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Abstract

Electricity theft is a primary concern for utility providers, as it leads to substantial finan-
cial losses. To address the issue, a novel extreme gradient boosting (XGBoost)-based
model utilizing the consumers’ electricity consumption patterns for analysis is proposed
for electricity theft detection (ETD). To remove the imbalance in the real-world electricity
consumption dataset and ensure an even distribution of theft and non-theft data instances,
six different artificially created theft attacks were used. Moreover, the utilization of the
XGBoost algorithm for classification, especially to identify malicious instances of electric-
ity theft, yielded commendable accuracy rates and a minimal occurrence of false positives.
The proposed model identifies electricity theft specific to the regions, utilizing electricity
consumption parameters, and other variables as input features. The authors’ model outper-
formed existing benchmarks like k-neural networks, light gradient boost, random forest,
support vector machine, decision tree, and AdaBoost. The simulation results using the
false attacks for balancing the dataset have improved the proposed model’s performance,
achieving a precision, recall, and F1-score of 96%, 95%, and 95%, respectively. The results
of the detection rate and the false positive rate (FPR) of the proposed XGBoost-based
detection model have achieved 96% and 3%, respectively.

1 INTRODUCTION

Electricity theft in emerging economies is a cause for concern.
It is a severe problem today as substantial financial losses occur
due to electricity stolen by illegal consumers without getting
billed. Energy theft creates an imbalance in demand and supply
to a great extent. In India, non-technical loss (NTL) due to
electricity theft is calculated annually at approximately $17
billion, which is 30% to 40% of total electricity generation.
Globally, the annual monetary loss due to electricity theft is
around $96 billion [1]. Electricity theft is stopping the utilities
to improve power networks and develop financially.

Electricity theft is a challenge for utilities. The existing theft
detection methods using machine learning methods to detect
various theft attacks are not efficient and have high positive
rates [2]. To work machine learning methods efficiently and
accurately on real-time data, ensemble techniques are gaining
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its existence in electricity theft detection (ETD). Ensemble
learning systems (ELS) are used more often than a single
machine learning algorithm as ensemble models enhance the
accuracy and make the final model more efficient and accurate.

The goal of this article is to propose an ETD model that can
detect electricity theft efficiently by employing extreme gradient
boosting (XGBoost) ensemble model for the classification of
genuine and fraud users on the basis of their historical usage
pattern, seasonal impact, and power scenario during different
seasons (summers and winters) of the region under study. The
analysis is done on the weekly, monthly, and seasonal basis
to check the trend of electricity usage. The study also takes
care of the unscheduled power cuts adapted in the region to
compensate for gap in supply and demand.

I. It is a challenge to train a machine-learning model on
imbalanced dataset as the samples of theft instances are
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much smaller in number than the non-theft instances. In
order to balance the data samples, six artificial theft attacks
were created and used in simulations to train the model.
The balancing of theft and non-theft instances in an aug-
mented dataset lowers the rate of false positives in the
evaluation of performance. Our model performed well
despite the change in the electricity usage pattern caused
by seasonal changes. The model uses features from weather
data and geographic data sources apart from the electricity
consumption dataset. Overall the factors that were taken
into consideration include electricity usage behaviour, tem-
perature, vacations, weekends, etc., that may impact the
usage pattern of the consumer. This study has made several
important contributions, summarized as follows:

II. In this study, we propose the development of a highly effi-
cient XGBoost-based ensemble model for the purpose of
detecting electricity theft attacks in smart meters. Smart
meters record electricity usage of each customer at half-
hour intervals for a duration of 1036 consecutive days.
This implies that every consumer possesses 1036 vectors
comprising 48 distinct values in 24 h. The focus of this
approach is on improving the detection rate (DR) and low-
ering the false positive rate (FPR) in ETD by tailoring the
input features for enhancing the effectiveness, accuracy of
the model. The proposed XGBoost-based detection model
utilizes the load profile of the customer’s energy consump-
tion and adds features from auxiliary datasets to acquire
knowledge about unique patterns of electricity usage. This
knowledge allows the detector to effectively differentiate
between honest and malicious energy consumption values.

III. After using forward fill, three-sigma and z_score methods
for filling in the missing values and removal of outliers
and standardization of data values respectively. False theft
data samples are synthetically constructed to augment the
dataset to balance the dataset. The model is trained on
the training set both on imbalanced and balanced datasets
in a ratio of 80% and 20% of the samples, respectively.
The obtained results are compared with the test set. The
Xgboost-based detection model is selected based on per-
formance. Grid search analysis is conducted to optimize
the hyper-parameters of the XGBoost model. The exper-
imental findings demonstrate that the XGBoost ensemble
machine-learning model.

2 RELATED WORK

In the realm of the ETD in recent years, the literature available
has been classified into three distinct methodologies [3]: (1)
State estimation based [4], (2) Game theory-based [5], and (3)
Artificial Intelligence-based machine learning algorithms [6].

2.1 State-estimation based

In the previous studies [3–6], researchers have explored the
utilization of specific external hardware devices and designs,

specialized metering devices, distribution transformers, sensors,
and various types of metering devices, for ETD. A specific
method discussed in [7] involves the utilization of an adapted
ammeter device for theft detection on the low-voltage (LV)
side of the power network. This approach focuses on com-
paring the differences in electrical parameters between local
and remote devices to identify theft [7]. The state estimation
method is employed at the substation level to detect anomalies
and, subsequently, electricity theft within a cluster [7]. How-
ever, this method has certain drawbacks, primarily the high
cost associated with the implementation of additional devices
and the inherent challenges involved in installing these devices
within the existing system. The maintenance cost of this method
of detecting electricity theft is very high. This approach is
commonly referred to as the network-oriented ETD method.

2.2 Game theory-based method

This methodology is grounded in the principles of game theory,
which involves the strategic interactions between dishonest con-
sumers (electricity thieves) and utilities [8]. In the game theory,
the objective is to attain a Nash equilibrium, whereby the actions
of a dishonest consumer in attempting to steal electricity are
deterred [9, 10]. Employing the game theory approach presents
certain advantages in terms of cost-effectiveness, albeit it poses
challenges in establishing precise functions for each customer
and the utility company for theft detection [8, 9].

2.3 Hybrid method

A hybrid method integrates network-oriented estimation, tra-
ditionally used for theft detection at the medium voltage level
(sub-station level), and artificial intelligence techniques applied
at the low voltage or distribution level (consumer end) [2]. This
estimation technique utilizes network-oriented measurements,
such as power flow and voltage measurements, to estimate the
state variables of the power system. By analyzing deviations
from the expected states, indicators of potential theft can be
identified. At the low voltage level or distribution level, machine
learning techniques are employed. These techniques leverage
historical data and relevant features to train models capable
of detecting theft patterns based on consumer behaviour and
consumption patterns [2]. By combining the outputs of the
state-based estimation and machine learning models, the hybrid
method achieves comprehensive and accurate theft detection.

