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Background and Objective: When agents (e.g. a person and a social robot) perform a joint activity to achieve a joint 
goal, they require sharing a relevant group intention, which has been defined as a We-intention. In forming We-
intentions, breakdown situations due to conflicts between internal and “external” intentions are unavoidable, 
particularly in healthcare scenarios. To study such We-intention formation and “reparation” of conflicts, this 
paper has a two-fold objective: introduce a general computational mechanism allowing We-intention formation 
and reparation in interactions between a social robot and a person; and exemplify how the formal framework 
can be applied to facilitate interaction between a person and a social robot for healthcare scenarios.
Method: The formal computational framework for managing We-intentions was defined in terms of Answer set 
programming and a Belief-Desire-Intention control loop. We exemplify the formal framework based on earlier 
theory-based user studies consisting of human-robot dialogue scenarios conducted in a Wizard of Oz setup, video-
recorded and evaluated with 20 participants. Data was collected through semi-structured interviews, which were 
analyzed qualitatively using thematic analysis. N=20 participants (women n=12, men=8, age range 23-72) 
were part of the study. Two age groups were established for the analysis: younger participants (ages 23-40) and 
older participants (ages 41-72).
Results: We proved four theoretical propositions, which are well-desired characteristics of any rational social 
robot. In our study, most participants suggested that people were the cause of breakdown situations. Over half 
of the young participants perceived the social robot’s avoidant behavior in the scenarios.
Conclusions: This work covered in depth the challenge of aligning the intentions of two agents (for example, in 
a person-robot interaction) when they try to achieve a joint goal. Our framework provides a novel formalization 
of the We-intentions theory from social science. The framework is supported by formal properties proving that 
our computational mechanism generates consistent potential plans. At the same time, the agent can handle 
incomplete and inconsistent intentions shared by another agent (for example, a person). Finally, our qualitative 
results suggested that this approach could provide an acceptable level of action/intention agreement generation 
and reparation from a person-centric perspective.1. Introduction
A patient and a physician share the plan to form and agree upon a 
treatment jointly and to realize this plan. In this case, both have a joint 
intention, or so-called We-intention [125] for establishing the treatment 
plan. A We-intention is not reducible to mere personal intention or I-
intention [128]. It is not enough for a We-intention to plan the treatment 
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together that each patient and physician intends to plan. Such coin-
cident intention does not even ensure that each knows of the other’s 
intention or is appropriately committed to the joint activity itself [17].
The patient’s and physician’s intentions may be uncertain, leading to 
disagreements or conflicts that we call here breakdown situations. These 
situations are characterized by the misinterpretation or misunderstand-Available online 20 September 2023
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Fig. 1. Example dialogue flows depicting avoidant, partially agreeing, and agreeing behavior.ing (among other factors) of the We-intentions and their misalignment 
with I-intentions of the involved agents [17,128].
The care implications due to the pandemic worsened the already 
existing shortage of human-care services, moving in the direction of 
finding alternative solutions [47]. One such viable alternative was, 
for example, to use autonomous [52], telepresence- and teleoperated-
robots [118,133].
To enable interaction between robotic-care providers as a physician 
with patients requires certain social skills [51]. Specific to the pur-
poses of this work are the abilities of a robotic physician, enabling it 
to learn and differentiate models of the patient and to communicate 
with high-level dialogue. Researchers are already exploring interaction 
scenarios where a robotic physician interacts with a patient in clini-
cal practices [118,133]. Due to inherent uncertainty in understanding 
mental states, breakdown situations during interactions are unavoid-
able, and their management in patient-physician interaction settings is 
a complex challenge [100].
Most people develop skills and learn to manage breakdown situa-
tions employing different strategies (e.g. negotiation, deliberation, even 
fighting [129]). However, in a patient and robotic physician joint activ-
ity, the robot needs human-like capabilities to form a joint intention 
with the patient, share a mutual understanding about the activity, 
and manage breakdown situations in collaboration with the patient 
[122,121].
Recent research has highlighted the importance of detecting break-
down situations and proposed taxonomies in human-robot interactions 
(HRI) [123,64]. Capabilities to recognize and manage breakdown situ-
ations have been considered essential and make the interaction natural 
[93]. Researchers have found human-like conversational styles improve 
acceptance of assistive agents among people with dementia and mild 
cognitive impairment [130]. Therefore, managing Breakdown situa-
tions becomes salient when introducing robotic physicians capable of 
interacting with patients.
For this work, we use the definition of a robotic-physician corre-
sponding to the social robot as described in [121], where a social robot 
is defined as proactively engaging to fulfill internal goals of people [32], 
displaying cognitive capabilities similar to people [19,20], can distin-
guish other entities, and for which social interaction plays a key role 
[51]. Furthermore, the social robot strives to maintain a joint intention, 
hence, is characterized as a We-intentional agent (in the rest of the ar-
ticle, we interchangeably refer to robotic-physician as a social robot or 
simply an agent). Furthermore, the interaction by We-intentional agents 
(including people) is called joint activity in the rest of the text.
This paper focuses on breakdown situations arising from uncertainty
around the ‘intention’ an agent aims to co-create during joint activities 
with a person. Such a co-creation is directed towards achieving a group 2
goal by agents (including people) capable of having a ‘We-intention,’ which is an aim-intention that all involved agents share the belief about 
[126]. Researchers have argued We-intention to be a mode or an atti-
tude that differentiates it from a case of fear [126], and contrasts with 
I-intentions that are internal to an agent. However, we cannot expect 
people always to form We-intention with a social robot, requiring it to 
manage breakdown situations.
For example, Fig. 1 depicts alternative interaction flows, where, 
in Fig. 1a the agent avoids (hence, the name avoidant behavior), the 
human’s proposed We-intention (that is not to have breakfast) and con-
tinues to co-create its prior proposed We-intention even though the 
person is not up for it. On the other hand, and in Fig. 1b a partially
agreeing behavior is considered when some intentions of the person co-
incide or align with that of agent, but there exist conflicting intentions 
that lead to a partially-agreeing behavior. In Fig. 1c, the robot adapts its 
intention with respect to what the person proposes, thus displaying an 
agreeing behavior. Therefore, in this work, we propose a formal frame-
work that allows a social robot to co-create such behaviors, facilitating 
We-intention despite breakdown situations from internal conflicts that 
may emerge from an agent’s I-intention.
This work aims to develop and exemplify a formal framework to 
manage intentions and breakdown situations. This is done based on ear-
lier theory-based user studies of people interacting with social robots 
in home-care scenarios focusing on the formalization of agreement on 
We-intentions [102,120,121]. Following previous works [120,121], we 
identified and define the following three situations that can occur relat-
ing to an agreement on We-intention:
– We-intention alignment. A social robot believes that a person in-
tends to do a joint activity, and thus such an agent intends to do its 
part of the activity.
– We-intention breakdown. A social robot believes that the person 
does not intend to do a joint activity but rather has an activity 
contradictory to the agent’s proposed activity.
– Partial We-intention alignment. A social robot believes there is a 
fragmentary agreement to jointly do an activity with the person.
Two main technical challenges that we faced in this paper are: 1) 
the uncertainty in the shared intention (e.g. a robot and a person try to 
act jointly, and both have partial information of the intentions of each 
other), and 2) a partial or null congruence between the internal and 
shared intentions (e.g. the social robot’s and the person’s intentions are 
contrary). Therefore, the following research questions are addressed in 
this paper:
1. How can We-intentions and breakdown situations in human-robot 
joint activity be captured and repaired using a formal computa-
tional mechanism?
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2. How could such a computational mechanism be materialized in 
human-robot joint activity and be perceived by people?
Research question 1 is addressed by extending a well-established 
framework of rational agents [16] with a non-monotonic mechanism for 
repairing the We-intention before the plan is defined and executed. The 
mechanism is exemplified (addressing Research question 2) by revis-
iting three dialogue scenarios and analyzing data collected in earlier 
studies with a particular focus on three levels of alignment defined in 
this paper [120,121]. The contributions of this paper are the following:
– Novel application of Answer set programming as a formal frame-
work to form and repair We-intentions in a human-robot joint 
activity specific to healthcare scenarios.
– Framework founded in a human-centered methodology basing our 
formal framework on empirical findings.
More specifically: 1) we prove that the mental states of an agent are 
always consistent if an Answer set programming (ASP) [85] approach is 
used to manage We-intentions (see Proposition 2 and Theorem 1); 2) 
we present two mechanisms for repairing We-intention breakdown, the 
first one using the Closed World Assumption in ASP (Proposition 3), and 
another more restrictive using ASP constraints (Proposition 4).
This paper is organized as follows: the methodology and a necessary 
background are provided in Section 2, and the results, including the 
formal framework and some properties that the framework fulfills, in 
Section 3.1. We exemplify the formal framework and how people may 
perceive the agent’s behavior in Section 3.2. The related work of this 
paper was made following a systematic literature review procedure and 
is presented in Section 4. We end our paper by discussing our contribu-
tions in Section 5 and conclusions in Section 6.
2. Methods
This section introduces the necessary background for characterizing 
We-intentions based on Tuomela’s work [125,126,128], and Subsection 
2.2 introduces the formal framework based on Answer set programming 
(ASP), basic concepts, and the theoretical background used.
ASP provides methods to account for ‘uncertainty’ for knowledge 
representation and allows non-monotonic reasoning. Non-monotonic 
reasoning draws tentative conclusions, which can be retracted in the 
presence of new evidence or facts. This is important for co-creating 
We-intentions as they evolve during the interaction, and the agreement 
about them may change as the interaction unfolds.
The intention control mechanism was defined in a high-level algo-
rithm which was evaluated as a first step by applying this to a subset of 
the scenarios defined and evaluated in [120,121]. Three human-robot 
healthcare scenarios were used as a benchmark in this evaluation. The 
methodology to develop those three scenarios is presented in Subsec-
tion 2.3.
2.1. We-intentions concepts
The concept of joint intentions is central to the We-intentions the-
ory, which drives the agents’ acting together. Therefore, to define joint 
intentions between agents, we follow the work of Tuomela [125–127]. 
In Tuomela’s work, a joint intention is referred to as “action intention”, 
which can be achieved by agents performing joint actions. These ac-
tions are preconditioned on involved agents having 1) a We-intention 
to perform the actions, and 2) they mutually believe those actions can 
be achieved. Such We-intentional agents, during a joint activity, can 
commit to their private or internal intentions, in other words, form an 
I-mode attitude or a mutually agreed We-mode attitude. Let us define 
the two types of intentions more formally depending on the intentional 3
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Fig. 2. We- and I-intention scenarios in a human-robot interaction.
ternal, external, and We-intentions during an interaction between a social 
robot and a person, as follows:
Definition 1 (Internal intentions). Let 𝑎𝑔 be the full set of an agent’s 
intentions, then the internal intentions of an agent is a set 𝐼𝑎𝑔
𝐼𝑛𝑡
⊆ 𝑎𝑔 .
Similarly, we can define the agent’s external and We-intentions with 
respect to a person as follows:
Definition 2 (External intentions). Let 𝑝𝑒𝑟 be the set of a person’s in-
tentions. Then we say that the external intentions of an agent is a set 
𝐼
𝑎𝑔
𝐸𝑥𝑡
⊆ 𝑝𝑒𝑟.
Then we define the We-intentions:
Definition 3 (We-intentions). Let 𝑎𝑔 and 𝑝𝑒𝑟 be the sets of (full) in-
tentions of an agent and a person. Then a We-intention is given by: 

𝑎𝑔
𝑊 𝑒
⊆ 𝑎𝑔 ∩ 𝑝𝑒𝑟.
Example 1. Suppose a social robot (as an agent) aims to support the 
health and well-being of a person through two internal intentions: 
1) reminding to take pills, and 2) advising healthy cooking recipes, 
i.e. 𝑟𝑜𝑏 = {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙, 𝑎𝑑𝑣𝑖𝑠𝑒_𝑟𝑒𝑐𝑖𝑝𝑒}. Now, let us suppose that a per-
son starts an interaction with a social robot in a kitchen, saying that 
she intends to prepare breakfast and read the newspaper, i.e. 𝑝𝑒𝑟 =
{𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟}.
