectively.31

The writers discuss the extremely important topic of melanoma

early diagnosis.Detectingmelanomaat anearly stage greatly increases

the likelihood of survival. The Scientistsʼ deep transfer learning model,

which employs MobileNetV2, a robust CNN, to classify skin lesions

as malignant or benign, is an attempt to overcome this challenge.

Class imbalance exists in the ISIC 2020 dataset since there are so

few malignant samples (less than 2%). To remedy this situation and

broaden the scope of the dataset, data augmentation techniques

are employed. In order to improve skin cancer diagnosis, the sug-

gested deep learning algorithm has been shown to surpass state-of-

the-art accuracy and compute efficiency techniques in experimental

settings.18

Using images from the ISIC-2017 and PH2 datasets,32 Xie et al.33

suggested a Mutual Bootstrapping Deep Convolutional Neural Net-

works (MB-DCNN) model for simultaneously segmenting and clas-

sifying skin lesions. The model comprised an improved classification

network, a mask classification network, and a rough segmentation

network. In the ISIC-2017 and PH2 datasets, the proposed approach

shows an accuracy of 93.8%. For the ISIC 2019 dataset, Zhuang

et al.34 created a cost-sensitive multiclassifier active fusion frame-

work, CS-AF, employing 12 different CNN architectures. Classifiers

trained in the Pytorch framework for as many as 40 iterations at a

103-learning rate and 0.9-momenta each achieved a substantial vote

accuracy of 77.47%. Zhang et al.35 suggested a method for classi-

fying skin lesions on the ISBI 2016 and ISBI 2017 datasets using

convolutional networks (FCN) and shallow encoding networks with

proprietary Textron features. The JACCARD Index was 0.8277 on

ISBI 2016 and 0.7294 on ISBI 2017 using mini-batch stochastic gra-

dient descent (SGD) using the VGG16 model as the basis, velocity of

0.9, batch size of 20, rate when compared of 0.0001 that decreases

to 0.001, and a dropout rate of 0.5. Using pictures from the ISBI

2016, ISIC 2017, and ISBI 2018, PH2, and HAM10000 datasets, Khan
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TABLE 1 Comparison of skin cancer methods.

Reference Methodology Dataset Classification accuracy

Garg et al.1 ABCDRule Technique ISIC 91.6%

Sheha et al.13 GLCM and Fisher Ranking Self-Collected AMLP (76%) andMLP (92%)

Ioannis Giotis et al.26 MEDNODEwith CIA-LVQ, CLAM Dermoscopy Images 59%

Taufiq et al.27 m-skin Appwith SVM Skin Photos 80%

Hardie et al.28 SVMRegression ISIC-2018 70.10%

Xie et al.33 Mutual Bootstrapping DCNN ISIC-2017 and PH2 93.8%

Zhuang et al.34 CS-AFwith 12 CNNs ISIC 2019 77.47%

Zhang et al.35 FCN and Shallow Encoding Networks ISBI 2016 and 2017 JACCARD Index (0.8277 and

0.7294)

Khan et al.36 DeepDiscriminant Characteristics ISBI 2016, ISIC 2017, ISBI

2018, PH2

Segmentation accuracy

(92.69–98.70%)

Anandaraj et al.37 Internet ofMedical Things (IoMT) and

cloud-based skin lesion detection and

classificationmodel

ISIC 95.68%

Xiao et al.38 Few-shot Prototype Network based on

IoMT

mini-ISIC-2, mini-ImageNet 78.34

et al.36 proposed an automated technique for segmenting and clas-

sifying multiclass lesions based on deep discriminant characteristics.

Lesion segmentation in 512× 512× 3 pictureswas accomplished using

10-layer CNNs. The segmentation accuracy on the ISBI 2016 dataset

was 95.38%; on the ISBI 2017 dataset, it was 95.79%; on the ISIC

2018 dataset, it was 92.69%; and on the PH2 dataset, it was 98.70%.

The segmented lesion was identified with a KELM accuracy rating of

90.67%.

