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A B S T R A C T   
The academic literature on green energy equity markets has increased extensively over the last decade due to 
growing concerns about climate change and the substantial flow of investments into alternative energy markets. 
This study contributes by investigating the effect of climate risk on the return and volatility of green energy 
assets. This is one of the first papers to assess such effects using the recently developed climate policy uncertainty 
index as an indicator of climate risk. In particular, we seek to answer the following research questions. Firstly, 
does rising climate risk lead to a significant increase in green energy asset returns? Secondly, does climate risk 
affect the volatility of green energy assets negatively? Employing various models, we provide statistical evidence 
in favour of our hypotheses. Rising climate risk seems to encourage investment in alternative energy, which leads 
to an upward demand for green energy, which in turn increases the prices of green energy investments and 
decreases their volatility levels. Our analysis further shows that when climate risk increases, the correlation 
between crude oil and green energy returns decreases. Furthermore, green energy assets are more effective than 
gold for hedging oil market risk, without ignoring the hedging ability of technology stock investment.   
1. Introduction 
The academic literature on green energy investments has grown 
extensively over the last decade, attracting ample attention among ac-
ademics, for several reasons. Firstly, investments in this sector are 
increasing significantly1 and hence, clean energy stocks have emerged as 
an important asset class [1]. Secondly, research into the field of sus-
tainable finance is also developing quickly due to growing concerns 
about climate change and its potential impact on economic and social 
welfare.2 Thirdly, eco-friendly and socially responsible investors intend 
to participate in green energy sectors in order to possess low carbon 
portfolios [5]. Fourthly, whether green energy stocks can hedge tradi-
tional and non-traditional asset classes is of paramount interest to in-
vestors and policymakers. 
In this study, we add to the existing literature on green energy assets 
by investigating the effect of climate risk on the return and volatility of 
green energy assets. In doing so, we contribute in two major ways. 
Firstly, we use the recently published climate policy uncertainty (CPU) 
index as a proxy for climate risk. The CPU index, developed by Ref. [6]; 
is a news-based measure of climate uncertainty. Its use is beneficial for 
exploring the association under study as CPU is constructed based on 
keywords such as “uncertainty”, “uncertain”, “carbon dioxide”, 
“climate”, “climate risk”, “greenhouse gas emissions”, “greenhouse”, 
“CO2”, “emissions”, “global warming”, “climate change”, “green en-
ergy”, “renewable energy”, “environmental”, “regulation”, “legislation”, 
“White House”, “Congress”, “EPA”, “law”, “policy” etc. While earlier 
studies [7,8] mainly use information on the EU-ETS (European Union 
emission trading system) allowance prices to study the impact of envi-
ronmental risk on clean energy assets, we are among the first to employ 
this new indicator of climate risk in the context of the return and vola-
tility of clean energy firms. Recently [9], consider climate risk while 
focusing on the relative performance of green over brown energy assets, 
without considering regime switching models, conditional correlations, 
and hedging analysis or crude oil and technology stocks. 
Secondly, we examine the impact of climate risk on the dynamic 
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correlations between clean energy assets and strategic commodities (e.g. 
crude oil and gold) as well as technology stocks. Crude oil always plays a 
crucial role in green energy industries given that traditional energy 
prices and clean energy prices are intertwined [10]. Therefore, clean 
energy asset prices seem to be driven by oil price variations. For 
example, when oil prices go up, demand for clean energies increases, 
which leads to higher stock prices of alternative energy firms [11]. The 
information on gold, on the other hand, is used to examine whether gold 
acts as an effective hedging instrument during periods of high climate 
uncertainty. While the recent literature [1,12,13] documents that gold is 
no longer a hedge for clean energy stocks, our objective is to scrutinize 
whether this precious metal can minimize the risk linked to the clean 
energy asset class in the presence of high climate risk. Hence, given the 
substantial increase in climate risk over the past years, our analysis 
could be useful for eco-friendly investors who seek to hold low-carbon 
portfolios. Notably, when climate risk is high, socially responsible in-
vestors, caring about environmental concerns and the adverse effects of 
climate change, tend to increase their investments in cleaner energy, 
which potentially leads to an increase in the price of clean energy in-
vestments. Previous studies (e.g. Refs. [14,15], provide evidence that 
clean energy firms are highly correlated with technology firms, as the 
two groups share common features. Notably, innovations offered by 
technology companies are crucial for technological development and 
support the invention and progress of clean energy companies. 
It is also worth mentioning that, in contrast to earlier studies [10, 
16–18], we use data on green energy exchange traded funds (ETFs) 
instead of renewable energy equity indexes. The same is true for the 
technology stock ETF. Taking the information on ETFs into account 
could be useful given that ETFs, unlike stock indexes, are less sensitive to 
non-synchronous trading issues. As indicated by Ref. [19]; such issues 
may lead to spurious estimates when executing market efficiency tests. 
In addition, ETF assets are particularly liquid and behave similarly to 
stock [20]. 
The main objective of this research is to examine whether climate 
risk exerts a positive impact on clean energy asset returns. That is, we 
investigate whether rising climate risk leads to a growth in clean energy 
asset prices. When climate risk increases, there might be a desire to shift 
towards alternative energies rather than fossil fuels. This causes the 
demand for renewable energies to grow, which is reflected in higher 
stock prices of clean energy firms, leading to the first hypothesis: 
H1. : Climate risk affects clean energy asset returns positively. 
Moreover, as the return of an asset is inversely related to its vola-
tility, one would expect that higher climate risk implies lower risk for 
clean energy assets. Accordingly, we formulate the hypothesis: 
H2. : Climate risk has a negative impact on the volatility levels of clean 
energy ETFs. 
