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A B S T R A C T   

In recent years, resilience enhancement of electricity distribution systems has attracted much attention due to the 
significant rise in high-impact rare (HR) natural event outages. The performance of the post-event restoration 
after an HR event is an effective measure for a resilient distribution network. In this paper, a multi-objective 
restoration model is presented for improving the resilience of an electricity distribution network. In the first 
objective function, the load shedding in the restoration process is minimized. As the second objective function, 
the restoration cost is minimized which contradicts the first objective function. Microgrid (MG) formation, 
distributed energy resources (DERs), and demand response (DR) programs are employed to create the necessary 
flexibility in distribution network restoration. In the proposed model, DERs include fossil-fueled generators, 
renewable wind-based and PV units, and energy storage system while demand response programs include 
transferable, curtailable, and shiftable loads. The proposed multi-objective model is solved using ε-constraint 
method and the optimal solution is selected using the fuzzy satisfying method. Finally, the proposed model was 
successfully examined on 37-bus and 118-bus distribution networks. Numerical results verified the efficacy of the 
proposed method as well.   

1. Introduction 

In recent years, inevitable natural disasters have become more severe 
and frequent due to climate change. These HR events lead to significant 
growth in power outage intensity and frequency. Among recent expe-
riences of HR weather events causing power outages in distribution 
systems (Najafi et al., 2018; Panteli et al., 2017), hurricane Harvey can 
be mentioned which made landfall on Texas and Louisiana in August 
2017 and left around 0.3 million of customers in a power outage 
throughout Texas for 14 days. The worldwide concerns on adverse im-
pacts of HR weather events on critical infrastructures have led to the 
introduction of the concept of power system resilience. Resilience 
enhancement strategies aim at improving the power system response 
and restoration against HR events (Gholami et al., 2018). 

Many researchers have studied distribution system restoration which 
aims to recover critical loads by resource rescheduling and structure 
reconfiguration after the incident. However during HR events, the 

upstream network may be unavailable and thus the distribution network 
should be operated in the islanded mode. In such conditions, traditional 
operational strategies cannot guarantee the continuity of power delivery 
(Hemmati et al., 2021). Distributed generators and smart grid technol-
ogies such as demand response programs can enhance the distribution 
system resilience by increasing the load restoration capability. 

With the high penetration of DGs, MG formation is an effective 
operational strategy to restore critical loads as major faults occur in 
distribution systems. Optimal methods based on heuristic search (Bajpai 
et al., 2016; Sedzro et al., 2018; Xu et al., 2016; Zadsar et al., 2017) and 
mathematical programming (Alizadeh et al., 2020; Biswas et al., 2021; 
Gilani et al., 2020; Momen et al., 2020, 2021; Sedzro et al., 2017; Zhu 
et al., 2020) were used for MG formation problem in the resilient dis-
tribution systems. In (Bajpai et al., 2016), a methodology based on the 
graph-theoretic method and Choquet integral was introduced for MG 
formation to quantify the distribution system resilience during extreme 
contingencies. In Sedzro et al. (2018), a heuristic approach was pro-
posed that allows solving the post-event MG formation problem for 
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Nomenclature 

Indices and Sets 
i,r set of buses, ranging from 1 to Nbus 

j set of buses with control capability 
q set of buses without control capability 
sh set of buses with shifting capability (sha) 
cu set of buses with curtailing capability (cur) 
tr set of buses with transfer capability (tra) 
dg set of functional DGs, ranging from 1 to Ndg 

mdg set of functional master DGs, ranging from 1 to Nmdg 

pv set of functional photovoltaic units, ranging from 1 to Npv 

w set of wind turbines, ranging from 1 to Nw 

e set of energy storage units, ranging from 1 to Ne 

iDG set of buses with DG 
iMDG set of buses with master DG 
isor set of buses with photovoltaic unit 
iwnd set of buses with wind turbine 
iES set of buses with energy storage unit 
iFrom set of initial buses of line l 
iTo set of terminal buses of line l 
L set of lines and tie lines, ranging from 1 to NL 

Lnots set of lines without switch 
m set of formable microgrids, ranging from 1 to Nmdg 

t index of the post-event restoration time 
ψ set of scenarios, ranging from 1 to Nψ 

θmax maximum limit of the voltage angle 
τ set of time slots for transferable demand response, ranging 

from 1 to 24 

Parameters 
DGs Xxxxxxxx 
Ndg number of functional DG units 
Nmdg number of functional master DG units 
PDG,max

dg maximum active power limit (kW) of DG 

QDG,max
dg maximum reactive power limit (kVar) of DG 

QDG,min
dg minimum reactive power limit (kVar) of DG 

PrDG
dg,ψ,t the price of generated power ($/kWh) by the DG 

PVs Xxxxx 
Npv number of functional photovoltaic units 
Psor,max

pv,ψ ,t maximum power limit (kW) of solar unit 
Prsor

pv,ψ ,t the price of generated power ($/kWh) by the PV 
WTs Xxxxx 
Nw number of functional wind turbine units 
Pwnd,max

w,ψ ,t maximum power limit (kW) of wind turbine unit 
Prwnd

w,ψ ,t the price of generated power ($/kWh) by the WT 
ESs Xxxxx 
Ne number of functional energy storage units 
SOCmax

e maximum SOC (kWh) of storage units 
SOCmin

e minimum SOC (kWh) of storage units 
SOCinitial

e initial SOC (kWh) of storage units 
RTch,max

e maximum charge rate (kW/h) of storage units 
RTdch,max

e maximum discharge rate (kW/h) of storage units 
ηES

e efficiency of storage units 
PrES

e,ψ,t the price of generated power ($/kWh) by the ES 

Demand response 
LPFsha,up coefficient for determining the maximum power 

transferred to increase the load in the shiftable model (kW) 
LPFsha,down coefficient for determining the maximum power 

transferred to decrease the load in the shiftable model (kW) 
Prsha

sh,ψ,t price ($/kWh) of using shiftable load scheme for bus sh at 

time t 
LPFcur,up coefficient for determining the maximum power 

transferred to increase the load in the curtailable model 
(kW) 

LPFcur,down coefficient for determining the maximum power 
transferred to decrease the load in the shiftable model (kW) 

Prcur
cu,ψ,t price ($/kWh) of using curtailable load scheme for bus cu 

at time t 
LPFtra,up coefficient for determining the maximum power 

transferred to increase the load in the transferable model 
(kW) 

LPFtra,down coefficient for determining the maximum power 
transferred to decrease the load in the shiftable model (kW) 

Prtra
tr,ψ,t price ($/kWh) of using transferable load scheme for bus tr 

at time t 
Prshed

q,t load shedding price ($/kWh) for bus q at time t 

Line & bus 
Nbus number of buses 
Pload,pre

i,ψ ,t predicted active power (kW) of load i 
Fpr

i,ψ ,t priority of load i 

Pflow,max
l active power flow limit (kW) of line l 

Qflow,max
l reactive power flow limit (kVar) of line l 

Rl,Xl resistance and reactance (Ω) of line l 
NL number of lines and tie lines 
Z1l,Z2l electrical characteristics of line l 
Signi,l,ψ connection sign between bus i and line l: − 1 if bus i is the 

initial bus of line l; 1 otherwise. 
BigM a big number 
εψ probability of each scenario 

Variables 
DGs Xxxxx 
PDG

dg,m,ψ ,t active output power (kW) of DG in microgrid m 
QDG

dg,m,ψ ,t reactive output power (kVar) of DG in microgrid m 
CostDG

dg,ψ,t DG operation cost ($) 
PVs Xxxxx 
Psor

pv,m,ψ ,t active output power (kW) of solar cell unit in microgrid m 
Costsor

pv,ψ,t PV operation cost ($) 
WTs Xxxxx 
Pwnd

w,m,ψ ,t active output power (kW) of wind turbine in microgrid m 
Costwnd

w,ψ,t WT operation cost ($) 
ESs Xxxxx 
PES,ch

e,m,ψ,t ,P
ES,dch
e,m,ψ,t charging and discharging power (kW) of ES unit in 

microgrid m 
PSOC

e,m,ψ,t SOC (kWh) of ES unit in microgrid m 
γES

e,m,ψ,t binary variable: status of ES unit in microgrid m 
CostES

e,ψ ,t ES operation cost ($) 