2.4 Data-oriented method

While hybrid methods incur additional hardware costs, the uti-
lization of machine learning techniques for ETD has become
widespread among utilities due to their feasibility. However,
many existing machine learning-based ETD techniques strug-
gle to reduce the FPR and enhance the true DR. Researchers
are actively striving to improve these performance metrics for
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increased efficiency. By leveraging machine learning methods,
utilities can leverage extensive historical data to identify the
trend in electricity usage, thereby analyzing consumer behaviour
effectively. Despite the integration of Advanced Metering
Infrastructures (AMIs) like sensor devices, Internet of Things
(IoT), and smart meters, the existing energy theft detection
methods have not completely eradicated electricity theft [10].
The implementation of smart meters enables the remote sharing
of consumers’ electrical energy usage.

This research paper builds upon existing literature [6, 11,
12] and proposes a novel model for detecting electricity theft.
The model utilizes consumer consumption behaviour to iden-
tify anomalies in current usage patterns. The XGBoost-based
detector is utilized which consists of two phases. During the
training phase, normal metering data is appropriately formatted
and subjected to data pre-processing procedures, which encom-
pass addressing any missing or erroneous values and performing
normalization. The dataset exhibits a smaller number of theft
or malicious samples, which is consistent with typical datasets
of this nature. The malicious samples were generated by mod-
ifying benign samples based on six different attack types [13].
The XGBoost-based detection model is then trained on both
benign and malicious samples. In the application phase, the
trained model is used to classify new samples into benign or
malicious classes on test data. The simulations are conducted
using the State Grid of China Corporation (SGCC). Compared
to other algorithms like LightGBM, CatBoost, AdaBoost, SVM,
AR, BN, NN, LR, DT, and RF, used in several research papers
[14–20], the proposed method shows higher accuracy and lower
FPR in ETD. The experiment results highlight the excellent per-
formance of the proposed method, especially when dealing with
the external factors impacting the usage pattern.

The rest of the paper is organized as: Section 3. Method-
ology proposals, Section 4. Model comparison and selection,
Section 5. Model Selection, Section 6. Model Evaluation, Sec-
tion 7. Discussions and Comparison, Section 8. Conclusion,
Section 9. Future research.

3 METHODOLOGY PROPOSALS

The methodology of this research involves the use of an
XGBoost-based detector for ETD by utilizing the historical
consumption patterns of the consumers along with other rel-
evant features. The raw dataset as used in [21] of the State Grid
Corporation of China (SGCC) is preprocessed before being put
into use. The preprocessing steps include filling in missing val-
ues with the forward fill method, removing outliers using the
three-sigma rule (TSR), and standardizing the data using the
Min–Max method. To balance the theft and non-theft instances
in the dataset, six distinct theft attacks are artificially con-
structed, similar to the real theft instances present in the dataset.
Only those theft instances that fall within the Interquartile
Range (IQR) of the theft data are used. (More in Section 3.4)

For training and testing machine learning models, both unbal-
anced and balanced datasets are utilized. Principal Component
Analysis (PCA) is employed to reduce the dataset’s dimensions,

and various parameters of electricity usage are included, along
with features extracted from statistical techniques and auxiliary
databases such as the weather database, customer tariff details,
customer’s previous records, electricity consumption trends,
seasonal impacts on electricity usage, usage variations during
weekdays, weekends, holidays, vacations, electricity sub-station
curtailment schedules, and more.

Multiple models are trained on both the unprocessed and
balanced datasets, with XGBoost emerging as the most accu-
rate, demonstrating high DR rates and low FPRs for electricity
theft. The XGBoost-based detector serves the purpose of classi-
fying the data points into theft and non-theft instances, utilizing
the discernible patterns in electricity consumption as shown
in Table 1. Data aggregation plays a crucial role in facilitat-
ing the model’s ability to discern patterns in consumer usage
and extract implicit information. The proposed XGBoost-based
model, as shown in Figure 1, utilizes machine learning tech-
niques, shows a high level of accuracy and scalability in detecting
instances of electricity theft. The proposed model exhibits supe-
rior performance compared to the widely recognized energy
theft detection models. See Figure 1 in Table 4. The State
Grid Corporation of China SGCC dataset consists of the vast
consumer data of electricity consumption for analyzing elec-
tricity usage behaviour and for the comprehensive simulation
of diverse forms of electricity theft attacks. The objective of
this study is to identify and mitigate instances of energy theft
in order to enhance the stability and efficiency of the national
power grid. The achievement of this objective is demonstrated
by the utilization of XGBoost ensemble classifiers on smart
meter data.

3.1 Dataset details

The dataset of SGCC is used in this study to cover the vast
consumer base for analyzing electricity usage behaviour. The
SGCC dataset consists of a total of 42,372 records, with 3615
instances representing abnormal consumer data and 38,757
instances representing normal consumer data. The data is
collected at 30-min intervals throughout the specified time as
indicated in Table 2. The proposed model is executed on the
available data w.e.f. 2014 to 2016 (SGCC).

The dataset comprises various attributes about electric-
ity consumption, power parameters, and consumers’ profile
information. These attributes encompass details such as tariff
agreement, type of residential house, list of registered gadgets,
count of persons living in the house, and occupation of other
family members [21]. In addition, the weather conditions dur-
ing the analyzed period are taken into account to ensure precise
identification of the electricity theft, taking into consideration
the adverse temperatures and power availability.

3.2 Filling of missing values

The SGCC dataset contained missing values probably due to
meter failure or unreliable transfer of data on the network, or
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TABLE 1 Mapping of problems identified, solutions proposed, and validation.

Problem Proposed solution Validation

Imbalance in dataset Balanced by adding false theft instances Generates six false theft attack closer to real theft

Feature extraction Statistical functions used for training the model on patterns Generates usage patterns

Classification of theft and normal instances XGBoost-based ensemble model Better results than other state-of-the-art ETD models

ETD, electricity theft detection; XGBoost, extreme gradient boosting.

FIGURE 1 Framework of proposed model for the detection of electricity theft using SGCC dataset. SGCC, State Grid of China Corporation.

TABLE 2 Details of SGCC dataset.

Total time of study January 2014 to October 2016

Total consumers 42,372

Electricity stealers 3615

Genuine consumers 38,757

SGCC, State Grid Corporation of China.

due to the storage issues. The missing data is filled using the for-
ward filling method to fill in the fields having NaN values. The
techniques like forward filling, backward filling, linear interpola-
tion, mean of nearest neighbours etc., are considered viable for
filling the time-series data instead of using medians or means.
So the forward fill method was employed here to fill in values as
mentioned below:

dat afreq = data.asfreq
(
′D′, method = ′ffill

′
)

(1)

The utilization of forward filling is justified due to the prox-
imity of the intervals and the assumption that if data is absent
for a given interval, it can be presumed to be the same as
in the preceding interval. The data collection frequency of
smart meters is typically at 15-min intervals. However, for the

purposes of our study, we adjusted the observation interval to
half-hourly intervals due to the absence of significant changes.
This modification resulted in a total of 48 data points per
day. The dataset was found to be incomplete in terms of
frequency information, as evidenced by the absence of a fre-
quency value (freq = ‘None’). The frequency was modified to
take place at intervals of 30 min. Pandas provides a range of
frequency options for calculating frequencies, such as hourly
(‘H’), daily (‘D’), weekly (‘W’), monthly (‘M’), annual (‘A’), and
additional options. Nevertheless, the current system lacks pro-
visions for intervals of 30 min or half-hourly frequencies. To
generate frequencies at half-hour intervals, the date_range func-
tion was employed to create a DatetimeIndex at half-hourly
intervals by specifying a frequency of ‘30 min’, as shown
below:

half_hourly_range = pd.date_range (start = start_date,

end = end_date, freq = ′30min′
)

The electricity consumption data may have erroneous values
recorded by the energy meter malfunctioning. They are treated
as outliers and are removed using the ‘TSR of thumb’. Outliers
are removed using the TSR rule as mentioned in [10]
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TABLE 3 Different types of artificial theft attacks.