To test the above hypotheses, we employ the Markov regime 
switching (MRS) regression model and the generalized autoregressive 
conditional heteroskedasticity (GARCH) process. While each of these 
approaches is used extensively in previous literature, we adopt them for 
several reasons. Firstly, using the MRS regressions, we are able to 
examine the impact of climate risk on clean energy stock returns under 
low and high volatility regimes. Such inspections are crucial, since the 
effect of climate risk may regime-dependent. Hence, our analyses could 
have important implications for market participants during high and 
low volatility periods. Secondly, employing the GARCH model, we 
observe how the conditional volatility of clean energy equities reacts to 
changes in the levels of climate risk. To serve this purpose, we insert the 
CPU index into the GARCH equation as an exogenous variable. 
Moreover, while studying how the dynamic associations between 
clean energy ETFs and each of crude oil, gold, and technology ETF react 
to climate risk, we calculate the time-varying correlations between clean 
energy ETFs and oil/gold/technology ETF using the dynamic condi-
tional correlation generalized autoregressive conditional hetero-
skedasticity (DCC-GARCH) process, then regress these correlations on 
the climate risk index employing the quantile regression model. 
The findings, in brief, support our hypotheses, implying that clean 
energy ETFs react significantly to climate risk. More specifically, higher 
climate risk implies higher returns for the green energy assets under 
consideration and, therefore, a significant drop is observed in the levels 
of volatility for green energy assets. We further extend the analysis to 
make inferences regarding portfolio management. Examining the 
impact of climate risk on a portfolio comprising clean energy ETFs and 
strategic commodities and technology stock investments, we find that, 
with an upsurge in climate risk, the correlation between oil (gold) fu-
tures prices and clean energy asset returns decreases (increases). It 
seems that during periods of high climate risk, both gold and clean en-
ergy asset prices experience a significant increment, while crude oil 
futures prices tend to decline substantially. These results simply suggest 
that amid phases of high climate risk, investors participating in crude oil 
markets might hedge the potential risk by including green assets in the 
portfolio. In fact, our portfolio analysis confirms that when climate risk 
increases, green assets are more effective than gold and technology in-
vestments in hedging oil market risk. 
This paper proceeds as follows. The following section consists of a 
brief review of the relevant literature. Section 3 describes the data and 
outlines the methods employed. The results are presented in Section 4. 
We conclude in Section 5. 
2. A brief review of the relevant literature 
This section briefly reviews the existing literature on clean energy 
stock markets. We divide the standing literature into two segments. The 
first examines the price transmission association between brown and 
green/clean energy assets. Major contributions in this strand include 
[15,21–25]; among others. [21]; for example, employ a vector 
Acronym: Meaning 
AIC Akaike information criteria 
BIC Bayesian information criteria 
CPU Climate policy uncertainty 
DCC-GARCH Dynamic conditional correlation - generalized 
autoregressive conditional heteroskedasticity 
ETF Exchange traded fund 
EUA European Union Allowances 
EU-ETS European Union - emission trading system 
GARCH Generalized autoregressive conditional heteroskedasticity 
GJR Glosten, Jagannathan, Runkle 
GFC Global financial crisis 
MRS Markov regime switching 
NYSE New York Stock Exchange 
OVX Oil Implied Volatility 
PBD Invesco Global Clean Energy ETF 
PBW Invesco WilderHill Clean Energy ETF 
QR Quantile regression 
SPDR Standard & Poor’s depository receipt 
RCM Regime classification measure 
VAR Vector autoregressive 
VXXLE Energy Sector ETF Volatility index 
WTI West Texas Intermediate 
XNTK SPDR NYSE Technology ETF  
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autoregression (VAR) method to study whether renewable energy stock 
prices respond to oil price and technology stock price shocks. The results 
suggest significant links among these markets. Adopting an asset pricing 
model [22], demonstrate that the connection between oil and Chinese 
new energy stocks varies over time and appears to be stronger after 
mid-2008, which corresponds to the global financial crisis (GFC) period. 
The findings reveal a positive linkage between these variables, indi-
cating that an upsurge in energy prices would promote investment in 
renewable energy companies [24]. also find price transmission re-
lationships between clean and dirty energy assets. Applying the Granger 
causality approach, they document that crude oil prices Granger cause 
the stock prices of alternative energy firms in the short run. Using a 
continuous wavelet approach [15], report a strong long-run association 
between oil and clean energy stocks, though the connection seems to 
weaken in the short run [26]. consider return spillover and its de-
terminants between green and brown energy assets, using a tail de-
pendency approach. They show time-varying spillovers between green 
and brown energy assets in lower and upper quantiles, which exhibits an 
asymmetric effect. They further highlight the important role of macro-
economic conditions, US dollar index, and crude oil market uncertainty 
[25]. indicate that the relationship between renewable energy equity 
returns and West Texas Intermediate (WTI) oil prices differs under 
different market states. More recently [9], show that climate policy 
uncertainty matters to the relative performance of green energy over 
brown energy assets without paying attention to regime switching 
models and the dynamic conditional correlations and hedging implica-
tions. Furthermore, they overlook crude oil as a source of brown energy 
and technology stock investments which reflect the performance of tech 
firms providing necessary innovation for a smooth transition to a 
low-carbon future. 