Recent studies significantly focused on classifying skin cancer using

variousMLandDL techniques. Themainproblems in recent skin cancer

detection are discussed. Images available for analysis are of different

sizes due to the different shapes and sizes of lesions, leading to a lack

of performance in the detection phase. In this regard, a preprocessing

stage is required in the detection phase. Every human has a different

skin structure. Some people have hair on their skin, some are with-

out hair. In this sense, the image signal is corrupted. There should be

amechanism to remove hairs and other artifacts from skin images. Low

contrast from nearby tissues might occasionally present extra chal-

lenges and make it more difficult to diagnose skin cancer correctly.

Color lighting also creates specific challenges with components like

color texture, light beams, and reflections. The human body has certain

moles thatmay never turn into cancer cells, making it more challenging

to reliably identify skin cancer from malignant photos. Another issue

with detecting skin cancer is the current bias, which alters the perfor-

mance of the algorithms to provide a better result. Table 1 shows the

existing studies on skin cancer research.

3 MATERIAL AND METHODS

In this part, we detail the skin cancer detection algorithms, tools, and

technology used in this investigation to identify melanomas. There

were three main phases to accurately detect melanoma skin can-

cer: preprocessing, segmentation, and classification. TheMask R-CNN

(MRCNN)39 and ResNet40 hybrid model greatly enhances medical

imaging skin lesion categorization. MRCNN and ResNet help this

architecture segment and classify lesions. Mask R-CNN is the latest

deep-learning model for image segmentation. Pixel-level lesion masks

determine object boundaries. RPN and FPN41 efficiently produce

region proposals and capturemultiscale features forMRCNN.

3.1 Proposed method

The proposed method for classifying skin lesions can be broken down

into several phases. To begin, photos are taken from IoMT gadgets

to create an image database for classifier training. This study’s pri-

mary contribution is the development of thresholding techniques for

improving recorded images, which eliminate hairs and other artifacts

for improved understanding of skin lesions. Second, skin lesion classi-

fication is aided by locating and segmenting the lesions. Last, ResNet

can train deep networks without causing the gradients to evaporate

or become artificially inflated. ResNet can learn complex properties

and patterns from data thanks to its use of skip connections and resid-

ual blocks. ResNet and MRCNN have been combined in this model.

The hybrid network is powered by ResNet. Images of skin lesions

exhibit advanced ResNet features. These characteristics are used by

theMRCNN’s central instance segmentation and bounding box regres-

sion. The head of MRCNN tweaks ResNet feature maps to focus on

areas with lesions. To improve classification precision, MRCNN seg-

mentation masks provide damage at the pixel level. Skin lesions can be

categorized by the results ofMRCNN and ResNet. A classifier receives

features from the segmented regions and the ResNet backbone. Any

classifier designed for a particular purpose could beutilized. Thehybrid
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F IGURE 1 Proposed hybrid deep learning approach for segmentation and classification.

models segment the instances with an MRCNN and learn the features

with a ResNet. Accurate segmentation and classification of skin lesions

will aid dermatologists and other physicians in diagnosing and treat-

ing skin issues Figure 1 demonstrates proposed hybrid deep learning

approach for skin lesion segmentation and classification.

3.1.1 Dataset

This studyusesdermoscopy skin lesion images fromthe ISICChallenge.

Images of skin lesions are included in the ISIC202042 challengedataset

for statistical evaluation. This dataset was produced to investigate and

improve computer-aided diagnosis systems for diagnosing and clas-

sifying skin illnesses, including the deadly melanoma. Dermatologists

labeledphotos in thedataset. These labels train and testmachine learn-

ing algorithms to detect skin diseases. Wide range: The diverse ISIC

2020 Challenge dataset includes thousands of pictures from different

people, geographic places, and clinical circumstances.Due to its diverse

data formats, models trained on this dataset will generalize effectively.

CAD for dermatological diagnoses relied on the ISIC 2020 Challenge

dataset. It has allowed researchers to develop and test cutting-edge

algorithms for early skin condition detection and diagnosis, improving

therapy and saving lives. Each picture received processing during the

preprocessing phase.

3.1.2 Data splitting

The ISIC Challenge skin lesion images were used for this analysis.

The first step in the procedure involves processing each image. In the

segmentation process, the images came from the training images col-

lection. These photoswere collectedwith obvious lesions to accurately

segment the malignant zone. Only 10% of the data were used for test-

TABLE 2 Details of dataset.

