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Abstract—The dataflow concept has been successfully used for
modeling and synthesizing signal processing applications since
decades, and recently, dataflow has also been discovered to match
the computation model of machine learning applications, leading
to extremely successful dataflow based application design frame-
works. One of the most attractive features of dataflow, especially
for signal processing, is related to its formal nature: when properly
defined, a dataflow-based application model can be analytically
verified for correctness at the stage of application design. This paper
proposes VR-PRUNE, a novel dataflow model of computation that
is aimed for design of high-performance signal processing software,
together with runtime support that allows efficient application
deployment to heterogeneous GPU-equipped platforms. Compared
to prior work, VR-PRUNE features variable token rate processing,
which enables designing adaptive signal processing applications,
and implementing solutions that, e.g., allow trading-off between
power consumption and filtering bandwidth at runtime. The pa-
per presents the formal concepts of VR-PRUNE, as well as four
application examples from domains related to signal processing,
accompanied with quantitative results, which show that using
VR-PRUNE enables, for example, application power-performance
scaling, and on the other hand describing adaptive application
behavior with 59% fewer dataflow graph components compared
to previous work.

Index Terms—Dataflow computing, design automation, signal
processing, parallel processing.

I. INTRODUCTION

DATAFLOW modeling for signal processing systems has
been investigated actively since the 1980 s. Many widely

used signal processing flavored design frameworks employ
dataflow concepts — a couple of prominent examples are GNU
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Radio [2] and TensorFlow [3]. In the application areas of ma-
chine learning (Tensorflow) and software-defined radio (GNU
Radio), dataflow features several advantages over conventional,
unstructured software design approaches: it provides applica-
tion modularity, software reuse, concurrency and support for
heterogeneous computing.

The dataflow concept however exists in multiple Models
of Computation (MoC) that have varying features, especially
in terms of analyzability and expressiveness. For a MoC, an-
alyzability refers to the model’s predictability: e.g., a well-
analyzable model enables a software compiler to reason about
the application’s execution flow, apply powerful software opti-
mizations and guarantee absence of deadlocks. Expressiveness,
in contrast, refers to the model’s flexibility in describing the
structure or run-time behavior of an application. In many cases,
analyzability and expressiveness are contradictory properties of
MoCs.

A key aspect of a dataflow MoC that influences both its
expressiveness and analyzability is support for conditional ex-
ecution — in particular, support for decision making that is
required for implementing fundamental if-then-else and for-loop
behavior within the dataflow model. Since many classical signal
processing applications behave in a very static fashion (in terms
of the rates at which functional modules exchange data), fully
static dataflow MoCs, such as synchronous dataflow (SDF) [4],
have been successfully used also in industrial software (e.g.
National Instruments LabView [5] or Keysight SystemVue [6]).
However, as algorithms in various signal processing domains,
such as wireless communications, video coding and machine
learning are exhibiting increasing levels of dynamics and config-
urability, the need for conditional execution at the dataflow level
is becoming important for making modern dataflow frameworks
sufficiently expressive. Recent examples of this are adaptive
inference graphs [7] and hydra nets [8] that adaptively switch
or skip computations in Convolutional Neural Network (CNN)
inference.

In a general sense, such adaptive computation scenarios
require the underlying dataflow MoC to support conditional
execution, which has traditionally been associated with dynamic
dataflow, such as Boolean dataflow (BDF) [9]. However, it has
been shown that the general problem of determining whether a
BDF graph can be scheduled for execution with bounded mem-
ory, is undecidable [1]. Throughout this paper, the following
definition of dataflow graph consistency is adopted:

Definition 1 (Consistency): A dataflow graph is consistent if
it can be scheduled with guarantees of bounded memory and
deadlock-free operation, regardless of what inputs are applied.
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Fig. 1. A weakly consistent dataflow graph. Adapted from [1]. The conf actor
evaluates sample values coming through port pc1, originating from the input
actor. conf emits Boolean True through port pc2 if the sample value is > 0, and
False otherwise.

