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Abstract
The main objective of this paper is to forecast the realized volatility (RV) of Bitcoin
futures (BTCF) market. To serve our purpose, we propose an augmented heteroge-
nous autoregressive (HAR) model to consider the information on time-varying jumps
observed in BTCF returns. Specifically, we estimate the jump-induced volatility using
the GARCH-jump process and then consider this information in the HARmodel. Both
the in-sample and out-of-sample analyses show that jumps offer added information
which is not provided by the existing HAR models. In addition, a novel finding is
that the jump-induced volatility offers incremental information relative to the Bit-
coin implied volatility index. In sum, our results indicate that the HAR-RV process
comprising the leverage effects and jump volatility would predict the RV more pre-
cisely compared to the standard HAR-type models. These findings have important
implications to cryptocurrency investors.

Keywords Bitcoin futures market · Realized volatility · Jump-induced volatility ·
Bitcoin implied volatility index · Leverage effects · HAR-RV models

JEL Classification C01 · G13 · G17

1 Introduction

Cryptocurrencies represent decentralized payment systems involving technological
innovation. Notably, such payment process provides cryptocurrencies an incompa-
rable transparency. Transactions of digital currencies are all recorded on the open
public ledger known as ‘blockchain’. Note that in blockchain technology, data science
guarantees that all the transactions are safe and protected. It ensures the integrity and
security of blockchain transactions. In particular, data science effectively detects any
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sort of suspicious activities on the blockchain network. Besides, it also assures that
transactions are executed promptly. Due to this transparency and 24-h accessibility,
digital currencies have gained immense popularity among the investors [1].

Over the past few years, digital currencies have grown rapidly in price, attrac-
tiveness, and mainstream adoption [2]. As of July, 2021, there are over 6000
cryptocurrencies being traded and currently, the global market capitalization amounts
to $1.6 T. Among these digital currencies, Bitcoin still leads the market with a total
market capitalization of 700bn, corresponding to 44% of the overall market capital-
ization.

Given the popularity and market capitalization of this leading crypto, it is of
paramount importance to precisely predict its volatility so that investors who take
large positions in it could be able to make proper investment decisions [3]. Note that
the price formation for Bitcoin does not match with other asset classes because of
its own uniqueness. A number of studies document that Bitcoin appears to be more
volatile than equities and maintains a low correlation with other financial markets [4,
5]. This promotes Bitcoin as an efficient hedging instrument which can diversify the
risk linked to investor portfolio [6, 7]. However, Bitcoin has been highly volatile in
recent years and therefore, understanding the volatility dynamics of this digital cur-
rency plays a pivotal role in portfolio optimization and developing appropriate hedging
strategies.1

It is noteworthy that in order to reduce the volatility of Bitcoin prices and increase
its efficiency, Bitcoin futures (henceforth, BTCF) market was introduced in December
2017. Since its inception numerous studies have investigated the volatility dynamics
of this new futures market. Note that the BTCF being a new asset class could be highly
volatile [8]. Therefore, the patterns of volatility for this market have received ample
attention among the academics, investors and policymakers [9].

The earlier works assessing the volatility dynamics of BTCF can be divided into
three different categories. The first group of literature is mainly focused on how the
volatility of BTCF impacts the price and volatility of other cryptocurrencies [10, 11].
The second category examines the quantitative risk management of BTCFmarket [12,
13], while the last category has assessed its hedging effectiveness [14, 15].

The present study joins the existing literature to propose an extended heterogeneous
autoregressive (HAR) process which could be beneficial for predicting the realized
volatility (henceforth, RV) of the BTCF market more precisely. It is worth mention-
ing that while a growing body of literature has explored the volatility dynamics and
risk management of the BTCF market, prediction of realized volatility for this asset
remains understudied. Given that volatility plays a key role in making appropriate
asset allocation decisions and managing the risk of investor portfolio, finding accurate
estimates of future RV for the BTCF market is crucial. To this end, this paper aims to

1 Data science plays a pivotal role in estimating the risk involved in Bitcoin investments. In fact, one of the
key applications of data science in cryptocurrency trading is predictive analytics. In doing so, it employs
cutting-edge algorithms and statistical methods for predicting future price movements based on prior data.
Such forecasts are important for cryptocurrency investors when estimating volatility and formulating effec-
tive trading strategies. In sum, data science has emerged as a key tool for interpreting complex market
behaviors, predicting trends and managing portfolio risk.