Class Training Testing Total

Benign 1200 200 1400

Malignant 1205 200 1405

Total 2405 400 2805

ing and 90% for training. Test photos were used to evaluate the model.

Table 2 provides details of the dataset used for experiments.

This study used skin lesion photographs from the ISIC Challenge.

Processing each image is the initial stage of the operation. The pho-

tos used in the segmentation procedure were taken from the dataset

of training images. Photos were taken with visible lesions to precisely

segment themalignant area.Weput 90%of the data through our train-

ing and only 10% via our testing procedures. The model was examined

via test shots.

3.1.3 Preprocessing

The photographs of skin cancer lesions feature hair, artifacts such as

pen lines and rulers, and black frames. Since they can hindermelanoma

detection, they should be removed to better ensure accurate skin can-

cer diagnoses. Several computer vision functions and approaches were

employed to filter out the artifacts and hair, making detection easier.

The following are steps for removing distractions from skin pictures.

First, using the Python OpenCV package,43 the original photos were

downscaled to 500 × 500 and turned to grayscale. Black Hat morpho-

logical filtering44 using cv2.MORPH BLACKHAT was used to identify

the hair and artifact contours, with a 17 × 17 size kernel and one iter-

ation. In subsequent steps, cv2 was used to do binary thresholding

on the images. Use a THRESH BINARY with a value of 10 to empha-

size the hair’s natural shapes.45 A pixel with a value of 255 would be
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F IGURE 2 Pictures processed with BLACKHATmorphology are
shown in Column 3, pictures processedwith binary thresholding in
Column 4, and images with unwanted hair eliminated in Column 5.

extremely brilliant, whereas a pixel with a value of 0 would be com-

pletely dark. The hair was painted out with a radius of 1 to clean up the

original photos, and the finer details were filled in using cv2. INPAINT

TELEA used the Fast MarchMethod, which averaged the pixel weights

of neighboring marked pixels, to fill in the blanks. As shown in Figure 2,

a computer vision-based techniquewas used to preprocess skin images

by removing hairs and other artifacts.

3.1.4 Segmentation

Backgrounds for skin lesions in images might vary widely. This meant

that two different groupswere affected by the lesion. The lesionswere

divided into smaller regions using instance segmentation with Mask

RCNN (2017), which finds the contours of objects at the pixel level.

The preprocessed pictures were processed in this step to remove the

cancerous lesions of interest.

3.1.5 Mask R-CNN

The deep neural network Mask Regional Convolutional Neural Net-

work (MRCNN)39 solves instance segmentation problems in computer

vision. Two additional convolutional layers generate a mask in the

Faster RCNN variant. The first part analyzes the image and generates

possible locations for the object. In the second stage, bounding boxes

and masks are created to further classify the suggestions. The ROI

alignment is used to digitize the boundaries of the cells and scale

the targets to the same dimensions as the input. The values of the

feature maps inside the cell are also calculated via interpolation. The

architecture of theMask RCNN is shown in Figure 3.

Mask R-CNN introduces ROI Align. Pixel-level segmentation out-

performs ROI pooling because ROI aligns less spatial information.

Bounding box regression adjusts the region recommendationsʼ bound-
ing boxes until a better match is reached. Mask R-CNN predicts pixel-

wise segmentation masks for each detected object using bounding

F IGURE 3 MRCNN architecture for skin lesion segmentation.

boxes from object detection. The model estimates the box’s object-

background pixel proportion. Mask R-CNN’s mask prediction module

excels at instance segmentation, object identification, and seman-

tic segmentation. Mask R-CNN combines object identification with

pixel-level segmentation to accurately segment and recognize com-

plex objects. It has contributed to computer vision for object detection,

autonomous cars, andmedical picture analysis.

3.1.6 VGG IMAGE ANNOTATOR

The VGG Image Annotator46 generated a dataset using a coco-like

style. It is a straightforward method of manually annotating coco-

formatted images, videos, and audio files. The coco format datasetwith

segmentation masks for 80 classes was used to test mask RCNN. The

photographs were all scaled down to 500px by 500px. The malignant

zone and the noncancerous region were separated into the lesion and

backdrop classes, respectively. Polygonal annotations indicating the

lesion’s presence can be observed in Figure 4.