Consider Fig. 1, which shows a dataflow graph with condi-
tional behavior. The input vertex produces samples to the three
edges that depart from it, whereas the conf vertex evaluates
whether incoming sample values are greater than zero. In case
of a sample value > 0, conf emits a Boolean True value to
its output pc2, otherwise a value of False. The switch vertex
relays the sample coming from psI to its output psT if it has
received a True value from conf, otherwise it relays the sample
to its output psF . The graph of Fig. 1 is weakly consistent
– all samples produced within the graph do not necessarily
become consumed, leading to potentially unbounded use of
memory: for each sample value ≤ 0 emitted by the input vertex,
one token is accumulated to the pi1 — pp2 edge. In other
words, unless the input vertex doesn’t eventually settle into
emitting token values > 0, unbounded use of memory will
ensue.

It depends on the MoC adopted by the dataflow design frame-
work, how a weakly consistent graph such as the one in Fig. 1
is treated. In a design framework that follows the restricted
SDF [4] MoC, the graph could not be modeled at all, as SDF
does not allow conditional execution. As another example, in
TensorFlow, which is more flexible in this respect, control flow
operations [10] would enable implementing the graph, causing
version-dependent behavior1.

The dataflow MoC and design framework VR-PRUNE advo-
cated in this paper addresses the inherent conflict between ana-
lyzability and expressiveness in a different way: the VR-PRUNE
MoC enables describing conditional execution, however regu-
lated by a set of formal rules and design patterns, which ensure
that graph inconsistencies can be detected at design time.

Furthermore, VR-PRUNE features support for variable token
rates, which increases the model’s expressiveness compared
to previous works. Consequently, in this paper we show that
VR-PRUNE offers a theoretically solid dataflow basis for future
programming frameworks similar to what TensorFlow and GNU
Radio are at the moment.

Some of the main ideas of VR-PRUNE were briefly presented
in [11] recently. This full-length article extends the conference
paper by

1In TensorFlow 1.14 the execution of the graph caused a runtime error,
whereas in 2.3.1 the sink vertex received 0 samples.

� A complete theoretical presentation of the VR-PRUNE
Model of Computation,

� Design rules and patterns that ensure compile-time consis-
tency analysis of VR-PRUNE application graphs,

� An open source2 runtime framework VPRF that has been
constructed around VR-PRUNE concepts, and

� Run-time experiments on heterogeneous desktop and em-
bedded platforms, which highlight the efficiency and ex-
pressiveness of VR-PRUNE.

The rest of this paper is organized as follows: Section II
presents related works, Section III describes the proposed VR-
PRUNE Model of Computation, Section IV presents the formal
VR-PRUNE design rules, Section V discusses consistency of
VR-PRUNE graphs, Section VI shows the experimental results
related to VR-PRUNE, Section VII discusses the proposed work,
and Section VIII concludes the paper.

II. BACKGROUND

In the dataflow programming concept, applications are ex-
pressed as directed graphs. The application graph consists of
nodes, which are called actors that are interconnected by edges.
Edges carry data that is encapsulated within tokens; for example,
in an image processing application, a single token may encapsu-
late the data related to one image pixel, or the data of a complete
frame, depending on the application.

The interconnection between an actor and an edge is called
a port. A port that is connected to an edge, which departs from
an actor is called an output port, and respectively a port that is
connected to an incoming edge is called an input port of an actor.
Each port is associated with a non-negative integer value called
token rate that determines how many tokens the actor consumes
(for input ports) from its associated edge, or how many tokens
the actor produces (for output ports) to its associated edge upon
one firing.

Firing is the dataflow concept for computation. Consider a
simple actor a that has the mere purpose of dividing one integer
value with another integer. Logically, a should have two input
ports, one for the divisor and one for the dividend, as well as one
output port for the result. In order to perform the computations
related to a division operation, a needs to have one token
available from the port that provides the dividend value, and
one token from the port that provides the divisor value. Hence,
we can say that for the dividend port a has a fixed input token
rate of one, which is also the case for the divisor port and the
result port.

Another well-known model for describing information flow in
dynamic discrete systems is Petri nets [12]. The main advantage
of dataflow graphs over Petri nets is their compactness and
convenience in mapping real-life applications to graph-based
models [13]. However, a significant class of dataflow models can
be transformed to Petri nets, thus enabling application of analytic
methods that have been designed for Petri nets, to dataflow
models [14].

