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A B S T R A C T   

Although the US transport sector is one of the major users of fossil fuel (e.g., crude oil), the impact of energy price 
volatility on transport stock sector indexes remains under-researched. The present study addresses this research 
void by investigating the impact of energy implied volatility on transportation stock returns in the US. Using the 
crude oil volatility index (OVX), as a proxy of energy price volatility, and three Dow Jones indexes tracking the 
performance of the airlines, marine and trucking stock subsectors, we employ a GARCH-jump model. The main 
results show that the oil market sends volatility to the US transport subsector stock indexes, suggesting that oil 
implied volatility plays a role in pricing US transport stocks. The impact of OVX shocks is asymmetric, indicating 
that increases and decreases in oil implied volatility have a heterogeneous impact on the transport subsector 
stock markets. Jumps are significant in the three transport subsector stock indexes, and are time-dependent. 
Notably, the three transportation subsector stock indexes are more sensitive to OVX shocks than the S&P 500 
index. These results have important implications for investors, policymakers, academics, and managers of the US 
transportation industry.   

1. Introduction 

The US transport sector has been one of the major consumers of fossil 
fuel (e.g., crude oil) over the years. Ref. [1], for example, argue that an 
important sector, where a significant and substantial part of input costs 
depends on oil prices, is the transportation industry. The US Department 
of Energy reports that, in 2019, the transport sector accounted for 69% 
of all US petroleum product consumption.1 Although the usage has 
decreased in recent years, the dependency is still quite high. Recent 
estimates reveal that the US transport sector is currently consuming 
nearly 14.14 million barrels per day (b/d), representing 68.8% of all US 
petroleum product consumption.2 Of the various transport modes, light 

vehicles consume around 60% of the total energy used for transportation 
of people and goods. The second largest consumer is the trucking sub-
sector, which accounts for 22%, whereas airlines and shipping sub-
sectors use 9% and 3% respectively. Furthermore, the operating cost of 
the US transportation industries due to consumption of oil-based fuels is 
also very significant. Data published by the American Transport 
Research Institute (ATRI) for 2019 suggest that fuel costs account for 
24% of the total operating cost in the US trucking subsector. This figure 
is also high for the airlines subsector, around 25%, representing the 
largest operating cost.3 Compared to these two sectors, the US shipping 
division experiences more operational cost due to fuel consumption, 
around 55%.4 Overall, this information evidently indicates that the costs 
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of oil-based energy are crucial for the US transportation industries and 
hence oil price movements are likely to play a pivotal role in pricing the 
country’s transport sector stocks. 

While the transportation industry is the largest user of oil-based 
fuels, whether oil price uncertainty influences the US transport sector 
equity indexes is surprisingly under-studied. The objective of this 
research is to address this void in the literature, by examining whether 
and to what extent oil price volatility affects the equity prices of the US 
transport subsectors (airlines, marine, and trucking). Our prime objec-
tive is to test whether crude oil volatility is transmitted to the returns of 
various transport subsector stock indexes, namely airlines, marine and 
trucking. In particular, we address the following research questions: 1) 
Does there exist a significant negative association between oil implied 
volatility and the trucking sector, as this industry is a major customer of 
oil-based fuels? 2) Is the airlines subsector, in comparison to the trucking 
subsector, less affected by oil price variations, since the later consumes 
more crude oil? 3) Do oil price shocks really impact the marine subsector 
as operating costs in this subsector due to consumption of crude oil are 
distinctly cheaper than the other subsectors under study? 

Using a recent daily data set and a robust GARCH-jump methodol-
ogy, we make an effort to respond to these research questions. The 
GARCH-jump approach (initially proposed by Ref. [2]) offers various 
key features. Firstly, compared to the conventional GARCH process, the 
GARCH-jump allows users to examine the impact of abnormal infor-
mation arising from random events [3]. Secondly, the GARCH-jump 
model enables us to understand whether time-dependent jumps occur 
in the price indexes [4], in our case the three transportation indexes. As 
the proxy for energy price volatility, we rely on the oil implied volatility 
index (OVX), which reflects the expected 30-day volatility of the crude 
oil market, calculated based on the option prices of the United States Oil 
Fund. The importance of OVX is well recognized in the oil-stock litera-
ture [3,5–7]. 

Understanding the relationship between oil price shocks and equity 
market performance is vital, given that fluctuations in oil prices 
commonly impact stock market returns and hence the entire economy 
(see [8]).5 Generally, positive oil returns should lead to an increase in 
production costs, given that crude and its by-products constitute a major 
production input [16]. The increase in production costs should lead to 
higher prices, which should, in turn, push the demand and consumption 
lower. Lower demand should lead to a decrease in output level and 
therefore lower expected cash-flows. Accordingly, and given that stock 
prices are influenced by the present value of the future cash flows, one 
would expect stock prices to decline. Several studies are conducted in 
this regard. [17]; for example, documents an inverse association be-
tween oil and stock price indexes, which is supported by Ref. [18].6 

Furthermore, some studies (e.g. Refs. [21–23])7 examine the uncertainty 
transmission mechanism between the international oil market and 
various equity markets. However, these studies focus on some 

country-specific financial markets, and very little attention is paid to the 
transmission of volatility between oil and equity sector returns (e.g. 
Refs. [16,24–28]). Further assessment of such links is essential, as oil 
price volatility might affect some industries more harshly than others, 
depending on the intensity of the sector or industry in consuming fossil 
fuel energy (notably, crude oil) (see Refs. [7,16,25]). Ref. [27] argue 
that, as diverse industries could react to oil market shocks differently, 
investors and sector participants should be aware of these responses. 
Notably, [29] argue that crude oil consumption represents a large 
portion of the overall operating costs of the marine industry, and indi-
cate that, because tanker ships are major carriers of the global oil supply, 
the importance of crude oil for the marine shipping industry is 
amplified. 

Our paper adds to various aspects of the previous literature. Firstly, 
we are among the earliest studies to investigate the influence of OVX on 
the stock prices of US transportation firms. Unlike most previous studies, 
which generally consider aggregate stock market indexes (e.g. Refs. [3, 
30]) or sector indexes other than transportation [6,7,16,25,27,28,31, 
32], we consider transportation indexes and how they are affected by 
the OVX. Specifically, we complement previous studies dealing with the 
impact of crude oil on only shipping firms [29,33], logistic firms [34], 
and the Baltic Dirty Tanker index [35], by examining the impact of OVX 
on the US transportation industry and the intensity and presence of 
jumps in the stock indexes across various time periods. Accordingly, our 
analysis differs in its focus on three transportation stock indexes (air-
lines, marine, and trucking), which exhibit various levels of dependence 
on energy consumption, and by considering the GARCH-jump modelling 
approach. 