Then, in this specific scenario, three sets of alignment, breakdowns 
due to conflict, and partial alignment of intentions can be found (see 
Fig. 2):
– We-intentions alignment: 𝐼𝑟𝑜𝑏
𝑊 𝑒
≡ 𝐼
𝑝𝑒𝑟
𝑊 𝑒
𝐼𝑟𝑜𝑏
𝑊 𝑒
≡ 𝐼
𝑝𝑒𝑟
𝑊 𝑒
= {𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑎𝑑𝑣𝑖𝑠𝑒_𝑟𝑒𝑐𝑖𝑝𝑒}
– We-intentions breakdown: between 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡
and 𝐼𝑝𝑒𝑟
𝐼𝑛𝑡
𝐼𝑟𝑜𝑏
𝐼��𝑡
= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙}
𝐼
𝑝𝑒𝑟
𝐼𝑛𝑡
= {𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟}
– Partial We-intentions alignment: between 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡
and 𝐼𝑝𝑒𝑟
𝐼𝑛𝑡
𝐼𝑟𝑜𝑏
𝐼𝑛𝑡
= {𝑎𝑑𝑣𝑖𝑠𝑒_𝑟𝑒𝑐𝑖𝑝𝑒}
𝐼
𝑝𝑒𝑟
𝐼𝑛𝑡
= {𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡, 𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟}
Moreover, we can see that the subset 𝐼𝑝𝑒𝑟
𝐸𝑥𝑡
= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙} conflicts 
with every other intention of the person.
The previous example presents two types of intention relations: a 
potential intention alignment and potential intention breakdowns due to 
conflict and partial alignment of We-intentions.
Definition 4 (Intention breakdown). Let 𝑖𝑎 ∈ 𝐼
𝑎𝑔1
𝑊 𝑒
and 𝑖𝑏 ∈ 𝐼
𝑎𝑔2
𝐼𝑛𝑡
, be two 
intentions from agents 𝑎𝑔1 and 𝑎𝑔2, we say that there is a breakdown 
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situation because 𝑖𝑎 is in conflict with 𝑖𝑏 if there is a semantic evaluation 
in which the set {𝑖𝑎, 𝑖𝑏} is inconsistent. Noted as BrkDwn(𝑖𝑎, 𝑖𝑏).
We define an alignment relationship between two intentions as:
Definition 5 (Aligned intention). Let 𝑖𝑎 ∈ 𝐼
𝑎𝑔1
𝑊 𝑒
and 𝑖𝑏 ∈ 𝐼
𝑎𝑔2
𝐼𝑛𝑡
be two in-
tentions, if the set {𝑖𝑎, 𝑖𝑏} is consistent, then we say that 𝑖𝑎 and 𝑖𝑏 are 
semantically aligned. Noted as ALIGN(𝑖𝑎, 𝑖𝑏).
These relationships have a semantic perspective, i.e. two intentions 
may or may not be in conflict if an interpretation of those intentions 
leads to a semantic disagreement if they belong to the same set of 
intentions. In this paper, we do not suggest any particular formal com-
putational mechanism for such semantic interpretation; however, we 
use techniques from natural language processing (NLP) in our implemen-
tation (see [117] for a review).
Agreeing and avoiding intentions for forming We-intentions
In Tuomela’s work [128], different requirements are necessary for 
a We-intention formation, such as a collective of agents and mecha-
nisms for sharing intentions, beliefs, and task distributions. However, 
in healthcare scenarios, the relationship between a social robot and a 
person is not symmetric, i.e. it is expected that the person’s intentions 
and desires have greater importance or relevance than a social robot’s. 
Therefore, we explore three types of intention acceptance during We-
intention breakdown situations:
Definition 6 (Agents intention acceptance types). Let 𝑎𝑔1 and 𝑎𝑔2 be two 
agents forming a We-intention, with 𝑖𝑎, 𝑖𝑐 ∈ 𝐼
𝑎𝑔1
𝑊 𝑒
, 𝑖𝑏 ∈ 𝐼
𝑎𝑔2
𝐼𝑛𝑡
, and 𝑖𝑎, 𝑖𝑏 have 
a breakdown BrkDwn(𝑖𝑎, 𝑖𝑏), and 𝐼
𝑎𝑔2
𝐼𝑛𝑡
are preferred than 𝐼𝑎𝑔1
𝐼𝑛𝑡
. Then, 𝑎𝑔1
can be an:
– Agreeing agent, accepts an intention despite a potential internal 
conflict, by integrating the external intention into its own inten-
tions: 𝐼𝑎𝑔1
𝐼𝑛𝑡
∪ {𝑖𝑏}
– Avoidant agent that constraints (blocks) an external intention to 
avoid a breakdown due to an internal conflict: 𝐼𝑎𝑔1
𝐼𝑛𝑡
∪ {𝑖𝑏𝑙𝑜𝑞
𝑏
}
– Partial agreeing agent, which accepts part of the intentions of the 
other agent and blocks other intentions: 𝐼𝑎𝑔1
𝐼𝑛𝑡
∪ {𝑖𝑏𝑙𝑜𝑞
𝑏
} ∪ {𝑖𝑐}
where 𝑖𝑏𝑙𝑜𝑞
𝑏
symbolizes the generation of a constraint that disables the 
intention to be used by the agent when it is integrated into its knowl-
edge base.
In the next section, we will formalize the notions of the types of 
agents presented in Definition 6; we will use Answer set programming 
as a mechanism for representing the accepting and blocking intentions 
during We-intention breakdown situations.
2.2. Theoretical framework background
In this section, we introduce the necessary background to character-
ize We-intentions in a person-agent scenario.
Syntax
In this paper, we assume that every agent has a knowledge base en-
coded using an extended logic program (ELP) [56], which is a set of rules 
with the form: 𝐿1, … , 𝐿𝑙 ← 𝐿𝑙+1, … , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, … , 𝑛𝑜𝑡 𝐿𝑛(𝑛 ≥ 𝑚 ≥ 𝑙 ≥
0) where each 𝐿𝑖 is a positive/negative literal. not is negation as failure
(NAF) [56] (e.g. 𝑛𝑜𝑡 𝐴 represents uncertainty to draw a conclusion about 
atom 𝐴). ¬𝐴 represents negative information (w.r.t. A). The symbol “,” 
represents disjunction. The left-hand side of a rule is called the head, 
and the right-hand side is the body. A ℎ𝑒𝑎𝑑(𝑟), 𝑏𝑜𝑑𝑦+ and 𝑏𝑜𝑑𝑦− repre-
sent literals 𝐿1, ..., 𝐿𝑡, 𝐿𝑡+1, ..., 𝐿𝑚 and 𝐿𝑚+1, ..., 𝐿𝑛, respectively. A rule 𝑟
is a constraint if ℎ𝑒𝑎𝑑(𝑟) = ∅; and 𝑟 is a fact if 𝑏𝑜𝑑𝑦(𝑟) = ∅. A program 𝑃4
is NAF-free if 𝑏𝑜𝑑𝑦−(𝑟) = ∅ for every rule 𝑟 in 𝑃 [110].Computer Methods and Programs in Biomedicine 242 (2023) 107817
Semantics
In this paper, we use answer set semantics [56], an extension of Stable 
model semantics (STB). For STB, if a 𝐿𝑖𝑡 is the set of all ground literals 
of an ELP, and a set 𝑆 ⊆ 𝐿𝑖𝑡, then given a ground rule 𝑟 if 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆
and 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑆 = ∅, then implies that ℎ𝑒𝑎𝑑(𝑟) ∩ 𝑆 = ∅. In particular, 
𝑆 satisfies a ground integrity constraint 𝑟 with ℎ𝑒𝑎𝑑(𝑟) = ∅ if either 
𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆 or 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑆 = ∅. 𝑆 satisfies a ground program 𝑃 if 𝑆
satisfies every rule in 𝑃 . When 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆 (w.r.t. ℎ𝑒𝑎𝑑(𝑟) ∩𝑆 = ∅), it is 
also written as 𝑆 ⊧ 𝑏𝑜𝑑𝑦+(𝑟) (w.r.t. 𝑆 ⊧ ℎ𝑒𝑎𝑑(𝑟)).
Definition 7 (Answer set function AS). Let 𝑃 be a NAF-free ELP, a set 
𝑆 ⊆ 𝐿𝑖𝑡 is an answer set of 𝑃 if 𝑆 is a minimal set such that: 1) 𝑆
satisfies every rule from the ground instantiation of 𝑃 , and 2) 𝑆 = 𝐿𝑖𝑡
if 𝑆 contains a pair of complementary literals 𝐿 and ¬𝐿. The rule 𝑟𝑆 ∶
ℎ𝑒𝑎𝑑(𝑟) ← 𝑏𝑜𝑑𝑦+(𝑟) is included in the 𝑟𝑒𝑑𝑢𝑐𝑡 𝑃 𝑆 if 𝑏𝑜𝑑𝑦−(𝑟)𝑐𝑎𝑝𝑆 = ∅. 
Then, 𝑆 is an answer set of 𝑃 if 𝑆 is an answer set of 𝑃𝑆 . In this paper, 
the set of all answer sets of P will be written as AS(𝑃 ).1
In this paper, the difference between 𝑛𝑜𝑡 𝑃 and ¬𝑃 is essential when-
ever we cannot assume that the available positive information about 𝑃
is complete, i.e. when the closed world assumption (CWA) does not apply 
to 𝑃 [56].
Definition 8 (CWA). Let 𝑥 ∈ 𝑃 be an atom 𝑥, we use CWA(𝑥) to denote 
the following operation to 𝑥: ¬𝑥 ← 𝑛𝑜𝑡 𝑥
Example 2 (Applying CWA). Let 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡
= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙} be an internal inten-
tion of a social robot. Then, if we apply CWA to the atom 𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙, 
we will obtain CWA(𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙) = {¬𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙 ← 𝑛𝑜𝑡 𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙}, 
which has the intuitive reading: “if there are no evidence that the pill 
was reminded, then it is assumed that the pill reminder was not given”.
We will use CWA as a mechanism for dealing with an agreeing agent 
behavior (Definition 6). In the same context, we can block a specific 
atom, for example, 𝑥, by adding the rule ⟂← 𝑥 into the program.
Example 3 (Blocking an atom). Let 𝐼𝑟𝑜𝑏
𝐼𝑛𝑡
= {𝑟𝑒𝑚𝑖𝑛𝑑_𝑝𝑖𝑙𝑙} and 𝐼𝑝𝑒𝑟
𝐼𝑛𝑡
=
{𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟} be two agents’ intentions, then if the social robot 
is forced to accept the external intention, having a consistent knowl-
edge base 𝑃 , it can block 𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟 as follows: 𝑃 ∪ {⟂←
𝑟𝑒𝑎𝑑_𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟′}.
2.3. Benchmark scenarios and people’s perception of breakdown situations
To address our second research question, we adopt three video-
recorded dialogue scenarios from previous work [120,121] to exemplify 
the formal computational mechanism directing the robot in human-
robot joint dialogue activities. The selected scenarios illustrate situa-
tions when We-intention breaks down (We-intention conflict and We-
intention partial alignment), and aligns (We-intention alignment). Fur-
thermore, the scenarios embed situations when the social robot and the 
person display agreeing, partially agreeing, and avoidant behavior. The 
collected data obtained through interviews with participants viewing 
reflecting on the recorded dialogues were analyzed with a particular 
focus on the three kinds of behavior (agreeing, partially agreeing, and 
avoidant behavior). The results were expected to illustrate a tentative 
user’s experience of We-intention alignment and breakdown situations.
Selected scenarios
The first scenario illustratesWe-intention alignmentwhere a social 
robot and a person begin the day by interacting about how the person 
is feeling and what can be done about it if they are not feeling well. 1 In this paper we use the ASP solver DLV system [82].
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The social robot adapts its behavior to the human’s suggested topic (see 
Fig. 3). The second scenario illustrates the We-intention breakdown
presented in Fig. 4, where the social robot and person talk about the 
person not sleeping well because of pain. The dialogue leads to the per-
son rejecting the social robot’s proposal to address the pain issue, thus 
causing a breakdown of We-intention. In the third scenario embedding
We-intention partial alignment exemplified in Fig. 5, the person and 
the social robot talk about pain, and the person again rejects the robot’s 
suggestion. Still, when the social robot provides a supporting argument, 
the person accepts the robot’s proposal, thus, resulting in a partially 
aligning of We-intentions.
Study setup, data selection, and analysis
We refer to the two persons who acted in the WoZ setup as volun-
teers and people who participated in the study, viewing the recorded 
scenarios as participants.
20 participants in the age range of (23 − 72) were recruited for the 
study. For analysis purposes, we categorize the participants aged 23-40 
as younger participants (YA) and those between 41-72 as older partic-
ipants (OA). Each group has 10 participants, with six women and four 
men each.
The study was conducted remotely, where the participants watched 
audio and video recordings and participated in a semi-structured inter-
view. The recordings were constructed in a Wizard of Oz (WoZ) setup 
with two volunteers interacting separately with a Nao robot. The joint 
activities were authored dialogues on daily living healthcare situations 
and were performed in a lab turned into a home environment.
The interview contained the following questions: (1) What goal did 
the social robot and volunteer have in this dialogue? (1.2) Did you no-
tice any mismatch between those goals? (2) What sort of behavior did 
the social robot display? and (3) What kind of behavior did the volun-
teers display?