Attack types Modifications Remarks

Type 1 x̄t = x⃛ xt 0.2 < 𝞪 < 0.8

Type 2 x̄t = ∝̈t xt 0.2 < 𝞪t < 0.8

Type 3 X̄t = 𝛽xt 𝛽 = 1 if 36 > t > 20 𝛽 = 0.5 otherwise.

Type 4 x̄t = x⃛t X̄ 0.2 < 𝞪t t < 0.8

Type 5 x̄t = X⃛

Type 6 x̄t = x48−t

f (v) =

⎧⎪⎨⎪⎩
N

2
, vi ∈ NaN , vi (m − 1) , vi (m + 1) ∈ NaN

0, vi ∈ NaN , vi (m − 1) or vi (m + 1) ∈ NaN

⎫⎪⎬⎪⎭
∀vi and vi ∉ NaN (2)

O (vi , t ) = wi f vi (t̄ ) > vi (t̄ ) otherwise

where

w = avg (vi )) + 2s (vi (t )) (3)

After filling in the missing and erroneous values and remov-
ing outlier values as also done in [10], the data values are
normalized using min–max normalization.

N (vi (t)) =
vi (t) − min ( )

imax (v) − min (v̄)
(4)

vi (t) is the usage of electricity at time t [10], min (v) is the usage
of minimum electricity [10], and max(v) is the usage of electricity
at the time (t).

In the anomaly detection process, it is important to analyze
how electricity is used by fraudulent and normal users. This
paper also uses six types of fake theft attacks to balance the
dataset.

3.3 Removal of the class imbalance by
injecting synthetic theft attacks

In scenarios characterized by significant imbalances, such as
datasets pertaining to electricity consumption that include huge
imbalances between theft and non-theft instances, XGBoost
detector may too exhibit a tendency to prioritize the major-
ity class [22]. The theft attacks are generated synthetically. We
assume that no fraudulent users have altered any of the histor-
ical data. The consumers’ daily metering data are denoted by
the notation x = (x1, x2, x48) (reading after every 30 min in
24 h). Smart meters communicate metering data (in Kilowatts)
to the data management system every 30 min as depicted in
Figure 2. We employ the techniques suggested in [23] to syn-
thetically generate six attack types to alter metering data and
produce malicious samples. Table 3 outlines the specifics of how

FIGURE 2 Dataset instance of a single meterID.

artificial theft attacks are developed in this study also used in
[23].

Type 1 defines an attack where a smart meter’s reading is mul-
tiplied by the same parameter (say 𝞪t) all the time during a day
(where 𝞪t ranges from 0.2 to 0.8).

Type 2 defines an attack where a smart meter’s reading is
multiplied by a different random number at different times (say
𝞪t).

Type 3 attack is defined as such when a smart meter sends
readings of 0.5 (half of the actual load) during the peak load
time, that is, night hours during the winter, and actual load
during off-peak hours. The meter is in a compromised state
between the hours of 6:00 pm till 10:00 am the next day. Dur-
ing the daytime or inspection time, the meter works in a normal
state. The 0.5 of the actual load matches the average load of a
normal consumer in a cluster or neighbourhood, making it dif-
ficult for the machine learning algorithm to detect any anomaly
or electricity theft unless the observed load crosses the predicted
load threshold.

Type 4 is defined as that form of theft attack that sends
the average value multiplied by a random factor (αt) of energy
consumption reading to the utility management system.

Type 5 is defined as a form of energy theft attack that
indicates that energy meters send the average value of energy
consumption during the day to the control centre of the utility.

Type 6 is defined as that form where the fraudulent con-
sumers send only reverse the order of consumption reading
during the day to avoid high dynamic pricing during peak hour’s
period.

All six attacks are tested separately as well as in combination
to test the performance of the proposed XGBoost-based model
taking into consideration the weather and erratic power supply
conditions as depicted in Figure 3. The proposed model was
checked on precision, recall, FPR, and AUC of the proposed
model in detecting all the attacks. From the test results, it can be
found that our method has an excellent performance in detect-
ing all attack types except for an attack of type 2. This attack
type does not allow a machine learning algorithm to detect an
anomaly. Our approach uses extra features extracted from aux-
iliary databases to reduce FPR considering the erratic power
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FIGURE 3 Shows an example of electricity used on a normal day, as well
as six types of attacks (time interval = 30 min).

supply in the cluster or segment under consideration due to
a huge gap in demand and supply available, a cluster under
load-shedding due to overload in the system, or an area hav-
ing inclement weather conditions. The learning of our proposed
XGBoost-based ETD model is fine-tuned by selecting the sub-
set of features extracted from EC and auxiliary datasets. Here
the attacker does complex ways to steal electricity and does not
follow a normal pattern challenging a machine learning model
on accuracy. Gradient-boosting models like XGBoost are widely
recognized for their robustness and ability to handle class imbal-
ances. The model may still exhibit a tendency to prioritize the
majority class. The theft data generated are selected by using
the IQR to select attacks that are closer to real-world electricity
theft. The IQR is a measure of statistical dispersion that repre-
sents the spread of the middle 50% of the data. It is calculated
as the difference between the third quartile (Q3) and the first
quartile (Q1) of a dataset (new updated dataset here). Any data
points that lie beyond the upper or lower bounds defined by

Q3 + 1.5 × IQR or
Q1 − 1.5× IQR, respectively, are considered outliers.
Here is how the novel technique using IQR was employed for

selecting samples closer to the real malicious data:

1. Large malicious samples were generated by six differ-
ent types of constructed theft attacks, each with different
characteristics.

2. Calculate the IQR for the real attack data, considering
relevant features or characteristics of the attacks.

3. Calculate the IQR for the simulated attack data, using the
same features as above, and

4. Finally only those simulated attacks were selected that lie
within the range defined by Q1 − 1.5 × IQR and Q3 + 1.5
× IQR of the real attack data.

By following this process, the authors were able to identify
simulated attacks that are closer to malicious samples present
already in the dataset:

Normal generation of synthetic data does not match real-
world theft instances and has issue of over-fitting. Theft data
points are outliers since they do not fall inside the median of a
normal distribution.

FIGURE 4 Electricity theft pattern of consumer involved in theft.

FIGURE 5 Electricity consumption pattern of honest consumer.