Secondly, we add to the literature on risk transmission among oil and 
US sector market returns. Studying the volatility linkage is important, 
since the volatility of an asset is associated with the rate of information 
flow to a particular market, and understanding asset price volatility is 
crucial for pricing derivatives [36]. Refs. [7,16,25] state that under-
standing volatility spillovers between energy and stock markets plays a 
pivotal role in building accurate asset-pricing models and reliable 
forecasts for market risk. 

Thirdly, our analysis investigates the impact of various crisis periods, 
namely the 2008 global financial crisis, the oil price crash of 2014, and 
the COVID-19 outbreak,8 on the risk transmission from energy to various 
transportation sector stock markets. Since financial markets can behave 
differently under tranquil and turbulent market conditions (see [7]), this 
inspection matters to various market participants concerned with the 
flow of information and jumps during troubled periods for the trans-
portation industry (notably the COVID-19 outbreak), and thus could 
lead to interesting and refined conclusions. 

Fourthly, we investigate the asymmetric impacts of oil price uncer-
tainty on stock prices by splitting OVX into positive and negative por-
tions. To serve this purpose, we employ likelihood ratio tests for 
assessing asymmetric relationships, which adds to previous studies [29, 
33–35] which tend to overlook such an asymmetric effect in the 
oil-transportation nexus. 

Finally, we detect the presence of time-varying jumps in trans-
portation stocks employing the GARCH-jump process. Doing so is 
crucial, given that jumps in stock prices, which could occur due to 
extreme events such as recessions, terrorist activities or pandemics, 
represent an important element of risk. Earlier studies (e.g. Refs. [39, 
40]), argue that jumps in financial time series represent a major source 
of non-diversifiable risk, which should be modelled precisely. To this 

5 Ref. [9] contends that a rise in energy price tends to increase the 
manufacturing costs which, in turn, impact inflation, consumer behavior and 
therefore economic progress. Since stock market performance is considered as a 
good indicator of economic activity, it is thus essential to understand the dy-
namic link between energy and equity prices. Ref. [10] documents that un-
certainty in crude oil price sends volatility to financial sectors leading to instant 
turbulences in the overall economic activities. Other studies focus on the effect 
of crude oil shocks on the job market [11,12] and economic growth [13], 
whereas [14] look at the oil-food nexus [14,15] highlight the impact of the 
COVID-19 outbreak on the spillover effect between oil market shocks and green 
bond markets.  

6 Other studies (Refs. [19,20] and others), however, report a positive link 
between energy and equity market returns.  

7 Employing the bivariate VAR-GARCH approach, Ref. [23] finds that the 
Brent oil market sends volatility to Lebanese equity prices, and that the said 
association gets stronger throughout the 2008 recession period and becomes 
weaker during the post-crisis period. 

8 Some studies consider the economic worries in response to the pandemic (e. 
g. Ref. [37]) and the political economy of health in conflict during the 
pandemic (e.g. Ref. [38]). 
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end, applying an appropriate model for capturing time-varying jumps is 
essential to avoid the specification errors in conventional estimation 
methods.9 Moreover, since jumps occur as a consequence of occasional 
events, the existence of large price swings in a specific sample period 
could have a significant effect on the volatility prediction [42]. Hence, 
adopting an appropriate volatility model such as the GARCH-jump 
process, which can simultaneously capture both jumps and 
time-varying volatility, plays a pivotal role in understanding the vola-
tility dynamics of transportation stocks. It is also noteworthy that jumps 
occurring in asset returns might have predictive content for downturns 
in global financial markets. Previous literature (e.g. Refs. [2,43]), argues 
that future market downturns could be realized in a series of jumps over 
a short interval (see, [44]). In this study, we explore whether the in-
tensity of jumps for airlines/marine/trucking sector stocks rises during 
crisis periods. This adds a new dimension to the transportation sector 
literature. 

The main results show that all transportation sectors are affected by 
OVX, but the trucking subsector in particular responds most, followed by 
airlines, and finally the marine subsector is least affected by OVX. The 
impact seems to depend on the level of oil (energy) consumption of the 
transportation subsector under study. Of the three transportation sub-
sectors, trucking is the largest consumer of fuel (22%), followed by 
airlines (9%) and shipping (3%). The impacts vary over time and occur 
during some crisis periods. A jump component is detected in the vola-
tility of the three transportation subsector indexes, and its intensity 
varies over time. For comparison purposes, we find that transportation 
stocks are more sensitive to OVX shocks than the S&P 500 index. 

These findings should matter for the volatility predictability of the 
three transportation subsectors, and possibly for the volatility model-
ling, while accounting for jumps during stable and turbulent periods. 
Specifically, the discussion on the impact of oil implied volatility on the 
airlines, marine, and trucking indexes should help these subsectors 
better understand their responsiveness to oil implied volatility during 
various periods and thus improve their capability to deal with crude oil 
market risk. 

The structure of the paper is as follows. Section 2 gives a review of 
the relevant studies. Section 3 describes the data used in the empirical 
analysis. Section 4 outlines the VAR-GARCH methodology. The pre-
sentation and discussion of the results take place in Section 5. We 
conclude in Section 6. 