Demand response 
Psha

sh,m,ψ ,t active power (kW) of shiftable load scheme for bus sh in 
microgrid m 

Psha,up
sh,ψ ,t increasing power transfer of shiftable load scheme for bus 

sh 
Psha,down

sh,ψ ,t decreasing power transfer of shiftable load scheme for bus 
sh 

δsha,up
sh,ψ ,t binary variable indicating whether increasing power 

transfer has been performed on the bus 
δsha,down

sh,ψ ,t binary variable indicating whether decreasing power 
transfer has been performed on the bus 
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medium to large size power systems. In Xu et al. (2016), a 
resiliency-based methodology was presented to use MGs for restoring 
critical loads after a major disturbance. This work considers the stability 
of MGs and technical bounds on the transient current and voltage of DGs 
as well as frequency deviation as constraints of the load restoration 
problem. In Zadsar et al. (2017), a metaheuristics algorithm was pro-
posed to optimally operate the smart distribution network considering 
MG formation in the presence of distributed energy resources. The au-
thors neglected different demand response programs for the optimal 
operation of the distribution system. In Zhu et al. (2020), a MG forma-
tion model was proposed considering voltage and power loss constraints 
in the operation and power balance feasibility. The model considers 
exact power flow equations tackled by a mixed-integer linear pro-
gramming (MILP). In Biswas et al. (2021), a chance-constrained optimal 
distribution network partitioning was proposed for identifying the best 
candidates for microgrid formation after HR event. 

On the other hand, various types of control strategies can be 
deployed for DGs that may result in different operation schemes for 
system restoration. For example, droop-control method was widely used 
as a control strategy for DGs. Droop-based methods do not need 
communication among DGs. However, current circulation among DGs is 
recognized as a main drawback of droop control method. Therefore, the 
master-slave control concept was utilized to solve the mentioned prob-
lem. In this concept, one DG unit can control the voltage and frequency 
of the distribution system, which is stated as the master unit. The rest of 
DG units are stated as the slave units that work in current control mode. 
Thus, the master-slave control technique (Alizadeh et al., 2020; Gilani 
et al., 2020; Momen et al., 2021, 2020) is frequently used for MG for-
mation problem in distribution system resilience studies. In Alizadeh 
et al. (2020), a bi-level optimization model based on master-slave 
technique (MST) was presented to boost the distribution system resil-
ience after natural disasters considering the availability of fast-charging 

stations. In the lower level, the dynamic charging demand of in-service 
stations is determined according to the transportation network con-
straints and the upper level determines the boundaries of the islands for 
maximizing the recovered loads. In Gilani et al. (2020), an MILP model 
was presented to recover critical loads based on MG formation and 
optimal management of distributed energy resources after extreme 
events. In Momen et al. (2021), a two-stage optimization was proposed 
for enhancing the resilience of distribution systems after an HR event 
using distributed energy resources. A single-objective model was intro-
duced in (Momen et al., 2020) to form MGs by means of electric vehicles 
and direct load control to restore critical loads. The proposed model in 
this work reduces the number of binary and continuous variables lead-
ing to significant enhancement in computational performance of the 
problem. A method was presented in Sedzro et al. (2017) to optimally 
form MGs aiming at recovering critical loads after a disturbance. How-
ever, these works did not consider various demand response programs 
including transferable, curtailable, and shiftable loads to improve dis-
tribution system resilience in extreme conditions. In addition, load 
restoration is just considered as a single-objective optimization in these 
works. 

Implementing demand response programs is an effective measure for 
improving the resilience of distribution systems against HR events. 
Critical loads could be restored more efficiently as non-critical loads are 
shed or shifted according to contracts between customers and distribu-
tion system operator (DSO). In Shi et al. (2021), a post-event restoration 
model was presented to enhance distribution system resilience by 
considering distributed energy resources. This work considers critical 
loads and interruptible loads as a demand response program to enhance 
the resilience of distribution systems after HR events. In Bynum et al. 
(2019), a grid-centric stochastic programming model was proposed to 
employ demand response for enhancing network resilience instead of 
investing in transmission line hardening. However, this work considered 

Pcur
cu,m,ψ,t active power (kW) of curtailable load scheme for bus cu in 

microgrid m 
Pcur,up

cu,ψ,t increasing power transfer of curtailable load scheme for 
bus cu 

Pcur,down
cu,ψ,t decreasing power transfer of curtailable load scheme for 

bus cu 
δcur,up

cu,ψ,t binary variable indicating whether increasing power 
transfer has been performed on the bus 

δcur,down
cu,ψ,t binary variable indicating whether decreasing power 

transfer has been performed on the bus 
Ptra

tr,m,ψ,t active power (kW) of transferable load scheme for bus tr in 
microgrid m 

Ptra,up
tr,ψ,t increasing power transfer of transferable load scheme for 

bus tr 
Ptra,down

tr,ψ,t decreasing power transfer of transferable load scheme for 
bus tr 

δtra,up
tr,ψ,t binary variable indicating whether increasing power 

transfer has been performed on the bus 
δtra,down

tr,ψ,t binary variable indicating whether decreasing power 
transfer has been performed on the bus 

Pshed
i,m,ψ ,t load shedding (kW) of load i in microgrid m 

Costsha
sh,ψ ,t load control cost ($) of shiftable load scheme for bus sh 

Costcur
cu,ψ ,t load control cost ($) of curtailable load scheme for bus cu 

Costtratr,ψ ,t load control cost ($) of transferable load scheme for bus tr 
VOLLshed

i,ψ,t value of lost load ($) for load i 

Line & bus 
αi,m binary variable: 1 if bus i belongs to microgrid m: 

0 otherwise. 
λi binary variable: 1 if bus i is the main bus: 0 otherwise. 
βl binary variable: 1 if line l is active: 0 otherwise. 
βl,m binary variable: 1 if line l in microgrid m is active: 

0 otherwise. 
βpos

l,m,t ,β
neg
l,m,t auxiliary variables indicating the status of line l in 

microgrid m at time t 
Fflow

l,m,ψ ,t auxiliary variable indicating fictitious power flow of line l 
in microgrid m 

PLl binary variable: 1 if line l is functional: 0 otherwise. 
PBi binary variable: 1 if bus i is functional: 0 otherwise. 
Pload

i,m,ψ ,t ,Qload
i,m,ψ ,t active (kW) and reactive (kVar) power of load i in 

microgrid m 
Pflow

l,m,ψ ,t ,Q
flow
l,m,ψ ,t active (kW) and reactive (kVar) power flow of line l in 

microgrid m 
Pinj

i,m,ψ ,t ,Q
inj
i,m,ψ,t active (kW) and reactive (kVar) power injection to bus 

i in microgrid m 
Pflow,pos

l,m,ψ ,t ,Pflow,neg
l,m,ψ ,t auxiliary variables indicating the power flow status 
of line l in microgrid m 

Vi,m,ψ ,t voltage magnitude of bus i in microgrid m 
θi,m,ψ ,t voltage angle of bus i in microgrid m 
Psource

m,ψ ,t auxiliary variable for Point of common coupling (PCC) 
power injection 

Resiliency Indices 
ResMG

m,ψ microgrid resilience index 
ResNet

ψ network resilience index  
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demand response contracts for chemical process facilities in trans-
mission network. In Hafiz et al. (2019), a framework for resilient dis-
tribution service restoration was presented by considering the 
integrated control of household flexible appliances to shape the demand 
curve. This work did not use dynamic MG formation to restore critical 
loads after HR events. Also, restoration cost is not considered as an 
objective function for implementing demand response programs. The 
classification of previous resilience studies is summarized in Table 1 
which includes test system, formulation, power flow (PF), solving 
method, uncertainty modeling, objective functions (OF), and opera-
tional strategies. 

Thus, in the above discussions, none of the articles considered a joint 
scheme of dynamic MG formation along with different demand response 
programs as operational strategies in the service restoration process. In 
addition, there is a gap in recent studies for a mathematical formulation 
addressing the multi-objective optimization of load recovery and oper-
ation costs in the post-event service restoration process. Therefore, in 
this paper, a cost-restoration stochastic optimization is introduced as an 
MILP model in order to fill the gaps of previous research studies. The key 
contributions of the proposed approach are the following:  

• A novel two-objective stochastic optimization model is proposed to 
maximize the network load restoration and minimize operation costs 
considering the uncertainties of load, wind speed, and solar radia-
tion. The proposed model examines efficient operation of MGs under 
real conditions after HR events.  