The application of theft attacks on benign users’ consump-
tion data was employed in order to achieve a suitable equilibrium
between instances of theft and honest data points. The SGCC
dataset consists of a total of 42,372 records, with 3615 instances
representing abnormal consumer data and 38,757 instances rep-
resenting normal consumer data. The dataset exhibits a ratio of
1:9 between normal and abnormal consumers. The dataset con-
tains a substantial number of data points, posing challenges in
utilizing all of them for analysis due to the issue of increased
computational complexity. As an illustration, a total of 9999
records out of the 42,372 available were selected for the purpose
of analysis. In this manner, a subset of 900 real theft records,
ranging from 2714 to 3615, is chosen for analysis, while the
remaining real theft records, ranging from 0 to 2713, are left
out. Furthermore, the remaining deficient abnormal records,
totaling 4099 in number, have been artificially generated. The
attack types 1 to 6 are put into the benign consumers’ data
ranges from 901–1583, 1584–2266, 2267–2949, 2950–3632,
3633–4315, and 4316–4999, respectively.

The dataset comprises energy consumption data for a total
of 1036 days, and the attacks are executed on the entirety of
this dataset. However, Figures 4 and 5 provided below serve as
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TABLE 4 Comparison of XGBoost-based detector and with SVM and
LightGB model on various theft attacks for evaluation.

Attack

scenario Models PR (%) FPR (%) Recall (%) AUC (%)

Type 1 SVM 89 87 8.4 88

LightGB 83 75 7.1 78

Our model 94 93 7.2 92

Type 2 SVM 89 90 8.01 88

LightGBM 80 70 17.1 73

Our model 92 91 5.5 90

Type 3 SVM 84 87 5.4 88

LightGBM 88 85 6.5 85

Our model 97 94 9.33 96

Type 4 SVM 87 86 4.64 84

LightGBM 87 85 8.0 83

Our model 91 90 5.6 90

Type 5 SVM 89 88 5.9 82

LightGBM 88 87 10.7 83

Our model 95 83 6.83 87

Type 6 SVM 88 90 6.6 88

LightGBM 89 88 6.1 86

Our model 95 93 7.1 91

Combined SVM 83 84 7.2 81

LightGBM 88 86 5.7 90

Our model 97 95 5.4 93

FPR, false-positive rate; PR, positive rate; XGBoost, extreme gradient boosting.

an example, illustrating only 30 days of synthetic attacks and
normal patterns. PCA is a widely used technique for feature
extraction in diverse domains, including electricity consumption
datasets [24]. It aims to transform the original high-dimensional
feature space into a lower-dimensional representation while
preserving essential information. See Table 4 in Table 4 for
results.

3.4 Application of PCA for dimensionality
reduction

In the context of electricity consumption datasets, the data
is organized into a matrix format, where each row represents
a sample (e.g. a day or an hour) and each column represents
a feature (e.g. different electricity consumption attributes).
Standardization is performed on the dataset by subtracting the
mean and dividing by the standard deviation of each feature and
is crucial to ensure that features are on a similar scale, as PCA is
sensitive to the variances of the features [24, 25]. The covariance
matrix is computed to analyze relationships between features.
The eigenvectors and eigenvalues are computed from the cal-
culated covariance by performing an eigen-decomposition on
the matrix. The primary components are the new orthogonal
axes in the feature space, and they are represented by the

TABLE 5 Evaluation metrics of XGBoost theft detector with and without
dimensionality reduction.

Metrics Without PCA With PCA

Accuracy 90% 95%

Precision 85% 90%

Recall 95% 98%

F1 score 90% 94%

AUC-ROC 0.95 0.98

PCA, principal component analysis; XGBoost, extreme gradient boosting.

eigenvectors. The eigenvalues reveal how much variation is
explained by each principal components PC [12].

Choosing Principal Components: Select the top k eigen-
vectors by sorting the eigenvalues from largest to smallest,
where k is the number of major components. Most of the
data’s variability is captured by the top k eigenvectors, which
are also the principal components [24]. The standardized data
is projected onto these principal components to obtain a
transformed feature space. These transformed features serve as
the extracted features from the original dataset, capturing the
most significant variability [24, 25]. Applying PCA to electricity
consumption datasets enables dimensionality reduction while
retaining important information for tasks such as visualization,
anomaly detection, or theft detection [12].

As we can see in Table 5, the XGBoost model that was trained
on the PCA-reduced dataset had a higher accuracy, precision,
recall, F1 score, and AUC-ROC than the model that was trained
on the original SGCC dataset. This suggests that PCA can be
a helpful way to improve the performance of XGBoost models
for ETD.

3.5 Feature engineering

Features are extracted to add additional parameters from the
existing to capture relevant patterns or relationships. Rel-
evant features can enhance the efficiency and reliability of
electricity theft detecting model [26, 27]. Various features
collected directly and extracted using statistical functions
include Consumer specific unique ID, electricity usage time
and date (Timestamp), electricity consumption (kWh), active
power, reactive power, average voltage, global intensity, power
factor, max_load, min_load, average_load, load dispersion,
peak demand, total load profile, seasonal variation, time-of-
use, historical consumption, socio-demographic data, billing
information, geographic information, time of day usage, week-
day/weekend, and state holiday. In addition to the electricity
consumption and electric power parameters, the utility has
other features available, like a profile of the customer, tariff
information, meter location, previous theft information, the
consumer’s maximum and minimum consumption during the
last year, utility information, sub-divisional information, curtail-
ment schedule (if any due to demand–supply gap). Apart from
that, data collection is done using GIS location, load agreement,
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FIGURE 6 Trend in electricity usage of a consumer.

neighbourhood consumption details. Further, the weather
database available (max. temp., min. temp., precipitation etc.),
and the technical details (meter type, meter location etc.) are
also included in the processed dataset. The extracted features
also include the categorical variable to store values for time of
day like (M: morning, A: afternoon, E:evening, N:night). Binary
variable for weekday/weekend (0 for weekday, 1 for weekend),
and binary variable for state holidays (Holiday as 1 and rest as
0). Each consumer’s electricity consumption is analyzed over a
period of time. The focus is on understanding the consumption
patterns, identifying anomalies or deviations specific to each
consumer, and detecting any unusual behaviour or theft within
their consumption data. This approach allows analysis for
finding the unique characteristics and consumption patterns of
each consumer [26–28]. Data aggregation is performed on data
consumption over different periods (daily, weekly, monthly). It
involves combining the individual consumption readings within
each period and calculating statistical measures or creating lag
variables to capture temporal patterns [26, 28]. The following
features are extracted using statistical functions:

data_columns
[
}smID′, ′energyConsumption∕hh′,

′Total KWhr′
]

(5)

Daily Aggregation: To aggregate data daily, all the consump-
tion readings are collected to produce statistical metrics, that
us, mean, variance, minimum, maximum, or sum of electricity
consumption during a day for a single consumer. These param-
eters reveal daily average, spikes of low and high usage [26–30].
Figures 6 and 7 depict the trend of a consumer over longer and
shorter periods, respectively.

Weekly Aggregation: For weekly aggregation, weekly data is
combined, the statistical functions reveal weekly average, weekly
consumption patterns, high and low usage days in a week.