Another strand of literature explores the risk transmission relation-
ship between commodity and clean energy markets.3 [14]; for example, 
documents a significant volatility linkage between fossil fuel and green 
stocks. In particular, the author employs a series of multivariate GARCH 
specifications and infers that the renewable energy asset class appears to 
be a good hedge for portfolios comprising dirty assets [30]. considers a 
time-varying copula approach and concludes that crude oil volatility 
significantly contributes nearly 30% to downside and upside risk of 
clean energy firms [31]. adopts the directional spillover approach 
developed by Ref. [32]; and finds that technology and clean energy 
equities are the dominant emitters of volatility spillovers to the US crude 
oil market [16]. documents that the crude oil implied volatility (OVX) 
index has a positive effect on the realized volatility of alternative energy 
stocks [1]. show that both gold and OVX act as good hedges for the 
renewable energy asset class [33]. conclude the same. Additionally [12], 
report that crude oil as well as gold appear to be safe-haven assets for 
clean energy companies during turbulent phases [34]. report that crude 
oil, gas, coal, electricity and carbon emit volatility to renewable energy 
stocks [5]. find that the Energy Sector ETF Volatility (VXXLE) index 
sends volatility to clean energy ETFs. A recent study by Ref. [35] em-
ploys a two-regime threshold vector error correction model combined 
with the DCC-GARCH process to assess the association between oil and 
clean energy assets, showing a long-term volatility linkage between 
these markets. 
3. Methodology 
3.1. Data 
The data on the climate policy uncertainty index (CPU4) are 
retrieved from http://www.policyuncertainty.com. The data on clean 
energy ETFs are taken from the DataStream database. We study two 
different clean energy ETFs in this empirical work: Invesco WilderHill 
Clean Energy ETF (henceforth, PBW) and Invesco Global Clean Energy 
ETF (henceforth, PBD). Each of these ETFs allows market participants to 
have exposure to renewable energy investments. For comparison pur-
poses, we use information on SPDR NYSE Technology ETF (XNTK), 
which reflects the performance of the NYSE technology index 
comprising 35 leading US-listed technology-related companies. A proxy 
for the performance of tech companies is included because previous 
studies (e.g. Refs. [14,15], argue that clean energy firms are highly 
correlated with technology firms as the two groups share common fea-
tures. We also use WTI crude oil and gold futures prices in our analysis, 
and the data are collected from the DataStream database. The data 
sample covers the period from May 2008 to March 2021, yielding 155 
monthly data points. The initial date of our sample is dictated by the 
availability of renewable energy equity prices. Note that the CPU data 
are available only on a monthly basis, and therefore we consider 
monthly observations for the ETFs and strategic commodities (WTI and 
gold). 
Table 1 gives the summary statistics of the data and the results of the 
unit root tests. The data on CPU is used in its level form (i.e., without 
transformation) because it is stationary at levels, whereas we use loga-
rithmic returns for the rest (i.e., PBW, PBD, XNTK, WTI, and Gold) 
computed as the natural logarithm of two consecutive monthly prices. 
Of the two clean energy ETFs, PBW appears to be more volatile than 
PBD, while XNTK is less volatile than the clean energy asset class. As 
expected, gold is less volatile than crude oil. Among these indexes, only 
Table 1 
Summary statistics of data.   
PBW PBD XNTK CPU WTI Gold 
Mean � 0.0855 0.0596 1.0052 128.88 � 0.4539 0.4281 
Std.Dev 10.0359 8.7861 6.6774 87.1999 12.2002 3.6300 
Skewness � 0.5175 � 0.9605 � 1.3593 2.0534 � 0.8652 0.0662 
Kurtosis 5.79 7.11 8.38 9.81 10.00 3.21 
Jarque-Bera 57.00*** 132.16*** 233.82*** 406.00*** 333.96*** 0.40 
ADF � 10.61*** � 9.88*** � 11.73*** � 3.24** � 8.28*** � 9.67*** 
PP � 10.82*** � 9.98*** � 11.74*** � 7.01*** � 8.45*** � 9.63*** 
Notes: This table reports the summary statistics of monthly data. PBW (Invesco WilderHill Clean Energy ETF). PBD (Invesco Global Clean Energy ETF). XNTK (SPDR 
NYSE Technology ETF). CPU (Climate Policy Uncertainty). WTI (West Texas Intermediate Crude oil futures prices). Except for CPU which is in levels, PBW, PBD, XNTK, 
WTI, and Gold are logarithmic returns. ADF (Augmented Dickey-Fuller) and PP (Phillips-Perron). ***p < 0.01, **p < 0.05. 
3 On a related front [27], examine the investment efficiency of the new en-
ergy industry in China and show evidence of a low level of efficiency [28]. use a 
multivariate GARCH model and find a significant volatility spillover effect 
between European Union Allowances (EUA) and certified emissions reduction 
markets that differs across the various phases of the EU-ETS. On another front 
[29], consider the economics of crude oil, biofuel and food commodities. 
4 Notably, CPU exclusively reflects news about climate policy uncertainty and 
thus disregards news related to natural disasters. Furthermore, given the con-
struction of CPU, it is not expected for increasing interest in or coverage of 
climate issues to lead to an increase in the CPU measure [6]. claims that the 
CPU index can be used as an additional tool to capture climate policy uncer-
tainty at the macro level. 
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gold returns are positively skewed. Interestingly, the Jarque-Bera test 
suggests that the gold data satisfy the normality assumption, though 
other indexes do not follow a normal distribution. Finally, the 
augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests provide 
statistical evidence that the return series of the five indexes as well as the 
CPU index are stationary. 