• The ε-constraint method is used to solve the two-objective model and 
the fuzzy satisfying technique is deployed to choose the best possible 
solution. 

• MG formation and demand response programs including transfer-
able, curtailable, and shiftable loads are employed for enhancing the 
distribution system resilience. 

The remainder of this paper is organized as follows. The two- 
objective optimization model is formulated in Section 2 incorporating 
MG formation and demand response programs. The ε-constraint method 
and fuzzy-based technique for compromising the optimal solution are 
discussed in Section 3. Numerical studies are presented in Section 4. 
Finally, the conclusive remarks are drawn in Section 5. 

2. Problem formulation 

Fig. 1 shows the flowchart of the post-event restoration model for 
distribution networks against HR events. As damaged lines and buses are 
determined in Stage 1, the schedulable area for microgrid formation is 
identified in Stage 2. Schedulable area is the set of nodes and lines not 
connected to the upstream network. In the presented model, the elec-
tricity distribution network is divided into several MGs using distributed 
generators and automatic switches to minimize the load not supplied 
and operation costs. Therefore, a multi-objective restoration model is 
proposed in Stage 3 considering MG formation and operation constraints 
as well as smart grid technologies. Resilience indices are then calculated 
to assess the distribution network performance in the restoration pro-
cess. Detailed formulation of the objective functions and associated 
constraints of Stage 3 are presented in the following. 

2.1. Topological constraints 

Graph theory algorithm is an applicable technique to consider MG 
formation topological constraints (Ding et al., 2017; Mousavizadeh 
et al., 2018). In the presented model, a network graph involving all the 
lines and nodes is extracted. Since tie lines are considered, the network 
graph will contain several loops. In addition, at least one DG with the 
ability to control the bus voltages and frequency in each MG is required 
which is called the master unit. In case of multiple DGs in a MG, only one 
of them will be chosen as the master unit and the others will be Ta

bl
e 

1 
Su

rv
ey

 o
f p

re
vi

ou
s 

re
si

lie
nc

e 
st

ud
ie

s.
  

Re
fe

re
nc

e 
Te

st
 s

ys
te

m
 

Fo
rm

ul
at

io
n 

Po
w

er
 F

lo
w

 
So

lv
in

g 
m

et
ho

d 
U

nc
er

ta
in

ty
 

m
od

el
in

g 
O

F 
O

pe
ra

tio
na

l s
tr

at
eg

ie
s 

Tr
an

sm
is

si
on

 
D

is
tr

ib
ut

io
n 

M
at

he
m

at
ic

al
 

H
eu

ri
st

ic
 

Lo
ad

 
PV

 
W

T 
Lo

ad
 

re
st

or
at

io
n 

O
pe

ra
tio

n 
co

st
 

Re
co

nfi
gu

ra
tio

n 
M

G
 fo

rm
at

io
n 

us
in

g 
M

SC
 

D
em

an
d 

re
sp

on
se

 
pr

og
ra

m
s 

(S
ed

zr
o 

et
 a

l.,
 

20
18

)  
✓

 
H

eu
ri

st
ic

 
Li

ne
ar

iz
ed

 
D

is
tF

lo
w

  
✓

   
 

✓
   

  

(Z
ad

sa
r 

et
 a

l.,
 

20
17

)  
✓

 
H

eu
ri

st
ic

 
A

C 
po

w
er

 fl
ow

  
✓

   
  

✓
 

✓
  

✓
 

(Z
hu

 e
t a

l.,
 

20
20

)  
✓

 
M

IN
LP

 
M

od
ifi

ed
 D

is
tF

lo
w

 
✓

   
  

✓
  

✓
   

(B
is

w
as

 e
t a

l.,
 

20
21

)  
✓

 
M

IL
P 

Li
ne

ar
iz

ed
 

D
is

tr
ib

ut
io

n 
Fl

ow
 

✓
  

✓
 

✓
 

✓
 

✓
  

✓
   

(A
liz

ad
eh

 
et

 a
l.,

 2
02

0)
  

✓
 

M
IL

P 
Li

ne
ar

iz
ed

 p
ow

er
 

flo
w

 
✓

   
 

✓
 

✓
  

✓
 

✓
 

✓
 

(G
ila

ni
 e

t a
l.,

 
20

20
)  

✓
 

M
IL

P 
Li

ne
ar

iz
ed

 p
ow

er
 

flo
w

 
✓

  
✓

 
✓

 
✓

 
✓

  
✓

 
✓

 
✓

 

(M
om

en
 e

t a
l.,

 
20

20
)  

✓
 

M
IL

P 
Li

ne
ar

iz
ed

 
D

is
tF

lo
w

 
✓

  
✓

   
✓

 
✓

 
✓

 
✓

 
✓

 

(S
hi

 e
t a

l.,
 

20
21

)  
✓

 
M

IL
P 

Li
ne

ar
iz

ed
 

D
is

tF
lo

w
 

✓
   

✓
   

✓
 

✓
  

✓
 

(B
yn

um
 e

t a
l.,

 
20

19
) 

✓
  

M
IN

LP
 

D
C 

po
w

er
 fl

ow
 

✓
   

   
   

✓
 

(H
afi

z 
et

 a
l.,

 
20

19
)  

✓
 

M
IL

P 
A

C 
po

w
er

 fl
ow

 
✓

  
✓

 
✓

  
✓

   
 

✓
 

Cu
rr

en
t w

or
k 

 
✓

 
M

IL
P 

Li
ne

ar
iz

ed
 p

ow
er

 
flo

w
 

✓
  

✓
 

✓
 

✓
 

✓
 

✓
 

✓
 

✓
 

✓
  

M.A. Gilani et al.                                                                                                                                                                                                                               



Sustainable Cities and Society 83 (2022) 103975

5

considered as slave units. More explanations about the master-slave 
control technique are given in (Ding et al., 2017). Thus, the topologi-
cal constraints are formulated as follows. 

∑Nmdg

m=1
αi,m ≤ 1, ∀i (1)  

αi,m ≤ αr,m,∀i,m, r ∈ iMDG (2)  

βl =
∑Nmdg

m=1
βl,m, ∀l (3)  

βl,m ≤ αi,m, i = iFrom(l),∀l,m (4)  

βl,m ≤ αi,m, i = iTo(l), ∀l,m (5)  

βl,m ≥ αi,m + αr,m − 1, i = iFrom(l), r = iTo(l), ∀l,m (6)  

βl ≤ PLl, ∀l (7)  

αi,m ≤ PBi,∀i, ∀m (8)  

αi,m = αr,m, i = iFrom(l), r = iTo(l), ∀m, l ∈ Lnots (9)  

∑NL

l=1

[
Signi,l,ψ ×Fflow

l,m,ψ ,t

]
= Pinj

i,m,ψ ,t,∀i,ψ ,m, t (10)  

λiPsource
m,ψ,t + Pinj

i,m,ψ ,t = Pload
i,m,ψ,t,∀i,ψ ,m, t (11)  

Pflow,pos
l,m,ψ ,t ≤ Pflow,max

l × βpos
l,m,ψ ,t,∀l,ψ ,m, t (12)  

Pflow,neg
l,m,ψ ,t ≤ Pflow,max

l × βneg
l,m,ψ,t,∀l,ψ ,m, t (13)  

Fflow
l,m,ψ ,t = Pflow,pos

l,m,ψ ,t − Pflow,neg
l,m,ψ,t ,∀l,ψ ,m, t (14)  

βpos
l,m,ψ ,t + βneg

l,m,ψ ,t ≤ βl,m, ∀l,ψ ,m, t (15)  

∑Nmdg

m=1

∑NL

l=1

[
βpos

l,m,ψ ,t − βneg
l,m,ψ,t

]
× Signi,l,ψ ≤ 1, ∀i,ψ, t (16)  

In this model, each node will only belong to one MG or it will not belong 
to any MGs as imposed in Eq. (1). Eq. (2) models the root node 
constraint. Node i can be connected to MG m if the mth member of iMDG is 
selected as the root node. Constraints (3)-(6) indicate that if the buses on 
two sides of a line are not located on the same MG, the binary variable 
status of the line is set to zero. Eqs. (7) and (8) denote the line status and 
the failure state of the damaged buses. Installing remote control switches 
on all lines in an electrical distribution network is not economically 
feasible. Hence, constraint (9) indicates the switch status on the distri-
bution lines. A spanning tree search technique (Mousavizadeh et al., 
2018) is employed to eliminate unconnected loops and nodes to ensure 
radiality in each MG. The radiality model is formulated by constraints 
(10)-(16). 