Monthly Aggregation: The monthly aggregation groups the
consumption data by month. Monthly aggregation helps in
uncovering the long-term consumption trends such as seasonal
fluctuations in this study.

Lag Variables: Past consumption builds lag variables and
captures temporal patterns. Lag variables represent difference

FIGURE 7 Weekly trend in electricity usage of a consumer.

FIGURE 8 Daily, weekly, and 365-day rolling trends.

in consumption of the preceding day, preceding week, or
preceding month on comparison. The lag variables assist us
to identify data increase in usage over time, dependencies, and
consumption patterns [26].

This study utilizes the Resampling which is a statistical tech-
nique that involves the consolidation of data within a specified
timeframe. The performance of this function is similar to that
of the ‘Groupby’ function in SQL. In other words, the data is ini-
tially divided into time bins, and subsequent computations are
carried out on each bin. Resampling is done on an hourly, daily,
monthly, and yearly basis to provide the relevant statistics such
as minimum, maximum, and mean values in consumption [29,
30]. To compute hourly mean values for electricity consumption

data_columns = [‘smID’, ‘energyConsumption/hh’, ‘Total
KWhr’]

data_hourly_mean = data[data_columns]. resample(‘H’).
mean()

# H stands for hourly data_hourly_mean.

Likewise, weekly and monthly mean is calculated by using
weekly (‘W’) and Monthly (‘M’) mean.

A Rolling window technique for weekly trends: The distinc-
tion between the rolling and hourly/weekly/ monthly lies in
the overlapping nature of the bins [26–30]. The bins for weekly
rolling resampling as shown in Figure 8 are organized as follows:
1 January to 7 January, 8 January to 14 January, 15 January to 21
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FIGURE 9 Consumers consumption pattern peak in the evenings and
low during the day Also, Lower spikes during weekends.

January, and so on. The bins are organized on a weekly rolling
basis, with each bin representing 7 days. For example, the first
bin spans from 1 January to 7 January, the second bin spans
from 2 January to 8 January, the third bin spans from 3 Jan-
uary to 9 January, and so on. In order to calculate a 7-day rolling
mean, we follow the mathematical procedure as below [29, 30]:

data_7d _rol = data [data_columns] .rolling (window = 7,

center = True) .mean() data_7d _rol (6)

In the above-mentioned code, the parameter centre = True
indicates that when calculating the rolling mean for a given time
bin, such as from 1 January to 8 January, the resulting value will
be positioned adjacent to the middle of the bin, specifically on
4 January.

Visualizing trend in data using rolling means: Trend is the
smooth long-term tendency of a time series. It might change
direction (increase or decrease) as time progresses [26–30]

Seasonal trends: One effective method for visualizing the
trends is through the utilization of rolling means at various time
scales as shown in Figure 8. Upon analyzing Figure 8 for 365-
day rolling mean time series, it becomes evident that the general
annual trend in electricity consumption of a genuine consumer
exhibits a considerable level of consistency [27] as pointed in
Figure 9. For training a machine learning model trends need to
be removed as trends can obscure the true underlying patterns
in the data and can lead to spurious correlations and incorrect
conclusions in statistical analyses [29, 30].

By removing the trend, the data is transformed into a sta-
tionary series, making it more amenable to the problem of theft
detection on historical data. Removal of trends improves effi-
ciency and proves advantageous, especially when the trend is
prominently observable [27]. In this study, trend is eliminated
using a technique called differencing. Differencing involves the
creation of a data value in which the value at a given time (t) is
calculated by subtracting the actual recorded reading at that time
(t) from the actual recorded reading at the preceding time (t – 1)
[29, 30].

Differencing transforms non-stationary data into a station-
ary data. This facilitates the precise assessment of the seasonal
fluctuations or random fluctuations observed in the electricity
consumption time series data [27, 29, 30]. Now, the values at

FIGURE 10 First-order differencing of consumption.

FIGURE 11 Comparison in usage trend of consumers—normal vs. fraud
consumer.

this differenced column are a subtraction of two consecutive
values recorded by the smart meter. In general, the information
conveyed by differenced readings is not about the specific value
at a given point in time, but rather the magnitude of its deviation
from the previous point in time [29, 30]. Figure 10 depicts that
there exists a notable peak in correlation at the seventh-day lag.

The graph is a plot of differenced values; the preponder-
ance of the values will be distributed along both sides of the
x-axis (where y = 0). This is due to the likelihood that most
of consumption values will either be higher or lower than the
previous day, and fewer instances of values where difference
is zero between two consecutive days. The experiments show
that the dataset has performed well on first-order differencing
as demonstrated. A research study was undertaken to ascer-
tain the existence of any weekly patterns within the dataset.
Based on the depicted plot in Figure 8, the observed practice
displays a prominent peak during the evening and night hours
while diminishing during the daytime. Moreover, it is evident
that the consumption on weekdays surpasses that on weekends,
as indicated by the lower spikes observed on Saturdays and
Sundays. In this study, we analyze a dataset that encompasses
two months, specifically January 2014 and February 2014. The
presence of distinct weekly variations is readily apparent in the
observed data. The analysis of power consumption patterns
reveals a notable disparity between weekends and weekdays,
with the former exhibiting a lower level of energy usage and the
latter characterized by significantly higher consumption rates.
Monthly aggregation helps in uncovering the long-term con-
sumption trends such as seasonal fluctuations. Figure 11 shows
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FIGURE 12 Shows the trend vanishing after about 300 days.

a comparison trend of normal and fraudulent consumer over a
period of 30 days.

Autocorrelation: Autocorrelation can find seasonal trends in
time series data. The autocorrelation function (ACF) is highly
useful in analyzing the historical electricity to reveal seasonal
patterns [29, 30]. High autocorrelation values at various lags
suggest a strong link between past and future values on the
daily, weekly, seasonal, or monthly consumption patterns. Aber-
rant usage, spot anomalies, or deviations indicate electricity
[29, 30]. Autocorrelation analysis can also help in forecasting
which is beyond this study. It has been seen that there is a
notable peak in correlation at the seventh-day lag. Subsequently,
a similar peak is observed on the fourteenth day, followed by
subsequent occurrences. The observed phenomenon exhibits a
repeating pattern over 7 days, indicating a weekly time series.
The observed pattern exhibits a gradual decline in effectiveness
over approximately three months or approximately 300 days.
As the time increases, the degree of correlation between them
diminishes. Figure 12 reveals that the consumption series is gen-
uinely auto-correlated with a lag of 1 week for a specific normal
consumer.

4 MODEL COMPARISON AND
SELECTION

In this section, we will provide a concise description of the
models that have been implemented to conduct experiments
on the SGCC dataset for the detection of electricity theft. The
classification machine learning models were evaluated using a
processed dataset of both benign and malicious samples. The
processed dataset was not used to train the machine learning
model but was used to evaluate its performance. Most of the
machines learning models were able to detect electricity theft
with good accuracy.