123



Annals of Data Science

fill this void in the existing literature by investigating the role of time-varying jumps
occurring in BTCF returns when predicting the RV using the HAR-type models.

In doing so, our study makes several noteworthy contributions to the exiting liter-
ature on the cryptocurrency futures market. First, to the best of our knowledge, this
is the initial attempt to asses if jump volatility has predictive contents for forecast-
ing the RV of BTCF market. In particular, we examine whether and to what extent
the volatility of time-varying jumps occurring in BTCF returns can predict the RV
of BTCF market.2 Such investigation is crucial given that large jumps in financial
asset prices indicate an upsurge in market uncertainty [16]. Besides, jump-induced
volatility, which refers to sudden, unexpected and abrupt price changes, temporarily
disrupts market mechanisms, strains the capital markets, and brings huge losses to
investors. Since Bitcoin is highly volatile in nature [17], the volatility of jumps may
have predictive information for the RV of BTCFmarket. Hence, using the information
content of jump-induced volatility would improve the forecast accuracy for the BTCF
return volatility. Moreover, as the jump-induced volatility might carry important infor-
mation for understanding the potential risk, time-dependent jumps should be detected
properly. Hence, our analysis could be useful for deriving appropriate asset pricing
models which could minimize the risk linked to cryptocurrency investments.

Second, we check the predictive ability of Bitcoin implied volatility index (hence-
forth, BVIN) when modeling the RV of BTCF market. It is now well-documented
in the finance literature that the implied volatility offers incremental information for
equity market volatility forecasts [18]. However, such literature is scarce in the con-
text of cryptocurrency markets. We thus extend the prior literature by investigating
whether the information content of BVIN is useful for the volatility forecasts of the
BTCF market. In doing so, we also verify if the HAR process including the volatility
of time-varying jumps outperforms the HARmodel containing the information on the
implied volatility index.

In our empirical analysis, we obtain the estimates of (time-varying) jump volatility
by applying the GARCH-jump process to BTCF returns. We then use the information
content of jump volatility in the HAR model to forecast the RV of BTCF returns.
Our findings indicate the importance of jump-induced volatility. In fact, the HAR
approach considering the information on jump-induced volatility outperforms all other
models used in this study. Both in-sample and out-of-sample analyses support this
novel finding. Our analysis thus reveals that financial time series alone would include
predictive contents for forecasting the future RV and that using the jump process
could be useful in this regard. Given that precise estimation of time-varying volatility
plays a pivotal role in portfolio optimization and hedging strategies, our findings offer
important implications to participants in cryptocurrency markets.

2 Jumps are often observed in Bitcoin market. Previous studies have also documented the presence of
time-varying jumps in cryptocurrency markets [17, 19, 20]. In this paper, unlike the prior works, we study
the occurrence of such jumps in Bitcoin futures market and their role in forecasting the RV.
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2 Data

Our data include daily observations from January 2019 to March 2022. The beginning
of our sample period is detected by the availability of the BVIN index. The data
on CME Bitcoin futures prices and BVIN are retrieved from the Bloomberg terminal,
while the information on realized volatility (RV), based on the 5-min intra-day squared
returns for the BTCF, is collected from Professor Dacheng Xiu’s risk lab (https://da
chxiu.chicagobooth.edu/#risklab).

Table 1 shows the descriptive statistics for the Bitcoin futures index. The results
suggest that returns are negatively skewed with a leptokurtic distribution. The Jar-
que–Bera (J-B) test also shows the violation of normality assumption. Finally, the
augmented Dickey Fuller (ADF) and Philips Perron (PP) tests confirm that Bitcoin
futures returns appear to be stationarity.