Original images and JSON files containing polygons of each image

will be used as input, and cropped images with lesions will be returned

as output. The researchers in this studyused theVGG ImageAnnotator

to annotate the coco-format training dataset, resulting in segmen-

tation masks tailored to detect lesions. A thorough dataset descrip-

tion was written for this purpose, including its creation, distribution,

and use.

3.1.7 Classification

The segmented lesions were classified as malignant or benign using

ResNet50, a CNN pretrained with weights from ImageNet. A 50-layer

ImageNet-trained residual pretrained network was used in this study.

The layer depth of this residual network is more than that of VGG

networks, yet it is still simpler. Like other pretrained models, it was

trained on the massive ImageNet dataset and could benefit from the

improved depth and simplicity of optimization. A new CNN architec-

ture called ResNet was developed to address the issue of disappearing

gradients during very deep network training. Deep networks need help

to learn complex mappings because their performance degrades as
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F IGURE 4 Annotated samples from the database using VGG Image Annotator.

F IGURE 5 Resnet 50 architecture for skin lesion classification.

they become deeper. “Residual blocks” are ResNet’s solution. ResNet

learns residual mapping instead of the underlying mapping. “Shortcut

connections” or “skip connections” allow information to travel from

layer to layer and help the network learn the difference between input

and output. ResNet’s residual block ismultilayered,47 mixing its output

with the original input before passing on. In numbers,

Xout = F (Xin + Xin) (1)

where X_in It is the input to the residual block. F_in represents the

transformation applied to the input by the layers within the block.

X_out the residual block’s output is the sum of the transformed input

and the original input. By adding the input to the changed output,

ResNet efficiently learns the residual mapping, allowing the network

to focus on learning the “difficult” parts of the mapping rather than

the completemapping from scratch. This residual learningmakes train-

ing incredibly deep networks with improved performance significantly

easier. Figure 5 below depicts the multitiered architecture of ResNet.

The model was built with the binary cross-entropy loss function in

mind, which allows predicting of two classes (benign andmalignant). To

implement the softmax44 in the last layer, the vector of integers was

converted into a vector of probabilities using the following formula,

where the probability for each value was proportional to the various

scales of the column.

softmax (Zi) =
exp (Zi)

∑
j exp (Zi)

(2)

In this case, the value of the neurons in the output layer is denoted

by the letter Z. Each picture is now 224 × 224 pixels in size. The net-

work was built on top of a Resnet50 base with a dropout of 0.5 and

batch normalization. We utilized a thick neuronal layer and a SoftMax

activation function for binary classification. The Adam optimizer used

binary cross entropy as its loss function. The model has been tweaked

to run for 100 iterations, 50 steps, 64 batches, a base learning rate of

0.0001, and aminimum learning rate of 1e− 7 that is reduced by a fac-

tor of 0.2 if the validation accuracy fails after five iterations. We used

Adaptive Moment Estimation (ADAM)48 with a fixed learning rate to

train our segmentation and classification models. It uses the adaptive

gradient method as a gradient-based optimization strategy that yields

stochastically optimal solutions (AdaGrad).

3.2 Experimental setup

TensorFlow andKeraswill help Python implement the experiment. The

pretrained ResNet50 model will be fine-tuned with our skin lesion
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dataset to extract informative features from these photographs. Mask

R-CNN design in the classification pipeline allows accurate skin lesion

segmentation. Mask R-CNN’s object recognition and instance seg-

mentation capabilities allow us to generate pixel-level masks for each

lesion, improving the model’s grasp of lesion boundaries. Transfer

learning will initialize the ResNet50 spine of the integrated architec-

ture with ImageNet weights. We will use a learning rate scheduler

and momentum-optimized SGD to fine-tune the model. We will track

accuracy, precision, and recall during training to evaluate the model.

We will validate against a nontraining set sample to avoid overfitting

and choose the best model. Grid and random search hyperparameter

adjustment will optimize our model’s settings. In Google Colab Pro,49

powerfulGPUswill expedite training and inference.GoogleColabPro’s

session persistence will help us quickly refine the model and run many

experiments.