Autoregressive model: The autoregressive (AR) model is a
statistical model commonly used in time series analysis like
EC data [29, 30]. This linear regression model helps to predict
the value of electricity consumption based on its previous val-
ues (previous half-hour consumption). The approach is used in
the modelling of univariate time series [29]. A distinct unit is

employed for each unique day type, including weekdays, Satur-
days, and Sundays, as well as for each hour for each consumer.

s
h,d
t = c +

q∑
i = 1

∅
h,d
i

s
h,d
t−i
, (7)

In this study, we consider a constant denoted as c, along with
model parameters ϕ h,t.

In order to maintain simplicity and avoid a trial-and-error
parameterization process, the parameters have been set to ϕ
instead of making adjustments to them. In accordance with the
established methodology outlined in the other research papers
like [29, 30], the work-day schedule is employed as a means of
categorizing the specific type of day for which load prediction is
to be conducted.

In light of the aforementioned considerations, it has been
deemed necessary to make certain adjustments to the prediction
methodology employed for each hour. This adjustment involves
the utilization of the AR model, with the specific parameters
being contingent upon the type of day under consideration.
Furthermore, the value of q, representing the order of the
AR model, is set to 3 arbitrarily without any justification here.
Therefore, it is important to acknowledge that the computa-
tion performed considered the three most recent values of the
same day type. For instance, if the reference day is a Tuesday,
the calculation included the values from any previous like Tues-
day, Monday, Friday, or Thursday and not with the Saturday or
Sunday (weekends).

Neural network: The neural network (NN) model, a type of
non-linear circuit that functions as a perceptron, and which is
considered a simple information processor, is also tested on
the dataset. The structure of the NN is capable of adapting
based on the information that is received from either external
or internal sources during the learning phase. The output of
the model can be described as a function that is either linear or
non-linear in relation to the inputs. As a result, they have gained
significant popularity in the field of predicting non-linear data,
as evident by its use by the authors in [26–30] for the detection
of electricity theft. After conducting the tests, the favourable
outcomes were also achieved through the utilization of a NN,
which incorporates temperature-related variables, the preceding
hour’s value (regardless of the day type), and the value of the
same hour on the previous day of the same type. Furthermore,
it was determined that the NN architecture required the inclu-
sion of two concealed layers, with the first layer consisting of 35
perceptrons and the second layer consisting of 25 perceptrons.

Bayesian Networks: Bayesian Networks (BN), a probabilistic
multivariate analysis framework that expands Bayes’ theorem,
was also employed for comparison. They use an acyclic-directed
graph and a probability distribution function to represent the
set of probabilistic relationships among the variables modelling
the specific problem [29, 30].The probability function shows on
each node the strength of these relationships or graph edges [29,
30]. BNs have mostly been studied with discrete variables, linear
Gaussian models, or combinations of both because continuous
variables are difficult to represent by an estimated magnitude
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TABLE 6 Proposed XGBoost-based model before and after the
application of balancing techniques.

Parameter User Before balancing After balancing

Precision Genuine 0.97 0.96

Fraud 0.56 0.94

Recall Genuine 0.94 0.95

Fraud 0.52 0.92

F1-Score Genuine 0.94 0.95

Fraud 0.42 0.93

Overall accuracy 0.90 0.94

XGBoost, extreme gradient boosting.

and range of uncertainty [29, 30]. We solved this problem by
using Agglomerative Hierarchical clustering [29, 30], to cluster
the load numbers for each hour and then determine the average
load for each cluster. Thus, the BN classifies the load into one of
those groups and predicts the average load of that class (plus the
error, the difference between the actual load value and the aver-
age load of the assigned cluster) giving an anomaly in usage. Like
the AR model, we created three BNs for each day. We added
weather variables, day type, prior hour load value, and previ-
ous same-type day load value. For each hour, we re-trained the
BN and predicted the next hour. Finally, we used the PC Algo-
rithm [29, 30], the Expectation-Maximisation algorithm [29, 30]
for parametrical learning, and the Lauritzen and Spiegelhalter
method for conclusion inference over junction trees [29, 30]
to achieve Bayesian inference (actual prediction) and anomaly
detection in usage.

We use other alternative boosting algorithms such as Light-
GBM [26] and CatBoost [27] and report the corresponding
results concisely in Table 4.

5 MODEL SELECTION

To determine how well the proposed model worked, a
performance comparison was performed between the
XGBoost-based detector and a number of other machine
learning algorithms, including k-NN, LightGB, SVM, CatBoost,
Random Forest, Bayesian networks, decision tree (DT), and
logistic regression. We compare the proposed model on both
the imbalanced raw dataset and the balanced dataset. Table 6
shows a summary of the performance metrics for these two
instances. In each case, we set the training ratio to 80%. Before
the fake theft data was added to the dataset, the number of
theft instances of users was fewer compared to the number of
genuine users. It was because of class imbalance, the model was
not able to put the fraud users into the right category because
of over-fitting, as shown by the accuracy, recall, and F1 scores
in the table. When fake data were added to the dataset, the
model was better able to identify fraudulent users, as seen in
Table 6. Experiments conducted for selection of model: In
the first experiment, we trained our model on both benign
and malicious samples. We randomly selected 50% of the

FIGURE 13 Comparison true positives vs false positives of
XGBoost-based detector with benchmark ETD models. ETD, electricity theft
detection; XGBoost, extreme gradient boosting.

entire 9998 samples to generate malicious samples. 70% of the
samples in the dataset were picked at random as the training set,
while the remaining 30% comprised the test set. We examined
our method’s performance in recognizing the six different
attack types of electricity theft individually and it was also
compared with SVM and LightGB which are next best results
after our proposed XGBoost-based model. The result is seen in
Table 4. This method was repeated on 35 users. In the second
experiment, we trained our model using all six attack types and
compared it to two best commonly used AI-based methods:
SVM and LGBoost. Lastly, five pairs of parameters as shown
are examined (randomly generated variable for six attack types)
to evaluate the influence of different 𝞪 and 𝞪t values under
different attack types (Attack Type 1, Attack Type 2, and Attack
Type 4): (0.3, 0.8), (0.4, 0.8), (0.5, 0.8), (0.6, 0.8), and (0.7, 0.8)
[26–30]. In Figure 4 above the XGBoost-based detection model
distinguishes different attack types with good accuracy for each
pair of t values. Table 4 displays the findings of the experiment.

A comparison of true positives and false positives of an
XGBoost-based detector with benchmark ETD models is
shown in Figure 13. The precision-recall curves are shown in
Figures 14 and 16. The ROC-AUC (between true positives and
false positives) curve of the proposed detector is shown in
Figures 15 and 17.

5.1 XGBoost model overview

In the context of machine learning methods, the objective func-
tion is the sum of the loss function (L) and the regularization
term (Ω) over the parameters (θ) [6, 22].

Obj (𝜃) = L (𝜃) + Ω (𝜃) (8)

The XGBoost’s objective function (derived from Equa-
tion (8)) combines the sum of a specific loss function (L)
evaluated over all n predictions (or samples) and the sum of a
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FIGURE 14 Comparison of precision vs recall values of XGBoost-based
detector with benchmark ETD models. ETD, electricity theft detection;
XGBoost, extreme gradient boosting.