The analysis focused on whether the agents’ (volunteers and social 
robot) goals matched or mismatched and whether we could categorize 
the social robot’s and volunteer’s behavior as agreeing, partially agree-
ing, or avoidant.
Data were analyzed qualitatively using Thematic Analysis (TA). TA 
is a qualitative method used to derive “patterns of meaning” referred to 
as themes in a data set. TA is considered a rigorous, systematic, and 
accessible approach to coding and theme development [23]. To ap-
ply TA, we followed the following steps: (1) familiarization with the 
transcribed data with research questions in mind. (2) Identification of 
codes corresponding to participants´ perception of the person and the 
social robot’s ‘intention’ and ‘behavior’ aspects. The codes were based 
on keywords such as ‘conflict,’ ‘ignored,’ ‘intention,’ ‘goal,’ ‘behavior,’ 
etc. (3) The codes were categorized into agreeing, partially agreeing, or 
avoidant behavior; and when there was a breakdown or alignment of 
We-intention. TA was performed by one of the authors using Taguette 
software [104].
3. Results
The results include a novel formal computational mechanism en-
abling agents to deal with We-intention formation under uncertainty 
(Subsection 3.1) and exemplifications of the framework based on a user 
study of human-robot dialogues (Subsection 3.2).
3.1. Theoretical results - the adjustable intentionality framework
In this paper, we characterize an agent as an entity with beliefs, 
desires, and intentions [105,16]. As a shortcut notation, we will use 
to note the intentions of any agent, instead of 𝑎𝑔 as a mechanism for 
generalization; we will use the specific notation 𝑎𝑔, 𝑝𝑒𝑟, 𝐼𝑎𝑔, 𝐼𝑝𝑒𝑟 when 
we describe joint activities.
Definition 9 (Joint belief-desire-intention framework). Let  be a set of 5
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an agent 𝐴𝑔. Then, a joint BDI framework is a tuple 𝐽𝐵𝐷𝐼 = ⟨, , ⟩, 
where  = 𝐼𝐼𝑛𝑡 ∪ 𝐼𝐸𝑥𝑡.
In this setting, a We-intention is the set  = 𝐼𝐼𝑛𝑡 ∪ 𝐼𝐸𝑥𝑡, and an agent 
uses 𝐽𝐵𝐷𝐼 framework to generate consistent plans considering their 
and the intentions of other agents, commit to one of them, and execute 
it. Such procedure is performed by a control loop in Algorithm 1, which 
iterates until the agent is active.
Control loop specification
In this loop, functions such as intend(), cooperate(), or plan() (lines 
12, 18, and 20 respectively) among others, are formally implemented 
and described in terms of logic programming procedures, as is pre-
sented in Table 1. The control loop starts (lines 1, 2, and 6) with the 
initialization of atoms and sets of atoms. The iterative reasoning pro-
cess initiates with a fact-obtaining phase (line 9), where 𝐹 is a set of 
facts (𝑏𝑜𝑑𝑦(𝑟) = ∅, of a given rule 𝑟), which are joined to the set of initial 
beliefs 0 to update them (line 10), and generate a new set of desires 
based on the initial set of intentions. Then, the loop starts with the 
manipulation of intentions (highlighted lines in blue in Algorithm 1), 
which is the core of our contributions.
Table 1 provides a simplified explanation of important functions for 
intention management (first column) that are used in the presented con-
trol loop. The second column is the actual formalism in terms of Answer 
set programming.
Intention generation and reparation
In line 12 of Algorithm 1, intend is the process for generating the 
intentions of the agent. In this paper, the answer sets obtained from 
function AS are considered potential intentions. In line 13, the agent ob-
tains the intentions that other agents share.
The line 14 of our control loop is the primary evaluation procedure 
for intention reparation, which is when an external intention is not part 
of the agent’s internal intention set, and at the same time, the external 
intention has a full or partial conflict with the existent intentions, then, 
a reparation intention process starts (repairCooperation()) with three 
alternatives (options OP) for repairing the We-intention breakdown:
OP1 Agreeing scenario: the agent applies CWA for every atom that is 
not congruent with its internal intentions. For example, an atom 
𝑥 ∈ 𝐼𝐸𝑥𝑡 that is 𝑥 ∉ 𝐼𝐼𝑛𝑡, then the agreeing agent accepts the new 
intention atom without making inconsistent its already defined 
intentions. It adds the following sets of rules: { 𝑥 ← 𝑛𝑜𝑡 ¬𝑥, ¬𝑥 ←
𝑛𝑜𝑡 𝑥}.
OP2 Avoidant scenario: the agent creates constraints for every atom 
that is not congruent with its intentions. Continuing with the ex-
ample in OP1, an avoidant agent adds the following rule ⟂← 𝑥 for 
every 𝑥 ∈ 𝐼𝐸𝑥𝑡, 𝑥 ∉ 𝐼𝐼𝑛𝑡.
OP3 Partial agreeing scenario: the agent accepts and constrains parts 
of the external intention set. For example, let 𝑥, 𝑦 ∈ 𝐼𝐸𝑥𝑡 and 
BrkDwn({𝑥, 𝑦}, 𝐼𝐼𝑛𝑡), then it can be the case that 𝐼𝐼𝑛𝑡 ∪ {⟂← 𝑥} ∪
{¬𝑦 ← 𝑛𝑜𝑡 𝑦}, blocking 𝑥 and using CWA with 𝑦.
In this paper, we call cooperate (line 18) the process of adoption 
of external intentions. This mechanism consolidates a set of potential 
intentions that always is consistent (see properties in the next section), 
whether other agents’ intentions were repaired or not in a previous step. 
Such a consolidated set of intentions is shared by the agent (line 21), 
and finally, the control loop ends with a selection of one intention that 
the agent is committed to (line 20), which will be executed (line 22).
In the following, we present novel formal properties of our control 
loop based on answer sets.
Properties of an answer set-based control loop
In the previous section, we present an extension of a “classic” BDI 
control loop with novel characteristics using the Answer set program-
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Algorithm 1: Adjustable intention control loop. Highlighted lines from 12 to 18 are the main focus of this paper.Table 1
Map of mental state functions of an agent’s control loop (Algorithm 1), and 
formal procedures in Answer set programming.
Control loop function LP procedure
getFacts() 𝐹 ⊆ = {𝑥,… , 𝑦} where 𝑥,… , 𝑦 are facts
update(𝑥,𝐵) 𝐵 ⧵ 𝑥′ ∪ 𝑥 | 𝑥′ ∈ 𝐵,𝑥 ∉𝐵
wish(, 𝐼0) 𝑃 ⊆ 𝐹 ∪𝑅
intend(,𝐷, 𝐼𝐼 𝑛𝑡) AS(𝑃 )
getJointIntent() 𝐹 ∪ 𝐹 ′|𝐹 ′ = 𝐼𝐸𝑥𝑡
repairCooperation(𝐼𝐸𝑥𝑡)
OP1. 𝐼𝑟
𝐸𝑥𝑡
∪ {¬𝑥← 𝑛𝑜𝑡 𝑥} | ∀𝑥 ∈ 𝐼𝐸𝑥𝑡, 𝑥 ∉ 𝐼𝐼𝑛𝑡
OP2. 𝐼𝑟
𝐸𝑥𝑡
∪ {⟂← 𝑥} | ∀𝑥 ∈ 𝐼𝐸𝑥𝑡, 𝑥 ∉ 𝐼𝐼𝑛𝑡
OP3. 𝐼𝑟
𝐸𝑥𝑡
∪ {⟂← 𝑥} ∪ {¬𝑦← 𝑛𝑜𝑡 𝑦} | 𝑥, 𝑦 ∈ 𝐼𝐸𝑥𝑡, 𝑥, 𝑦 ∉ 𝐼𝐼𝑛𝑡
and BrkDwn({𝑥, 𝑦}, 𝐼𝐼𝑛𝑡) for OP1,OP2 and OP3
cooperate(𝐼𝐼𝑛𝑡, 𝐼𝐸𝑥𝑡) or
cooperate(𝐼𝐼𝑛𝑡, 𝐼𝑟𝐸𝑥𝑡)
AS(𝑃 ) ∪ 𝐼𝐸𝑥𝑡 or AS(𝑃 ) ∪ 𝐼𝑟𝐸𝑥𝑡
plan(,) SEL𝑥, 𝛼(AS(𝑃 ) ∪ 𝐼𝐸𝑥𝑡) or SEL𝑥, 𝛼(AS(𝑃 ) ∪ 𝐼𝑟𝐸𝑥𝑡)
ming approach. In this section, we present the formal properties of our 
framework. We start with a set of fundamental axioms defining key re-
lationships in the We-intention formation.
Proposition 1 (Axioms of person-agent We-intention formation). Let 𝑎𝑔
and 𝑝𝑒𝑟 be two agents where 𝑝𝑒𝑟 represents a person, with sets of intentions 
𝑎𝑔 and 𝐼𝑝𝑒𝑟 ⊆ 𝑝𝑒𝑟. The following axioms define We-intentions relations:
– 𝑎𝑔 ≠ ∅, Intentional agent
– 𝑎𝑔 ∩ 𝑝𝑒𝑟 = ∅, Breakdown scenario
– 𝐼𝑝𝑒𝑟 ∩ 𝑎𝑔 ≠ ∅, Partial We-mode
– 𝐼𝑝𝑒𝑟 ≡ 𝑎𝑔 , Full We-mode
– 𝑝𝑒𝑟 ∩ (𝑎𝑔 ∪ 𝐼𝑝𝑒𝑟 ∗) ≠ ∅, Person’s intention adaptation (CWA applica-
tion)
– 𝑝𝑒𝑟 ∩ (𝑎𝑔 ⧵ 𝐼𝑝𝑒𝑟 ∗) ≠ ∅, Person’s intention inhibition
Proposition 1 establishes the initial conditions for a We-intention 
formation. The first axiom defines a desirable characteristic of an in-
tentional agent, where the set of intentions of an agent should not be 
empty. The rest of the axioms are consequences of considering break-
downs and agreements among intentions, which is the key characteris-6
tic for decision-making in Algorithm 1.Consistent mental states using answer sets approach:
We start by showing a key property in the process of intention shar-
ing from the perspective of an agent that receives an intention (not the 
initiator of the joint intention).
Proposition 2 (Consistent shared intentions). Let 𝐴𝑔1 and 𝐴𝑔2 be two 
agents with knowledge bases encoded in logic programs 𝑃1 and 𝑃2, respec-
tively. If each agent uses an answer set approach to generate their intentions 
(Algorithm 1), then every set of the shared intentions (partial intentions) is 
consistent.
See Proof A in Appendix section A.
The importance of Proposition 2 lies in the fact that when sets of 
a stable model are used in shared mental states such as intentions or 
partial intentions, they are always consistent, meaning that under our 
approach, two agents cannot have uncertain atoms that may generate 
misinterpretations.
Theorem 1 (Consistently shared states). Let 𝐴𝑔1 be an agent with encoded 
information in a program 𝑃1. If an answer set process is used for interpret-
ing any mental state (w.r.t. BDI), then such mental state representation is 
consistent.
See proofs in Appendix A.
Generalizing from Proposition 2, Theorem 1 establishes a clear dif-
ference between our answer set approach and previous approaches. 
Unlike other contemporaneous control loops for rational agents, Algo-
rithm 1 guarantees consistency when used to encode mental states.
Repairing shared intentions
In Algorithm 1 line 15, we presented a mechanism of shared in-
formation manipulation that an agent can use when there is a partial 
convergence among internal and shared intentions.
Proposition 3 (Incompatible atom elimination using CWA). Let 𝑃1 and 𝑃2
be two encoded knowledge bases of two agents. If ∃𝑥 ∈ 𝑃2 and 𝑥 ∉ 𝑃1, we 
say that 𝑥 is incompatible w.r.t. 𝑃1. Then, by adding the rules: 𝑥 ← 𝑛𝑜𝑡 ¬𝑥
and ¬𝑥 ← 𝑛𝑜𝑡 𝑥 into 𝑃1, the incompatible atom 𝑥 is eliminated, being 𝑃1∪
{𝑥 ← 𝑛𝑜𝑡 ¬𝑥} ∪ {¬𝑥 ← 𝑛𝑜𝑡 𝑥} consistent.
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There is the practical importance of Proposition 3, which is when an 
agent needs to “adopt” an external atom as part of its knowledge base 
(see OP1 in Table 1), maintaining at the same time its knowledge base 
consistency. The proposed method for repairing incompatibilities de-
fines an agreeing behavior of such an agent, meaning that agents using 
this strategy will always accept a shared atom. From the perspective of 
We-intentions in [128], Proposition 2 i.e. OP1 process in Algorithm 1, 
is a necessary condition to establish a full-blown joint intention, which 
is the case of every participant symmetrically having the same relevant 
We-intention [128]. On the other hand, if an agent restricts a shared 
atom instead of adopting it, then it creates a logic programming con-
straint, which makes such an atom impossible to be true.