3.3 Evaluation policy

A nonlinear classifier called ADAM is employed for classification. Since

these are the most common metrics used in classification challenges,

we looked at employing them tomake ourwork competitivewith other

existing systems: True Positive Rate (TPR), True Negative Rate (TNR),

and Area Under the Curve (AUC) (ROC). They are used to evaluate the

efficacy of the method. Accuracy is the percentage of correctly iden-

tified samples relative to the total number of models. The accuracy

metric is a wide-ranging measure of a model’s veracity. It considers

both positive and negative samples that were appropriately classified

as such. The formula takes the sum of all samples and divides it by the

sum of all possible outcomes (both positive and negative).

ACC =
100 (TP + TN)

TP + TN + FN + FP
(3)

The positive rate is calculated by counting the number of success-

fully identified samples. The TPR is the fraction of positive samples

(true positives) that were properly recognized by the model relative to

the total number of positive samples (true positives+ false negatives).

TPR =
TP

TP + FN
(4)

The false positive rate is calculated using the percentage of incor-

rectly recognized samples. The FPR measures how often a model

mistakenly classifies a sample as positive when it is negative. This met-

ric is essential in areaswhere false positivesmight have serious effects,

like medical diagnostics.

FPR =
FP

FP + TN
(5)

The precision ratio is the proportion of correctly classified samples

relative to the total number of accurately predicted elements. Preci-

sion can be defined as the fraction of samples containing true positives

relative to the total number of samples the model identifies as posi-

tive. It is a measurement that determines the accuracy of the model’s

positive predictions.

Precision =
TP

TP + FP
(6)

The recall is the proportion of adequately categorized samples to all

correctly classified instances. The proportion of true positives among

all actual positive cases, including those that are missed by the model

and are referred to as false negatives, can be calculated using recall. In

situations where it is very important to identify as many positive cases

as possible, such as in medical diagnostics, it is highly useful.

Recall =
TP

TP + FN
(7)

The terms “T.P.,” “T.N.,” “F.P.,” and “F.N.” in these equations, respec-

tively, stand for the number of true positives, true negatives, false

positives, and false negatives. These metrics are used extensively in

evaluating the performance of classificationmodels. They balance var-

ious aspects of a model’s effectiveness, depending on the particular

context in which the problem is being addressed.

4 RESULTS AND DISCUSSION

In this section, we will use several metrics to assess how well the

suggested method performs and compare that performance to that

of established methods. I have broken down the study’s findings and

commentary into the following sections for your convenience.

4.1. Performance analysis of proposed MRCNN for segmentation of

skin lesion.

4.2. Comparative analysis of proposedMRCNNwith existing segmen-

tationmethods.

4.3. Performance analysis of proposed ResNet50 for classification of

segmented skin lesion.

4.4. Comparative analysis of proposed ResNet50 with existing skin

lesion classificationmethods.

4.1 Performance analysis of proposed MRCNN

MRCNN formed the basis of the model architecture, with 150 epochs,

100 steps, and 1 batch size as training parameters. The training was

extremely efficient, with a momentum value of 0.9 and a base learn-

ing rate of 0.001. If there was no improvement in validation accuracy,

the learning ratewas decreased by 0.0001 to ensure effective learning.

These methods train a model that can accurately segment and detect

lesions using an annotated data set and hyperparameters customized

specifically forMRCNN.

The training accuracy is lowat first (0.4997) but steadily improves as

more iterations are performed. This indicates that themodel is learning

from the data it is fed. The accuracy of validations could be more con-

sistent at first, but it improves over time. However, in most instances,

validation accuracy is lower than training accuracy. Because the model
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F IGURE 6 Training and validation accuracy graph ofMRCNN.

F IGURE 7 Training and validation loss graph ofMRCNN.

typically slightly overfits the training data, this occurs frequently. As

the training accuracy increases, so does the validation accuracy, pro-

viding evidence that the model is improving at generalization to new

data. If accuracy improvements decrease to a trickle in later epochs

(say, between Epochs 50 and 100), the model’s performance may have

plateaued. After 100 iterations, the model achieved a training accu-

racy of almost 97.14%and a validation accuracy of nearly 95.82%, both

indicative of a jobwell done. Figure6depicts the training andvalidation

accuracy graph of the segmentationmodel.