Fig. 1a shows all the price indexes along with the CPU index. We 
observe that clean energy ETFs experience a large downturn around the 
2008 global financial crisis and a relatively smaller downturn during the 
peak of the COVID-19 pandemic in February–March 2020. Crude oil 
prices decline sharply during the 2008 global financial crisis, the period 
2015–2016 during which Saudi Arabia and Russia engaged in an oil 
price war, and the pandemic.5 Interestingly, clean energy ETFs and the 
technology ETF see a large growth after the peak period of the COVID-19 
pandemic. Gold prices mainly increase in the period after the 2008 
global financial crisis and during most of the pandemic period. The CPU 
index exhibits several spikes in recent years. Fig. 1b plots the return 
Fig. 1. aLevel series of various indexes. Note: This figure shows the prices for the various ETFs and commodities, and the CPU index. The X-axis indicates the 
timeline, while the Y-axis shows the asset prices/climate risk values. b: Return series for various ETFs and commodities. Note: This figure shows the logarithmic 
returns for the various ETFs and commodities. The X-axis indicates the timeline, while the Y-axis shows the asset prices/climate risk values. 
5 Both the GFC and COVID-19 outbreaks periods had adversely affected 
economic and market conditions and thus equity prices, irrespective of climate 
risks. Therefore, these two crisis events might have an impact on our overall 
results, which necessitates a subsample analysis to capture and isolate their 
potential impact. 
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series of PBW, PBD, XNTK, WTI, and Gold, showing large fluctuations 
around the pandemic period. 
3.2. Markov regime switching (MRS) model 
As mentioned, the purpose of adopting the MRS approach is to 
examine the effect of climate risk on the returns of clean energy ETFs 
while the model parameters to switch between different volatility re-
gimes (e.g. low and high volatility regimes). While numerous studies 
have employed the MRS model over the years, it continues to receive 
considerable attention among academics due to its attractive features 
[36];[49]; [37,38]. The model is defined as: 
Ri;t �αi;rt � βi;rt Ri;t� 1 � γi;rt CPUt� 1 � ui;t (1)  
where, Ri;t indicates the logarithmic returns for the i-th ETF index at time 
t, rt refers to a discrete regime variable, αi;rt denotes the regime- 
dependent intercept, and βi;rt and γi;rt are regime-dependent slope 
coefficients. From time period t, the transmission probability from 
regime 1 to regime m at time period t � 1 is entirely dependent on the 
regime at time period t. In addition, the transition probabilities are given 
as: 
pjk �Pr�rt�1 � kjrt�1 � j�; pjk � 0;
XM
k�1
pjk � 1 (2) 
In this study, we consider two regimes in order to obtain the pa-
rameters estimates for low and high volatility regimes. In line with [37]; 
we employ the regime classification measure (RCM) to evaluate the 
accuracy of our regime switching process: 
RCM�r�� 100r2�1 =T�
XT
t�1
Yr
i�1
bpi;t (3) 
The above statistic lies between 0 and 100. Note that the MRS 
specification appears to be a good-fitting model if the RCM statistic is 
Fig. 1. (continued). 
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close to 0 or low. 
3.3. GARCH process 
Based on the Akaike and Bayesian information criteria (i.e., AIC and 
BIC), we choose the GJR-GARCH process (Glosten, Jagannathan and 
Runkle, 1993) to study the impact of climate risk on the volatility of 
green energy ETFs. Given that clean energy assets are highly sensitive to 
crude oil volatility [1,16,25], we control for the effect of OVX. The 
extended GJR-GARCH process is thus given by: 
h2t �ω� αε2t� 1 � δε2t� 1St� 1 � βh2t� 1 � ϑOVXt� 1 � θCPUt� 1 (4)  
where, St� 1 denotes a dichotomous variable that equals 1 when εt� 1 is 
negative and 0 otherwise. The persistence of volatility amounts toα�
β� 1 =2 δ. 
3.4. DCC-GARCH approach and quantile regression 
In order to estimate the time-varying correlations between clean 
energy ETFs and strategic commodities,6 we employ the DCC-GARCH 
process: 
Rt �M � τRt� 1 � εt (5)  
εt �H
1 =2
t ηt (6)  
where Rt denotes the matrix of logarithmic returns for the various in-
dexes used, M indicates the matrix of fixed parameters, τ refers to the 
matrix of coefficients assessing the effect of own-lagged and cross mean 
transmission, εt indicates the noise term, ηt denotes the matrix of iid 
innovations. Moreover, H
1 =2
t is the matrix of conditional volatilities, 
which is further decomposed as: 
Ht �DtRtDt (7)  
Dt � diag
� ����
hit
q
;
����
hjt
q �
(8)  
Rt � diag�Qt�� 1=2Qtdiag�Qt�� 1=2 (9)  
Qt ��1 � θ1 � θ2�Q� θ1ξt� 1ξ
0
t� 1 � θ2Qt� 1 (10)  
In equation (8), hit and h
j
t define the conditional volatilities of technol-
ogy/clean energy ETFs and oil/gold, respectively. We define hit and h
j
t as: 
hit � d
2
i � b
2
11h
i
t� 1 � b
2
21h
j
t� 1 � a211ε2i;t� 1 � a221ε2j;t� 1 (11)  
hjt � d
2
j � b
2
12h
i
t� 1 � b
2
22h
j
t� 1 � a
2
12ε2i;t� 1 � a222ε2j;t� 1 (12) 
In equation (10), Qt denotes the time-varying conditional correlation 
of residuals, θ1 and θ2 are non-negative scalar parameters such that θ1 �
θ2 < 1 for the model to be stationary and Q0 indicates the matrix of 
unconditional correlations for the standardized noise ξt. Then the 
pairwise dynamic conditional correlation is given by: 
ρt �
hijt� ����
hit
q ����
hjt
q � (13)  
where, hijt represents the conditional covariance between the clean en-
ergy ETFs and crude oil/gold/technology ETF. Note that we adopt the 
quasi-maximum likelihood estimation technique to estimate the pa-
rameters of the DCC-GARCH process.7 
Next, to explore the impact of climate risk on the dynamic condi-
tional correlations under diverse market conditions, we employ the 
quantile regression (QR) approach.8 
We frame this process as: 
Qρt �τjρt� 1;CPUt� 1��φ�τ�� λ�τ�ρt� 1 � θ�τ�CPUt� 1 (14) 
Following [40]; Qρt �τjρt� 1;CPUt� 1� signifies the τ conditional quan-
tile of ρt, the dynamic conditional correlations at time t. Meanwhile, φ�τ�
measures the unobserved impact in the quantile model. 