Proposition 4 (Restricting atoms with constraints). Let 𝑃1, 𝑃2 be two en-
coded knowledge bases of two agents 𝐴𝑔1, 𝐴𝑔2. If ∃𝑥 ∈ 𝑃2 and 𝑃1 ∪{⟂← 𝑥}, 
then 𝑥 will not be true in 𝐴𝑔1.
The previous proposition is a strong restriction for accepting any 
atom. The procedure presented in Table 1 as OP2 is for agents that 
reduce the margin of cooperation.
Computational complexity of the framework
In this section, we address the computational complexity of the pro-
posed framework, mainly the associated costs of different parts of Algo-
rithm 1. To this end, we present the approximate computational cost 
of intention generation considering well-established asymptotic upper 
bounds. In this context, we are not interested in the specific compu-
tational cost (time) that a function or the entire Algorithm 1 has in a 
given programming implementation. Instead, we are focused on delin-
eating approximate upper boundaries, which is a more general exercise 
with practical implications. Finally, we summarize a set of heuristics 
that can be used to cope with “costly” functions in our framework.
NotationWe use standardized computational complexity notation [69]. 
Appendix B introduces a background of computational complexity the-
ory in logic programming and the corresponding notation.
Approximate computational cost analysis of functions in our con-
trol loop
– getFacts() (Line 9). Perception of facts can be considered as a non-
complex task in the Algorithm 1 setting, i.e. its cost is linear (𝑂(𝑛)) 
and dependent on the environment. The rationale for this assump-
tion is that obtaining facts from the environment does not imply 
search or more computationally complex tasks. However, since the 
late 1990s, it has been well-known that the (time) cost of sensing
in social robots depends on the type of environment (see the work 
of Kinny, Georgeff, and Henlder in [73] to assess optimal sensing 
considering static and dynamic worlds).
– update() (Line 10). The LP procedure of the beliefs update func-
tion 𝐵 ⧵ 𝑥′ ∪ 𝑥 | 𝑥′ ∈ 𝐵, 𝑥 ∉ 𝐵 can be considered a belief revision
procedure in the logic programming literature [2,4,35,66]. In that 
context, the computational cost depends on the associated tasks to 
the update operator (∪ in Line 10) and the type of modification that 
such operation implies, for example, in [9,34,66] (among others), 
a comparison between answer set models [86] is performed to eval-
uate the equivalence of programs (in the sense of strong equivalence
[87]). Which is a decision problem of the form: given 𝐵 and 𝑥′, is 𝑥′
true in all answer sets of 𝐵? which is the decision whether to update 
𝐵 with 𝑥′ or not. In [48] was identified that using cautious reason-
ing, the complexity of aggregate operators (functions) brings the cost 
to 𝛱𝑃2 considering disjunctive programs. Other updating/aggregate 
operators and their complexity analysis using different underlying 
representations and semantics have been reported in [31,44]. This 
in-depth analysis of the update operator will be part of our future 
work.
– wish() (Line 11). This procedure is oriented to bring about a 7
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the “standard” BDI model [18]). There are several mechanisms 
how wish could be practically implemented, as a search process 
and preference-elicitation mechanism. These can be considered 
polynomial-time algorithms, or at least there are polynomial-time 
reductions of such problems. However, regarding search mecha-
nisms, the existence of polynomial-time decision algorithms alone 
does not ensure that a corresponding search problem can be solved 
efficiently or correctly [50]. Other non-monotonic reasoning mech-
anisms for implementing a wish function have been proposed in 
[59] using formal argumentation theory, which, under the stable 
argumentation semantics [41] and under a credulous perspective is 
non-deterministic 𝑁𝑃 (see technical details in [42]).
– intend() (Line 12). In Algorithm 1, the intention generation is per-
formed by a function AS(), which is the generation of answer sets 
(stable model [56,86]). Such operations are NP-hard problems with 
several variants and reductions. Moreover, it has been proved that 
other less costly mechanisms can generate equivalent answer sets 
under certain underlying representation restrictions (see [38,39]).
– getJointIntent() (Line 13). This function integrates the internal in-
tentions of the agent with the external intentions of other agents. In 
this context, the computational cost is not significant, considering 
the cost of other functions.
– repairCooperation() (Line 15). A key part of the paper is the re-
pairing options OP1-OP3. In any of these options, the suggested 
functions can be considered as logic program updates, more specif-
ically as ASP model updates, in which, as it was mentioned in 
update(), the upper boundary can be 𝛱𝑃2 for certain underlying 
knowledge representations. However, despite the apparent high 
cost, a simple addition of a rule to an ASP model is not a com-
plex process that can be performed in polynomial time, given that 
it does not imply equivalence verification as in “standard updates” 
of logic programs e.g. [66].
– cooperate() (Line 18). This function is a joining programs mecha-
nism that can be performed in linear time, depending on the size of 
the added set i.e. the intention to be assimilated.
– plan() (Line 20). This function is performed for an answer set plan-
ning mechanism, which differs from satisfiability planning in that 
it uses logic programming rules instead of propositional formu-
las [86], then, the answer sets for that program represent differ-
ent possible evolution or scenarios. In [124], a review of answer 
set planning mechanisms, the authors compile several ASP-related 
mechanisms for planning, showing several heuristics are used to 
reduce the computational cost of the planning task. We also ac-
knowledge that some ASP planning mechanisms have been used to 
model the behavior of agents and multi-agents in a review article 
[43]. Then, in general, plan as an ASP planning mechanism can be 
considered NP-hard in the worst-case scenario.
In summary, the computational cost of Algorithm 1 can be reduced 
to the intention generation cost (intend() - Line 12) and the cost of plan-
ning (Line 20). If cost(𝑥) is a function that retrieves the approximate 
computational cost (time) of every procedure in Algorithm 1, the total 
cost (𝑇𝑂𝑇𝐴𝐿) can be approximated to the following expression:
𝑇𝑂𝑇𝐴𝐿 =𝑂(getFacts(𝑛),update(𝑛),wish(𝑛),
intend(𝑛), repairCooperation(𝑛),cooperate(𝑛),
plan(𝑛)) ≤𝑂(intend(𝑛))
=𝑂(𝑛𝑘)𝑘 ≥ 1
(1)
The strength of the BDI models lies in their use of heuristics, which 
attacks the complexity of the problem with domain-independent strate-
gies that allow it to make decisions with as much information as 
possible given the resources that are available [116]. In this sense, dif-
ferent heuristics have been proposed to reduce the computational cost of specific procedures inside BDI-like control loops. In Appendix B.2, 
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Table 2
Results of the We-intention alignment scenario. In the left column are presented some lines 
in Algorithm 1, and the right column shows the output of selected functions in the control 
loop.
Line Output of Algorithm 1 for the agreeable robot scenario
9-13
𝐹 =
{
morning;in_kitchen;says_wants_breakfast
}
𝐼𝐼𝑛𝑡 =
⎧⎪⎪⎨⎪⎪⎩
take_breakfast :- says_wants_breakfast .
take_breakfast :- in_kitchen, morning, not breakfast_taken.
read :- in_kitchen, has_newspaper.
read :- says_wants_read.
⎫⎪⎪⎬⎪⎪⎭
𝐼𝐸𝑥𝑡 =
{
remind_pill :- morning, not pill_taken.
advise_breakfast :- in_kitchen, morning.
}
14 BrkDwn({remind_pill},{read})
18
 =
⎧⎪⎨⎪⎩
take_breakfast :- says_wants_breakfast .
take_breakfast :- in_kitchen, morning, not breakfast_taken.
advise_breakfast :- in_kitchen, morning.
⎫⎪⎬⎪⎭
 =
{
morning;in_kitchen;says_wants_breakfast.
}
20  =
{
𝜋 = {advise_breakfast}
}Fig. 3. Scenario 1, depicting We-intention alignment, i.e. the agreeing robot 
(based on Figure 3 in [121]).
we present a non-exhaustive list of computational heuristics that can be 
(re)used in Algorithm 1 to build potentially less costly implementations.
3.2. Application and perception of intention control loop
In this section, the intention control loop is exemplified using three 
scenarios embedding We-intention alignment, breakdown, and partial 
alignment in dialogues between a social robot and volunteers. Further-
more, Algorithm 1 is applied to the three scenarios, and study partici-
pants’ experiences and perceptions about them are summarized.
Scenario 1 (We-intention alignment - the agreeing robot). Preconditions:
– The volunteer (person) is unaware of the social robot’s dialogue or 
intention.
– The social robot is unaware of the volunteer’s intention.
– The environment is static. There are no changes in the kitchen that 
affects the location of the social robot.
– The social robot has pre-defined programs capturing a common 8
health and well-being scenario.The social robot is situated in a corner near the breakfast table. In 
the morning, the volunteer arrives in the kitchen to have breakfast. The 
social robot greets and asks how the volunteer is feeling. The volunteer 
indicates that they are not feeling well. The volunteer says that having 
breakfast could improve their health situation. The social robot agrees 
and aligns itself to support the breakfast preparation. The social robot 
presents some (We-intentions) alternatives. The volunteer responds, and 
the social robot selects the joint activity. The social robot concludes the 
dialogue after the volunteer responds to the breakfast selection (Fig. 3
illustrates the unfolding of the dialogue).
Post-conditions:
– The volunteer changed the topic of the dialogue.
– The social robot adapted and ends the dialogue.
– The environment remains static.
In Table 2, we present the results of using Algorithm 1 in Scenario 1. 
We limit our attention to specific lines of the control loop, which repre-
sents the person’s perspective of the scenario, i.e. we interpret internal 
intentions from the perspective of the person, then, 𝐼𝐼𝑛𝑡 represents in-
tentions of the person, 𝐼𝐸𝑥𝑡 the agent’s intentions, and 𝐹 the perceived 
information from the social robot’s sensors. In line 14, we highlight the 
potential semantic breakdown between internal and external intentions, 
and lines 18 and 20 show the intentions’ alignment output.
Participant’s potential perception of We-intention alignment 
and agreeing behavior: Half of the participants observed and com-
mented on the volunteer’s and robot’s agreeing behavior.
Older participants described the social robot’s agreeing behavior by 
characterizing it as being cooperative and displaying care towards the 
human: “Cooperative and efficient. We can’t expect more from the robot.”
Another older participant described the social robot’s interaction as be-
ing soft and appropriately situated: “The interaction with the people was 
very soft. He reacts, turns around, and comes back in a polite way. The 
time-lapse was good, and it was not right away.”
The young participants describe the social robot displaying empa-
thy, positivity, and care for the person participant, “...robot seems to 
have a little bit of empathy.” Half of the younger participants commented 
on how the volunteers in the scenario overall displayed agreeing be-
havior by recognizing the social robot’s presence and by adapting their 
dialogue towards it: “I guess they were being kind of polite to it. They said 
thank you, it’s a good idea like they were almost in on it...”.
However, the participants noted that the older volunteer was accept-
ing, paid attention, and treated the social robot almost like a person 
compared to the young man; “older lady was perfect she knew when was 
her turn.” and “the lady behaved more normal compared to the younger 
person.”
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Fig. 4. Scenario depicting intention breakdown between the person and a social robot (based on Figure 5 in [121]).Scenario 2 (We-intention breakdown - the avoidant robot). Precondi-
tions:
– The volunteer (person) is unaware of the social robot’s dialogue or 
intention.
– The social robot is unaware of the volunteer’s intention.
– The environment is static. No changes in the kitchen affect the lo-
cation of the social robot.
– The social robot has pre-defined programs capturing a common 
health and well-being scenario.
The volunteer is reading newspaper in the kitchen. The social robot fol-
lows up on why the volunteer did not feel well in the morning. The 
volunteer responds that they did not feel well in the morning because 
of sleep issues due to back pain. The social robot asks to estimate the 
pain level. The volunteer indicates that the pain is high. Then, the so-
cial robot suggests doing something about it. The volunteer rejects it 
and asks the social robot to leave and let them continue reading their 
newspaper in peace (refer to Fig. 4 for details about the scenario).
Post-conditions:
– The volunteer rejects continuing with the topic of the dialogue.
– The social robot apologizes and ends the dialogue.
– The environment remains static.
In Table3 are presented selected lines of Algorithm 1 applied to the 
avoidant robot scenario. The pre- and postconditions show a breakdown 
scenario.
Participant’s potential perception of We-intention breakdown and 
avoidant behavior:
A majority of the participants (n=14) commented on how the vol-
unteers caused We-intention breakdown such as being bothered or indi-9
cating they wanted to be left alone while watching TV or reading their newspaper; “the man is a little upset.. he is upset because he wants to stay 
alone and watch his TV...”. This breakdown situation was caused by the 
volunteers when telling the social robot to leave them alone (Fig. 4): 
“at some point, they feel that it has been becoming too intrusive ah just ask-
ing too many questions... so they just ask it to leave them alone.” See also 
Table 3.