2.2. Electrical constraints 

2.2.1. Load flow constraints 
In this paper, the method presented in Yuan et al., 2016) is utilized to 

perform load flow computations in the distribution network. Using this 
approach, the node voltage magnitudes and angles are computed ac-
cording to a linear approximation. Linearized power flow equations in 

Fig. 1. The flowchart of the proposed two-objective restoration model.  
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electrical distribution networks can be expressed by Eqs. (17)–((20). 
Eqs. (17) and (18) represent the power balance constraints in each bus. 
In addition, Eqs. (19) and (20) represent the power flow constraints of 
distribution lines. Also, the limitations of the slack variables are defined 
in Eqs. (21)–(27). 

∑Nmdg

m=1

(
PDG

i,m,ψ ,t +Psor
i,m,ψ ,t +Pwnd

i,m,ψ ,t +PES,dch
i,m,ψ ,t − PES,ch

i,m,ψ ,t − Pload
i,m,ψ ,t

)

= −
∑Nmdg

m=1
Pinj

i,m,ψ,t,∀i,ψ ,m, t (17)  

∑Nmdg

m=1

(
QDG

i,m,ψ ,t − Qload
i,m,ψ ,t

)
= −

∑Nmdg

m=1
Qinj

i,m,ψ ,t,∀i,ψ, t (18)  

− βl,m × Pflow,max
l ≤ Pflow

l,m,ψ ,t ≤ βl,m × Pflow,max
l ,∀l,m,ψ , t (19)  

− βl,m × Qflow,max
l ≤ Qflow

l,m,ψ ,t ≤ βl,m × Qflow,max
l ,∀l,m,ψ , t (20)  

∑Nmdg

m=1

[
Pflow

l,m,ψ ,t − BigM ×
(
1 − βl,m

)]
≤
∑

i∈iFrom

∑

r∈iTo

[[
Vi,m,ψ ,t − Vr,m,ψ ,t

]
× Z1l

+
[
θi,m,ψ ,t − θr,m,ψ ,t

]
×Z2l], ∀l,m,ψ

(21)  

∑Nmdg

m=1

[
Pflow

l,m,ψ ,t − BigM ×
(
1 − βl,m

)]
≥
∑

i∈iFrom

∑

r∈iTo

[[
Vi,m,ψ ,t − Vr,m,ψ ,t

]

× Z1l +
[
θi,m,ψ ,t − θr,m,ψ ,t

]
× Z2l],∀l,m,ψ

(22)  

∑Nmdg

m=1

[
Qflow

l,m,ψ ,t − BigM ×
(
1 − βl,m

)]
≤
∑

i∈iFrom

∑

r∈iTo

[[
Vi,m,ψ ,t − Vr,m,ψ ,t

]

×Z2l +
[
θi,m,ψ ,t − θr,m,ψ ,t

]
×Z1l], ∀l,m,ψ

(23)  

∑Nmdg

m=1

[
Qflow

l,m,ψ ,t − BigM ×
(
1 − βl,m

)]
≥
∑

i∈iFrom

∑

r∈iTo

[[
Vi,m,ψ ,t − Vr,m,ψ ,t

]

×Z2l +
[
θi,m,ψ ,t − θr,m,ψ ,t

]
×Z1l], ∀l,m,ψ

(24)  

0.9 ≤ Vi,m,ψ .t ≤ 1.1, ∀i,ψ ,m, t (25)  

−
(
1 − αi,m

)
× θmax ≤ θi,m,ψ ,t ≤

(
1 − αi,m

)
× θmax, ∀ψ ,m, t, i = iMDG(m) (26)  

− αi,m × θmax ≤ θi,m,ψ ,t ≤ αi,m × θmax,∀i,ψ ,m, t (27)  

2.2.2. Demand response constraints 

2.2.2.1. Shiftable loads. Shiftable demand response does not restrict 
power consumption at each time slot as long as it is able to satisfy the 
total load demand within a pre-specified time interval Song et al., 2020). 
The shiftable load constraints are presented in Eqs. (28)–((32). Eq. (28) 
indicates the net power transferred on the bus for shiftable load unit sh. 
Eq. (29) denotes that the sum of increased power transfer should not 
exceed the decreased power transfer for each load unit sh during the 
demand response contracts. Constraints (30) and (31) restrict the 
increased and decreased power transfers to their maximum allowed 
values for each load unit sh, respectively. Constraint (32) enforces that 
the power transfer for load unit sh cannot be increased or decreased at 
the same time. 

∑Nmdg

m=1
Psha

sh,m,ψ ,t =Psha,up
sh,ψ ,t − Psha,down

sh,ψ ,t ,∀sh,ψ, t (28)  

∑

t
Psha,up

sh,ψ ,t −
∑

t
Psha,down

sh,ψ ,t ≤ 0, ∀sh,ψ (29)  

Psha,up
sh,ψ ,t ≤ δsha,up

sh,ψ ,t × LPFsha,up × Pload,pre
i,ψ ,t ,∀ψ , t, i ∈ sh (30)  

Psha,down
sh,ψ ,t ≤ δsha,down

sh,ψ ,t × LPFsha,down × Pload,pre
i,ψ ,t , ∀ψ , t, i ∈ sh (31)  

δsha,up
sh,ψ ,t + δsha,down

sh,ψ ,t ≤ 1, ∀sh,ψ , t (32)  

2.2.2.2. Curtailable loads 
Curtailable demand response allows power curtailment within a 

specific period while it may cause the load to rebound in the subsequent 
hours Song et al., 2020). The curtailable load constraints are shown in 
Eqs. (33)–((37). Constraint (33) indicates the net power transferred on 
the bus for curtailable load unit cu. Constraint (34) denotes that the sum 
of decreased and increased power transfers should be zero during the 
demand response contracts for each load unit cu. It could be implied that 
the increased power transfer in time t should be formerly decreased 
during three hours based on the predetermined coefficients. Eqs. (35) 
and (36) restrict the increased and decreased power transfers to their 
maximum allowed values for each load unit cu, respectively. Eq. (37) 
indicates that the power transfer for load unit cu cannot be increased or 
decreased at the same time. 

∑Nmdg

m=1
Pcur

cu,m,ψ ,t =Pcur,up
cu,ψ ,t − Pcur,down

cu,ψ,t ,∀cu,ψ , t (33)  

Pcur,up
cu,ψ ,t = 0.6 × Pcur,down

cu,ψ ,t− 1 + 0.3 × Pcur,down
cu,ψ ,t− 2 + 0.1 × Pcur,down

cu,ψ ,t− 3 , ∀cu,ψ , t (34)  

Pcur,up
cu,ψ ,t ≤ δcur,up

cu,ψ ,t × LPFcur,up × Pload,pre
i,ψ,t ,∀ψ, t, i ∈ cu (35)  

Pcur,down
cu,ψ ,t ≤ δcur,down

cu,ψ ,t × LPFcur,down × Pload,pre
i,ψ ,t ,∀ψ, t, i ∈ cu (36)  

δcur,up
cu,ψ ,t + δcur,down

cu,ψ ,t ≤ 1,∀cur,ψ, t (37)  

2.2.2.3. Transferable loads. Transferable demand response provides the 
loads with a flexibility in transferring the starting time while the con-
sumption duration is fixed. Once started, the transferable load cannot be 
interrupted and hence the daily load remains constant Song et al., 2020). 
This concept is modeled by Eqs. (38)–((42). Eq. (38) denotes the net 
power transferred on the bus for transferrable load unit tr. Eq. (39) in-
dicates that the sum of decreased and increased power transfers should 
be zero for each load unit tr during the demand response contracts. It is 
worth mentioning that the decreased power transfer in time t should be 
formerly compensated by an increased power transfer in t-τ. Constraints 
(40) and (41) limit the increased and decreased power transfers to their 
maximum allowed values for each load unit tr, respectively. Constraint 
(42) denotes that the power transfer for load unit tr cannot be increased 
or decreased at the same time. 