FIGURE 15 Comparison true positives vs false positives (ROC-AUC) of
XGBoost-based detector with benchmark ETD models. ETD, electricity theft
detection; XGBoost, extreme gradient boosting.

FIGURE 16 Comparison of precision vs recall (PR-AUC) of
XGBoost-based detector with benchmark ETD models. ETD, electricity theft
detection; XGBoost, extreme gradient boosting.

FIGURE 17 Comparison of true positives vs false positives of
XGBoost-based detector with benchmark ETD models. ETD, electricity theft
detection; XGBoost, extreme gradient boosting.

regularization term (Ω) for all predictors (K DTs) as follows:

Ob j (𝜃) =
n∑

i=1

l (yi , ŷi ) +
K∑

k = 1

Ω( fk ) (9)

In Equation (9), fk represents the kth DT function, yi

denotes the actual label of the ith sample, and ŷi represents
the predicted label of the ith sample. The DT structure and
objective function are further elucidated in the comprehensive
XGBoost hyperparameter tuning guide [6, 22]. The primary
objective of the classifier algorithm is to minimize the value
of the objective function as expressed in Equation (9) [6]. The
loss function in Equation (9) may encompass various options,
such as the log-loss function, squared loss function, or other
alternatives. The prediction error of the machine learning model
is governed by the control mechanism, whereas the complexity
of the model is regulated by the regularization term Ω, which
adjusts factors such as the size of the tree structure and the
depth of the trees [6, 22].

5.2 Working of XGBoost

Given a classification task, a data set D can be represented as

D = {(xi , yi )} ( |D| = n, x ∈ Rm, yi ∈ R) (10)

where D represents a given dataset, xi denotes a vector con-
sisting of n samples and m features, and yi represents the
corresponding label [6]. In this article, the symbol xi represents
the measurement of the meter reading during a specific day
period, which consists of n samples. The variable yi is defined
as a binary value, where yi = 0 signifies that the user does
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not exhibit any abnormal power usage behaviour, and yi = 1
indicates noticed abnormal or malicious activity [6].

The representation (as seen in Equation (11)) of a tree
ensemble model utilizing K additive functions fk is as follows:

ŷi =

K∑
k=1

fk (xi ) , fk = F (11)

Let F denote the set of functions that encompasses all clas-
sification trees. Instead of collecting the weights within the tree
model, XGBoost employs the process of learning functions [6].
The objective function of XGBoost is formulated as follows:

Ob j =
∑

i

l (yi , ŷi ) +
∑

k

Ω( fk ) (12)

with Ω(f) = flT +
1
2

˘ w2

where the loss function denoted by l quantifies the degree
of alignment between the model’s predictions(ŷi ) and the
corresponding target values yi in the training dataset. The reg-
ularization term quantifies the level of complexity exhibited
by the model. XGBoost incorporates L1 and L2 regularization
terms into the gradient-boosting DT framework. The variable
T denotes the score of leaf nodes, while the variable w represents
the scores assigned to the said leaf nodes. The inclusion of a reg-
ularization term provides a valuable advantage in mitigating the
issue of overfitting [6, 31].

The training of the model is conducted in an additive manner
[31]. Let ŷ

(t )
i be the prediction term of the ith instance at the tth

iteration. The optimization of the objective of the ith instance
at the tth iteration can be achieved [6].

£(t ) =

n∑
i=1

l
(

yi , ŷ
(t−1)
i + ft (xi ) + Ω( ft ) (13)

£(t ) =

[
n∑

i=1

l (yi , ŷ
(t−1)
i + gi ft (xi ) +

1
2

hi f 2
t (xt )

]
+Ω

(
ft
)
(14)

where gi and hi are the first- and second-order gradient
stochastics on the loss function, respectively.

gi = 𝜕ŷ
(t−1)
i l

(
yi , ŷ

(t−1)
i

)
(15)

hi = 𝜕2 ŷ
(t−1)
i l

(
yi , ŷ

(t−1)
i

)
(16)

Ij is defined as {i | q(xi) = j}, representing the collection of
instances that are assigned to leaf j. After eliminating all the con-
stant terms and extending the equation, the specific objective at
step t is transformed [6].

£(t ) =

n∑
i=1

[
gi ft (xi ) +

1
2

hi f 2
t (xi )

]
+ Ω( ft ) (17)

TABLE 7 Hyperparameter tuning of the proposed XGBoost model.

Hyper parameter Value Description

Loss function Binary:logistic Binary classification

Booster Gbtree

learning_rate 0.05

n_estimators 100

Maximum depth of trees 8

reg_lambda 2 L2 regularization term on weights

XGBoost, extreme gradient boosting.

£(t ) =

n∑
i=1

[
gi ft (xi ) +

1
2

hi f 2
t (xi )

]
+ 𝛾T +

1
2
𝜋

T∑
j=i

w2
j (18)

=

T∑
j=i

⎡⎢⎢⎣
⎛⎜⎜⎝
∑
i∈I j

gi

⎞⎟⎟⎠ w j +
1
2

⎛⎜⎜⎝
∑
i∈I j

hi + 𝜏w2
j

⎞⎟⎟⎠
⎤⎥⎥⎦ + ΥT (19)

The optimization objective for the new tree is represented
by Equation (19), which is utilized by XGBoost to facilitate
the incorporation of custom loss functions. One notable ben-
efit of XGBoost is its incorporation of regularizations into the
loss function [6, 31]. This inclusion results in the creation of
simpler trees and serves as a preventive measure against over-
fitting. XGBoost generates additional trees in order to rectify
the remaining errors in the predictions made by the current
sequence of trees. The observed outcome is that the model
demonstrates a rapid ability to fit into the training dataset, sub-
sequently leading to overfitting [6, 26–31]. Achieving a balanced
fitting performance is typically accomplished by adjusting the
hyperparameters of the machine learning model during both
the training and testing phases [6]. Furthermore, the XGBoost
classifier is equipped with a module called ‘feature_importance’
that allows for a comprehensive understanding of the classifier
model. This module provides a feature score, also known as an
f-score, for each individual feature. The hyperparameter tuning
is discussed in the next section.

5.3 Hyperparameters tuning

Table 7 provides a concise explanation of the hyperparameters
employed in the XGBoost-based ETD model. It also enumer-
ates the specific values associated with these hyperparameters.

Parallel Threads: In XGBoost, we set the training thread
count (nthread) to 2. This parameter determines how many
CPU cores the model uses for training. To maximize training
speed, we set it to the number of available cores.

Iteration Count: During training, XGBoost builds boost-
ing rounds or trees based on iterations (n_estimators or
num_boost_round). We use cross-validation to find the best
iteration number. The model was trained of training set with
different iterations and evaluation of performance was done on
the validation set. This was done in order to find an ideal value
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TABLE 8 Confusion matrix.

Confusion matrix Actually positive Actually negative

Predicted positive True positives (TPs) False positives (FPs)

Predicted negative False negatives (FNs) True negatives (TNs)

where the performance stabilizes and degrades thereafter. Our
optimal performance was achieved with 5-fold cross-validation.