Most of the We-intentions breakdowns were observed in relation to 
the volunteers in the recordings, while only three participants observed 
a breakdown in the robot’s We-intention. This was in the situation when 
it kept talking about sleep and pain while the volunteers were doing 
their daily activities, such as reading or listening to the TV news: “When 
they say let me read in peace or just watch TV, and the robot ask questions 
that are not relevant of this situation.” Furthermore, one older participant 
suggested that even though the volunteers were annoyed about the so-
cial robot’s continued talking, they should listen to it in order to solve 
their ongoing problems: “maybe the robot reminded them about what they 
should do try to solve it even though they were annoyed.”
More than half (seven) of the young participants reflected on how 
the volunteers displayed avoidant behavior towards the social robot 
in different ways. Participants noticed the volunteers did not just avoid 
the social robot when they were occupied with other activities, but they 
also did not talk directly to it even when they were not busy, as illus-
trated by the following comments: “You know when they were standing 
for breakfast in both the cases the robot was ignored.”; “I think that they did 
not look the robot in the eyes... And did not talk directly to it. Sometimes, 
they looked at the newspaper, just did not look the robot in the eyes.”
On the other hand, only one older participant found the volun-
teers or the social robot displaying avoidant behavior. By contrast, six 
younger participants expressed how the social robot ignored the vol-
unteer by either not responding to their introduced topic, avoiding the 
volunteer’s requests illustrated by the comment: “I have my pain here can 
you see?’ But he never answered to that, never acknowledged that it could 
see or not, just keep going with the conversation.”, or persisting on its own topic: “He was too persistent in describing the pain.”
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Fig. 5. Scenario depicting a partial alignment of intentions. In this setting, fragmented intentions are common between the volunteer and the social robot (based on 
Figure 7 in [121]).Scenario 3 (We-intention partial alignment). Preconditions:
– The volunteer (person) is unaware of the social robot’s dialogue or 
intention.
– The social robot is not aware of the volunteer’s intention.
– The environment is static. There are no changes in the kitchen that 
affects the location of the social robot.
– The social robot has pre-defined programs capturing a common 
kitchen scenario where health and well-being dialogues can be de-
veloped.
In the evening, the volunteer enters the kitchen and prepares tea/cof-
fee for themselves. The social robot asks about the pain. The volunteer 
indicates they still have pain. Then, the social robot suggests they con-
tact a nurse. The volunteer rejects the social robot’s suggestion. The 
social robot provides a supporting argument for contacting the nurse. 
Then, the volunteer accepts, and the corresponding dialogue unfolds as 
depicted in Fig. 5.
Post-conditions:
– The social robot tries to convince the volunteer to see the nurse.
– The volunteer gets convinced and ends the dialogue.
– The environment remains static.
In Table 4, the output of selected lines of Algorithm 1 is presented 
considering as input an answer set program representing the intentions 10
of a social robot and a person in Scenario 3. Summarizing, in line 18 of Table 4 the constraint :- advise_call_nurse. is added to avoid 
inconsistency in the set of intentions . In line 20, the plan generated 
by the Answer set programming mechanism suggests a coherent plan, 
avoiding potential intentions’ breakdown.
Participant’s potential perception of We-intention partial align-
ment: Most of the participants found the partial alignment of We-
intention as natural. However, one older participant reported that after 
some initial disagreement, the older volunteer changed their attitude 
towards the robot: “Both these people seem to be fine. The lady was less in 
a mood but I think she warmed up to the robot.”
4. State-of-the-art
This section follows a systematic literature review methodology 
to explore related work. We use a search-and-review well-established 
method introduced in [75] involving the following steps:
– Search questions (SQ) definition. We considered the following two 
search questions, SQ1: what formal mechanisms for sharing inten-
tion using Answer set programming or logic programming have 
been proposed for rational agents? and SQ2: what formal methods 
allowing rational agents to repair intentions have been proposed?
– Keyword selection. We used a set of keywords in different 
databases with minor syntactic changes, such as database-specific 
words. The keywords were the following: ALL=(INTENTION AND 
(SHARING OR SHARED OR JOINT) AND (“ANSWER SET PROGRAM-MING” OR “LOGIC PROGRAMMING” OR “ANSWER SETS”)).
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Table 3
Results of a scenario where intention breakdown happens between a person and a robot. The 
left column is the Algorithm 1 selected lines. Right column shows the outputs of some control 
loop functions.
Line Output of Algorithm 1 for the intention breakdown scenario
9-13
𝐹 =
⎧⎪⎨⎪⎩
morning;in_kitchen;has_newspaper;be_irritated;
says_wants_be_alone;says_agree_take_pill;pain_pill_taken;
says_feels_pain
⎫⎪⎬⎪⎭
𝐼𝐼𝑛𝑡 =
⎧⎪⎪⎨⎪⎪⎩
read :- in_kitchen, has_newspaper.
read :- says_wants_read.
agree_take_pill :- says_agree_take_pill.
be_alone :- says_wants_be_alone.
feel_pain :- says_feels_pain, not pain_pill_taken.
⎫⎪⎪⎬⎪⎪⎭
𝐼𝐸𝑥𝑡 =
⎧⎪⎪⎨⎪⎪⎩
remind_pill :- morning, not pill_taken.
advise_pain_killer :- feel_pain.
ask_about_pain :- feel_pain.
reduce_interaction :- be_alone.
⎫⎪⎪⎬⎪⎪⎭
14 BrkDwn({remind_pill,advise_pain_killer,ask_about_pain},{be_alone})
BrkDwn({remind_pill},{read}))
18
 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
read :- in_kitchen, has_newspaper.
read :- says_wants_read.
agree_take_pill :- says_agree_take_pill.
be_alone :- says_wants_be_alone.
feel_pain :- says_feels_pain, not pain_pill_taken.
advise_pain_killer :- feel_pain.
ask_about_pain :- feel_pain.
:- remind_pill.
reduce_interaction :- be_alone.
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
 =
⎧⎪⎨⎪⎩
morning;in_kitchen;has_newspaper;be_irritated;
says_wants_be_alone;says_agree_take_pill;pain_pill_taken;
says_feels_pain
⎫⎪⎬⎪⎭
20 𝜋 = {advise_pain_killer;ask_about_pain;reduce_interaction}
Table 4
Results of the use of Algorithm 1 in a partial alignment of intentions scenario. The left 
column is the Algorithm 1 selected lines. Right column shows the outputs of some control 
loop functions.
Line Output of Algorithm 1 for a partial alignment of intentions scenario
9-13
𝐹 =
{
evening;in_kitchen;preparing_tea;has_newspaper;
says_feels_pain;doubtful
}
𝐼𝐼𝑛𝑡 =
⎧⎪⎨⎪⎩
prepare_tea :- in_kitchen, evening.
feel_pain :- says_feels_pain, not pain_pill_taken.
not_bother_nurses :- says_not_bother_others, doubtful.
⎫⎪⎬⎪⎭
𝐼𝐸𝑥𝑡 =
⎧⎪⎨⎪⎩
advise_call_nurse- feel_pain.
ask_about_pain :- feel_pain.
give_extra_information :- doubtful.
⎫⎪⎬⎪⎭
14 BrkDwn({advise_call_nurse},{not_bother_nurses})
18
 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
prepare_tea :- in_kitchen, evening.
feel_pain :- says_feels_pain, not pain_pill_taken.
not_bother_nurses :- says_not_bother_others, doubtful.
ask_about_pain :- feel_pain.
give_extra_information :- doubtful.
:- advise_call_nurse.
⎫⎪⎪⎪⎬⎪⎪⎪⎭
 =
{
evening;in_kitchen;preparing_tea;has_newspaper;
says_feels_pain;doubtful
}
20 𝜋 = {give_extra_information;ask_about_pain}– Selection criteria definition. We consider the following selec-
tion and rejection criteria: 1) Approaches connected with non-
monotonic reasoning, 2) articles with formal and empirical con-
tributions, 3) approaches using models similar to the BDI, and 4) 
papers in the English language. Rejection criteria: 1) workshop pa-
pers and 2) articles published in less-recognized publishers and 
databases.
– Databases selection. We used the following article databases: Web 
of Science, IEEE Xplore, ACM Digital Library, SpringerLink, ACL 11
Anthology, and Scopus.Based on this methodology, we found 101 potential papers as fol-
lows: Web of Science (n=16), IEEE Xplore (n=1), ACM Digital Library 
(n=75), SpringerLink (n=3), ACL Anthology (n=1) and Scopus (n=4). 
We removed duplicates and papers not fulfilling the mentioned criteria, 
then we obtained a list of 16 papers.
Major findingsWe found that the work of Sakama et al. in [110] is the 
closest to our approach. In that paper, the authors studied specific se-
mantics for two cooperation cases i) AS(𝑃 ) ∪AS(𝑄), and ii) AS(𝑃 ) ∩AS(𝑄)
being 𝑃 and 𝑄 two extended disjunctive programs [56] called generous
and rigorous coordination respectively [110]. Sakama & Inoue’s work 
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is focused on belief coordination rather than intention manipulation. 
We identified other approaches using ASP for belief change mechanisms 
[35,111], explained next.
For knowledge representation, answer set programs are rarely static; 
rather, modification by correcting, adding, or coalescing the programs 
is natural. This change can be studied and facilitated by belief-revision 
of the knowledge base. However, the non-monotonic nature of answer 
sets makes this change of beliefs difficult. Motivated by the limitation 
of answer sets in revising beliefs, the authors in [35] reformulate belief 
change similar to that in propositional logic by using strong equivalence 
characterized by SE models. Where strong equivalence gives rise to sub-
stitution principle, indicating that two strongly equivalent programs P
and Q, 𝑃 ∪𝑅 and 𝑄 ∪𝑅 have the same answer sets for any program R.
In [111], the authors formulate ‘interactions’ between answer sets in 
multi-agent systems, categorized by cooperation, competition, norms, 
and subjection. These interactions happen in an agent society using 
belief revision represented as answer set programs. These answer set 
programs were then defined for cooperation, where given two programs 
𝑃1 and 𝑃2, Φ ⊆𝐿𝑖𝑡, and answer set 𝑆 ∈𝐴𝑆(𝑃1), 𝑇 ∈𝐴𝑆(𝑃2), cooperation 
is when 𝑆 ∩ Φ = 𝑇 ∩ Φ. Other types of cooperation were defined as ac-
ceptance, adaptation, and concession. The competition was defined as 
𝑆 ∩ 𝑇 ∩Φ = ∅ using the same programs and answer sets of cooperation. 
Other types of the competition were benefits and precedence. Similarly, 
norms and subjection were defined.
Our review showed that several approaches dealt with mental states 
in cooperative agents, for example, the work of Jennings, Wooldridge, 
Kinny, Dignum, Ancona & Mascardi, and Cohen (see [7,26,37,68,74,
132]).
Jennings has defined models similar to We-intentions using the con-
cept of commitment and conventions for distributed systems. The au-
thor defines commitment as a ‘pledge to take a certain course of action’ 
and convention to be ‘a means for monitoring of commitment when 
circumstances change’ for communities of agents [68].
Dignum et al. [37] provide a formal framework to cooperate and 
construct teams using argumentation theory dialogues types proposed 
by [129]. The authors define the framework as composed of the follow-
ing: (1) potential recognition of agents by the initiating agent suitable 
for the overall goal and how they can be integrated with a team, and (2) 
team formation resulting in a collective intention to achieve the overall 
goal.
Kinny et al. [74] situate their work for agents with a repertoire 
of plans specifying goals that can be decomposed into sub-goals. A 
means/end analysis approach was taken, where an agent can select a 
plan from its repertoire instead of first generating plans from basic prin-
ciples. To adopt a plan, an agent has a partial commitment or intention 
enabling stability in the presence of a dynamic environment. A formal 
framework for the planning of cooperative activities by MAS was pro-
vided. Their framework extended the beliefs with mutual belief about 
the environment and actions of the other agents; goals became joint 
goals and plans became joint plans as the means to satisfy joint goals; 
and, intentions were transformed to joint intentions as a commitment to 
joint plans. Their formal framework presents how agents as a collective 
can successfully achieve joint intentions. Furthermore, the authors also 
discuss possible failures during the execution of joint intentions arising 
from primitive actions, role plans, or changes in the beliefs, intentions, 
and goals of a team member.