∑Nmdg

m=1
Ptra

tr,m,ψ ,t =Ptra,up
tr,ψ,t − Ptra,down

tr,ψ ,t , ∀tr,ψ, t (38)  

Ptra,up
tr,ψ ,t− τ − Ptra,down

tr,ψ ,t = 0, ∀tr,ψ , t (39)  

Ptra,up
tr,ψ ,t ≤ δtra,up

tr,ψ ,t × LPFtra,up × Pload,pre
i,ψ ,t ,∀ψ , t, i ∈ tr (40)  

Ptra,down
tr,ψ ,t ≤ δtra,down

tr,ψ ,t × LPFtra,down × Pload,pre
i,ψ ,t ,∀ψ , t, i ∈ tr (41)  

δtra,up
tr,ψ ,t + δtra,down

tr,ψ,t ≤ 1, ∀tr,ψ, t (42)  

2.2.3. Load constraints 
Eqs. (43)–(52) indicate the active and reactive load constraints with 

regards to the demand response programs. 

Pload
i,m,ψ ,t = αi,m × Pload,pre

i,ψ ,t + Psha
sh,m,ψ ,t,∀ψ ,m, t, i ∈ sh (43) 
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Pload
i,m,ψ ,t = αi,m × Pload,pre

i,ψ,t + Pcur
cu,m,ψ ,t, ∀ψ ,m, t, i ∈ cu (44)  

Pload
i,m,ψ ,t = αi,m × Pload,pre

i,ψ,t + Ptra
tr,m,ψ ,t, ∀ψ ,m, t, i ∈ tr (45)  

Pload
i,m,ψ ,t = αi,m × Pload,pre

i,ψ,t − Pshed
i,m,ψ ,t,∀ψ ,m, t, i ∈ q (46)  

Pload
i,m,ψ ,t ≤ αi,m × BigM,∀ψ ,m, t, i ∈ j (47)  

Qload
i,m,ψ ,t = αi,m × Qload,pre

i,ψ ,t + tan
(
ϕi,ψ
)
× Psha

i,m,ψ ,t, ∀ψ ,m, t, i ∈ sh (48)  

Qload
i,m,ψ ,t = αi,m × Qload,pre

i,ψ ,t + tan
(
ϕi,ψ
)
× Pcur

i,m,ψ ,t, ∀ψ ,m, t, i ∈ cu (49)  

Qload
i,m,ψ ,t = αi,m × Qload,tra

i,ψ ,t + tan
(
ϕi,ψ
)
× Ptra

i,m,ψ ,t,∀ψ,m, t, i ∈ tr (50)  

Qload
i,m,ψ ,t = αi,m × Qload,pre

i,ψ ,t − tan
(
ϕi,ψ
)
× Pshed

i,m,ψ ,t, ∀ψ ,m, t, i ∈ q (51)  

Qload
i,m,ψ ,t ≤ αi,m × BigN, ∀ψ ,m, t, i ∈ j (52)  

2.2.4. Constraints of DGs and energy storage units 

2.2.4.1. DGs. Technical constraints of DGs for active and reactive 
power generation are shown in Eqs. (53) and (54). 

αi,m × PDG,min
dg ≤ PDG

dg,m,ψ ,t ≤ αi,m × PDG,max
dg , i = iDG(dg),∀dg,ψ,m, t (53)  

αi,m × QDG,min
dg ≤ QDG

dg,m,ψ ,t ≤ αi,m × QDG,max
dg , i = iDG(dg),∀dg,ψ,m, t (54)  

2.2.4.2. PVs 
Eq. (55) represents the output power constraint of PV units: 

Psor
pv,m,ψ ,t ≤ αi,m × Psor,max

pv,ψ ,t , i = isor(pv),∀pv,ψ ,m, t (55)  

2.2.4.3. Wind turbines. Eq. (56) formulates the output power con-
straints of the wind turbines: 

Pwnd
w,m,ψ,t ≤ αi,m × Pwnd,max

w,ψ ,t , i = iwnd(w),∀w,ψ ,m, t (56)  

2.2.4.4. Energy storage units. Eqs. (57)–(60) show the charging and 
discharging constraints of the energy storage units. In addition, Eqs. 
(61)–(63) show maximum, minimum, and initial charge level con-
straints of energy storage units, respectively. The mathematic calcula-
tion of SOC is denoted in Eq. (64). 

γES
e,m,ψ ,t ≤ αi,m, i = iES(e), ∀e,ψ ,m, t (57)  

PES,ch
e,m,ψ ,t ≤ γES

e,m,ψ ,t × RTch,max
e ,∀e,ψ ,m, t (58)  

PES,dch
e,m,ψ ,t ≤

(
1 − γES

e,m,ψ,t

)
× RTdch,max

e ,∀e,ψ,m, t (59)  

PES,dch
e,m,ψ ,t ≤ αi,m × RTdch,max

e , i = iES(e), ∀e,ψ ,m, t (60)  

PSOC
e,m,ψ ,t ≤ αi,m × SOCmax

e , i = iES(e), ∀e,ψ ,m, t (61)  

PSOC
e,m,ψ ,t ≥ αi,m × SOCmin

e , i = iES(e), ∀e,ψ,m, t (62)  

PSOC
e,m,ψ ,t = αi,m × SOCinitial

e + PES,ch
e,m,ψ ,t × ηES

e − PES,dch
e,m,ψ,t ×

1
ηES

e
, i = iES(e), t

= 1,∀e,ψ,m (63)  

PSOC
e,m,ψ ,t = PSOC

e,m,ψ,t− 1 + PES,ch
e,m,ψ ,t × ηES

e − PES,dch
e,m,ψ ,t ×

1
ηES

e
, t > 1,∀e,ψ ,m (64)  

2.2.5. Bus voltage constraints 
Eqs. (65) and (66) show the bus voltage magnitude and angle con-

straints, respectively. Moreover, Eq. (67) indicates that if DG m is chosen 
as the master unit, the voltage of the corresponding bus is set to the 
desired value. In addition, the voltage angle of the corresponding bus is 
set to zero by Eq. (68). 

γi,k × VMin ≤ Vi,k,t,ω ≤ γi,k × VMax,∀i ∈ B,∀k ∈ K,∀t ∈ T,∀ω ∈ Ω (65)  

− γi,k × δMax ≤ δi,k,t,ω ≤ γi,k × δMax, ∀i ∈ B,∀k ∈ K,∀t ∈ T,∀ω ∈ Ω (66)  

Vi,k,t,ω = γi,k×VDG,set
k , ∀i ∈ BMDG, ∀k ∈ K,∀t ∈ T,∀ω ∈ Ω (67)  

−
(
1 − γi,k

)
× δMax ≤ δi,k,t,ω ≤

(
1 − γi,k

)
× δMax,∀i ∈ BMDG, ∀k ∈ K,∀t ∈ T,∀ω

∈ Ω
(68)  

2.2.6. Power balance of MGs 
Eq. (69) ensures power balance in each MG. 

∑NDG

g=1
PDG,s

g,k,t +
∑NWT

n=1
PWT,s

n,k,t +
∑NES

e=1
PESdch,s

e,k,t −
∑NES

e=1
PESch,s

e,k,t −
∑NLoad

i=1
PL,s

i,k,t= 0, ∀ k

∈ K ,∀t ∈ T (69)  

2.3. Resilience indices 

To assess the performance of the network and MGs, we use the 
network and MG resilience indices. The network resilience index could 
be extracted using Eq. (70), which is stated as the ratio of the recovered 
loads of network to sum of all connected loads to the network consid-
ering load priority weights. The MG resilience index is also calculated 
using Eq. (71), which is expressed as one minus the ratio of the unsup-
plied loads to the supplied loads in each MG, taking into account the 
load priority weights. 