2. Literature review 

A growing body of literature examines the linkages between crude oil 
and stock markets. A major strand of this literature investigates how 
volatility is transmitted from energy to stock markets. For example, a 
study by Ref. [21] uses the BEKK–GARCH (1,1) specification in order to 
assess the volatility connections among the global crude oil market, the 
US and several Middle East Gulf equity markets including Saudi Arabia. 
The authors find that oil volatility has substantial effects on the stock 
markets considered. The Saudi Arabian stock market sends volatility to 
the crude oil market. Ref. [22] explore the uncertainty transmission 
between international energy prices and equity market returns in Ghana 
using the VAR–GARCH, VAR–AGARCH and DCC–GARCH models. Their 
results confirm a bidirectional volatility linkage between the energy and 
stock markets with the spillover effect being relatively strong when the 
causality goes from oil to the equity index. Moreover, applying the 
bivariate VAR-GARCH approach, Ref. [23] finds that volatility signifi-
cantly runs from Brent oil to the Lebanese stock index, and that the said 
association gets stronger throughout the 2008 recession period and 

becomes weaker during the post-crisis period. Ref. [45] investigate the 
effect of oil price volatility on South Asian equity markets. Using the 
bivariate VAR-GARCH approach, the authors find return and volatility 
linkages among these markets. Ref. [46] study the spillover effect be-
tween oil and European financial markets in both the time and fre-
quency domains. They show evidence that the spillover is generally 
weak, but intensifies during economic crises and turmoil in the oil 
market. During economic and stock market turbulence, the 
cross-correlation and causal flow from stock to crude oil markets 
intensify, whereas during turbulent periods in the oil market, the causal 
flow running from the oil market increases without impacting the 
correlation10. 

A second strand of literature digs into the oil-stock nexus by 
considering the sectoral level of stock data. Ref. [24] adopt a multi-
variate GARCH model and show that the oil market sends volatility to 
most of the US stock sector indexes. Ref. [52] investigate whether the 
energy market is correlated with the Turkish electricity sector stock 
market. Employing the Cheung–Ng causality method, they report a 
causal connection between global energy prices and equity returns of 
power sector firms. Ref. [26] uses multivariate and bivariate GARCH 
models and find significant evidence of risk transmission between oil 
and alternative energy equity returns. Ref. [16] apply a multivariate 
GARCH methodology to the link between the second order moments of 
global energy and sectoral equity prices in Europe and the US. The au-
thors show that, in Europe, uncertainty transmits from energy to the 
stock markets, but not the other way around. For the US market, how-
ever, the association appears to be bidirectional. Ref. [25] report similar 
results, highlighting the significant volatility linkages between crude oil 
and sector stock returns and the resulting portfolio implications. 
Ref. [53] conduct quantile regression analysis to explore the structure 
and degree of the oil price impact on Indian sectoral stock indexes. The 
authors show that diversification benefits are possible if these sectoral 
stocks are included in a portfolio of oil assets. The use of the frequency 
domain causality test suggests that there is interdependence between oil 
and sectoral equity markets in India. Ref. [27] consider the nexus be-
tween oil price shocks and 10 European stock sector returns in a 
time-varying setting. They show that the relationship is affected by the 
source of the oil shock and is generally sector-specific, and that during 
the 2008 global financial crisis some stock sectors offered diversification 
benefits to crude oil investors. Ref. [28] study the nexus between oil 
price volatility and stock sector returns in the Gulf Cooperation Council 
(GCC) region using an approach combining wavelets with quantiles. 
They find that all the stock sectors are associated with oil price volatility, 
except for the bank and insurance stock sectors at low and high quan-
tiles. Furthermore, transport and telecommunication companies are 
unresponsive to oil price volatility at high quantiles. Ref. [54] examine 
the influence of crude oil price changes on the returns and volatility of 
airline companies in China and South Korea. Using a multivariate 
GARCH model, their results suggest that volatility spillovers are more 
important than return spillovers, and that smaller airline companies are 
more responsive to oil returns than larger companies. Ref. [55] focus on 
the influence of economic policy uncertainty (EPU) and oil prices on the 
returns of US airline companies using a structural VAR model. The re-
sults show that higher oil prices, EPU, and jet fuel volatility are nega-
tively associated with stock returns. Ref. [56] argue that the impact of 
crude oil prices on fuel, electric and electric vehicle sales is 
industry-specific, and tends to vary at various quantiles. 

A third strand of literature uses OVX to capture the consequence of 
energy market volatility on asset prices. Ref. [30], for example, highlight 
the positive impact of oil price shocks on Chinese stock returns and 

9 As Ref. [41] state: ‘Jump risks are not only important for investors who may 
demand a large premium to carry these risks, but also vital for policy makers 
who must make decisions in real time during times of jump-inducing chaotic 
conditions in financial markets’. 

10 Other studies examine environmental movement [47], climate change 
challenges [48], environmental policy objectives [49] and emission taxes [50], 
bearing in mind that monetary policies are affected by a changing financial 
environment [51]. 
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argue that OVX shocks have significant negative effects on the Chinese 
stock market. Ref. [3] investigate the effect of OVX on the stock markets 
of MENA countries using various specifications of GARCH models and 
report significant impacts on the majority of the stock markets under 
study. Ref. [31] finds that the information in OVX is of paramount 
importance for understanding and projecting the time-varying vari-
ability of clean energy equity prices. Ref. [32] reveal that OVX is an 
important instrument, capable of hedging clean energy equities. 
Ref. [57] shows that OVX has a substantial impact on the US energy 
sector volatility index. Ref. [33] apply univariate GARCH models to 
study the impact of oil returns on the return volatility of global shipping 
firms in Germany, South Korea and Taiwan. They report evidence that 
the leverage effect shock impacts are asymmetric. Ref. [58] focus on the 
impact of oil price shocks and policy uncertainty on the returns of 
Chinese travel and leisure stocks using a time-varying parameter VAR 
model. They find that the impact of oil price shocks is generally positive, 
whereas that of policy uncertainty swings between positive and nega-
tive. Ref. [59] study the ability of the US implied volatility index (VIX) 
and OVX to hedge the downside risk of travel and leisure stocks in 
developed economies. The results show that OVX is more negatively 
correlated with the returns of travel and leisure stocks than VIX, which 
points to the superior hedging role of OVX. Ref. [34] apply equi-
correlation and spillover approaches and show evidence of the linkages 
between crude oil and logistics firms. Notably, the linkages increase 
during the global financial crisis of 2008 and oil price war of 
2015–2016. Ref. [6] examine the spillovers across the returns of US 
stock sector indexes while separating high volatility regimes from low 
volatility regimes, and relate the spillovers to OVX. They find that, 
irrespective of the volatility regime, the energy sector plays a central 
role in the spillover analysis, and the return spillover effect strengthens 
following the COVID-19 outbreak. Notably, they conduct a Granger 
causality analysis and show OVX Granger causes the return spillover 
index, especially during the high volatility regime. Ref. [7] examine the 
impact of OVX and geopolitical risk on the returns and volatility of GCC 
stock sectors, using a quantile-based approach, differentiating various 
return and volatility states. The results show that the impact of OVX is 
generally more significant than that of geopolitical risk on stock sectors. 
Notably, the impact is positive at the higher quantiles of the return 
distribution but stronger for volatility. However, some sectors such as 
the energy, material, industrial, and financial sectors respond negatively 
during bear markets and positively during bull markets. Further evi-
dence suggests that OVX has a higher impact on the volatility of some 
stock sectors during the COVID-19 pandemic. Ref. [35] examine the 
relationship between oil price uncertainty and the Baltic Dirty Tanker 
index using a regime switching regression. The results show a negative 
association, which is more notable during periods of high volatility. 
Ref. [29] focus on the volatility connectedness between crude oil and the 
marine shipping industry (tanker and dry cargo markets). They show 
stronger connectedness for the tanker market than the dry cargo market, 
and report evidence of the important role played by oil volatility in the 
tanker market. Their analysis shows that hedging is not effective during 
crisis periods, such as the pandemic and oil price crash of 2014, due to 
the increased relationship between shipping and oil markets during such 
events. Besides the above-mentioned studies covering the pandemic, 
other studies also highlight the impact of COVID-19 on US travel and 
leisure (see Ref. [60]) and the shipping industry [61]. 