Most of the differences between existing dataflow MoCs
associate with rules and restrictions related to token rates. Homo-
geneous dataflow MoCs require that every port of each actor has

2Available at https://gitlab.com/jboutell/vprf

https://gitlab.com/jboutell/vprf
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strictly a token rate of one, whereas the synchronous dataflow
(SDF) [4] MoC allows a fixed positive integer token rate for each
port. Examples of design frameworks that are based on SDF are
PREESM [15] and StreamIt [16], [17]. Cyclo-static dataflow
(CSDF) [18], on the other hand, enables token rates to change in
fixed, periodic cycles. SDF (and its homogeneous variant) and
CSDF are regarded as static dataflow MoCs, as their token rates
are completely predetermined at application design time. Con-
sequently, the dataflow graphs are analyzable at compile-time,
enabling formal proofs for absence of deadlocks and bounded
memory.

Somewhat more flexibility can be added to the SDF MoC
by adding scenarios, different SDF graph topologies that are
at runtime switched, e.g., based on a finite state machine. The
baseline work in this direction is SADF [19], and recently also
full software design frameworks such as HOPES+ [20] have
been built around the SADF concept.

Dynamic dataflow MoCs, of which dataflow process net-
works (DPN) [21] is one of the most well-known examples,
allow port token rates to change arbitrarily at application run
time, and therefore possibilities for graph consistency veri-
fication at design time are very limited. In the past decade,
dynamic dataflow around the CAL language [22] and its sub-
variant RVC-CAL [23] has triggered the development of sev-
eral design frameworks such as Tÿcho [24], Orcc [25] and
SHeD [26].

Between the extremes of fully static and fully dynamic
dataflow exist a number of MoCs that balance between analyz-
ability and expressiveness. Well-behaved dataflow [27] restricts
dynamic application behavior to take place within subgraphs
that follow a predefined topology. These subgraph templates
enable expressing conditional constructs such as if-then-else and
loops at the dataflow level, while still guaranteeing finite-time
verification for bounded memory. Our recent work PRUNE [28]
elaborated the ideas of WBDF into a MoC accompanied with a
high-performance runtime framework for heterogeneous com-
puting, and design time algorithms for verifying graph consis-
tency.

Another branch of work in boundedly dynamic dataflow is
variable-rate dataflow (VRDF) [29]. The paper [29] presents
a dataflow MoC that allows non-negative integer port token
rates that can vary between arbitrary pre-defined limits (called
variable-rate from here on), and an algorithm that computes the
memory capacity required to execute the graph. Additionally,
the paper [29] describes a check procedure for determining if
a given graph is valid for memory capacity computation. The
proposed VR-PRUNE MoC adopts the concept of variable token
rates from VRDF, however the emphasis of VR-PRUNE is on
high-performance processing on heterogeneous platforms, and
consequently VR-PRUNE introduces the restriction of symmet-
ric token rates, preventing direct adoption of VRDF models to
VR-PRUNE.

Table I summarizes related dataflow MoCs and frameworks
detailing their features: decidable indicates whether graph con-
sistency analysis is a decidable problem, dynamic expresses
whether the model supports port token rates that can at run
time vary according to a two-valued function, high-performance
tells whether a design framework with performance metrics has
been published, and variable-rate shows whether the model

TABLE I
COMPARISON TO RELATED DATAFLOW MODELS AND LANGUAGES

permits variable-rate port token rates. Variable-rate dataflow
can be considered as a generalization of two-valued dynamic
dataflow, and in Section VI we will show that variable-rate
dataflow provides a higher degree of expressiveness in terms
of describing the same application behavior with consider-
ably fewer dataflow graph elements than two-valued dynamic
dataflow.

Cases requiring explanation in Table I are: SADF [19] –
variable-rate dataflow is in principle possible, but this requires
one dataflow graph per specific token rate making the solu-
tion impractical for larger rate variations; DAL – dynamic and
variable-rate dataflow can be built on top of the framework, but
not for GPU-accelerated graph components.

The proposed VR-PRUNE Model of Computation builds on
concepts introduced in VRDF [29], WBDF [27], and our pre-
vious work PRUNE [28]. Consequently, the VR-PRUNE MoC
features
� A dataflow model that supports dynamic token rates,
� Token rate variability within pre-defined limits, and
� Design time analysis for bounded memory and absence of

deadlocks through a set of design rules and patterns.
In Section VI of this paper we show that token rate variability

enables 1) expressing data dependent graphs in a more compact
representation, 2) capturing application behavior that was not
possible in our previous work PRUNE. Additionally, we show
that the increased flexibility of VR-PRUNE does not add compu-
tational overhead compared to PRUNE. The following section
formally presents the VR-PRUNE MoC.