Learning Rate: The learning rate in XGBoost (eta or learning
rate) was set at 0.05. This learning rate determines the step size
for each iteration when minimizing the loss function. Smaller
learning rates lead to more accurate models but may require
more iteration.

To discover the best learning rate, the values that were
tried are: 0.01, 0.03, 0.05, 0.1, and 0.3 to evaluate the model’s
performance.

Regularization Parameters: XGBoost has two regularization
parameters, lambda and alpha. Regularization helps prevent
overfitting and promotes better generalization of the model
[26–30]. To find the optimal performance on validation data,
we performed grid search or random search to explore different
lambda and alpha values. The value was set to 2. Furthermore,
the authors in reference [26–30] assert that a lower FPR coupled
with a reasonable DR serves as a reliable indicator of an effec-
tive intrusion or theft detection system. It should be noted that
the hypermeter values have been established based on guide-
lines outlined in references [26–30] through the utilization of a
grid search approach.

Resource utilization: All the experiments in this study were
performed on a PC with an i7-8550U CPU and 16-GB RAM.
The programming work was done using Jupyter Notebook of
Python.

6 MODEL EVALUATION

The objective of this study is to detect the anomaly or devia-
tion in electricity consumption based on the usual pattern of
electricity usage that was observed in the given time series data
instances.

A confusion matrix is used to check the performance of
a model [12]. For the purpose of training, we will utilize a
dataset spanning a period of 02 years, specifically from 2014
to 2016. Subsequently, after the train-test split on a dataset,
to evaluate the proposed model’s performance, the dataset
is split into three reduced sub-sets: (1) A training dataset,
(2) a validation dataset to tune the hyper-parameters, and (3)
a testing dataset for generalizing our model. Nested Cross
Validation (NCV) is preferred for its realistic view on model
generalization [32].

A confusion matrix as seen in Table 8 can be used to evalu-
ate the performance of a model. The root mean square error
(RMSE) can be employed to evaluate XGBoost-based mod-
els for ETD. The RMSE is calculated by comparing model
predictions to actual electricity use. Model performance

improves with decreasing RMSE values. To identify electricity
theft, an XGBoost model is trained on electricity.

See Table 9 in Table 4
use data. The model can then predict a group’s electricity use

as shown in Table 9. Comparing the expected and actual values
yields the RMSE . RMSE can be calculated mathematically

sMAPE =
100

n
+

n∑
t = 1

At − Pt

At + Pt
(20)

where At is actual consumption and Pt is the predicted value at
time t.

7 DISCUSSIONS AND COMPARISON

ETD is an extremely challenging task, as the detection does
not solely depend on determining the anomaly but on all the
other data forming any relationship with electricity consump-
tion. AMIs are susceptible to cyber-attacks aimed at stealing
electricity. The researchers in [11, 26–30] suggest the use of
CNN-LSTM Based approach for the detection of electricity
theft in contrast to the use of single-machine learning algo-
rithms for the detection of physical theft attacks on AMIs. This
study utilizes the XGBoost ensemble method for the detec-
tion of physical electricity theft attacks. The used by authors
in [6] and use the electricity consumption data extracted from
smart meters and a few other features from auxiliary databases
to detect theft. Our approach uses features extracted from the
GIS location, weather database, and features extracted from
auxiliary databases. For the predictions, our model had 98%
precision. Figures 13–17 show the AUC scores of our model
as compared to the other popular ETD models. The proposed
XGBoost-based detector was employed on real instances of
theft. Our approach falls short of the high granularity used
by the authors in [8] and [33] to detect intermittent fraud.
In this study, it is proven that these extra features are impor-
tant for detecting theft in Indian cities, since studying how
consumers use electricity-run gadgets is not enough to find
a wide range of NTL. However, the high granularity of EC
data will lead to privacy intrusions for consumers. So, in the
future, an intermediate approach is adopted by the proposed
model to have more privacy preservation and lesser detection
time than the current proposed version of the XGBoost-based
model.

8 CONCLUSION

As per the research studies, AMI of the smart grid helps to
detect electricity theft efficiently and accurately [11, 26–30]. This
study proposes an XGBoost-based ETD system where, in addi-
tion to electricity consumption data, other aspects related to
usage are used. These include seasonality, location, power cur-
tailments to cater to high demand, regional festivals, weekends,
and weekdays. These additional variables improved the DRs
and reduced the number of false positives in this research. By
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TABLE 9 NCV of XGBoost-based detector for evaluation.

Folds Accuracy Recall Precision F1 score Kappa MCC

1 0.92 0.91 0.93 0.96 0.86 0.86

2 0.93 0.92 0.94 0.95 0.87 0.87

3 0.92 0.91 0.93 0.96 0.87 0.87

4 0.93 0.91 0.94 0.95 0.86 0.86

5 0.93 0.92 0.95 0.96 0.87 0.87

Mean 0.93 0.92 0.95 0.95 0.86 0.86

Std Dev. 0.00216 0.00299 0.00235 0.00205 0.00424 0.00427

NCV, nested cross validation; XGBoost, extreme gradient boosting.

artificially creating six different theft attacks, we successfully
mitigate dataset imbalance, ensuring a balanced representa-
tion of theft and non-theft instances. The utilization of the
XGBoost algorithm for classification demonstrated outstanding
performance in distinguishing between malicious and normal
electricity usage, yielding high accuracy rates and a remarkably
low false-positive occurrence. Our model proves effective in
identifying region-specific electricity theft, utilizing various elec-
tricity consumption parameters and input features. Comparing
our model to existing benchmarks like support vector machine
K-NN, LightGBM, CatBoost, Random forest, LR, SVM, NB,
DT, NN, and AdaBoost, the XGBoost-based detection model
emerges as the top-performing solution. The inclusion of false
attacks for dataset balancing further improves the model’s per-
formance, achieving impressive F1-score, precision, and recall
rates of 97%, 98%, and 98%, respectively. The results of our
research demonstrate the efficacy and reliability of the pro-
posed XGBoost-based model in detecting electricity theft. With
a DR of 96% and a minimal FPR of 3%, our approach holds
great promise for utility providers in combating electricity theft
and reducing financial losses. The successful application of our
model showcases its potential to make a significant impact in
the energy industry, safeguarding revenue streams and enhanc-
ing the security and efficiency of electricity distribution systems.
Carefully identifying and analysing the input features is essential
to fully understanding the ETD problem and to getting better
results.

9 FUTURE RESEARCH

This research can be expanded to address or improve the
following capabilities in future research:

Privacy preservation: Though in this research, consumer’s
personal data is not revealed anywhere, for more security, a few
privacy-preserving techniques can be incorporated to protect
consumer data like meter ID, location etc. In this study, cyber-
theft attacks are not taken care of. However, cyber security
hardware and software, which are built into the power infras-
tructure and techniques, can be added to combat sophisticated
cyber-theft attacks.

Advanced Feature Engineering In the future, research
may include socio-economic indicators and analyse indus-

trial, commercial, and residential sectors separately due
to differences in potential consumption patterns. A
dynamic model can be adapted for changing electricity
consumption patterns on adding new electrical gadgets
in a house. This research can integrate energy consump-
tion forecasting models with theft detection systems in the
future.
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