Mascardi and Ancona [7] propose a cooperative BDI framework, an 
extension addressing the problem of events in BDI generating empty 
plans. Coo-BDI manages empty plans by defining cooperativity in agents 
by exchange of plans. Cohen et al. [26] define joint intention as com-
mitment of a group (specifically, multi-agent systems (MAS)) to achieve 
joint actions. Agents with joint intentions were defined as dynamically 
situated with an incomplete or inconsistent set of beliefs, goals that 
can change, and actions that can fail. Furthermore, agents do not share 
their beliefs and goals, creating a necessity for communication. Such 12
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Table 5
Approaches from the agents’ literature where mental attitudes are shared for 
building cooperation.
Reference Shared mental states Formal language Repairing
[13] Actions, , plans AgentSpeak No
[98]  Classical logic No
[74] Actions, , plans Classical logic No
[68]  Classical logic No
[26] Joint commitments (intentions) Classical logic No
[60]  Logic programming No
[7] Plans Propositional logic No
[37] Plans, pre-plans Propositional logic No
such as request and assert [115]. The work was developed in [24,25] to 
allow people and agents to perform joint actions to achieve joint inten-
tions. Specific to collaborative dialogues, authors in [24] redefine the 
general slot-filling mechanism with intents. In [25], a “collaborative 
multi-model planning based” dialogue system facilitating human-agent 
joint goals was presented. The dialogue system reasons about its own 
and others’ goals and beliefs. Belief reasoning was performed by modal 
Horn-clause, and the planning mechanism considers speech acts as ac-
tions affecting the mental states allowing an agent to plan speech acts 
such as request, question, recommend, and those associated with emo-
tions. The work in [103] applies a logic programming framework to 
enable agents with reasoning mechanisms to collaborate and partici-
pate during information-seeking dialogues. The framework represents 
actions, states, and knowledge with extended logic programs, and the 
reasoning mechanism is based on well-founded semantics with explicit 
negation. Authors in [97] provide “operational semantics” for updating 
agents’ mental states when creating a theory of mind (ToM) in a MAS 
context.
However, in these approaches mentioned so far, the analysis and 
formal representation of breakdowns (see Scenario 3) is not consid-
ered, apart from that of Kinny’s work in [74] and Sarkadi’s work [112], 
where, they applied a probabilistic method to represent uncertainty for 
agents when creating a theory-of-mind (ToM) about others.
Regarding SQ2, what formal methods for repairing intentions be-
tween rational agents been proposed? We only found one article using 
the keywords mentioned in those databases. In [135], the authors use 
CWA (Definition 8) to define restrictions in a knowledge base to main-
tain the correctness of specific atoms in a particular domain. Using 
answer set constraints for intention repairing is a novel approach for 
practical matters in multi-agent systems (MAS).
In Table 5 we summarize approaches related to our work where dif-
ferent mental states are shared. We found that the related approaches 
presented in Table 5 present models for cooperation or collaboration 
formation, but none of them have proposed computational mechanisms 
for repairing potential inconsistency and incompleteness of external 
mental states. Moreover, the use of classical logic as an underlying for-
malism of representation is common (see Formal language in Table 5). 
Contrary to these models, we use extended logic programs to handle 
uncertainty in the shared mental states, additionally, we addressed the 
problem of repairing cooperation depending on the agent’s attitude, 
which has been addressed with the use of AgentSpeak- in [13], and 
extended logic programs in [61].
5. Discussion
In this paper a formal computational mechanism is presented, which 
equips social robots with the capabilities to form a We-intention with a 
person, also in the presence of incomplete and inconsistent intentions. 
The mechanism is exemplified in three dialogue scenarios involving a 
person and a social robot. These dialogue scenarios were enacted in a 
WoZ setup and participants observed them. In a semi-structured inter-
view after observing the scenarios, participant perspectives on the three different types of We-intention alignments were gathered and analyzed.
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The following subsections discuss the results, limitations of the 
methods applied, and compared with the related work.
5.1. Sharing and repairing intentions in the agent literature
In the agent literature, specifically in approaches using cognitive 
architectures of agents we found three major trends:
1. Mental states are shared between agents without handling uncer-
tainty in the information representation. Our results suggest (Ta-
ble 5) that most of the formal approaches for sharing mental states 
between agents use classical logic variants (see [26,68,74,98]), 
which are comparatively less rich to capture uncertainty than ap-
proaches using ELP, or AgentSpeak- (e.g. [103,13,60,109]). Con-
sequently, some computational mechanisms cannot address issues 
related to the formation and reparation of We-intentions under in-
complete and inconsistent information from other agents.
2. The use of the Belief-Desire-Intention (BDI) model introduced in 
[16] is ubiquitous in the agents’ literature. Our review found that 
most papers in shared intention and intention formation consider 
the BDI model as a key for the agents’ decision-making process (see 
[13,60,68,74]). Therefore, they propose control loops with similar 
characteristics as of Algorithm 1; for example, they started with ini-
tial empty sets of intentions and plans, the control loops are always 
active receiving percepts, and the main intention and planning gen-
eration is based on an algorithmic BDI manipulation. In this sense, 
our proposed algorithm has the advantage that it can be deployed 
in frameworks such as JaCaMo [14]. However, at the same time, 
such control loops require further consistency analysis to avoid no-
rational decisions, for example, when an agent We-intends to do 𝑋
with others. However, it does not believe that it can achieve it. In 
this sense, Bratman in [16] showed that there is no irrationality if a 
person intends to do 𝑋, and yet does not believe that s/he will do 
it, this can be labeled as intention-belief-incompleteness. However, 
it can be considered irrational to intend 𝑋 and believe that s/he 
will not 𝑋, the so-called intention-belief-inconsistency [16, p. 38-39]. 
Recently, in the agents’ literature, some authors have considered 
rationality principles as key for agent-based persuasive technology 
[62].
3. Reparation of intentions in joint activity formation is not consid-
ered in the agent literature. As our review suggests, formal pro-
cesses for modifying the structure of intentions before they are 
assimilated or rejected by an agent have not been proposed. Most 
approaches in sharing mental states literature assume two distinct 
options, full acceptance or full rejection of external intentions. How-
ever, as our partial alignment scenario suggests, there exist settings 
where an agent may partially adopt and reject intentions from 
other agents. Consequently, our formal mechanism to deal with 
partial scenarios can be seen as a novel mechanism and applicable 
for different scenarios in person-robot cooperation.
Furthermore, based on the review results, we found that intention 
sharing is an active and well-established research track in the agents’ 
community but not in the answer set and logic programming fields. 
In the agents’ field, authors from social sciences have inspired several 
formal computational mechanisms, such as the work of Searle, Bratman, 
and Tuomela (see [17,114,128] among others). Our framework follows 
the seminal work of Bratman, in [16] to define a reasoning control loop. 
Tuomela’s work on We-intentions is particularly close to our approach. 
Tuomela defines a We-intention as an “attitude” required to have a joint 
intention. Tuomela in [125] described two types of attitude, one aiming 
to achieve a mutually agreed group goal, as can be illustrated by our 
agreeing agent, or motivated by private goals illustrated by our avoidant 
agent.
In [110], authors explore collective semantics using ASP, contrast-13
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notion of selection as a function SEL in Algorithm 1. Furthermore, 
the novelty of our approach compared to other approaches such as 
[7,26,37,68,74,132] lies in dealing with breakdowns of mental states 
such as intentions by analyzing and considering the conflicts and par-
tial alignment of We-intention in our control loop mechanism.
5.2. Formalizing We-intentions
In Section 3.1, our mechanism aiming to formalize a We-intention 
formation under uncertainty was presented as a major theoretical con-
tribution of this paper.
The mechanism differs in two aspects from traditional agent liter-
ature, specifically, those based on the BDI model [16,106]. First, it 
considers intentions from other agents (which is not performed in most 
of the BDI approaches). Second, it provides practical mechanisms to ac-
cept intentions to allow the execution of joint activity. Then, we can 
argue that it follows a mirror model of agency [101] where agents share 
knowledge and task agreements require simultaneous, mirrored mental 
models.
Despite the differences between our framework and others, we 
found a common characteristic among ASP approaches that we shaped 
in Proposition 2 and Theorem 1, in which all the ASP-based methods to 
reason about mental states always generate a consistent output. These 
results align with the ASP literature and highlight the importance of our 
framework and this line of research.
Regarding the two knowledge representation mechanisms used to 
integrate and isolate specific intentions as sets of atoms, Proposition 3
and Proposition 4 established the two main processes used in Algo-
rithm 1 to deal with potential breakdown situations, i.e. inconsistencies 
in the intentions set  ⊆ 𝐼𝐸𝑥𝑡 ∪ 𝐼𝐼𝑛𝑡. We know that such transformations 
cannot be generalized to other underlying formalisms different from 
ELP and similar, where negation as failure is considered. Nevertheless, 
we can see that our framework can be implemented in well-established 
platforms for agent design, such as JaCaMo.
5.3. Repairing We-intentions in a person-robot healthcare scenario
In dialogues between a person and a social robot, cognitive capa-
bilities are required to manipulate, reason with, and mediate mental 
objects such as beliefs, desires, and intentions. Furthermore, a social 
robot or agent is expected to manifest appropriate behavior and situ-
ated knowledge in a social situation. Inherent to social encounters is 
the process of negotiation about a shared view on a situation, where 
knowledge needs to be updated. In this work, we focus on managing 
the alignment, breakdown, and partial alignment of intentions between 
a person and a social robot. Whereas previous approaches [88,8] have 
been focused on alignment and breakdown scenarios while disregarding 
a partial agreement to perform a joint activity.
In HRI literature, several theoretical and empirical approaches have 
been proposed to manage breakdowns, which are seen as “errors” in the 
social robot’s behavior; for example, while the authors in [113] identify 
and manage perceptual errors of the robot, the work by [90] addresses 
grounding problems and impossible actions in navigational tasks in-
volving robots and people. In a similar scenario of task-oriented HRI, 
the author [108] identifies a robot’s errors by comparing its behavior 
with social signals of people.
In contrast, Human-centric AI shifts the focus from designing and 
conceiving agents as task-fulfilling machines to those that collaborate, 
enhance, and empower people to achieve their goals [96]. A fundamen-
tal challenge in human-centric AI is to capture and manage the under-
standing, more specifically, establish semantic grounding and alignment 
within the context of a person’s action (e.g., [119]). To address this 
challenge, there is an increasing focus on how to capture different lev-els of interpretation of information in relation to the social context [28].
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Fig. 6. Taxonomy of metrics for evaluating implementations of HRI instances using our framework.For evaluation purposes in this paper, HRI scenarios were crafted by 
employing the activity-theoretical framework, which provides a multi-
layered and systemic view on human activity [12,83,84].
The crafted scenarios were enacted in a WoZ setup. WoZ setup was 
chosen for the following reasons: (1) it facilitates prototyping and rapid 
development of complex scenarios [11]. (2) allows for compensating 
technical limitations of robots to perceive and conduct joint activities 
in natural and dynamic environments of the human, and (3) in support 
of this method, researchers have provided criteria to set up these studies 
and guidelines to report them within the HRI field [107].
Design implications guided how to create such an understanding of 
meaning [120], which was further extended into a layered taxonomy 
for ‘understanding’ [121].
This work addresses the fourth design implication in [120] relating 
to co-creating goals and shared intention, and the proposed strategies, 
expanded in [121] to create knowledge about We-intentions and man-
age associated conflicts.
The activity-theoretical definition of focus shift was applied [12,46], 
which explains how people move the focus from the main activity with 
an ‘objective’ driven by a need to, for instance, to an alternative activ-
ity about the tool being used, the social norms or regulations being 
employed, or other components of the activity system [46] as illus-
trated in [121]. In the case of agents, such focus shifts can be caused 
when agents pursue and prioritize their own intention, represented in 
this work as internal ‘I-intention’, which may cause conflict or mo-
tivate partial agreement of We-intention. Therefore, three behaviors 
enacted in the scenarios presented in [121,120] were used to exemplify 
the theoretical construction of managing focus shifts during formation 
of We-intention under uncertainty. Managing focus shifts consisted of 
employing avoidant behavior, partial alignment of We-intention, and 
alignment of We-intention, respectively.
The participants were observed to attribute most of the We-intention 
breakdowns and avoidant behavior to the volunteers in the scenarios. 
Human’s avoidant attitude towards the robot was commented on, the 
general view was that such behavior is acceptable.
We observed that participants had few comments about the partial 
alignment of We-intention. One interpretation that could be derived is 
that participants perceived such cases of We-intention as natural and 
suggested the agent adapts to the human’s trail of thinking. If so, a con-
sequence could be that partial alignment could be interpreted as “good 
enough” cases of repairing perceived conflicts. However, further studies 
are needed to better understand how partial alignment of We-intention 
can be formed and expressed between people and social robots.