3. Data 

We use the daily observations of crude oil VIX (OVX) published by 
CBOE. OVX measures the market expectation for future 30-day crude oil 
price volatility, calculated following the same methodology used to 
construct the US volatility index (VIX). Specifically, the calculation re-
lies on the real time bid and ask prices of nearby and second nearby 
options on the United States Oil Fund, having at least 8 days to expi-
ration. We also use the Dow Jones index to track the equity prices of the 

airlines, marine and trucking sectors. The sample covers the period May 
10, 2007 to December 31, 2021, providing 3689 data points for each 
time series. Note that OVX data are available from May 10, 2007. Our 
data are collected from the Thomson Reuters DataStream database. 

Table 1 reports the summary statistics for the logarithmic returns of 
each of the three stock indexes considered and for the levels of the OVX 
index. The results suggest that the mean return is higher for airlines 
stocks followed by trucking sector stocks, while the marine sector stocks, 
on average, experience negative returns. The standard deviation is found 
to be higher for the airlines sector in comparison to the rest. All the 
return series are negatively skewed, and each of the indexes is lep-
tokurtic, implying that the data do not follow the normality assumption. 
The results of the Jarque-Bera test further confirm that the null hy-
pothesis of normality of the return distribution is rejected at the 1% 
significance level. The results of the augmented Dickey–Fuller (ADF) 
and Phillips-Perron (PP) tests confirm the stationarity of the three return 
series and the OVX index. We further apply the autoregressive condi-
tional heteroscedasticity (ARCH)-Lagrange multiplier (LM) test of [62], 
and the results indicate the significant presence of the ARCH effect in 
squared residuals of the airlines, marine and trucking sector returns, and 
thus the suitability of applying a GRACH-based test on the return series. 

Fig. 1 depicts the stock indexes under study. We note that all these 
indexes behave similarly and experience several downturns during the 
sample period. For instance, a significant fall in the price indexes is 
observed during the 2008 global financial crisis and around the COVID- 
19 pandemic. We also plot in Fig. 2 the returns of the airlines, marine 
and trucking indexes, where a large variability in these return series is 
noticed around the global financial crisis and the pandemic. Next, Fig. 3 
displays the OVX index, where we also see a number of spikes. The first 
is seen during the 2008 recession, when the oil market experiences a 
huge drop in its price levels. In addition, the oil market uncertainty 
increases evidently during the 2014 oil price decline. Finally, an extreme 
situation is observed when the pandemic hits the global crude oil market 
and the per-barrel price of the Brent crude slips to $22.58 at the end of 
March 2020. 

4. Methodology 

The GARCH-jump approach is widely used in empirical finance 
research (see Refs. [3,4,44,63–67]), given its ability to capture not only 
smooth persistent changes in volatility, but also discrete jumps in asset 
returns. Notably, the GARCH-jump approach allows the jump parame-
ters to vary over time. This is an important feature, because the 
assumption of constant jump intensity is unlikely to reflect reality, 
resulting in persistence in high volatility or the overestimation of vola-
tility [68]. In this regard, accurate detection of time-varying jumps 
impacts investors’ portfolio allocation strategies [65]. 

In this study, we specify the GARCH-jump process as follows11: 

Rt = π + μRt− 1 + δΔOVXt + ϵt (1)  

where Rt indicates the logarithmic return of the transportation stock 
index at time t, ΔOVXt = OVXt − OVXt− 1 and ϵt , the noise term, is 
defined as: 

ϵt = ϵ1t + ϵ2t (2)  

where, ϵ1t takes the form: 

ϵ1t =
̅̅̅̅
ht

√
zt, zt ∼ NID(0, 1)

ht =ω + αϵ2
1t− 1 + βht− 1 (3) 

Additionally, ϵ2t refers to a jump innovation defined as: 

11 The AR(1) process is chosen based on the Akaike information criterion 
(AIC) and Bayesian information criterion (BIC). 
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ϵ2t =
∑nt

l=1
Utl − θλt (4)  

where Utl specifies the size of the jumps and follows a normal density 
function with first and second order moments θ and d2 respectively. 
∑nt

l=1Utl refers to the jump factor, while nt indicates jump frequency. nt is 
supposed to follow a Poisson distribution with an autoregressive con-
ditional jump intensity (ARJI) modelled as: 

λt = λ0 + ρλt− 1 + γξt− 1 (5)  

where λt > 0, λ0 > 0, ρ > 0 and γ > 0. 
The log-likelihood function is given by: 

L(Ψ)=
∑T

t=1
log f (Rt|It− 1;Ψ)

where Ψ = (π,μ,δ,ω,α,β,θ,d,λ0,ρ,γ). 

Table 1 
Summary statistics of daily data series - stock returns and OVX index.  