ResNet
ψ =

∑Nbus

i=1

∑Nmdg

m=1

∑

t
Fpr

i,ψ ,t × Pload
i,m,ψ,t

∑Nbus

i=1

∑

t
Fpr

i,ψ ,t × Pload,pre
i,ψ ,t

,∀ψ (70)  

ResMG
m,ψ = 1 −

∑

q

∑

t
Pshed

q,m,ψ ,t

∑

i

∑

t
Pload

i,m,ψ ,t
,∀m,ψ (71)  

2.4. Objective functions 

2.4.1. Network load restoration 
In the first objective function, the performance of the distribution 

network against the HR event should be improved. Therefore, the first 
objective function helps minimize the load not supplied. In other words, 
the first objective function maximizes the total restored loads of the 
scenarios based on their priority as shown in Eq. (72): 

OF1 =
∑

ψ
εψ
∑Nbus

i=1

∑

t
Pload,pre

i,ψ ,t −
∑

ψ
εψ
∑Nbus

i=1

∑Nmdg

m=1

∑

t
Fpr

i,ψ ,t × Pload
i,m,ψ ,t (72)  

2.4.2. Restoration cost 
Restoration cost includes the budget required for implementing de-

mand response programs and power supply from DGs, wind turbines, 
photovoltaic resources, and energy storage units as written in Eq. (73). 
The restoration cost should be minimized. Eqs. (74)–(81) detail different 
elements of restoration cost. 
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OF2 =
∑

ψ
εψ

[
∑

t

∑

sh
Costsha

sh,ψ ,t +
∑

t

∑

cu
Costcur

cu,ψ ,t +
∑

t

∑

tr
Costtra

tr,ψ ,t 

+
∑

t

∑

q
VOLLshed

q,ψ ,t +
∑

t

∑

dg
CostDG

dg,ψ ,t +
∑

t

∑

pv
Costsor

pv,ψ ,t +
∑

t

∑

w
Costwnd

w,ψ,t

+
∑

t

∑

e
CostES

e,ψ ,t

]

(73)  

Costsha
sh,ψ ,t =

∑Nmdg

m=1

[
Psha,up

sh,ψ ,t +Psha,down
sh,ψ ,t

]
× Prsha

sh,ψ ,t,∀sh,ψ, t (74)  

Costcur
cu,ψ ,t =

∑Nmdg

m=1

[
Pcur,up

cu,ψ ,t +Pcur,down
cu,ψ ,t

]
× Prcur

cu,ψ ,t, ∀cu,ψ , t (75)  

Costtra
tr,ψ ,t =

∑Nmdg

m=1

[
Ptra,up

tr,ψ ,t +Ptra,down
tr,ψ ,t

]
×Prtra

tr,ψ ,t,∀tr,ψ , t (76)  

VOLLshed
q,ψ,t =

∑Nmdg

m=1
Pshed

i,m,ψ ,t ×Prshed
i,t , ∀ψ , t (77)  

CostDG
dg,ψ ,t =

∑Nmdg

m=1
PDG

dg,m,ψ ,t ×PrDG
dg,ψ,t,∀dg,ψ, t (78)  

Costsor
pv,ψ,t =

∑Nmdg

m=1
Psor

pv,m,ψ ,t × Prsor
pv,ψ ,t,∀pv,ψ , t (79)  

Costwnd
w,ψ ,t =

∑Nmdg

m=1
Pwnd

w,m,ψ ,t ×Prwnd
w,ψ ,t,∀w,ψ, t (80)  

CostES
e,ψ,t =

∑Nmdg

m=1

[
PES,ch

e,m,ψ ,t +PES,dch
e,m,ψ,t

]
× PrES

e,ψ ,t, ∀e,ψ , t (81)  

2.5. Modeling uncertainty of input data 

Most of the models resembling real-world processes have some un-
certain parameters. This section uses a scenario-based strategy to model 
the uncertainty of the network input data, namely the load, wind speed, 
and solar radiation (Farsangi et al., 2018). 

2.5.1. Modeling load uncertainty 
The normal probability distribution function is employed to model 

the load uncertainty as shown in Eq. (82). In this relation, variables μ 
and δ represent the mean and the standard deviation of the load, 
respectively (Farsangi et al., 2018). 

f (x) =
1

σ
̅̅̅̅̅
2π

√ exp

(

−
(x − μ)2

2σ2

)

(82)  

2.5.2. Modeling the wind speed uncertainty 
The Weibull probability density function is used to formulate wind 

speed prediction errors as shown in Eq. (83). The variables k and c 
represent the shape and scale indices, respectively, computed by using 
mean and standard deviation of wind speed (Farsangi et al., 2018). 

f(v) =
(

k
c

)(v
c

)(k− 1)
exp
[

−
(v

c

)k
]

(83)  

2.5.3. Modeling the solar uncertainty 
Beta probability distribution function, shown in Eq. (84), is used to 

represent the solar radiation uncertainty parameter. The variables α and 
β are the beta distribution parameters and are calculated according to 

the mean value and standard deviation of the solar radiation (Farsangi 
et al., 2018). 

f (sor) =

⎧
⎪⎨

⎪⎩

Γ(α + β)
Γ(α)Γ(β) × (sor)α− 1

× (1 − sor)(β− 1)0 ≤ sor ≤ 1,α ≥ 0,β ≥ 0

0otherwise
(84)  

The computational burden of a scenario-based optimization model de-
pends on the number of generated scenarios. Accordingly, it is necessary 
to reduce the set of main scenarios in such a way that the problem 
characteristics do not significantly change (Ghasemi et al., 2021). The 
number of reduced scenarios depends on the nature of the optimization 
problem. This paper uses the K-means clustering algorithm to reduce the 
number of scenarios. More details about K-means clustering method are 
given in (Chévez et al., 2017). 

3. Optimization method 

The ε-constraint method is utilized to solve the proposed multi- 
objective optimization model. As the first step in ε-constraint method, 
the payoff table should be calculated. The payoff table refers to the in-
dividual optimization results of the each objective function. After the 
computation of the payoff table, one of the objective functions is 
considered as the main function while the other is considered as a 
constraint for the main objective function (Nojavan et al., 2018). Hence, 
a single-objective problem can be optimized according to constraint 
(85). 

min (OF1)

s.t.
{

OF2 ≤ ε

Equa l and unequal equations

(85)  

The single-objective optimization problem is solved for each ε (begin-
ning with OF2

min and ending with OF2
max), after which optimal solutions 

are derived. The set of all solutions extracted for all variations of ε are 
known as the Pareto optimal front of the multi-objective optimization 
problem. Afterward, the best possible solution is selected from among 
the obtained solutions by using a fuzzy satisfying technique to convert 
both of the conflicting objective functions to their respective normalized 
forms as written in (86) (Amirioun et al., 2018). 

μs
k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1f s
k ≤ f min

k

f max
k − f s

k

f max
k − f min

k
f min
k ≤ f s

k ≤ f max
k

0f s
k ≥ f max

k

(86)  

In the above equation, μs
k refers to the membership function of the sth 

solution of objective function k whereas fmin
k and fmax

k represent mini-
mum and maximum values of the kth objective function in the payoff 
table, respectively. Then, for each Pareto solution, the minimum mem-
bership function is identified: 

τs = min
(
μs

k

)
, ∀s (87)  

Finally, the Pareto solution with the maximum value of τs will be 
selected as the final solution of the multi-objective problem. 

From a practical perspective, the Pareto optimal front (POF) helps 
system operators and managers perceive the status of objective functions 
at each POF solution in addition to the final solution. In extreme con-
ditions after HR events, managers may prefer to select a non-optimal 
solution in exchange for satisfying management issues. The decision of 
managers is biased by different factors including social impacts of load 
interruptions and economic constraint related to available budget for 
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service restoration. 

4. Numerical results 

In this section, the proposed model is implemented on the IEEE 37- 
node and the modified 118-node distribution systems. Simulations 
were performed on a PC with an Intel Core i7–700 2.4 GHz and 8 GB of 
memory. The proposed model was solved using CPLEX solver under the 
GAMS environment with a 0.01% relative optimality gap. It is worth 
mentioning that the proposed microgrid formation-based restoration 
model can be implemented for the post-event condition after any natural 
disasters provided that particular consequences of the event such as line 
outages are accurately accounted for in the model. 

4.1. IEEE-37 node distribution network 

This test network is configured with one upstream substation, 12 
normally-closed lines, and 6 tie lines. The total active and reactive 
power consumptions of this network are 22.71 MW and 17.04 MVAr, 
respectively. Detailed information about the system node and line pa-
rameters is available in (Borghei & Ghassemi, 2021; Munikoti et al., 
2021). 