Now, for a given τ, the following equation is estimated by minimizing 
the weighted absolute deviation: 
arg min
φ�τ�;λ�τ��θ�τ�
XT
t�1
φτ�ρt � φ�τ� � λ�τ�ρt� 1 � θ�τ�CPUt� 1� (15) 
Table 2 
Estimates of MRS approach.  
Panel A: Estimated coefficients 
Index State Constant AR (1) CPU Sigma χ2 test 
PBW S1 � 3.5372** 
(1.7470) 
0.1188 
(0.0921) 
0.0272** 
(0.0114) 
10.6685***(1.0696) 71.39*** 
S2 � 2.2304* 
(1.2289) 
-0.1815 
(0.1636) 
0.0202*** 
(0.0074) 
2.9591*** 
(1.1485)  
PBD S1 � 10.4126** 
(5.2177) 
0.2901* 
(0.1576) 
0.0586** 
(0.0262) 
12.4298*** 
(1.1447) 
32.79*** 
S2 0.1614 
(1.0410) 
0.1438 
(0.1012) 
0.0032 
(0.0070) 
4.6286*** 
(1.0919)  
XNTK S1 � 4.4536 
(3.2121) 
0.1514 
(0.1785) 
0.0295* 
(0.0177) 
8.9352*** 
(1.1228) 
50.36*** 
S2 1.5699** 
(0.7077) 
� 0.2169*** 
(0.0840) 
0.0058 
(0.0045) 
3.3201*** 
(1.1371)  
Panel B: Transition probabilities and expected durations 
Index P11 P12 P21 P22 DU1 DU2 RCM 
PBW 0.9911 0.0089 0.0433 0.9567 112.23 23.11 16.91 
PBD 0.9297 0.0703 0.0305 0.9695 14.22 32.83 17.66 
XNTK 0.8538 0.1462 0.0940 0.9060 6.84 10.63 19.02 
Notes: This table displays the estimates of the MRS approach. Values in parentheses indicate standard errors. 
***p < 0.01, **p < 0.05, *p < 0.10. 
6 we also consider technology ETF. 
7 The estimated coefficients of the DCC-GARCH model are not reported here. 
They are available on request from the authors.  
8 Several other studies such as [25,39] use QR. 
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where, φτ�u� � u�τ � I�u< 0�� and I (�) refers to the indication function. 
For a positive and statistically significant θ�τ�, we conclude that an 
upturn in the CPU index causes an increase in the correlation level. For a 
negative θ�τ�, on the other hand, we report a reverse association be-
tween them. 
Several quantiles (τ � 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95) are 
considered in our estimation process. Lower quantiles (i.e., 0.05, 0.10, 
0.25) imply low correlation regimes, while higher quantiles (i.e., 0.75, 
0.90, 0.95) indicate high correlation regimes. 
4. Results and discussion 
4.1. CPU and ETFs returns: Estimates of the Markov regime switching 
(MRS) model 
The estimates of the MRS approach, shown in Table 2, reveal that the 
impact of climate risk (i.e., the CPU index) on the returns of clean energy 
ETFs is significant at the 1% level. More importantly, each of these ETFs 
reacts positively to climate risk. These findings thus support our first 
hypothesis implying that, with an increase in climate risk there would be 
Fig. 2. Filtered probabilities for high volatility regime. Note: The filtered probabilities are derived from the Markov regime switching regression. The probabilities 
refer to the likelihoods of remaining in the high volatility states for the PBW, PBD and XNTK indexes. The X-axis indicates the timeline, while the Y-axis shows the 
filtered probabilities. 
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an upsurge in the price of clean energy investments. Our results could be 
attributed to an increasing demand for clean energies during periods of 
high climate risk, which leads to a growth in the security prices of 
alternative energy companies. For comparison, we consider the tech-
nology ETF (XNTK), and find that the impact of climate risk is significant 
at the 10% level. 
It is noteworthy that for all indexes, regime 1 appears to be the high 
volatility regime, while regime 2 is the low volatility regime. We report 
that the effect of CPU is significant in both volatility regimes for the PBW 
index, while the same coefficient is significant only in the high volatility 
regime for the PBD index. In case of the XNTK index, like the PBD index, 
we find a significant result only in the high volatility regime. Further-
more, we provide statistical evidence that all the sigma coefficients are 
significant at the 1% level, suggesting a swapping between the low and 
high volatility states. In addition, the RCM statistic implies that the MRS 
regression can be considered a good-fitting model in each case. Figs. 2 
and 3 plot the filtered probabilities of remaining in the low and high 
volatility states, and indicate a clear switching pattern for all assets. 