Participants’ recommendations to adapt and improve social robot’s behavior
Some older and younger participants provided suggestions to im-
prove the social robot’s agreeing behavior. For example, the social robot 
can deliberate about health issues such as sleep, physiological and psy-
chological well-being. Preferably, with a slower pace, embedding some 
chit-chatting in between, and choosing to interrupt when the person is 14
either unoccupied or transitioning between activities.Recommendations were also provided on how a social robot can 
manage conflict of We-intention or when the person displays an 
avoidant behavior. In such situations the social robot should disengage 
or halt the dialogue and return at a later time.
Evaluation of We-intention-based systems
Theoretical frameworks as presented here, provide the foundations 
for designing real-world systems, however, the evaluation of their per-
formance, robustness, human impact, etc. can be a challenge given that 
such assessment requires specific context-based variables to be evalu-
ated. In the human-robot interaction literature, different metrics have 
been proposed to assess HRI applications such as the work in [134]
where safety bounds and heuristics were proposed. In [27] the authors 
reviewed methods for evaluating quality in the human-robot interaction 
where a classification of safety metrics was proposed, and in a similar 
way to the taxonomy of HRI metrics proposed in [95].
Regarding human-robot collaboration, other articles have proposed 
metrics to evaluate the type of interaction, for example, the paper in 
[63] where HRI communication metrics were presented, based on how 
a technology conforms to specific HRI communication tasks consider-
ing the following categories: the extent of usage, flexibility, duration, 
among others. In the same line of research, the work presented in [29]
reviewed common metrics for HRI and team work.
Some of the aforementioned metrics for evaluating HRI implementa-
tions can be adapted to assess our framework. In this sense, we extended 
the work presented in [95] to propose a five-dimension metric to eval-
uate our framework. The five dimensions are productivity, efficiency, 
reliability, safety, co-activity, and sociability (see Fig. 6).
In this proposed taxonomy, we considered that metrics for assess-
ing effectiveness, productivity, task difficulty, and time operations are 
evaluations of the productivity of a system. In our formal framework, 
a productivity metric can be the measurement of the joint activity 
achievement considering the joint intention.
Efficiency, in our framework can be evaluated considering the com-
petence for human-robot interaction, and the time to complete a joint 
task. These tasks depend on the implementation of Algorithm 1, specif-
ically the mechanisms for generating the intentions and plans. In this 
sense, we presented in Appendix B some potential mechanisms to im-
prove the efficiency of our approach.
Reliability metrics, in general, are oriented to evaluate the robust-
ness of an HRI system [95]. In our setting, the number of intention 
discrepancies can provide a metric for evaluating how reliable is the 
cooperation mechanism proposed in our algorithm.
Safety is a dimension that requires an assessment of the context, and 
intentions of a person in HRI. In our framework, safety considerations 
were considered during the WoZ experimentation, being this methodol-
ogy a well-established process for evaluating HRIs in controlled settings.
Co-activity is a metric to evaluate the cognitive state of the robot and 
the interaction [95], in this sense, the evaluation of joint activities with and without a robot (or agent) could provide a benchmark for evaluat-
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ing frameworks such as the proposed in this paper. The evaluation of 
cognitive states in an HRI setting is part of our future work.
Finally, the sociability dimension of an HRI could be evaluated by 
considering not only the achievement of joint activities but the reactions 
and responses of a person during and after the joint activity with a 
robot or an agent. The robotics literature have recently focused on those 
qualitative approaches to evaluate such dimension, see for example the 
review presented in [33,76].
5.4. Limitations
Regarding our formal framework in this article, we are aware of 
three main limitations: 1) computation complexity: we have not analyzed 
the complexity and tractability of the Algorithm 1 proposed here, we 
would like to extend this work with such evaluation; 2) User model and 
Theory of Mind: our framework requires a dynamic representation of 
the person and the social robot; and 3) activity representation: a dynamic 
representation of the complex joint activity enacted in the collaboration 
is needed. In order to repair We-intention, also mechanisms for co-
constructing shared knowledge about the situation are required [120].
There are limitations associated with exemplifying our scenarios and 
qualitative results presented in this work. Primarily, the scenarios il-
lustrating breakdown, partial, and full-alignment of We-intention were 
selected from a previous user study with participants’ perception of di-
alogues conducted between volunteers and a social robot [120,121] in 
a WoZ setup. These scenarios provide only an exemplification and a 
third-person view of our proposed formal computational mechanism. 
Such limitation presents a future work to implement and evaluate the 
formal mechanism proposed here with HRI studies.
The empirical findings presented in this work are potential com-
ments of future users based on qualitative analysis of a small sample 
(20) of interview transcripts. Such empirical findings have the lim-
itation of being less rigorous due to dependence on the researcher’s 
interpretation and are usually based on a small data set. Furthermore, 
these empirical results are difficult to generalize and reproduce. Future 
work in this regard aims to strengthen the results presented here by 
taking a quantitative research approach.
6. Conclusions and future work
In this paper, we addressed the challenge of aligning the intentions 
of two agents (for example, a person and a social robot) when they try 
to achieve a joint intention.
We generalized the problem involving two agents aiming to provide 
a formal framework to be used as a descriptive mechanism of different 
interaction types, for instance, in a patient-physician dialogue, between 
two social robots, and in a healthcare setting involving a patient and 
a social robot. Our starting point was a well-established theory of col-
lective intentions presented in the work of Tuomela et al. [125,128], 
stating that when two agents act aiming to achieve a joint goal, they 
require sharing a relevant group intention, the so-called We-intention, 
which differs from the internal intentions named I-intention. Therefore, 
this paper’s primary challenge was establishing a general computational 
mechanism to represent alignments, breakdowns, and partial align-
ments of intentions.
We presented a formal computational mechanism for knowledge 
representation and reasoning, enabling a social robot with three desired 
capabilities:
– Assessing potential inconsistent intention, w.r.t. internal and joint 
(external) intentions of the agent.
– Repair breakdowns and incomplete external intentions in order to 
resolve inconsistent mental states, and15
– Make a plan using the repaired (if necessary) joint intention.Computer Methods and Programs in Biomedicine 242 (2023) 107817
Two major formal contributions we made in this paper to the agent 
community:
1) a well-defined formal framework for sharing intentions between 
agents (including person agents) with desirable practical characteris-
tics such as: i) it extends from the BDI model using a standard syntax, 
implying their implementation in already existing agents’ platforms 
(e.g. JaCaMo [13]); ii) it handles uncertainty and incompleteness of the 
agents’ mental states (when sharing); and iii) the process for joint inten-
tion generation can be extended to other mental states, e.g. beliefs and 
desires.
2) Our repairing mechanism deals with well-known issues of agent 
cooperation, endowing an agent with the capability to behave as an 
agreeing, avoidant, or partially agreeing agent, meaning that it can de-
cide if it accepts entirely, restricts, or partially accepts potential joint 
intention.
The framework was exemplified in three scenarios illustrating the 
three behaviors, and participants’ perceptions of volunteers and the so-
cial robot’s behaviors were analyzed. A particularly interesting observa-
tion was that very few occasions of partial alignment were commented 
on by the participants. Partial alignment of intentions has been dis-
regarded in the software agents field and overlooked by the original 
work of Tuomela. The empirical findings in this work indicate that this 
approach could provide an acceptable level of agreement from the per-
spective of the human, which will be studied in future work.
The generality of the proposed framework, its computational cost, 
and the adaptability of the introduced control loop make our contri-
butions suitable to apply to other scenarios than human-robot joint 
activities, for example, using Algorithm 1, i.e.intention adaptable agents
to improve the personalization in human-agent joint activities, such as 
it was shown for financial literacy coaching systems [58].
Additional future directions can be explored. First, theoretically ex-
emplifying the control loop and answer set programs to other scenarios 
mentioned in [121]. Other future work would relate to implementing 
the theoretical work done in this article to facilitate joint activities be-
tween people and robots. Finally, a further theoretical formalization 
can be done to represent knowledge about emotions, mood, norms, and 
rules on how to act, and the distinction between facts and procedures 
to provide mechanisms to also co-create shared knowledge about a sit-
uation, which would further equip an agent with strategies to manage 
and repair We-intention in human-agent collaboration.
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Appendix A. Proofs
Proof (Consistent shared intentions). Proposition 2. Let 𝑆 ⊆ AS(𝑃2)
be the set of intentions of 𝐴𝑔2, it follows that a Gelfond-Lifschitz trans-
formation [56] of 𝑃2, i.e.𝑃
𝑀
2 for any set 𝑀 of atoms from 𝑃2 where 
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deletion of 1) each rule that has a 𝑛𝑜𝑡 literal in its body, and 2) all 
negative literals in the bodies of the remaining rules, then we say that 
𝑃𝑀2 is negation-free, and its stable model is a minimal Herbrand model
of 𝑃2. In an indirect proof (by contradiction), we need to prove that 
under this transformation, there exist two atoms 𝑥, 𝑥′ ∈ 𝑃𝑀2 conflicting, 
i.e. BrkDwn(𝑥, 𝑥′) (see Definition 4). BrkDwn(𝑥, 𝑥′) implies that 𝑥 ≢𝑠𝑒𝑚 𝑥′
where ≢𝑠𝑒𝑚 implies a semantic difference. So, this implies that one of the 
atoms 𝑥′ or 𝑥 is a negative literal, which contradicts the initial Gelfond-
Lifschitz transformation. If 𝑥, 𝑥′ are intentions of different agents, e.g.
𝐴𝑔1, 𝐴𝑔2 then we can say that under Gelfond-Lifschitz transformation 
the shared intentions are consistent.
Proof (Consistent shared states). Let us assume that 𝑆 ⊆ AS(𝑃2) is a 
set of mental states, e.g. beliefs, desires, or intentions of a given agent. 
Then by using an AS function corresponding to the Gelfond-Lifschitz 
transformation [56] of 𝑃2, i.e. deleting each rule that has a 𝑛𝑜𝑡 literal in 
its body, and all negative literals in the bodies of the remaining rules, 
then we say that 𝑃𝑀2 is negation-free and its stable model is a minimal 
Herbrand model of 𝑃2. By contradiction, we need to prove that there 
exist two mental states 𝑥, 𝑥′ ∈ 𝑃𝑀2 conflicting, i.e. BrkDwn(𝑥, 𝑥
′), which 
contradicts the initial Gelfond-Lifschitz transformation.
Proof (Incompatible atom elimination using CWA). Let us assume 
that AS(𝑃2) = 𝑆 (part of agent 𝐴𝑔2) is a consistent set of literals. We 
want to show that there is no 𝑥 ∈ 𝑆 that is inconsistent with a 𝑃1 after 
a transformation CWA. Recall that a consistent set 𝑆 of literals is an an-
swer set for a disjunctive program without negation as a failure if and 
only if it is a minimal set closed under this program. And given that a 
CWA transformation removes potential syntactic incompatibilities, then 
𝑆 ∪ 𝑃1 is consistent, from the perspective of 𝐴𝑔1.
Proof (Restricting atoms with constraints). To prove this we need 
to show that by adding a constraint as a product of trying to accept 
an intention of mental model, i.e. the constrained atom added to a pro-
gram, the resulting program under an answer set evaluation will not be 
altered. In other words, let ⟂← 𝑥 be a constraint (e.g., an external inten-
tion), then when it is added to the set of intentions 𝑆 of the other agent, 
then the AS evaluation remains equal. We can assume that AS(𝑆) = {𝑇 }
is a consistent set, then by adding the constraint 𝑆 ∪ {⟂← 𝑥} we have 
that AS(𝑆 ∪ {⟂← 𝑥) = {𝑇 ′}, so we have to prove that 𝑇 and 𝑇 ′ are the 
same. It is straightforward to see that AS implies the elimination of 
rules that have empty heads, among others under the Gelfond-Lifschitz 
transformation [56], so ∄𝑥 ∈ 𝑇 ′ implies that 𝑇 = 𝑇 ′.
Appendix B. Computational complexity theory in logic 
programming
In this section, we present a background and the associated defini-
tions for the analysis of the computational complexity of logic program-
ming. We follow the notation introduced in [30,31,99].