It becomes clear that the model improves its fit to the training

data as the training loss decreases. Additionally, the validation loss

decreases as themodel improves, showing that it can successfully gen-

eralize to new data. The training loss and the validation loss must be

tracked closely when training. A decrease in training loss without a

corresponding decrease in validation loss may indicate overfitting, in

which the model memorizes the training data rather than learning the

underlying patterns. High values for both training and validation losses

suggest that themodel is underfitting and does not faithfully represent

the data. Figure 7 depicts the training and validation loss graph of the

segmentationmodel.

The results of the model’s segmentation show how well it can find

and separate items in photos. With 91.73% precision, the program can

find the edges of objects. The model’s recall rate of 94.17% shows that

it can recognizemany of the important things in the pictures. This exact

F IGURE 8 Results of segmentation using testing dataset (A)
original images; (B) segmentedmasks created; (C) cropped images
with lesion.

segmentation gives an accuracyof 95.49%,which shows that themodel

is good at classifying pixels. The accuracy of the model’s semantic pic-

ture segmentation is very good. But the 5.51 loss number may need to

be looked at more closely since lower values are better. These results

show how useful and effective the model is in semantic segmentation

tasks, which can be used inmedical imaging, self-driving cars, and other

places. Figure8depicts the testing results of the segmentationmethod.

Miss segmentation in skin lesion segmentation is caused by sev-

eral factors, including the wide variety of lesion types, artifacts, the

complexity of skin anatomy, uneven lesion borders, a lack of data, and

poor algorithmic choices. In this study, skin images contain blurriness

and have different types of skin lesions with almost the same color

and structure as others, so misclassification occurs while training and

testing the segmentationmodel.

4.2 Comparative analysis of proposed
segmentation method with state-of-the-art methods

Table 3 compares the proposed MRCNN skin lesion segmentation

approach to numerous state-of-the-art methods across datasets.

The table has rows for methods and columns for citations, method

names, datasets, and accuracy. High-resolution CNNs boost accu-

racy to 93.80% on the ISIC-2017 dataset (first row).50 Additionally,

FCN51 uses fully convolutional networks to achieve 94.5% accuracy on

the same ISIC-2017 dataset. The boundary-aware transformer (BAT)

method is suggested for skin lesion segmentation.52 This method has

91.20% accuracy on ISIC-2018. The next row describes a CNN-based

skin lesion segmentation algorithm using the ISIC-2020 dataset that

achieves 94.32% accuracy.53 The new Multi-Scale Residual Encoding

and Decoding network (MS-RED)54 achieves 94.10% accuracy on the

ISIC-2017dataset. In Liu et al.,55 NCR-NET (an acronym for “Neighbor-

hood Context Refinement Network”) obtains 94.01% accuracy on the

ISIC-2017 dataset. MSFNet, a Lightweight Multi-Scale Feature Fusion
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TABLE 3 Comparative analysis of proposed segmentationmethod
with state-of-the-art methods.

Citation Method Dataset Accuracy

50, 2020 CNN ISIC-2017 93.80%

34, 2020 FCN ISIC-2017 94.58%

35, 2021 BAT ISIC-2018 91.20%

36, 2021 CNN ISIC-2020 94.32%

37, 2022 MS-RED ISIC-2017 94.10%

38, 2022 NCR-NET ISIC-2017 94.01%

39, 2023 MSFNet ISIC-2018 92.17%

40, 2023 CNN ISIC-2017 91%

Proposed MRCNN ISIC-2020 95.49%

Network, obtains 92.17% accuracy on the ISIC-2018 dataset in the fol-

lowing column.56 Finally, Kaur and Ranade57 propose a CNN-based

skin lesion segmentation method that uses group normalization and a

mixed loss function to achieve 91% accuracy on the ISIC-2017 dataset.