4.2. CPU and ETFs volatility: Estimates of GJR-GARCH process 
Table 3 displays the results of the GJR-GARCH model. We find that 
CPU has a negative impact on the volatility of the two clean energy ETFs 
under study. Therefore, when climate risk increases, we observe a 
downturn in the risk levels of these green investments. These findings 
support our second hypothesis, implying that the volatility of clean 
energy assets is inversely related to the level of climate risk. The results 
reported in Table 3 also hold for the XNTK index. In addition, OVX exerts 
a positive impact on each of these ETFs, which suggests that rising crude 
oil volatility is associated with an upturn in the risk levels of these assets. 
The findings of [16,25] confirm that OVX positively affects the volatility 
of clean energy assets. 
4.3. Time-varying dynamic conditional correlations 
Figs. 4 and 5 show the time-varying dynamic correlations between 
strategic commodities and clean energy/technology ETFs. We report 
several interesting findings. For example, during the periods of the 2008 
global financial crisis, European sovereign debt crisis, and 2014 oil 
market crisis, the correlations between crude oil and green ETFs remain 
mostly positive. The same is observed for the correlations between crude 
oil and technology ETF. However, such correlations turn out to be 
negative during the ongoing pandemic. It seems that in the earlier stage 
of the COVID-19 crises, during which WTI prices decline significantly, 
both green and technology assets can be considered a good hedge for 
crude oil market risk.9 Looking at Fig. 5, we note a different scenario for 
the correlations between gold and green ETFs. During all crisis periods, 
such correlations remain negative, implying that gold is a good hedge 
for green assets during periods of turmoil. However, inspecting the 
correlations between gold and technology ETF, a positive association 
emerges throughout the sample period, except for the 2008 financial 
crisis era. Hence, gold can be regarded as a good hedge for the 
Fig. 3. Filtered probabilities for low volatility regime. Note: The filtered 
probabilities are derived from the Markov regime switching regression. The 
probabilities refer to the likelihoods of remaining in the low volatility states for 
the PBW, PBD and XNTK indexes. The X-axis indicates the timeline, while the Y- 
axis shows the filtered probabilities. 
Table 3 
Estimates of GJR-GARCH process.  
Index → PBW PBD XNTK 
ω 22.0996* 7.3465*** 3.0089* 
α 0.1080 0.0955 0.1471*** 
β 0.0168 0.6176*** 0.6094*** 
γ 0.2351 0.1328 0.2744*** 
ϑ 0.0378*** 0.0094*** 0.0091** 
θ � 0.1202*** � 0.0682*** � 0.0342** 
Log-likelihood � 538.86 � 512.00 � 471.66 
AIC 7.161 6.810 6.283 
BIC 7.339 6.989 6.461 
Notes: ϑ and θ measure the effects of OVX and CPU, respectively. ***p < 0.01, 
**p < 0.05, *p < 0.10.  
9 Clean energy assets possibly benefit from fiscal policies adopted by gov-
ernments, especially US governments, during the GFC and pandemic periods. 
These include fiscal incentives for research and development, and support for 
new infrastructure investment projects. 
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technology stock sector in the global financial crisis period only10. Now, we examine how these correlations react to climate risk using 
the estimates of quantile regression, as shown in Tables 4 and 5. The 
findings in Table 4 reveal that CPU has a negative impact on the cor-
relations between oil and green/technology assets. Thus, when climate 
risk increases, the aforesaid correlations tend to decline. Notably, the 
result is significant only at extreme lower quantiles, indicating that 
when correlations are low they seem to decrease further with an upsurge 
in climate risk. This finding makes sense given that, when climate risk is 
high, there is a tendency to invest more in clean energy or technology 
Fig. 4. Time-varying conditional correlations be-
tween oil and green energy/technology ETFs. Note: 
The time-varying conditional correlations are derived 
from the bivariate DCC-GARCH process. The correla-
tions measure how the associations between oil and 
the various ETFs evolve over time. The correlations 
are observed in both positive and negative regions 
indicating a time-dependent connection between 
these markets. The X-axis indicates the timeline, while 
the Y-axis shows the correlations.   
10 We plot the dynamic time-varying correlations between green and tech-
nology ETFs in Appendix Fig. A1. As expected, we observe high positive cor-
relations throughout the sample period confirming that technology sector assets 
would not be a good hedge for green assets [14,15]. Such high positive asso-
ciations could be attributable to the fact that investors view alternative energy 
companies as similar to other high technology companies. 
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sectors as oil prices experience a significant drop. In such cases, thus, oil 
and clean energy/technology assets move in the opposite direction. The 
implication of these findings is that investors holding assets in crude oil 
sectors may use clean energy/technology assets in order to hedge the 
portfolio risk during phases of high climate risk. 
From Table 5 we observe that climate risk has a positive impact on 
the correlation between gold and PBW. Similar results are found for 
PBD, except at the upper quantile of 0.95 where the impact appears to be 
negative. Accordingly, when the correlations between gold and PBD are 
extremely high, there could be a drop due to the increase in climate risk. 
Panel C shows no significant impact of CPU on the correlations between 
gold and technology ETF.11 
Overall, these results indicate that when climate risk tends to in-
crease, gold prices are also high and hence we note a significant growth 
in the correlations between this precious metal and green energy ETFs. 
Hence, during periods of high climate risk, gold may not be a good hedge 
for the clean energy asset class, although the issue of hedging effec-
tiveness is examined in more detail in the next section. It is also stim-
ulating to consider whether green energy ETFs or technology ETF can be 
used to hedge the risk of the crude oil market which sees a substantial 
drop in its price levels amid phases of high climate uncertainty. We 
address this in the following section. 