III. PROPOSED MODEL OF COMPUTATION

In this section, the components of VR-PRUNE graphs are
introduced together with an example graph.

A. Notation and Port Types

Following the notation of our previous work [28], a VR-
PRUNE application graphG = (A,F ) consists of a set of actors
A, and a set of directed edges F that interconnect the actors of
A. By definition of dataflow, the edges follow first-in-first-out
(FIFO) communication behavior, and for this reason we inter-
changeably also refer to edges as FIFOs. Actors connect to
edges over ports, which are classified into input ports (for ports
that consume tokens) and output ports (for ports that produce
tokens). Each actor a ∈ A can contain any non-negative number
of input and output ports, and a = parent(p) denotes an actor a
contains port p. More briefly, this can also be expressed by p+a1,
which refers to the first output port of actor a (Note: the subscript
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does not indicate any form of multiplication, only indexing). The
superscript +/− corresponds to output/input port respectively.

VR-PRUNE ports consist of three different port types: each
port is either a (input or output) control port, static regular
port (SRP) or dynamic regular port (DRP). A SRP p has a
fixed token consumption/production rate atr(p), which is set
at application design time. A DRP p, however, has a vari-
able token rate that is defined as lrl(p) ≤ atr(p) ≤ url(p),
where non-negative integers lrl, atr and url stand for lower
rate limit, active token rate, and upper rate limit of p, respec-
tively. lrl and url are values that are fixed at design time,
whereas atr may vary within the limits of lrl and url at run
time. Finally, a control port p must have a fixed token rate
of 1.

Each FIFO f ∈ F is connected to exactly one output port
p+ of actor parent(p+) and to exactly one input port p− of
parent(p−). Moreover, fifo(p+a ) and fifo(p−b ) refer to the FIFO
connected to ports p+a and p−b , respectively. Ports p+a and p−b are
connected when fifo(p+a ) = fifo(p−b ) = f , where actors a and
b are referred as the source (source(f)) and sink (sink(f)) of
the same FIFO f . In VR-PRUNE, connected ports must always
be of the same port type, and a valid VR-PRUNE graph is not
allowed to have unconnected ports, as for example the port F of
Fig. 1.

In the VR-PRUNE MoC, an output port p+ that is a control
port or SRP, can be connected to multiple FIFOs, but in this
case each FIFO must have a unique source and sink port, and
every input port p− must have only one FIFO connected to it. If
an output port p+ is connected to multiple input ports p−i , i =
1. . .K in the aforementioned way, then each p−i must be of the
same port type as p+.

The current number of tokens in FIFO f is denoted
as tokencount(f), the FIFO’s token capacity is given by
capacity(f), and delay(f) denotes the number of delays (initial
tokens) in f .

Similar to its predecessor PRUNE, VR-PRUNE adopts the
concept of symmetric-rate dataflow, which requires for con-
nected ports p+a and p−b that atr(p+a ) = atr(p−b ). A VR-
PRUNE actor a can fire when a) for each input port p−a
holds tokencount(fifo(p−a )) ≥ atr(p−a ), and b) for each output
port p+a holds capacity(fifo(p+a ))− tokencount(fifo(p+a )) ≥
atr(p+a ).

B. Actor Types

Each actor in a VR-PRUNE graph G must fall into one of the
four actor types that are characterized by numbers, types and
directions of ports, as described below. If an actor does not meet
the requirements of any of the four actor types, the actor cannot
be included into VR-PRUNE graph G.

1) Static Processing Actor (SPA): The ports of SPA actors
can only be of the type SRP, and therefore an SPA actor can be
understood to operate similar to an actor of the SDF [31] MoC.

2) Dynamic Actor (DA): A DA has at least one DRP, at
least one input control port, and any non-negative number
of SRPs. All the DRPs of DA x need to be either of in-
put direction, or of output direction as required by the de-
sign rules (Section IV). This restriction enforces modularity
of VR-PRUNE graphs and acts as a necessary condition for

analyzability. Furthermore, the number of DRPs in x must be
greater or equal to the number of its input control ports, since
each DRP of x is controlled by exactly one input control port
of x.