In the final column,MRCNN outperforms all competing approaches on

the ISIC-2020 dataset with 95.49% accuracy. Table 3 shows the results

of testing multiple skin lesion segmentation methods on different

datasets. Compare the proposed MRCNN method to state-of-the-art

methods; it more accurately segments skin lesions from dermoscopy

images.

4.3 Performance analysis of proposed ResNet50

The results of a deep learning model trained for 50 iterations are dis-

played in the output. The model is trained on one data set during an

epoch, and its accuracy ismeasured using a different set of data known

as validation data. After each epoch, the training and validation accu-

racy scores are recorded. The blue line depicts the model’s success in

acquiring knowledge from the training data, which stands for train-

ing accuracy. Beginning at about 79.5%, it improves with data-driven

model refinement. The training accuracy stabilizes at about 91% after

50 iterations. The red line indicates the validation accuracy,whichmea-

sures how effectively the model extrapolates to new data. It begins

at 93.56% and varies over the epochs. The precision of the valida-

tion fluctuates between 92 and 95%. Figure 9 depicts the training and

validation accuracy graph of a classificationmodel.

The training and validation loss graphs for a deep learning model

are shown. The blue line in this graph shows the training loss across

50 iterations, whereas the red line shows the validation loss. Epoch 1

sees a training loss of 53.58% and a validation loss of 19.60% for the

model. As measured by a declining training loss, the model improves

as it takes in more data. Validation loss decreases, indicating that the

model becomes more accurate when applied to new data. Epoch 5 has

a higher validation accuracy (val_acc) than Epoch 4, which was 93.56%.

This indicates that the model is getting better at applying novel data.

Validation accuracy reaches a maximum of 95.01% at Epoch 9, and the

model continues to perform admirably through Epoch 13. This indi-

F IGURE 9 Training and validation accuracy graph of ResNet50.

F IGURE 10 Training and validation loss graph of ResNet50.

cates the model’s success on the validation dataset, where it achieved

anaccuracyof 95.01%.After Epoch13, themodel’s performanceon the

validation data becomes slightly unstable, although it still has a very

high level of accuracy. The training process is fine-tuned by slowing

the model’s learning rate occasionally to avoid overshooting the opti-

mal weights. It becomes apparent that the model is learning how to

classify the skin lesions as the loss decreases and the validation accu-

racy increases across the training epochs. The model performs quite

well, suggesting that it can correctly classify skin lesions without visual

signals. Figure 10 depicts the training and validation loss graph of a

classificationmodel.

The confusion matrix is needed to evaluate classification models on

the test set. The report describes the model’s predictions. This confu-

sionmatrix requires binary classification into “Benign” and “Malignant”

classes. Finally, the confusion matrix helps evaluate the binary classifi-

cation approach. Themodel’s accuracy, precision, recall, and specificity

are high.However, several indicators and analyses are needed to assess

the model’s performance. Figure 11 shows the confusion matrix of

testing results from the trained classificationmodel.

The findings show that a classification model can distinguish

“Benign” from “Malignant.” It is estimated that the model is 96.75%

accurate. With 91% precision, the model identifies “Benign” samples.
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F IGURE 11 Confusionmatrix for testing results using trained
ResNet50.

TABLE 4 Testing results of the proposed Resnet50.

Measures

Class Precision Recall F1 Acc Avg. Acc

Benign 91% 99% 95% 98.5% 96.75

Malignant 99% 90% 94% 95%

The model has a 99% “Benign” class recall, meaning that it correctly

identifies most “Benign” samples in the training dataset. This 95% F1

score for “benign” strikes a goodmix between accuracy and recall. Pre-

cision for the “Malignant” class is 99%, indicating that when the model

labels a sample as “Malignant,” it is usually correct 99% of the time.

Since themodel only has a 90% recall, it risks missing “Malignant” sam-

ples. The “malignant” F1 gets 94%. The testing results provide insights

into distinguishing “Benign” from “Malignant” samples in the dataset,

which provides a well-performing model with excellent accuracy, pre-

cision, and recall for both classes. The efficacy of the model and its

potential for improvement need to be measured using additional met-

rics and analysis. Table 4 represents the testing performance of the

trained classificationmodel.