4.4. Portfolio implications: Climate risk, hedge ratios, and hedging 
effectiveness 
To give more insight into the portfolio and hedging implications, we 
empirically compare the hedging performance of clean energy ETFs, 
gold, and technology ETF against the crude oil market during periods of 
low and high climate risk. In doing so, we consider three portfolios: (1) 
WTI and green ETF; (2) WTI and technology ETF; and (3) WTI and gold. 
Our objective is to examine which of green ETF, technology ETF, and 
gold is most effective in hedging oil market risk. 
In line with [41]; we estimate the hedge ratios (βt) as: 
Fig. 5. Time-varying conditional correlations between gold and green energy/ 
technology ETFs. Note: The time-varying conditional correlations are derived 
from the bivariate DCC-GARCH process. The correlations measure how the 
associations between gold and the various ETFs evolve over time. The corre-
lations are observed in both positive and negative regions indicating a time- 
dependent connection between these markets. The X-axis indicates the time-
line, while the Y-axis shows the correlations. 
Table 4 
Impact of CPU on the correlations between oil and green energy/technology ETFs.  
Quantiles→  Q (0.05) Q (0.10) Q (0.25) Q (0.50) Q (0.75) Q (0.90) Q (0.95) 
Panel A: PBW 
Constant 0.2440*** 0.1746 0.2288*** 0.2871*** 0.3620*** 0.3995*** 0.4101*** 
ρt� 1 0.0769 0.1876 0.1531 0.1865** 0.0034 � 0.0688 � 0.0774 
CPUt� 1 � 0.0013*** � 0.0006 � 0.0001 � 0.0002 0.00002 0.0001 0.0001 
Panel B: PBD 
Constant 0.0261 0.0309 0.1040** 0.1317*** 0.2038*** 0.3360*** 0.4442*** 
ρt� 1 0.7004*** 0.6640*** 0.6102*** 0.6235*** 0.6101*** 0.3776*** 0.2525*** 
CPUt� 1 � 0.0009*** � 0.0003 � 0.0002 � 0.00002 � 0.000004 0.00002 � 0.0001 
Panel C: XNTK 
Constant 0.2879*** 0.3463* 0.2713*** 0.3628*** 0.3982*** 0.5206*** 0.5542*** 
ρt� 1 � 0.2419 � 0.1713 � 0.0086 0.0175 0.0793 0.0549 0.2745*** 
CPUt� 1 � 0.0017** � 0.0013 � 0.0002 � 0.0002 � 0.0001 � 0.0004 � 0.0004 
Notes: This table presents the QR results for the oil-ETF linkage. ***p < 0.01, **p < 0.05. 
11 As suggested by one anonymous reviewer, the beginning of our full sample 
period spanning from May 2008 to March 2021 overlaps with the global 
financial crisis of 2008, whereas its ending overlaps with the COVID-19 
pandemic. Both of these crisis periods had adversely affected economic and 
market conditions and thus equity prices, irrespective of climate risks. There-
fore, these two crisis events might have an impact on our overall results, which 
necessitates a subsample analysis to capture and isolate their potential impact. 
In fact, we tried to conduct subsample analyses but failed to provide robust and 
reliable results due to the small size of our subsample period, which comprises 
155 monthly observations. This issue is left for future research. 
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βt �
hxyt
hyt
(16)  
where, hxyt indicates the covariance between WTI and each of gold, clean 
energy ETF, and technology ETF at time t and hyt denotes the variance of 
gold/ETF at time t. As suggested by Ref. [42]; portfolios with lower 
hedge ratios have better hedging effectiveness. 
Note that we compute the hedge ratios for both low and high climate 
risk regimes. Low climate risk regimes refer to periods when CPU is less 
than its mean value whereas high climate risk regimes indicate phases 
when CPU exceeds its mean value. 
The hedge ratios, presented in Table 6, reveal that when climate risk 
is low, a $100 long position in WTI can be hedged with a $16.79 short 
position in gold, $22.13 short position in PBW, $20.53 short position in 
PBD, and $21.83 short position in XNTK. During the phase of high 
climate risk, the hedge ratios are much higher, suggesting that a larger 
short position in gold ($27.67) is needed to hedge a $100 long position 
in WTI. For PBW, PBD, and XNTK, it is $25.71, $24.03, and $28.91, 
respectively. Hence, when climate risk tends to increase, investors 
participating in the crude oil market seeking to hedge their potential 
downside risk, need to take a shorter position in gold, green energy, or 
technology stocks. 
Next, we calculate the hedge effectiveness (HE), which gives an 
indication of the percentage of the variance eliminated by the hedge: 
HE�
Varunhedged � Varhedged
Varunhedged
(17)  
where Varunhedged denotes the variance of the unhedged portfolio 
including only WTI. Furthermore, Varhedged denotes the variance of the 
hedged portfolio comprising WTI and the other asset (gold, PBW, PBD, 
or XNTK). It is defined as: 
Varhedged �
�
ωxyt
�2hxt �
�
1 � ωxyt
�2hyt � 2ωxyt
�
1 � ωxyt
�
hxyt (18)  
where hxt and h
y
t are the conditional volatilities of WTI and the other 
asset (gold, PBW, PBD, or XNTK); hxyt indicates the covariance between 
WTI and each of gold, PBW, PBD, and XNTK, and ωxyt is the optimal 
weight of WTI in the portfolio comprising WTI and the other asset. ωxyt is 
given by: 
ωxyt �
hxt � h
xy
t
hxt � 2h
xy
t � hyt
(19) 
Note that if HE is equal to 1, a perfect hedge situation emerges. 
However, if HE is equal to 0, there is a lack of hedging effectiveness. 