Figure 1 exhibits the bitcoin futures prices for the sample period considered in this
paper. It demonstrates that although the prices seem to be low initially, the market
experiences substantial increments in 2021. However, we also witness a notable drop
after the inception of Russo-Ukrainian war.

Next, Fig. 2 plots the realized volatility of Bitcoin futures prices. This graph reveals
that while the futures index is, in general, volatile, the risk increases substantially
during the COVID-19 pandemic periods.

Table 1 Summary statistics

Mean Standard deviation Skewness Kurtosis J-B test ADF test PP test

0.0031 0.0476 − 0.0417 7.67 707.05*** − 28.38*** − 28.37***

***, ** and * indicate statistical significance at 1%, 5% and 10% levels, respectively
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Fig. 1 Time series plot of Bitcoin futures prices

123

https://dachxiu.chicagobooth.edu/#risklab


Annals of Data Science

0

0.5

1

1.5

2

2.5

3

3.5

1/
8/

20
19

3/
8/

20
19

5/
8/

20
19

7/
8/

20
19

9/
8/

20
19

11
/8

/2
01

9

1/
8/

20
20

3/
8/

20
20

5/
8/

20
20

7/
8/

20
20

9/
8/

20
20

11
/8

/2
02

0

1/
8/

20
21

3/
8/

20
21

5/
8/

20
21

7/
8/

20
21

9/
8/

20
21

11
/8

/2
02

1

1/
8/

20
22

3/
8/

20
22

RV

Fig. 2 The realized volatility of Bitcoin futures prices

3 Methodology

In our empirical analysis, we follow a two-step procedure. The first step estimates the
conditional jump-induced volatility (JV) using the GARCH-jump approach developed
by Chan and Maheu [16]. In the second step, we extend the HAR model considering
the information on JV.

3.1 GARCH-Jump Approach

Following Chan and Maheu [16], we employ the GARCH-jump model as follwos3:

rt � π + μrt−1 + εt (1)

where rt indicates the logarithmic difference for the BTCF index at time t, and εt
refers to the innovation term which is specified as:

εt � ε1t + ε2t (2)

where ε1t will follow the GARCH (1,1) specification:

∫
1t

� √
ht zt , zt ∼ N I D(0, 1)ht � ω + αε21t−1 + βht−1 (3)

In addition,ε2t denotes a jump innovation defined as:

ε2t �
nt∑

l�1

Jtl − θλt (4)

3 The choice of the AR(1) specification is based on the AIC and BIC values.
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where Jtl is the jump size with a mean value θ and a variance ϑ2,
∑nt

l�1 Jtl refers to
the jump factor, and nt represents the number of jumps at timet, following a Poisson
distribution given by:

P(nt � j |It−1) � e−λtλ
j
t

j!
, j � 0, 1, 2, . . . (5)

With an autoregressive conditional jump intensity (ARJI) given as4:

λt � λ0 + ρλt−1 + γ ξt−1 (6)

In Eq. 6, λt indicates the time-varying conditional jump intensity parameter, λ0 is
the constant jump intensity, and ξt−1 denotes the intensity residual. Chan and Maheu
[16] assume that λt > 0, λ0 > 0, ρ > 0, and γ > 0.

We define the log-likelihood as:

L(
) �
T∑

t�1

log f ( Xt |It−1;
)

where 
 � (π, μ, ω, , β, θ, ϑ , λ0, ρ, γ) and It−1 is the information set.
Note that the jump-induced volatility (henceforth, JV) is given as:

JV t � (θ2 + ϑ2)λt (7)

3.2 HARModels

The HAR process has received considerable attention in earlier research works as a
suitable method for predicting the realized volatility of financial markets. The advan-
tage of employing this approach is that it considers separating the realized volatility
into short-, medium-, and long-term volatility components, thereby producing more
accurate forecasts [23]. Previous studies [24–27] also demonstrate its dominance over
the GARCH-type, SV-type, VAR-RV, MIDAS-RV, and ARFIMA-RV models.