The required information about the location and the capacity of DGs, 
wind turbines, and energy storage is given in Table 2. In this test 
network, 2 units (DG1 to DG2) of the 3 existing DGs have the ability to 
act as a master unit, and hence, the maximum number of formable MGs 
is equal to 2. The capacity, charging and discharging rates, efficiency, 
and initial SOC of ES units are assumed to be 50 kWh, 50 kW, 85%, and 
60%, respectively. The capacity of wind turbine and photovoltaic units 
are considered to be 100 and 50 kW, respectively. The associated data on 
load, wind, and solar power uncertainties has been extracted from 
Farsangi et al. (2018) and is given in Anon (2022). The characteristics of 
demand response contracts are presented in Table 3. The operation cost 
of generation and storage units and demand response programs are 
shown in Table 4 (Nojavan et al., 2018; Zeynali et al., 2021). Fig. 2 

Table 2 
Required data on generation and storage units.  

Unit Bus Cap. (kW) Qdg
min (kVAr) Qdg

max (kVAr) Unit Bus Unit Bus Unit Bus 

DG1 11 505 − 92 92 ES1 20 PV1 24 WT1 18 
DG2 25 405 − 395 395 ES2 22 PV2 36   
DG3 21 240 − 343 343 ES3 35      

Table 3 
The characteristics of demand response programs.  

DR Bus LPFup LPFdown 

Curtailable load 3, 14, 15, 17, 18, 19, 26 0.5 0.5 
Transferable load 28, 30 0.5 0.5 
Shiftable load 32, 33, 34 0.5 0.5  

Table 4 
The operation cost of generation and storage units and demand response programs.  

PriceDG
dg,ψ,t Pricewnd

w,ψ,t Pricesor
pv,ψ,t PriceES

e,ψ,t Pricesha
sh,ψ,t Pricetra

tr,ψ,t Pricecur
cu,ψ,t Priceshed

q,t 

0.08 $/kWh 0.01 $/kWh 0.01 $/kWh 0.02 $/kWh 0.04 $/kWh 0.02 $/kWh 0.03 $/kWh 100 $/kWh  

Fig. 2. Single-line diagram of the IEEE 37-bus test network at the event onset.  
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shows the structure of the IEEE-37 bus network at the event onset. In this 
paper, it is assumed that the feeder is interrupted from the main sub-
station. Therefore, all nodes after node 3 are in the schedulable area. To 
explain the effect of utilizing demand response programs and distributed 
energy resources on the proposed model, two cases are considered as 
follows:  

• Case 1: Single-objective operation based on minimizing load 
shedding,  

• Case 2: Multi-objective operation based on minimizing load shedding 
and minimizing operation cost. 

Fig. 3. MG formation in IEEE 37-bus test system in case 1.  

Fig. 4. Different load control schemes during restoration process post the event in case 1.  
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4.1.1. Case 1 
In this case, the network scheduling is performed with the sole 

purpose of supplying the maximum load in the restoration process post 
the event neglecting the restoration cost. The post-event network 
structure is shown in Fig. 3. According to this figure, a MG has been 
formed under the post-event conditions. The supplied energy during the 
study horizon is 28,511.34 kWh and the operational cost is 2428.11 $. 
As shown in Fig. 3, the MG formation method has succeeded in using all 
three DGs in coordination via demand response programs and distrib-
uted energy resources. In this case, the network and MG resilience 
indices are 85.61% and 97.46%, respectively. 

Given the three types of demand response schemes, Fig. 4 displays 
the hourly graph of load control for transferable, curtailable, and 
shiftable loads. As seen in this figure, a portion of the load at the peak 
hour is decreased by paying the corresponding cost in each of the 3 load 
control models. However, they intend to reduce consumption at the load 
peak by encouraging more consumption at non-peak hours. For 
example, at 17 o’clock, the shiftable, curtaible and transferable loads are 
58.5, 55.9 and 170.8, respectively. Moreover, the value of load reduc-
tion in this case is 741.02 kWh. For the sake of brevity, the rest of results 
on generation profile of DGs and renewable units as well as energy 

storage scheduling are not presented for case 1. 

4.1.2. Case 2 
In this case, the scheduling is performed with the aim of minimizing 

load shedding and the restoration cost. In the first step, the front table is 
calculated for the two objective functions to compute the normal values. 
These front values are shown in Table 5. It should be mentioned that 
these values are obtained from the individual solution of each objective 
function. 

Given the formulation of the main problem and the multi-objective 
optimization, the epsilon constraint method is used in this study to 
create the Pareto boundary. In the proposed model, load shedding is 
chosen as the main objective function and restoration cost is considered 
as the additional constraint. The number of solution points considered 
on the Pareto front is 11 and variation steps for the maximum level of the 
constraint are identical. Numerical results of are summarized in Tables 6 
and Fig. 5. 

According to Table 6, the minimum membership degree at Point 5 is 
at its maximum. The restoration cost in this state is 2058.60 $ and the 
load shedding is 6956.12 kWh. In addition, the network and MG resil-
ience indices are 79.11% and 94.38%, respectively. As predicted, since 
the restoration cost is used as an additional objective function in this 
case, the resilience indices are lower than those of case 1. This limitation 
is near to real behavior of distribution system operators, since the budget 
for load restoration is not limitless. As shown in Fig. 5, the Pareto so-
lution is the best trade-off between the two objective functions. Given 
the selected optimal Pareto point, the optimal network structure is 
shown in Fig. 6. 

Table 5 
Pay-off table of the ε-constraint method for IEEE 37-bus distribution network in 
case 2.  

Scheduling objective function Load shedding (kWh) Restoration cost ($) 

Load shedding minimization 4791.66 2428.11 
Restoration cost minimization 10,077.16 1812.25  

Table 6 
Detailed Pareto solution for IEEE 37-bus distribution network in case 2.  

Iteration 
number 

Load shedding 
(kWh) 

Restoration cost 
($) 

Membership degree First 
objective function (μ1)

Membership degree Second 
objective function (μ2)

Restoration cost limit 
(epsilon) 

Minimum 
membership degree  

Load Cost mu1 mu2 Limit (Epsilon) min(mu1,mu2) 

Iter01 9697.36 1812.25 0.07185 1 1812.2575 0.071857 
Iter02 8989.62 1873.84 0.20576 0.9 1873.8437 0.205760 
Iter03 8500.40 1930.92 0.29831 0.80732 1935.4299 0.298318 
Iter04 7464.79 1997.01 0.49425 0.7 1997.0161 0.494251 
Iter05 6956.12 2058.60 0.59049 0.6 2058.6023 0.590491 
Iter06 6385.28 2120.18 0.69849 0.5 2120.1885 0.5 
Iter07 6062.70 2181.77 0.75952 0.4 2181.7747 0.4 
Iter08 5693.88 2243.36 0.82930 0.3 2243.3609 0.3 
Iter09 5180.66 2304.94 0.92640 0.2 2304.9470 0.2 
Iter10 4866.04 2366.53 0.98592 0.1 2366.5332 0.1 
Iter11 4791.66 2425.89 1 0.00360 2428.1194 0.003608  

Fig. 5. Pareto-optimal solution for IEEE 37-bus distribution network in case 2.  
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Fig. 7 displays the hourly reaction of transferable, curtailable, and 
shiftable loads. A comparison of the graph in Fig. 7 with that of with 
Fig. 5 shows that fewer DRs have been used in case 2 compared to case 1, 
which is due to simultaneous consideration of cost and load restoration 
within the proposed multi-objective function optimization. In addition, 
the most frequently used program corresponds to the shiftable load type 

as shown in Fig. 7. For example, at 17 o’clock, the shiftable, curtaible 
and transferable loads are 41.4, 55.9 and 58.5, respectively. 

Fig. 8 shows the hourly graph of power generation by DGs. 
Accordingly at the early morning hours, the generation is reduced. This 
reduction is due to the low level of load in these hours while the upper 
bound limitation of 50% for load transferring does not allow further 

Fig. 6. MG formation in IEEE 37-bus test system in case 2.  

Fig. 7. Different load control schemes during restoration process in case 2.  
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Fig. 8. Power generation by DGs in IEEE 37-bus test system in case 2.  

Fig. 9. Power generation by wind-based and PV units in IEEE 37-bus test system in case 2.  

Fig. 10. The charging/discharging power of storage units in IEEE 37-bus distribution network in case 2.  
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utilization of DG capacity. Furthermore, all renewable units in the 
network are used in this case. Fig. 9 shows the hourly graph of gener-
ation by wind-based and PV units. 

The charging/discharging power of storage units is shown in Fig. 10. 
According to this figure, storage units are charged in early hours and 
discharged in peak hours as rationally expected. 