The ROC curve was also utilized to evaluate the precision of the

model. As shown in Figure 12, the overall performance across all pos-

sible classification criteria was 96.1%, represented by the area under

the ROC curve.

Figure13demonstrates a fewmelanomadetection findings. By visu-

ally contrasting the model’s predictions with the data, the accuracy

of a classification model can be demonstrated. Each image in the net-

work represents a unique data instance, and specific pixel positions

on the images correlate to the actual and anticipated class labels. By

inspecting the graph, we may evaluate the accuracy of the model’s

predictions.

F IGURE 12 ROC curve for lesion class.

TABLE 5 Comparison of proposed classificationmethodwith
state-of-the-art methods.

Citation Method Dataset Accuracy

18, 2020 MB-CNN ISIC-2017 93.8%

36. 2021 Deep CNN ISIC-2017 90.67%

41, 2022 CNN ISIC-2017 83.20%

42, 2023 DSNN ISIC-2019 89.57%

43, 2023 YOLOv5 Self 79.20%

Proposed ResNet50 ISIC-2020 96.75%

4.4 Comparative analysis of proposed ResNet50
with other state-of-the-art methods

The proposed method for classifying skin lesions is compared to other,

more advanced methods in Table 5. A methodology, reference, data

collection, and precision are provided in each table entry. MB-CNN, a

mutual bootstrapping model for automatic skin lesion segmentation

and classification, was proposed in 2020 by Xie et al.18 It achieved

93.8% accuracy on the ISIC-2017 dataset. Second, in 2021, Khan

et al.20 developed Deep CNN, which applied moth flame optimiza-

tion with deep learning features to segment and classify skin lesions.

It received 90.67% on the ISIC-2017 dataset. In 2022, Gouda et al.41

proposed using deep learning and CNN to identify skin cancer from

photographs of skin lesions. The accuracy on the ISIC-2017 dataset

was 83.20%. Finally, in 2023, DSNN (deep spiking neural network)

was presented by Gilani et al.,42 which is a deep spiking neural net-

work for skin cancer categorization. The accuracy on the ISIC-2019

dataset was 89.57%. Hyperspectral image engineering for skin can-

cer classification was revolutionized by Huang et al.43 in 2023 with

the release of YOLOv5. Unlike previous approaches, this one was val-

idated on a dataset the authors developed, achieving an accuracy

of 79.20%. Finally, on the ISIC-2020 dataset, the greatest accuracy

of the ResNet50-based method was 96.75%. The ResNet50-based

method outperforms state-of-the-artmethods in the table, which com-

pares methods used to classify skin lesions. A method’s computational
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F IGURE 13 Results of lesion classification using ResNet50.

complexity and generalization capabilities should be considered for

practical skin lesion categorization applications.

5 CONCLUSION

A new era has begun for CAD systems, particularly in skin lesion

analysis, thanks to the IoMT. This study introduces an innovative

approach that successfully integrates semantic segmentation with

lesion classification by employing a hybrid deep learning model. For

precise semantic segmentation, the state-of-the-art method employs

anMRCNNarchitecture, whereas lesion categorization is handled by a

trained ResNet50. Combining these techniques allows us to locate and

map out the exact boundaries of lesions. A large, meticulously anno-

tated set of dermoscopy images is used in the study to set the stage for

efficientmodel training. The segmentation accuracy of the hybrid deep

learningmodel is 95.49%,which is higher than the current state-of-the-

art approaches. Furthermore, contemporary methods of skin lesion

classification represent significant advancements over its antecedents.

In the ISIC 2020 Challenge dataset evaluation, the model performed

exceptionally well, with an accuracy rate of 96.75%. Collectively, these

results place the segmentation and classification models at the fore-

front of what is considered best practice in IoMT. This research paves

theway formore precise skin lesion analysis and highlights IoMT’s vast

potential for enhancingmedical diagnosis and therapy.

6 FUTURE WORK

The accuracy of the classification model can be improved in future

studies if additional data are collected on the malignant kind. MRCNN

was the foundation employed in the lesion segmentation process.

Using the other pretrainedmodel, omitting theMask Layer, and relying

on the Regional Proposal Network layer to acquire the bounding boxes

of the interesting regions allows us to significantly shrink themodel.
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