When a DA x first fires, x first consumes one token from
each of its control ports. The values of these consumed tokens
set the atr(px) for each DRP px of x. After the atrs of each
DRP px have been set, firing of x proceeds by following usual
dataflow semantics: tokens are consumed from the input ports
of x according to the port-specific atr values, and consequently
tokens are produced to the output ports of x following the port-
specific atr values.

Fig. 2 shows a VR-PRUNE subgraph with one configuration
actor q and two dynamic actors, x and y. The figure illustrates
how the token values originating from black-colored input con-
trol ports px1 and px2 associate with the DRPs px3, px4 and px5
in a one-to-many relationship. For actor x that has a DRP p,
cport(p) is the input control port of x that is associated with p.
Drawing an example from Fig. 2, cport(px3) = px2.

3) Dynamic Processing Actor (DPA): DPAs are required to
have at least one input DRP, at least one output DRP, at least one
control input port, and any number of SRPs. In the beginning
of firing DPA a, a first consumes one token from each of its
control ports. The values of the tokens originating from the
control ports set the atr for each DRP of a. Similar to DAs,
the number of DRPs must be greater or equal to the number
of input control ports, and firing of a proceeds by consuming
atr(p−ai), i = 1, 2, . . .,K tokens from each of a’s K input (SRP
or DRP) ports, finally producing atr(p+aj), j = 1, 2, . . ., L to-
kens to each of a’s L output (SRP or DRP) ports. Evidently,
FIFO f that is connected to DRP p must have a token capacity
of at least url(p): capacity(fifo(p)) ≥ url(p).

In Fig. 2, a, b and c are DPAs. Out of these, b has two input
DRPs (pb1 and pb3) and one output DRP (pb2), all of which are
controlled by the single input control port of b.

4) Configuration Actors: A configuration actor (example: q
in Fig. 2) must have one or more output control ports, which are
required, by definition, to have a token rate of unity. Additionally,
a configuration actor can have zero or more data ports, which are
SRPs. The data ports can either have input or output direction.

The tokens produced by the output control ports contain non-
negative integer values that define port-specific atrs for DAs
and/or DPAs that consume the control tokens. The relationships
between output control ports of configuration actors and input
control ports of DAs/DPAs are unambiguously defined by a
control table that is described below.

C. Control Table and Firing

In the VR-PRUNE MoC, variable token rates are restricted
to subgraphs called Dynamic Processing Graphs (DPGs) that
define graph-level structure for ensuring analyzability. The
VR-PRUNE concept allows various DPG types, however in
this paper we define one specific DPG type in Section V,
which is suitable for all application examples presented in
Section VI. DPG types may impose additional restrictions
to actor types, actor port counts, or connectivity between
actors.
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Fig. 2. VR-PRUNE subgraph example. An example of control relationships between a configuration actor (q), dynamic actors (x, y), and DPAs (a, b, c) expressed
equivalently by a control table, and graphically. Note: the rate column of the control table refers to the range of valid atr values (defined by lrl and url) emitted
by the output control port.

The complete VR-PRUNE application graph G can consist
of any number of interconnected DPGs: dynamic actors and
configuration actors of a DPG are allowed to connect outside the
DPG over SRPs without restrictions. In fact, using the concept
of hierarchical dataflow graphs (e.g. [32]), a DPG could be
represented as a composite actor with static token rate ports.
Formal presentation of hierarchical graphs is however limited
outside the scope of this work as clustering of actors may change
the graph semantics and cause deadlock [32]. In the rest of this
paper the analysis concentrates on internal behavior of individual
DPGs.

Fig. 2 shows an example of a DPG, where q is a configuration
actor, a, b and c are DPAs,x and y are DAs, and d is an SPA. Each
DPG is associated with a control table T that unambiguously
defines 1) the control relationships between output control ports
of configuration actors, and DRPs of DAs and DPAs, and 2) sets
limits for variable token rates by means of output control port
specific lrls and urls.