Fig. 11. The modified 118-bus distribution network at the event onset.  

Table 7 
Pay-off table of the ε-constraint method for 118-bus distribution network.  

Scheduling objective function Load shedding (kW) Operational cost ($) 

Load shedding minimization 177,529.9 11,790.67 
Operational cost minimization 225,751.2 6812.053  

Table 8 
Detailed Pareto solution for 118-bus distribution network.  

Iteration 
number 

Load shedding 
(kWh) 

Restoration cost 
($) 

Membership degree First 
objective function (μ1)

Membership degree Second 
objective function (μ2)

Restoration cost limit 
(epsilon) 

Minimum 
membership degree  

Load Cost mu1 m2 Limit (Epsilon) min(mu1,mu2) 

Iter01 225,691.40 6812.05 0.00124 1 6812.0531 0.001240 
Iter02 219,446.70 7309.91 0.13074 0.9 7309.9144 0.130741 
Iter03 213,205.30 7807.77 0.26017 0.8 7807.7757 0.260173 
Iter04 207,187.30 8305.63 0.38497 0.7 8305.6370 0.384974 
Iter05 201,275.20 8803.49 0.50757 0.6 8803.4983 0.507576 
Iter06 196,196.50 9301.36 0.61289 0.5 9301.3596 0.5 
Iter07 190,611.40 9799.22 0.72871 0.4 9799.2209 0.4 
Iter08 185,251 10,297.08 0.83988 0.3 10,297.0822 0.3 
Iter09 180,491.40 10,794.94 0.93858 0.2 10,794.9435 0.2 
Iter10 178,629.90 11,292.80 0.95856 0.1 11,292.8048 0.1 
Iter11 177,529.90 11,595.42 1 0.039218 11,790.6662 0.039217  
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4.2. 118-bus distribution network 

The structure of 118-bus network and locations of generation and 
storage units are shown in Fig. 11. This network has 118 buses, 117 
transmission lines, and 9 tie lines shown as dotted lines in Fig. 11. DGs at 
buses 17, 24, 59, 67, 76, and 107 are considered as master units with the 

capability of voltage-frequency control and MG formation. Moreover, 3 
energy storage units have been considered for the test network. The 
capacity of PV, wind-based, and energy storage units are 50 kW, 100 
kW, and 500 kWh, respectively. More detailed data for the network lines 
and buses can be found in (Ghasemi et al., 2021). 

The structure of the test system after the event onset is illustrated in 

Fig. 12. Pareto-optimal solution for the 118-bus distribution network.  

Fig. 13. MG formation post the event at the Pareto point for 118-bus distribution network.  
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Fig. 11. Due to the imposed fault, buses 100 to 118 are still connected to 
the upstream grid and the rest of the network is disconnected from the 
main grid. 

The two-objective function model is implemented on the 118-bus 
distribution network. The front table is first computed and displayed 
in Table 7. The number of solution points and variation steps for the 
maximum level of constraint are similar to those of the 37-bus distri-
bution network. The results of this case are shown in Table 8 and Fig. 12. 

According to Table 8, the minimum membership degree at Point 5 is 
at its maximum. In this case, the restoration cost, load shedding, and 
resilience index are 8803.498 $, 201,275.2 kWh, and 49.84%, respec-
tively. As shown in Fig. 12, the Pareto solution is the best trade-off be-
tween the two objective functions. Given the selected optimal Pareto 
point, the network structure is illustrated in Fig. 13. 

As depicted in Fig. 13, three MGs are formed in feeders 1 and 2 in the 
restoration process. In addition, feeder 3 is connected to the upstream 
network and buses 94, 95, and 96 are supplied from feeder 3 by closing 
tie line T8. The resilience index for each of the MGs 1, 2, and 3 are 0.95, 
1, and 1, respectively. In addition, the network resilience index is 
49.84%. The hourly graph of using load control for transferable, cur-
tailable, and shiftable loads is shown in Fig. 14. As depicted in this 
figure, the most frequently used program corresponds to the shiftable 
load type. 

4.2.1. Sensitivity analysis 

A sensitivity analysis is conducted here to investigate the impact of 
significant factors on the results presented in the previous sections. The 
scenarios and results of the sensitivity analysis are given in Table 9. 
Scenario 1 is considered as the base scenario in which tie lines, DERs, 
and demand response programs are employed simultaneously. 

According to the results of sensitivity analysis, the absence of tie lines 
imposes the largest increase on load shedding due to limitation for 
forming MGs whereas the resilience index in scenario 2 decreases 
around 23% in comparison with scenario 1. 

5. Conclusion 

A post-event restoration scheme was proposed for distribution sys-
tems after an HR event using MG formation, distributed energy re-
sources, and demand response programs including transferable, 
curtailable, and shiftable loads. A multi-objective optimization model 
was proposed considering two conflicting objectives including operation 
cost and load shedding to improve the resilience of the electricity dis-
tribution network. Using ε-constraint method, the proposed model was 
solved to achieve the best Pareto front solution using a fuzzy-based 
method. The presented model was numerically examined on two stan-
dard test networks. According to the results, the network resilience 
index of 37-bus distribution system decreased around 3.2% as the 
restoration cost is considered in the two-objective model. In addition, 
due to simultaneous consideration of cost and load restoration within 
the proposed multi-objective function optimization, fewer DRs were 
used in the multi-objective model compared to single-objective one. The 
efficiency and applicability of the proposed restoration model was 
verified on 118-bus distribution system as well. The results of sensitivity 
analysis on this network confirmed that the absence of tie lines imposes 
the largest increase on the amount of load shedding. Also, as the demand 
response programs were used in this test system, the network resilience 
index increased around 12%. The simulation results showed that the 
model can make full benefit of smart grid facilities such as MGs for-
mation, distributed energy resources, and demand response programs to 
rapidly restore the distribution system post the event. In future works, 

Fig. 14. Different load control schemes for 118-bus distribution network during restoration process.  

Table 9 
Results of sensitivity analysis for 118-bus distribution network.  

Scenario 1 2 3 4 5 6 7 8 

Tie line ✓ × ✓ ✓ ✓ × × ×

ESS, WT, PV, Slave DG ✓ ✓ × ✓ × × ✓ ×

DR ✓ ✓ ✓ × × ✓ × ×

Load shedding (kWh) 201,275.2 253,018.5 217,978.4 225,751.2 243,236.3 255,180.6 264,195.6 267,429.8 
Operation cost ($) 8803.49 4637.94 7456.44 6812.05 5427.26 4536.80 3722.47 3491.78 
Resiliency index 0.498 0.380 0.460 0.442 0.402 0.375 0.355 0.347 
Number of MGs 3 4 3 2 3 3 3 4 
Solving time (Min) 42 12 32 20 24 8 8 4  
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we will focus on the resilience of energy hub systems through the sto-
chastic optimization model after an HR event. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

https://www.dropbox.com/s/za05ho6owggrljo/Scenario%20Data.xlsx?dl=0. 
Alizadeh, M., Jafari-Nokandi, M., & Shahabi, M. (2020). Resiliency-oriented islanding of 

distribution network in the presence of charging stations for electric vehicles. 
International Transactions on Electrical Energy Systems, 30(12), E12670. 

Amirioun, M. H., Aminifar, F., & Shahidehpour, M. (2018). Resilience-promoting 
proactive scheduling against hurricanes in multiple energy carrier microgrids. IEEE 
Transactions on Power Systems, 34(3), 2160–2168. 

Bajpai, P., Chanda, S., & Srivastava, A. K. (2016, November 1). A novel metric to quantify 
and enable resilient distribution system using graph theory and choquet integral. 
IEEE Transactions on Smart Grid, 9(4), 2918–2929. 

Biswas, S., Singh, M. K., & Centeno, V. A. (2021). Chance-constrained optimal 
distribution network partitioning to enhance power grid resilience. IEEE Access, 9, 
42169–42181. 

Borghei, M., & Ghassemi, M. (2021). Optimal planning of microgrids for resilient 
distribution networks. International Journal of Electrical Power & Energy Systems, 128, 
Article 106682. 

Bynum, M., Castillo, A., Watson, J. P., & Laird, C. D. (2019, July). Evaluating demand 
response opportunities for power systems resilience using MILP and MINLP 
formulations. AIChE Journal, 65(7), E16508. 
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