Index Mean Standard Deviation Skewness Kurtosis Jarque-Bera Test ADF PP ARCH-LM 

Airlines .0137 1.1348 − .1463 7.5455 2399.85*** − 56.25*** − 56.27*** 105.21*** 
Marine − .0077 .9271 − .6872 9.1544 599.70*** − 56.04*** − 56.05*** 233.81*** 
Trucking .0121 .7096 − .2931 8.4313 3451.81*** − 60.70*** − 60.86*** 81.79*** 
OVX 38.2077 18.5417 4.5271 41.0536 235310.61*** − 4.02*** − 7.14*** – 

Notes: The table provides the summary statistics for the logarithmic returns of each of the three stock indexes (airlines, marine, and trucking) and for the OVX index. 
The sample period is May 10, 2007–December 31, 2021. Augmented Dickey–Fuller (ADF) and Phillips-Perron (PP) are conducted with an intercept. Autoregressive 
conditional heteroscedasticity Lagrange multiplier (ARCH-LM) is the test of [62]. *** indicates statistical significance at the 1% level. 

Fig. 1. Stock price indexes for transportation sectors.  

Fig. 2. Stock returns for transportation subsector indexes.  
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5. Empirical results 

5.1. Estimates of GARCH-jump model 

The output of the GARCH-jump process for the full sample period is 
shown in Table 2. The results reveal that the parameters of the GARCH 
model are highly significant and hence there is evidence of GARCH ef-
fects in transport sector asset returns. Additionally, the combined value 
of α and β reveals the presence of strong persistence in the volatility of 
the transportation stock indexes. In particular, the persistence of shocks 
equals 0.9929, 0.9557 and 0.9791 for the airlines, marine and trucking 
subsectors, respectively. Such high persistence further implies that 
negative effects from increased market risk decay very slowly. More-
over, the half-life decay, perhaps the most interpretable measure of 
persistence, indicates half-lives ranging from around 15 (marine) to 
97.27 (airlines) days.12 Hence, our results suggest that the volatility of 
these stocks exhibits long memory. 

Next, the three transportation subsector stock indexes (airlines, 
marine, and trucking) seem to react significantly to oil price volatility 
measured by OVX. In particular, the parameter δ, which measures the 
effect of OVX, is statistically significant at the 1% level and equals 
− 0.0934, − 0.0809 and − 0.1397 for the airlines, marine, and trucking 

sectors, respectively. This finding is not surprising, given that the US 
transport sector has emerged as a leading user of fossil-based fuels and 
therefore a volatile energy market tends to impact the firms operating in 
this sector. Notably, the effect of OVX on these subsector indexes seems 
negative, meaning that an upturn in oil price volatility would cause a 
significant drop in transport sector stock prices. One could expect that, 
since the underlying sector uses oil as a main input, oil price volatility 
has substantial effects on its financial activities, and hence there is an 
inverse association between transportation subsector stock returns and 
oil market volatility. Moreover, the impact of OVX appears to be higher 
for the trucking sector than the airlines sector. The marine sector is the 
least affected. These results thus support the hypotheses discussed in the 
introductory section. 

The results shown in Table 2 indicate the presence of time-dependent 
jumps in equity markets as the corresponding coefficients are statisti-
cally significant. Therefore, it can be concluded that the volatility of the 
US transport sector equity indexes contains a jump component. We also 
note that the jump intensity has a tendency to change over time. For 
example, the parameter ρ, which measures the persistence in the con-
ditional jump intensity, is estimated to be 0.9825 for the trucking sector 
index, suggesting that the intensity of jumps is highly persistent.13 A 
similar behaviour is observed for the airlines and marine subsector in-
dexes. The γ coefficient, measuring the sensitivity of λt to a lagged shock 
ξt− 1, reveals that an upsurge in ξt− 1 might cause a diminished effect on 
the future jump intensity. Notably, the intensity coefficients are all 
positive (i.e., λ0 > 0, ρ > 0 and γ > 0) and hence the results confirm that 
the approach adopted is a suitable model for detecting time-varying 
jumps in the equity prices of the three transportation subsectors. The 
results of our empirical investigation support the findings of earlier 
studies (see Refs. [4,63,67] among others), which show the existence of 
time-dependent jumps in global equity markets. In addition, according 
to the Ljung-Box Q2 statistics, the standardized residual series cannot 
reject the null hypothesis, indicating the absence of correlations in the 
squared residuals. This finding further advocates the application of the 
GARCH-jump model. 

Considering Fig. 4, which depicts the jump intensities for various 
transportation subsector indexes, it is evident that both airlines and 
marine subsectors experience a significant number of jumps during the 
2008 global financial crisis. Furthermore, we observe a cluster of jumps 
for these two subsectors amid the COVID-19 pandemic. The expected 
number of jumps tends to increase substantially in April 2020. Hence, 
jumps seem to be increasing during turbulent periods, signalling a po-
tential downturn in stock prices. Notably, the intensity of jumps is much 
higher during the COVID-19 crisis compared to the 2008 global financial 
crisis. It is also worth noting that the number of jumps is much lower in 
the trucking subsector than in other transportation subsectors. This 
finding is also in line with Fig. 1, where we notice that the trucking 
subsector is the least affected by these crises. 

Overall, our empirical analysis shows that movements in OVX, in 
general, have a crucial role to play in pricing US transport sector stocks. 
These results, therefore, suggest that investors and policymakers should 
closely observe oil market behaviour in order to make proper investment 
decisions and predict stock market volatility more efficiently. In addi-
tion, firms functioning in this sector should adopt effective measures to 
reduce the adverse impact of oil price volatility. The occurrence of time- 
dependent jumps should receive considerable attention, as ignoring such 
jumps could mislead the risk assessment procedure. Overall, investors 
financing transport companies should consider the issues related to 
crude oil volatility as well as jump phenomena to gain a deeper under-
standing of future market trends. 

Fig. 3. Crude oil implied volatility index (OVX).  

Table 2 
Estimates of the GARCH-jump model for the full period.  

Variable Airlines Marine Trucking 

π .0423** (.02) .0248*** (.00) .0303*** (.00) 
μ − .0082 (.65) − .0534*** (.00) .0103 (.56) 
δ − .0934*** (.00) − .0809*** (.00) − .1397*** (.00) 
ω .0003 (.79) .0044*** (.00) .0021 (.12) 
α .0196*** (.00) − .0010 (.66) .0061 (.27) 
β .9733*** (.00) .9557*** (.00) .9791*** (.00) 
θ − .1182 (.21) − .0081 (.19) .0980* (.08) 
d2 1.1768*** (.00) .4720*** (.00) 0.9747*** (.00) 
λ0 .0298 (.25) .0157*** (.00) 0.0078** (.02) 
ρ .8428*** (.00) .9909*** (.00) .9825*** (.00) 
γ .1902 (.11) .4354*** (.00) .2857*** (.00) 
Q2(10) 3.18 (.34) 2.49 (.28) 3.91 (.14) 
LogL − 3767.07 − 2348.26 − 3007.01 

Notes: The full sample period is period is May 10, 2007–December 31, 2021. δ 
measures the effect of OVX, while λ0, ρ, and γ are the jump intensity parameters. 
Q2(10) is the Ljung-Box test statistic for serial correlation in the squared stan-
dardized residuals with 10 lags. ***, ** and * denote significance at the 1%, 5% 
and 10% levels, respectively. The p-values are given in parentheses.  