Following Corsi [28] and Busch et al. [29], we define the baseline HAR-RV model
as follows:

3.2.1 HAR-RV

RV t , t+h � τ0 + τd RV t + τwRV t−5, t + τm RV t−22, t + εt (8)

4 The ARJI process is an extension of the constant jump intensity (CJI) process, which is proposed by
Jorion [21]. In the CJI process, it is assumed that λt � λ0, implying that jump intensity is independent
of time. However, a number of recent studies [22, 23] document that such intensity is time-dependent and
hence prefer ARJI model to CJI process.
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with h being equal to 1, 5 and 22 depending on the daily, weekly andmonthly volatility
components, respectively and

RV t1, t2 � 1

t2 − t1

t2∑

t�t1+1

RV t (9)

In our paper, a number of extensions to the baseline HAR-RV model have been
considered.5 We first define the LHAR process, proposed by Corsi and Renò [30],
where leverage effects are used to extend the HAR model:

3.2.2 LHAR-RV

(10)

RV t , t+h � τ0 + τd RV t + τwRV t−5, t + τm RV t−22, t

+ ψdr
−
t + ψwr

−
t−5, t + ψmr

−
t−22, t + εt

where, r−
t � min(rt , 0), r

−
t−5, t � min((rt−4 + rt−3 + · · ·+ rt )/5, 0) and r−

t−22, t � min
((rt−21 + rt−20 + · · · + rt )/22, 0).

Asmentioned earlier, theHARmodel is also extended using the information content
of BVIN index. This process, called LHAR-RV-IV, is given as:

3.2.3 LHAR-RV-IV

(11)

RV t , t+h � τ0 + τd RV t + τwRV t−5, t + τm RV t−22, t

+ ψdr
−
t + ψwr

−
t−5, t + ψmr

−
t−22, t + δBV I Nt + εt

Next, we introduce the jump-induced volatility (JV) term, specified in Eq. (7), to
the LHAR-RV process as follows:

3.2.4 LHAR-RV-JV

(12)

RV t , t+h � τ0 + τd RV t + τwRV t−5, t + τm RV t−22, t + ψdr
−
t + ψwr

−
t−5, t

+ ψmr
−
t−22, t + φd JV t + φw JV t−5, t + φm JV t−22, t + εt

Finally, we propose the LHAR-RV-IV-JV model to simultaneously consider the
information on leverage effects, BVIN index and jump-induced volatility:

5 Prior literature [23, 24, 29, 31] shows that separating RV into a continuous and a jump component
improves the predictive ability of the HAR-RVmodels. Yu [32], however, documents that considering these
components is not useful for the Bitcoin market. Hence, the jump and continuous components are ignored
in this paper.
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3.2.5 LHAR-RV-IV-JV

(13)

RV t , t+h � τ0 + τd RV t + τwRV t−5, t + τm RV t−22, t + ψdr
−
t + ψwr

−
t−5, t

+ ψmr
−
t−22, t + φd JV t + φw JV t−5, t + φm JV t−22, t + δBV I Nt + εt

Notably, our objective is to forecast one-month ahead volatility only given that
options expire at a monthly frequency. Hence, h equals 22 in our analysis. Busch et al.
[29] also advocate this when forecasting the RV of bond, currency and equity markets
using the VIX index.