B.1. Complexity classes
In computational complexity theory, a Turing Machine, informally, 
is a hypothetical device that has the ability to make correct guesses and 
describes an abstract machine that manipulates symbols on a strip of 
tape according to a table of rules. Formally, a deterministic Turing ma-
chine (DTM) is defined as a quadruple (𝑆, Σ, 𝛿, 𝑠0), where 𝑆 is a finite set 
of states, Σ is a finite alphabet of symbols, 𝛿 is a transition function, and 
𝑠0 ∈ 𝑆 is the initial state. The machine takes successive steps of compu-
tation according to 𝛿. There are three additional states halt, yes, and
no that are not in 𝑆. Assume that a DTM is in a state 𝑠 ∈ 𝑆 and the 
cursor points to the symbol 𝛿 ∈ Σ on the tape. When any of the states
halt, yes, or no is reached, DTM halts. We say that DTM accepts an in-16
put I if DTM halts in yes. Similarly, we say that DTM rejects the input Computer Methods and Programs in Biomedicine 242 (2023) 107817
in the case of halting in no. If a halt is reached, we say that the output 
of DTM on I is computed. This output, denoted by DTM(I), is defined as 
the string contained in the initial segment of the tape which ends be-
fore the first blank [31]. In contrast to a DTM, a nondeterministic Turing 
Machine (NDTM) defined as a quadruple (𝑆, Σ, Δ, 𝑠0), where 𝑆, Σ, 𝑠0 are 
the same as a DTM. However, the possible operations of this machine 
are described by Δ, which is no longer a function, but is given by the 
expression:
Δ ⊆ (𝑆 × Σ) × (𝑆 ∪ {halt,yes,no}) × Σ × {−1,0,+1}
The time expended by a DTM named T on an input I is defined as 
the number of steps taken by T on I from the start to halting. If T does 
not halt on I, the time is considered to be infinite. For an NDTM T, we 
define the time expended by T on I as 1, if T does not accept I, and 
otherwise as the minimum over the number of steps in any accepting 
computation of T. The space required by a DTM on I is the number of 
cells visited by the cursor during the computation on I. In the case of an 
NDTM, the space is defined as 1, if such machine does not accept I, and 
otherwise as the minimum number of cells visited on the tape over all 
accepting computations [31]. In a DTM or an NDTM named T, let 𝑓 be 
a function from the positive integers to themselves. We say that T halts 
in time 𝑂(𝑓 (𝑛)) if there exist positive integers 𝑐 and 𝑛0 such that the 
time expended by T on any input of length 𝑛 is not greater than 𝑐𝑓 (𝑛)
for all 𝑛 ≥ 𝑛0. Likewise, we say that T halts within space 𝑂(𝑓 (𝑛)) if the 
space required by T on any input of length 𝑛 is not greater than 𝑐𝑓 (𝑛) for 
all 𝑛 ≥ 𝑛0, where 𝑐 and 𝑛0 are positive integers. If T halts within space 
𝑂(𝑛𝑑 ), where 𝑑 is a positive integer, then we call T a polynomial-space
DTM or NDTM [31]. Different languages can be defined based on these 
definitions; for space complexity, we can have:
𝑇 𝐼𝑀𝐸(𝑓 (𝑛)) =𝐿|𝐿𝑖𝑠𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑏𝑦𝑠𝑜𝑚𝑒𝐷𝑇𝑀𝑖𝑛𝑡𝑖𝑚𝑒𝑂(𝑓 (𝑛)), (2)
𝑁𝑇𝐼𝑀𝐸(𝑓 (𝑛)) =𝐿|𝐿𝑖𝑠𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑏𝑦𝑠𝑜𝑚𝑒𝑁𝐷𝑇𝑀𝑖𝑛𝑡𝑖𝑚𝑒𝑂(𝑓 (𝑛)), (3)
𝑆𝑃𝐴𝐶𝐸(𝑓 (𝑛)) =𝐿|𝐿𝑖𝑠𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑏𝑦𝑠𝑜𝑚𝑒𝐷𝑇𝑀𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑝𝑎𝑐𝑒𝑂(𝑓 (𝑛)), (4)
𝑁𝑆𝑃𝐴𝐶𝐸(𝑓 (𝑛)) =𝐿|𝐿𝑖𝑠𝑑𝑒𝑐𝑖𝑑𝑒𝑑𝑏𝑦𝑠𝑜𝑚𝑒𝑁𝐷𝑇𝑀𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑝𝑎𝑐𝑒𝑂(𝑓 (𝑛)) (5)
Complexity classes of most interest are not classes corresponding to 
particular functions but their unions, and then some complexity classes 
can be derived from these languages [31]:
𝑃 = ∪𝑑>0𝑇 𝐼𝑀𝐸(𝑛𝑑 ), (7)
𝑁𝑃 = ∪𝑑>0𝑁𝑇𝐼𝑀𝐸(𝑛𝑑 ), (8)
𝐸𝑋𝑃𝑇𝐼𝑀𝐸 = ∪𝑑>0𝑇 𝐼𝑀𝐸(2𝑛
𝑑 ), (9)
𝑁𝐸𝑋𝑃𝑇𝐼𝑀𝐸 = ∪𝑑>0𝑁𝑇𝐼𝑀𝐸(2𝑛
𝑑 ), (10)
𝑃𝑆𝑃𝐴𝐶𝐸 = ∪𝑑>0𝑆𝑃𝐴𝐶𝐸(𝑛𝑑 ), (11)
𝐸𝑋𝑃𝑆𝑃𝐴𝐶𝐸 = ∪𝑑>0𝑆𝑃𝐴𝐶𝐸(2𝑛
𝑑 ) (12)
𝐿 = 𝑆𝑃𝐴𝐶𝐸(𝑙𝑜𝑔 𝑛) (13)
𝑁𝐿 =𝑁𝑆𝑃𝐴𝐶𝐸(𝑙𝑜𝑔 𝑛) (14)
For every language L in 𝜎′, let L denote its complementary class, that 
is, the set 𝜎′ ∗ ⧵ 𝐿, then co-𝐶 = {𝐿|𝐿 ∈ 𝐶} where 𝐶 is any complemen-
tary class [31]. The polynomial space (and time) class also has different 
sub-classes. However, they are established in terms of oracle Turing ma-
chines; informally, an oracle Turing extends the capabilities of DTM (or 
NDTM) by providing it with a black box (the oracle) that can instantly 
solve some computational problem. The oracle is typically represented 
as an additional tape and states allowing the machine to query the ora-
cle and receive an answer. The polynomial hierarchy consists of classes 
𝛿
𝑝
𝑖
, 𝜎
𝑝
𝑖
, and Π𝑝
𝑖
defined by the following equalities [31]:
𝛿
𝑝
0 = 𝛿
𝑝
𝑖
= 𝛿𝑝
𝑖
= 𝑃 (15)
𝑝𝛿
𝑝
𝑖+1 = 𝑃
𝜎
𝑖 , (16)
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Fig. 7. Typical architecture of a publish-subscribe middleware (broker) allow-
ing the subscription of specific topics. Adapted from [77].
𝜎
𝑝
𝑖+1 =𝑁𝑃
𝜎
𝑝
𝑖 , (17)
Π𝑝
𝑖+1 = 𝑐𝑜− 𝜎
𝑝
𝑖+1 (18)
for all 𝑖 ≥ 0.
B.2. Alternatives to reduce the computational cost of BDI-like control loops
Algorithm 1 follows a well-established control loop sequence where 
the specific internal functions can be implemented in different ways, 
leading to various computational performances. In the social robot s lit-
erature, practitioners have proposed several heuristics to decrease the 
computational cost of mechanisms such as generating answer sets. How-
ever, other specific functions require tailoring their implementations to 
decrease the time response or the computational requirements of the 
software. In this section, we present heuristics for decreasing the com-
putational cost of some functions of Algorithm 1 and implementation 
alternatives for others. We limit our attention to those related to the 
core of this paper, leaving the computational cost analysis and their 
heuristics of functions such as cooperate() (Line 18) and plan() (Line 
20) out of the goal of the paper, and because they require background 
information of the specific environment where a heuristic will be im-
plemented.
This is not an exhaustive list of approaches, but it can be seen as a 
guide for practitioners that need to implement our framework.
– getFacts() (Line 9). In Algorithm 1 for obtaining facts from other 
agents or the environment, the function getFacts() can be reduced 
from a computational complexity theory perspective using several 
heuristics; we highlight in the following some potential alternatives 
that have been presented in the social robot s literature.
∙ Publish-subscribe paradigm: publish-subscribe architectures are 
commonly used in the social robots literature, specifically for 
agents with no cognitive architectures, for example in agent-
based wireless sensor networks [21,36], mobile agents [67,78], 
robot management [91], etc. A publish-subscribe paradigm in 
our algorithm can be implemented using a middleware platform 
where all the communications among agents and the environ-
ment can be managed. In these architectures, agents can be 
publishers or/and subscribers of a specific topic, for example, a 
health-oriented agent or robot should obtain information related 
to the health condition of a person from information channels or 
other agents that are publishing data on that specific topic, see 
Fig. 7 as an example of such paradigm. In this setting, by using 
this paradigm, Algorithm 1 will obtain only related facts.
∙ Logic-based representation language for communication protocols: 
when two formal (logic-based) agents communicate with each 
other, they need to use specific protocols to establish the legal-
ity of their utterances that are specified in terms of their mental 
states. Different formal specification of protocols has been pro-17
posed in the literature (e.g., [45,92]), and partially extended in Computer Methods and Programs in Biomedicine 242 (2023) 107817
the well-established FIPA2 protocol. Using such formal mecha-
nisms for communication protocols, our Algorithm could only 
obtain information from channels that use such protocols.
– update() (Line 10). Updates of logic programs is an active research 
line that has a long history since the early definition of what a so-
cial robot should be (see review [79]). In Algorithm 1, the update()
function behaves as a program update, in terms of [70,71,131]
where is typically defined as an operation that brings a knowl-
edge base up to date when the world described by its changes, 
whereas a revision is typically described as an operation that deals 
with incorporating new better knowledge about a world that did not 
change [79]. In this sense, several heuristics can be implemented to 
decrease the computational cost of update() considering the spec-
ification language and the semantics. Different update and belief 
operators may work to implement update(); however, the syntactic 
approach that we suggested may limit the use of some semantics. 
A major group of semantics use the causal rejection principle [3,80]
that says: “a rule should be rejected when a more recent rule di-
rectly contradicts it”. Our Algorithm uses this principle to establish 
potential intentions contradictions. Several semantics have been 
proposed that follow this principle, with different complexity levels 
that depend on the specification language and the type of update. 
While some follow the belief update tradition and construct an up-
dated program given the original program and its update, others 
only assign a set of stable models to a pair or sequence of pro-
grams where each represents an update of the preceding ones [79]. 
We cannot provide a detailed account of every update semantics 
here. However, we suggest to the reader a review by Leite et al. in 
[79] for a formal introduction to those semantics. Therefore, as a 
practical rule of thumb to select a heuristic to decrease the computa-
tional cost of update(), the experimenter should consider the need 
for rich language specifications, e.g., using logical disjunction, pref-
erences, strong/weak negation, etc., which impact in the semantics 
complexity and the associated computational cost.
– wish() (Line 10). In goal-based reasoning agents, forming a new 
goal implies the creation of a new goal and initiating the so-called 
Goal Lifecycle [1]. In the formal argumentation literature, sev-
eral mechanisms for the generation of non-conflicting desires/goals 
have been proposed considering classical logic [6,5], and also 
(extended) logic programming [59]. Heuristics for decreasing the 
computational costs of such argumentation-based mechanisms are 
linked to selecting suitable argumentation semantics. However, as 
it is well-known, such selection is impacted by several aspects, such 
as the richness of the underlying language.
– intend() (Line 12). In our approach, the generation of intentions is 
given by an answer-set process. The notion of an answer set for ex-
tended logic programs is a generalization of the concept of a stable 
model introduced in [56]; as for the complexity, there is no in-
crease for extended logic programs over logic programs under the 
stable model semantics [30].
Theorem 2 ([10]). Given a propositional extended logic program 𝑃 , 
deciding whether 𝑃 has an answer set is NP-complete, and extended 
propositional logic programming is co-NP-complete.
In this setting, the intended function can be hardly decreased 
its computational complexity if the Gelfond-Lifschitz definition 
is followed. However, some answer-set solvers (e.g. DLV,3 and 
the Potassco tools,4 among others) have implemented different 
heuristics to improve the performance of answer-sets calculations. 
2 Foundation for Intelligent Physical Agents (FIPA). Communicative Act Li-
brary Specification, 2002. http://www .fipa .org /specs /fipa00037/.
3 DLV System Web page https://www .dlvsystem .it /dlvsite /dlv/.
4 Potassco Web page https://potassco .org/.
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In the literature have been introduced different heuristics, e.g.
domain-specific in [40,54], improvements using parallel optimiza-
tion [15,53], enhance ASP encoding [55], look-back heuristics 
[57,94], machine learning-based solver configurations [65,89], 
among others. See reviews [31,49].
– repairCooperation() (Line 16). In our approach, the three pro-
posed configurations for modifying a program require a search 
mechanism to find potential intention conflicts, then the suggested 
modifications can be performed. In the literature, several heuristics 
have been proposed to improve the performance of such types of 
searches. However, the heuristic depends on the type of program 
and its extension. When stratified programs are used, stratified tree 
search algorithms can be used (see [81]), and when programs are 
large other different heuristics can be applied, such as Monte-Carlo 
[22] and trial-based heuristics [72].
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