12 Half-lives are calculated as log (0.5)/log (α + β). 13 See Ref. [2] for further details. 
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5.2. Subsample analyses 

We split the full sample into a crisis period (January 2, 2008–June 
30, 2009) and post-crisis period (July 1, 2009–December 31, 2021). This 
analysis should be useful to measure the effect of the 2008 economic 
downturn on the association under investigation. We define the 2008 
recession period according to the National Bureau of Economic Research 
guidance. Table 3 displays the results of our sub-period examination. 
Firstly, the impact of oil volatility shocks on equity prices is highly 
significant, except for the marine sector. Secondly, throughout the crisis 
period, the parameters of the jump model appear to be more significant 
than for the full sample (see the results for the airlines sector). 

We also explore the relationship during the 2014 oil price decline 
(July 2014–December 2015) and COVID-19 pandemic (January 
2020–December 2021) periods. The 2014 downturn in energy markets, 
which could be the consequence of a strong US dollar, surplus of crude 
oil, diminishing demand and the Iran nuclear deal, causes high uncer-
tainty in global crude oil markets. The outbreak of COVID-19, on the 
other hand, has a substantial impact on several important industries, 
including the automotive, aviation, high-tech, retail and travel and 
tourism sectors (e.g., Refs. [60,61]). 

We present these results in Tables 4 and 5, respectively. Table 4, for 

Fig. 4. Intensity of jumps in different transportation sector stock indexes.  

Table 3 
Subsample analysis: 2008 global financial crisis.  

Variable Airlines Marine Trucking 

π − .2670 (.21) .3269** (.04) .0738*** (.00) 
μ − .0210 (.64) − .0096 (.85) − .0784 (.13) 
δ − .1979*** (.00) .0208 (.67) − .1137** (.04) 
ω .6031*** (.00) .0934* (.06) .0138 (.56) 
α .0759*** (.00) .0891*** (.00) .0506*** (.00) 
β .8697*** (.00) .8996*** (.00) .9373*** (.00) 
θ .0303 (.98) − 3.8048*** (.00) − 1.0482 (.37) 
d2 6.1612*** (.00) .0000 (.99) 3.8550*** (.00) 
λ0 .0650*** (.00) .0697 (.46) 0.0415*** (.00) 
ρ .5294*** (.00) .5015 (.45) .4448*** (.00) 
γ .1558 (.49) .0625 (.62) .0702 (.65) 
Q2(10) 2.31 (.46) 7.87* (.09) 3.43 (.38) 
LogL − 1007.34 − 970.04 − 914.66 

Notes: The sample covers the period January 2, 2008–June 30, 2009. δ measures 
the effect of OVX, while λ0, ρ, and γ are the jump intensity parameters. Q2(10) is 
the Ljung-Box test statistic for serial correlation in the squared standardized 
residuals with 10 lags. ***, ** and * denote significance at the 1%, 5% and 10% 
levels, respectively. The p-values are given in parentheses.  

Table 4 
Subsample analysis: 2014 oil market downturn.  

Variable Airlines Marine Trucking 

π .1088*** (.00) − .0820 (.46) .5586*** (.00) 
μ − .0291 (.56) .0839 (.14) − .2084*** (.00) 
δ − .1082*** (.00) − .0089 (.85) − .0610*** (.00) 
ω .6190*** (.00) 1.9119*** (.00) .0182** (.04) 
α .0824*** (.00) .1295 (.10) .0768*** (.00) 
β .7118*** (.00) .1361 (.14) .8619*** (.00) 
θ − .5289 (.56) − .2546 (.30) − 1.1643*** (.00) 
d2 2.9635*** (.00) 1.9779*** (.00) 0.4263 (.21) 
λ0 .0385** (.04) .0289 (.39) .2022*** (.00) 
ρ .3427 (.30) .9403*** (.00) .4618*** (.00) 
γ .0573 (.87) .2822 (.12) .8184*** (.00) 
Q2(10) 6.11 (.12) 2.71 (.33) 5.47* (.09) 
LogL − 780.55 − 777.63 − 746.29 

Notes: The period of the 2014 oil market downturn is July 1, 2014–December 
31, 2015. δ measures the effect of OVX, while λ0, ρ, and γ are the jump intensity 
parameters. Q2(10) is the Ljung-Box test statistic for serial correlation in the 
squared standardized residuals with 10 lags. ***, ** and * denote significance at 
the 1%, 5% and 10% levels respectively. The p-values are given in parentheses.  

Table 5 
Subsample analysis: COVID-19 pandemic.  

Variable Airlines Marine Trucking 

π .0869 (.68) .1351*** (.00) .3846*** (.00) 
μ − .0003 (.99) − .0385 (.51) − .1176* (.07) 
δ − .0389 (.97) − .0053 (.45) .0035 (.56) 
ω .0003 (.79) .0871** (.02) .0088 (.46) 
α .1595*** (.00) .0122*** (.00) .0342* (.08) 
β .7923*** (.00) .9642*** (.00) .9331*** (.00) 
θ .6570 (.63) 1.7875 (.42) − .3405 (.14) 
d2 1.1768*** (.00) 5.5306*** (.00) 1.5262*** (.00) 
λ0 .0603 (.79) .1017 (.16) 0.2273 (.20) 
ρ .9629*** (.00) .1321 (.82) .5920*** (.00) 
γ 1.1951 (.82) .2894 (.42) .7960 (.11) 
Q2(10) 3.24 (.27) 2.89 (.17) 1.88 (.71) 
LogL − 696.36 − 632.27 − 466.31 

Notes: The COVID-19 period is January 1, 2020–December 31, 2021. δ measures 
the effect of OVX, while λ0, ρ, and γ are the jump intensity parameters. Q2(10) is 
the Ljung-Box test statistic for serial correlation in the squared standardized 
residuals with 10 lags. ***, ** and * denote significance at the 1%, 5% and 10% 
levels, respectively. The p-values are given in parentheses.  
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example, demonstrates that the impact of oil volatility shocks on the 
transportation equity prices is highly significant, except for the marine 
subsector. This result is consistent with that reported in Table 3. Hence, 
oil price volatility does not have any sort of influence on the marine 
sector asset class during the downturn periods. The results shown in 
Table 5 reveal that none of the transport sector stock indexes is sensitive 
to oil volatility shocks during the COVID-19 pandemic. It seems that the 
transport sector asset class is insulated from such shocks due to the need 
for medical isolation and travel bars. 