3.3 Out-of-Sample Forecast s

3.3.1 Forecast Evaluation

The forecasting performance of different models used in this study is evaluated using
the heteroskedasticity adjusted root mean square error (HRMSE) proposed by Boller-
slev and Ghysels [33]. We define this statistic as:

HRMSE �
√√√√ 1

T

T∑

t�1

(
RV t − ̂RV t

RV t

)2

(14)

With T indicating the number of data points to be forecasted, while RV t and ̂RV t

specify the true and estimated volatility for day t, respectively.
For robustness check, the mean absolute error (MAE) is also estimated. We define

MAE as:

MAE � 1

T

T∑

t�1

∣∣∣RV t − ̂RV t

∣∣∣ (15)

3.3.2 Diebold andMariano Test

With a view to testing the null hypothesis that two forecasts have the same accuracy,
we apply the Diebold and Mariano (hereafter, DM) test [34]. This test assumes that
ei t � RV t−̂RV t (i � 1, 2) refers to the forecast errors and that dt � f (e1t)− f (e2t ),
with f (.) denoting a function of forecast errors. We then wish to test:

H0 : E(dt ) � 0
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DM [34] shows that the approximate asymptotic variance of d is given as:

Var
(
d
) ≈ k−1

⎡

⎣η0 + 2
p−1∑

l�1

ηl

⎤

⎦ (16)

where ηl indicates the l-th autocovariance of dt , which is estimated as:

η̂ � k−1
k∑

t�l+1

(dt − d)(dt−l − d) (17)

The DM test statistic is then defined as:

DM �
(

̂

Var
(
d
))− 1

2

d (18)

Given that H0 is true, the probability distribution of DM statistic is asymptotically
normal.

3.3.3 Mincer–Zarnowitz Regression

The out-of-sample predictions are also compared applying the Mincer–Zarnowitz
(MZ) [35] regression approach. This technique is beneficial as it examines if the
proposed models provide incremental information relative to the baseline HAR-RV
model. We define the MZ regression approach as follows:

RV t � ϕ0 + ϕ1̂RV t + εt (19)

where, RV t and ̂RV t are the true and estimated volatility for day t, respectively.
We then compare the HAR models on the basis of R2 (coefficient of determination)
statistics. Notably, our in-sample estimation period spans from January 2019 toMarch
2021 and the out-of-sample period from April 2021 to March 2022.

4 Empirical Findings

4.1 In-Sample Estimates

The findings of the HARmodels are shown in Table 3. Before discussing these results,
we briefly explain the estimates of out GARCH-jump approach presented in Table 2.
It is evident from these estimates that jumps exist in BTCF returns as the parameters of
the ARJI process are mostly significant. Notably, the positive coefficient of the jump
variance (see the estimate of.ϑ2) infers that volatility driven by abnormal information
has a positive effect on the volatility of Bitcoin returns. In addition, the high value
of the intensity parameter (ρ � 0.98) indicates that the time-varying jump intensity
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Table 2 Estimates of the GARCH-ARJI model

Variables Estimates Standard errors t-statistics p-values

π 0.0027** 0.0012 2.16 0.03

μ − 0.0181 0.0358 − 0.50 0.61

ω 0.0001 0.0001 1.01 0.29

α 0.0484*** 0.0107 4.54 0.00

β 0.8904*** 0.0238 37.36 0.00

θ 0.0031 0.0079 0.39 0.69

ϑ2 0.0783*** 0.0107 7.28 0.00

λ0 0.0036*** 0.0012 2.95 0.00

ρ 0.9813*** 0.0071 138.84 0.00

γ 0.0466 0.0316 1.47 0.14

Log-likelihood 1357.82

This Table presents the findings of the GARCH-ARJI model for the BTCF index. ***, ** and * indicate
statistical significance at 1%, 5% and 10% levels, respectively

is persistent [16]. The nonzero value of the parameter ρ also confirms that jumps
occurring in Bitcoin futures index do vary over time. This finding is consistent with
Chaim and Laurini [19] and Gronwald [17]. However, the analysis of these earlier
studies is focused on the Bitcoin spot index, whereas our paper examines the jump
dynamics of Bitcoin futures index. This finding is crucial given that time-varying
jump risk could play a key role in portfolio allocation decisions and risk management
inferences in the cryptocurrency markets [36, 37]. In particular, the results of our
analysis could guide investors to form better portfolios which could diversify the
jump-induced risk. Hence, this strand of empirical research is useful for developing
optimal investment strategies [38].