The estimated results, displayed in Table 7, show evidence on the 
effectiveness of hedging. Notably, during the phase of high climate risk, 
the percentage of variance reduced by hedging WTI with green ETFs is 
the highest (21.09 for PBD and 19.31% for PBW), followed by WTI/gold 
and WTI/technology ETF. These results highlight the valuable role of 
green energy investments to hedge the downside risk of brown energy 
prices such as crude oil prices, which nicely complement the findings of 
[9]. 
5. Conclusion 
In this paper, we examine the impact of climate risk on the security 
prices of clean energy firms, providing the first evidence based on the 
recently developed climate policy uncertainty index as an indicator of 
climate risk. Using the Markov regime switching regression and asym-
metric GARCH models, we provide evidence that the effect of climate 
risk is positive on the returns of green energy assets but negative on their 
volatility. It seems that rising climate risk encourages investors and 
policymakers to shift towards alternative energy sectors, which leads to 
an upward demand for renewable energies. Consequently, the prices of 
clean energy investments tend to go up, initiating a significant drop in its 
volatility levels. Our analysis further shows that, with an upsurge in 
climate risk, the correlation between oil (gold) prices and clean energy 
returns decreases (increases). During periods of high climate risk, both 
gold and clean energy asset prices experience a significant increment, 
while crude oil prices tend to decline substantially. We also find that 
when climate risk increases, green energy assets are more effective than 
gold and technology stocks for hedging crude oil market risk. However, 
we should not disregard the role of technology stocks in hedging the risk 
Table 5 
Impact of CPU on the correlations between gold and green energy/technology ETFs.  
Quantiles→  Q (0.05) Q (0.10) Q (0.25) Q (0.50) Q (0.75) Q (0.90) Q (0.95) 
Panel A: PBW 
Constant � 0.1181*** � 0.1042*** � 0.0371*** 0.0160 0.0378** 0.1216*** 0.1592*** 
ρt� 1 0.4838*** 0.3610*** 0.4122*** 0.3143*** 0.2465*** 0.5152*** 0.6107*** 
CPUt� 1 � 0.00001 0.0002*** 0.0001** 0.00002 0.0001 0.00007 0.00005 
Panel B: PBD 
Constant � 0.1059*** � 0.0701** � 0.0037 0.0339*** 0.0613*** 0.2155*** 0.3961*** 
ρt� 1 0.5209*** 0.4267*** 0.3818*** 0.4223*** 0.4579*** 0.1841 0.1787 
CPUt� 1 0.00003 0.0002*** 0.0001** 0.00009 0.0002** 0.00002 � 0.0005*** 
Panel C: XNTK 
Constant 0.0010 0.0015 0.0051** 0.0044*** 0.0067*** 0.0083*** 0.0081*** 
ρt� 1 0.6258*** 0.7385*** 0.8066*** 0.9483*** 0.9684*** 0.9758*** 0.9830*** 
CPUt� 1 0.000001 � 0.000009 � 0.00001 � 0.0000003 � 0.000001 � 0.0000001 0.000003 
Notes: This table presents the QR results for the gold-ETF linkage. ***p < 0.01, **p < 0.05. 
Table 6 
Optimal hedge ratios.   
Low climate risk regime High climate risk regime 
WTI/gold 0.1679 0.2767 
WTI/PBW 0.2213 0.2571 
WTI/PBD 0.2053 0.2403 
WTI/XNTK 0.2183 0.2891 
Notes: Low climate risk regimes refer to periods when CPU is less than its mean 
value and high climate risk regimes indicate phases when CPU exceeds its mean 
value. 
Table 7 
Hedging effectiveness.   
Low climate risk regime High climate risk regime 
WTI/gold 21.02% 16.88% 
WTI/PBW 17.69% 19.31% 
WTI/PBD 18.93% 21.09% 
WTI/XNTK 18.11% 15.82% 
Notes: Low climate risk regimes refer to periods when CPU is less than its mean 
value and high climate risk regimes indicate phases when CPU exceeds its mean 
value. 
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of crude oil in low and high phases of climate risk. 
Our results have key implications for socially responsible investors 
who participate in alternative energy markets in order to maintain eco- 
efficiency portfolios. Given that green and ethical investments have 
ecological influences that assure a certain degree of sustainability [33, 
35,43], this study is of particular interest to eco-friendly investors who 
require precise information for making proper asset allocation decisions 
when investing in green energy sectors based on high and low values of 
climate risk. Overall, the results offer stylized facts about eco-friendly 
investments, which enhance our knowledge of how to deal with 
environment-related risk and uncertainty while considering various 
hedging instruments. 
Given the possible limitations of measuring climate change uncer-
tainty, such as the inability to measure natural disasters, and the pos-
sibility of professional investors viewing it differently, especially in light 
of the emergence of other climate-based measures, it would be inter-
esting to conduct more research comparing the hedging ability of CPU to 
other related measures. Furthermore, the beginning and ending of our 
sample period overlap with the GFC of 2008 and the COVID-19 
pandemic, respectively. Under such extreme events, economic and 
market conditions deteriorated and shaped equity prices, irrespective of 
climate risks. It is therefore relevant and important to assess the po-
tential impact of these two crisis events on the overall results. However, 
this issue is left for future research. 
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Appendix
Fig. A1. Time-varying conditional correlations between green and technology ETFs. 
Note: The time-varying conditional correlations are derived from the bivariate DCC-GARCH process. The correlations measure how the associations between green 
and technology ETFs evolve over time. The X-axis indicates the timeline, while the Y-axis shows the correlations. . 
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