5.3. Testing for the asymmetric effect of oil price volatility 

In this section, we examine whether oil price volatility has asym-
metric effects on transport sector stock returns. This shows whether 
positive oil volatility shocks have a larger impact on stock prices than 
negative shocks. Since increases and decreases in energy price uncer-
tainty levels can cause cyclic variations in investments, testing for 
asymmetric association plays a pivotal role in risk management and 
policy formulation. To test the asymmetric connections, the mean 
equation below is considered: 

Rt = π + μRt− 1 + φ1ΔOVX+
t + φ2ΔOVX−

t + ϵt (6)  

where, ΔOVX+
t = max (ΔOVXt , 0) indicates positive energy price vola-

tility and ΔOVX−
t = min (ΔOVXt , 0) denotes negative energy price 

volatility. We then test H0 : φ1 = φ2 to assess the asymmetric link. 
Table 6 displays the findings of our asymmetry tests. These results 

reveal that both positive and negative shocks are significant, with the 
former having higher impacts than the latter. To make a comparison 
between the parameters φ1 and φ2, we conduct the likelihood ratio (LR) 
test in which the maximum likelihood functions for the restricted and 
unrestricted models are given by L(Ω̃) and L(Ω̂), respectively. The LR 

statistic (= 2 L(Ω̃)

L(Ω̂)
) is distributed as a chi-square variate provided that 

H0 : φ1 = φ2 is valid. The results of the LR tests show that the symmetry 
assumption holds only for the airlines sector. Therefore, the effect of 
energy price variance on the asset returns is asymmetric. Hence, in-
creases and decreases in the crude oil volatility index tend to have 
heterogeneous impacts on stock returns.14 

These results carry important information for financial market par-
ticipants.15 For investors, understanding such asymmetric linkages be-
tween oil and stock prices could be fruitful for taking proper investment 
decisions. In particular, traders should detect such effects correctly 
before predicting stock market trends. For academics, a proper knowl-
edge of the nonlinear relationship between energy and equity price in-
dexes could inspire them to develop and use appropriate models that 
take the asymmetric links into consideration. In addition, policymakers 

might use our results to design effective strategies, which might help 
transport firms lessen the adverse impact of oil price uncertainty. 

5.4. Robustness checks 

In this subsection, we conduct two robustness checks. 
Firstly, the GARCH-jump model, defined in Section 4, assumes that 

ϵ1t follows a symmetric GARCH(1,1) process. Here, we check the 
robustness of our results while assuming that ϵ1t follows an exponential 
GARCH (EGARCH) process, given as: 

ln(ht)=ω+
α|εt− 1| + ψεt− 1

̅̅̅̅̅̅̅̅
ht− 1

√ + β ln(ht− 1) (7)  

where, the parameter ψ measures the asymmetry or leverage effect. 
When ψ < 0, positive shocks (good news) generate less volatility than 
negative shocks (bad news). When ψ > 0, positive shocks are more 
destabilizing than negative shocks. 

The results of the EGARCH-ARJI model are presented in Table 7. 
They particularly show that OVX has significant effects on the stock 
prices of transportation firms, which is in line with what is reported in 
Table 2. In addition, jumps still exist in the transportation stock prices 
and they are time-variant. We also find that the asymmetric parameter 
(ψ) is statistically significant at the 1% level. Notably, ψ is found to be 
negative and significant, which suggests that bad news generates more 
volatility than positive news of the same magnitude. 

Secondly, we consider the S&P 500 index for comparison purposes, 
which is useful for assessing whether transportation stocks are more 
sensitive to OVX than the US aggregate stock market index. The last 
column of Table 7 shows that S&P 500 returns experience time-varying 
jumps. The most interesting findings concern the parameter δ,
measuring the impact of OVX, which is weakly significant (at the 10% 
level) for the S&P 500 index, and its size is much lower than that of the 
transportation indexes. These results confirm that transportation stocks 
are more sensitive to OVX shocks than the US aggregate stock market 
index, measured by the S&P 500. 

6. Conclusion 

Previous studies argue that variations in crude oil prices have crucial 
influences on the US equity market and hence the overall economy. This 

Table 6 
Results of asymmetric tests.  

Variable Airlines Marine Trucking 

π .0470** (.03) .0515*** (.00) .0434*** (.00) 
μ − .0083 (.64) .0084 (.63) − .0530*** (.00) 
φ1 − .0998*** (.00) − .1631*** (.00) − .1028*** (.00) 
φ2 − .0872*** (.00) − .1105*** (.00) − .0597*** (.00) 
ω .0002 (.87) .0022* (.09) .0004 (.54) 
α .0194*** (.00) .0066 (.18) .00001 (.99) 
β .9733*** (.00) .9782*** (.00) .9955*** (.00) 
θ − .1110 (.26) − .03753 (.14) − .0019 (.86) 
d2 1.2002*** (.00) .9891*** (.00) 0.5117*** (.00) 
λ0 0.0280 (.24) .0076*** (.00) 0.0135*** (.00) 
ρ .8459*** (.00) .9823*** (.00) .9906*** (.00) 
γ .1857 (.14) .2848*** (.00) .4109*** (.00) 
Q2(10) 3.48 (.29) 3.11 (.52) 4.01 (.18) 
LogL (constrained) − 3766.99 − 3004.46 − 2333.29 
LogL (unconstrained) − 3767.07 − 2348.26 − 3007.01 
VIF 2.42 3.71 3.86 

Notes: The parameters φ1 and φ2 measure the asymmetric effect of OVX, while 
λ0, ρ, and γ are the jump intensity parameters. Q2(10) is the Ljung-Box test sta-
tistic for serial correlation in the squared standardized residuals with 10 lags. 
***, ** and * denote significance at the 1%, 5% and 10% levels, respectively. The 
p-values are given in parentheses. VIF refers to the variance inflation factor 
statistic.  