Moreover, Fig. 3 depicting the jump-induced volatility also confirms presence of
high jumps during the COVID-19 crisis periods. Hence, time-varying jumps may
include predictive content for forecasting the RV of BTCF market.

Now, the numbers shown in Table 3 indicate several interesting findings. First,
including leverage effects in theHAR-RVmodel improves the accuracy of the baseline
HAR process as the R2 (%) statistic increases from 23.80 to 25.60. Second, we find
a negative association between leverage effects and RV, which is not an exception in
finance literature [30]. Third, the BVIN index, although exerts a significant impact on
theRV, does not increase theR2 statistic substantially. This is not consistentwith earlier
studies given that implied volatilities, in general, contain predictive information for
the financial markets. Forth, inserting the JV factor to the LHAR-RV model increases
the R2 statistic markedly, revealing the importance of using the information on jumps
when modeling the RV of BTCF market. Fifth, the RV is sensitive only to the monthly
component of the jump-induced risk factor revealing the long memory behavior of
volatility. Summarizing, our analysis suggests that including leverage effects and time-
dependent jumps in the HAR-RV model would increase its accuracy.
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Fig. 3 The conditional jump-induced volatility of Bitcoin futures prices

4.2 Out-of-Sample Analysis

The out-of-sample forecast results based on the HMSE and MAE statistics along with
MZ regression model are exhibited in Table 4. Our in-sample estimation period spans
from January 2019 to March 2021 and the out-of-sample period from April 2021 to
March 2022. The results reveal that the LHAR-RV-IV-JV process produces the lowest
HRMSE andMAE statistics. TheDiebold andMariano (DM) [34] test further supports
these findings by rejecting the null hypothesis of equal forecast accuracy. However,
the DM test cannot tell us whether LHAR-RV-IV-JV outperforms LHAR-RV-IV in
case when we use HRMSE statistic. But for the MAE statistic, the results confirm
the superiority of LHAR-RV-IV-JV model over the LHAR-RV-IV process. Hence, the
extended models including the information content of jump-induced volatility predict
the volatility of BTCF market more precisely than the standard HAR-RV models.

Next, the R2 (%) statistics, produced by the MZ regression process, further confirm
that the HAR-type models considering the jumps (i.e., LHAR-RV-JV and LHAR-RV-
IV-JV) surpass other approaches by yielding higher R2 values. Our overall results thus
suggest that the information on time-dependent jumps in BTCF returns is essential
for increasing the precision of the HAR-RV model. Therefore, participants in Bitcoin
futures market should analyze such jumps while forecasting the realized volatility of
this new asset class.

4.3 ForecastingValue-at-Risk (VaR)

We now conduct ta simple VaR analysis for finding the best forecast model. In doing
so, we test for all the HAR-RV models with a VaR estimated for the quantile level q.
To this end, the likelihood ratio (LR) test, developed by Kupiec [39], is applied.
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Table 4 Out-of-sample forecast results

Models → HAR-RV LHAR-RV LHAR-RV-IV LHAR-RV-JV LHAR-RV-IV-JV

HRMSE 0.2367** 0.2277** 0.2280** 0.2229 0.2206

MAE 0.0332** 0.0301** 0.0289** 0.0251** 0.0242

R2 (%) 12.81 16.25 17.12 18.94 21.18

This table shows the HRMSE and MAE statistics along with the R2 (%) statistics provided by the MZ
regression model. Our in-sample estimation period spans from January 2019 to March 2021 and the out-
of-sample period from April 2021 to March 2022. ** indicates that the Diebold-Mariano (DM) test is
statistically significant at 5% level

We begin with the following hit sequence:

Hit t �
{
1, i f rt < VaRt

0, i f rt ≥ VaRt
(20)

Where rt refers to the return on day t and VaRt is specified as:

VaRt � Zq
√
gt (21)

where Zq indicates the quantile at 100×q%of the standardized probability distribution
and gt denotes the risk predicted by the HAR-RV approaches under study [40–42].