14 In Table 6, we report the variance inflation factor (VIF) statistic, which 
confirms that collinearity is not a serious issue in this case.  
15 There are several reasons to examine the asymmetric effects of oil volatility 

shocks on transport sector stock returns. The cash flows of leading consumers of 
fossil-based fuels such as transportation firms often respond differently to 
positive and negative oil volatility shocks, thereby leading to the asymmetric 
associations between oil price uncertainty and stock returns [69]. In addition, 
understanding the heterogeneous sensitivity of investors to positive and nega-
tive oil volatility shocks is crucial for portfolio allocation decisions [70]. Given 
that proper knowledge of such asymmetric linkages would allow investors and 
policy makers to determine whether positive oil volatility shocks influence 
equity prices more than negative shocks, they could choose appropriate hedg-
ing strategies during periods of high uncertainty. For example, our analysis 
shows that the airline sector is insulated from the asymmetric effects of oil 
volatility shocks, while the marine and trucking sectors are sensitive to such 
shocks. Hence, for the latter sectors, investors need to identify proper hedging 
tools in order to manage the risk due to the asymmetric effects of oil volatility 
shocks. 
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should be true for the US transport sector, because firms operating in this 
sector are heavy users of fossil-based fuels. Nonetheless, the effect of 
energy market volatility on transport sector stock markets is under- 
studied, especially when it comes to jumps. To address this research 
void, we examine the impacts of oil implied volatility on the perfor-
mance of three US transport subsector indexes (airlines, marine, and 
trucking) using a GARCH-jump model capable of capturing the volatility 
connections in the oil-transportation nexus. Our daily data cover the 
period May 10, 2007–December 31, 2021, including various turbulent 
periods such as the 2008 global financial crisis, the oil price crash of 
2014, and the COVID-19 pandemic, which should help explain the dy-
namic link between oil price volatility and US transport sector stocks. 

Our results are summarized as follows: Firstly, all the transport 
subsector stock indexes are the recipients of volatility shocks from the 
crude oil market. This result indicates that variations in oil prices are 
important for pricing the airlines, marine and trucking subsector in-
dexes. Notably, the response of each transportation subsector to oil 
implied volatility seems to depend on their level of oil (energy) con-
sumption. In fact, the trucking subsector in particular responds most to 
oil implied volatility, followed by airlines and marine. This reflects the 
numbers which show that, of the three transportation subsectors, 
trucking is the largest consumer of fuel (22%), followed by airlines (9%) 
and shipping (3%). Secondly, the impact of oil price volatility on the 
transport stocks appears to be asymmetric, indicating that rises and falls 
in oil implied volatility have a heterogeneous effect on transport stock 
prices. Thirdly, the subsample analyses demonstrate that our main 
findings tend to hold during crisis and turbulent periods, except for the 
lack of significant impact of oil implied volatility on the marine sub-
sector during crisis periods, which might imply that factors other than 
oil price volatility play a role in marine stock returns under extreme 
events. Fourthly, the analysis indicates the existence of time-dependent 
jumps in the returns of the three transportation subsector returns. 
Finally, we conduct analysis involving the S&P 500 index and show that 
transportation stocks are more sensitive to oil volatility than the US 
aggregate stock market index, which further supports our main thesis. 

The findings of our empirical analysis deserve particular attention 
from policymakers and investors participating in the US transportation 

sector. For example, firms trading in the airlines or trucking sectors 
should develop appropriate strategies to minimize the impacts of oil 
price volatility on their stock returns. One such policy could be 
increasing the use of alternative energies. The application of eco- 
friendly biofuels could limit the dependency on fossil fuels. In addi-
tion, the US should improve their oil reserve systems, which would limit 
the dependence on foreign oil [57]. Financial market participants should 
closely examine the oil implied volatility when making investment and 
risk management decisions on transport stocks, especially trucking and 
airlines during crisis periods. They may also use our results on jumps and 
the impact of oil implied volatility to forecast stock market volatility and 
make more refined investment decisions. The information on oil implied 
volatility should receive particular attention when predicting trends in 
US transport sector stocks. Moreover, the results should be useful for 
those stakeholders who use financial derivatives to hedge energy market 
risk. Overall, our findings could play a role in planning future trans-
portation policy and analysing portfolio diversification and hedging 
effectiveness across oil and the US sectoral equity markets. 
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μ − .0087 (.61) .0101 (.57) − .0382** (.04) − .1067*** 
(.00) 

δ − .1907*** 
(.00) 

− .1194** (.03) − .1409*** 
(.00) 

− .00001* 
(.09) 

ω .0136 (.11) .0117** (.02) .0024 (.47) .0001** (.04) 
α .0066* (.07) .0126*** (.00) .0288*** (.00) .1023*** (.00) 
β .9823*** (.00) .9707*** (.00) .9576*** (.00) .8305*** (.00) 
ψ − .0034*** 

(.00) 
− .0006** (.04) − .0021*** 

(.00) 
− .0046*** 
(.00) 

θ − .1482 (.13) − .5398*** 
(.00) 

− .3549*** 
(.00) 

− .0061*** 
(.00) 

d2 2.2699*** 
(.00) 

2.5252*** 
(.00) 

1.4320*** 
(.00) 

.0083*** (.00) 

λ0 .0049** (.04) .0144*** (.00) .0330** (.03) .0580** (.04) 
ρ .9915*** (.00) .9604*** (.00) .8927*** (.00) .7320*** (.00) 
γ .2526*** (.00) .3833*** (.00) .4607*** (.00) .5514*** (.00) 
Q2(10) 2.18 (.41) 3.48 (.21) 4.88 (.13) 1.26 (.81) 
LogL − 3109.24 − 2190.06 − 2899.52 − 1909.37 

Notes: This table reports the results of the robustness test discussed in Section 
5.4. The full sample period is May 10, 2007 to December 31, 2021. δ captures the 
effect of OVX, while λ0, ρ, and γ are the jump intensity parameters. Q2(10) is the 
Ljung-Box test statistic for serial correlation in the squared standardized re-
siduals with 10 lags. ***, ** and * denote significance at the 1%, 5% and 10% 
levels, respectively. The p-values are given in parentheses.  
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