We then assume that N computes the frequency of VaR violations and T refers to
the data points. In order to investigate H0 : f � q, with f measuring the failure rate,
we use the following LR test statistic proposed by Kupiec [39]:

LR � −2ln{(1 − q)NqT−N/(1 − N/T )T−N (N/T )N } ∼ χ2(1) (22)

The p-values of this test are provided in Table 5. Our findings show failure rates for
both left and right quantiles. Given that the accuracy of theHARmodels increases with
the increment in p-values, these numbers further reveal the significance of jumps in
forecasting the RV of BTCF market. Overall, our analysis suggests that both leverage
effects and time-varying jumps are crucial for predicting the VaR with precision.

5 Conclusions

This paper aims to forecast the realized volatility of Bitcoin futures market. In doing
so, we propose an augmented HAR-RV model to consider the information on time-
dependent jumps observed in BTCF returns. In particular, we estimate the jump-
induced volatility using the GARCH-jump process and then consider this information
in the HAR model. Both the in-sample and out-of-sample analyses show that jumps
offer extra information which is not provided by the existing HAR models. Besides, a
novel finding is that the jump-induced volatility offers incremental information relative
to the Bitcoin implied volatility index. In sum, our results indicate that the HAR-RV
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Table 5 Forecasting value-at-risk

Models ↓ LQ �
10%

LQ � 5% LQ � 1% RQ �
10%

RQ � 5% RQ �
1%

Panel A:
CARBONEX

HAR-RV 0.223 0.296 0.282 0.351 0.388 0.431

LHAR-RV 0.331 0.368 0.377 0.391 0.428 0.488

LHAR-RV-IV 0.356 0.390 0.401 0.411 0.447 0.509

LHAR-RV-JV 0.429 0.465 0.449 0.476 0.501 0.561

LHAR-RV-IV-JV 0.445 0.481 0.463 0.493 0.527 0.579

In this Table, we present the p-values of the likelihood ratio test specified in Eq. 18. The accuracy of the
HAR models increases with the increment in p-values. LQ left quantile RQ right quantile. Numbers in bold
indicate the highest p-values

process comprising the leverage effects and jump volatility would forecast the RV
more precisely compared to the standard HAR-type models.

Our analysis could be of interest to cryptocurrency investors given that the informa-
tion on time-varying jumps in BTCF returns could be useful for measuring the risk of
investor portfolio. In addition, as jumps often provide early signals of market crashes,
they might play a crucial role in risk management, portfolio optimization and hedging
strategies. However, it is also worth noting that since the use of jump-induced volatil-
ity in forecasting the realized volatility of Bitcoin market is a novel area of empirical
finance, it could be difficult to fully understand the role of such jumps for predicting
the risk of cryptocurrency investments. As investors and policymakers are very keen to
have further knowledge about this domain, future research could employ more sophis-
ticated statistical tools to shed more light on how the information on jump-induced
volatility can be used to obtain improved volatility forecasts during the crisis periods.
To this end, applications of big data methods and artificial intelligence such as neu-
ral networks could provide superior forecasts for Bitcoin volatility. Artificial neural
networks are particularly useful for handling high frequency trading data and predict-
ing financial risk. Given that real-time decision making also benefits from the use of
artificial intelligence deep learning methods are highly recommended for forecasting
the price of Bitcoin in real-time. Prior studies such as Shi [43], Olson and Shi [44],
Shi et al. [45] and Tien [46] discuss a number of important big data methods which
are quite useful for this sort of analysis. Note that future studies could also investigate
whether jumps in Bitcoin returns can predict the volatility of other cryptos. In addition,
attempts could be made to identify the key determinants of jumps occurring in Bitcoin
price index. Given that jump-induced volatility represents a large fraction of market
volatility, identifying such determinantsmight be essential for hedging cryptocurrency
market risk amid the crisis periods.
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