The control table of Fig. 2 is shown below the DPG — it is
a matrix with dimensions h× (w + 1), where h and w equal
the number of output control ports and DRPs, respectively. In
the control table, a value of ‘1’ indicates a control relationship
between the corresponding output control port (row) and DRP
(column), whereas a value of ‘0’ indicates that the control port
and DRP are not related. Since each DRP is required to be
controlled by exactly one output control port of a configuration
actor, a valid control table must have a column sum of ‘1’
for each DRP column. The lrl and url values are defined
per output control port in the last column of the control ta-
ble, and apply to all DRPs that are associated (‘1’) with that
row.

Finally, we define the meaning of a complete cycle related to
a DPG in the spirit of [9]: assuming that a DPG is consistent

(as discussed Section V), we define a complete cycle of a DPG
as a sequence of actor executions that returns the DPG to its
original state. The execution of a complete cycle S of actors of
the form S = q1, q2, . . ., qm, a1, a2, . . ., an, where the qi’s are
the control actors of the DPG, and the ai’s are the SPAs together
with the active DAs and DPAs of the DPG, as determined by the
execution sequence q1, q2, . . ., qm. Here, an active DA or DPA
a means that (1) a has input tokens on all control ports, and (2)
a is configured by the incoming control tokens so that at least
one DRP of a will have a nonzero rate on the next actor firing.
To be valid, a complete cycle must also satisfy the condition that
there is no FIFO buffer underflow within the edges of the DPG
when executing S.

IV. DESIGN RULES

This section presents the VR-PRUNE design rules, which
apply to all types of DPGs, providing generic restrictions for
supporting dataflow consistency. The approach of using design
rules is similar to previous works [27], [28], [32]. Specific
types of DPGs may impose further design restrictions beyond
VR-PRUNE design rules. Before presenting the rules, some
mandatory definitions are provided.

We define two actors, a and b, as adjacent, if at least one port
of a is connected with at least one port of b.

Definition 2 (Chain): A chain is a non-empty sequence S =
(a1, a2, . . ., aN ) of actors, such that ∀i = 1, 2, . . ., N , ai and
ai+1 are adjacent.

Consequently, chain S connects a1 and aN . Furthermore, if
all ai are distinct, then we call S a simple chain.

Suppose px and py are distinct ports of two actors x and y, re-
spectively. We say thatpx andpy are linked ports if (a)fifo(px) =
fifo(py), or (b) there is a simple chain (x, a1, . . ., aN , y) such
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Fig. 3. VR-PRUNE design rules. Illustrations related to design rules (a)–(e).
Solid black triangles denote control ports.

that px connects with a port of a1 and py connects with a port of
aN . Note that for the linked ports {px, py}, there can be multiple
connecting subchains a1, . . ., aN . If px and py are linked ports,
and they are both DRPs, then we say that they are linked DRPs.

For all design rules (a)–(e): Suppose {px, py} are linked
DRPs whose parents are dynamic actors x and y, and S1 =
(a1, a2, . . ., aN ) is a connecting subchain associated with
{px, py}:

a) Linked port control rule: Each pair of linked DRPs
{px, py}, and each DRP within actors of S1 must be controlled
by the same output control port pq.

b) Balanced delay rule: The input control ports associated
with the linked DRPs {px, py}, and each DRP within actors of
S1 must be connected to pq with the same delay. In other words
– suppose pa is a DRP of a ∈ S1, then delay(pq, cport(px)) =
delay(pq, cport(py)) = delay(pq, cport(pa)).

c) Connecting subchain rule: The actors ai, i = 1, 2, . . ., N
must all be of type SPA or DPA, and ai ∈ S1 may not belong
to any connecting subchain S2 = (b1, b2, . . ., bM ) that is asso-
ciated with a dynamic actor z /∈ {x, y}.

d) Single-sided dynamism rule: The DRPs of actor x are only
allowed to have output direction, and the DRPs of actor y are
only allowed to have input direction.

e) Encapsulation rule: Suppose k /∈ S1 is an actor that con-
nects to ai, i = 1, 2, . . ., N . 1) If k ∈ {x, y}, then ai may con-
nect to k only via a DRP pa1. 2) If k /∈ {x, y}, then k must
belong to another connecting subchain S2 = (b1, b2, . . ., bM )
associated with a pair of linked DRPs {px2, py2} such that
parent(px2) = x and parent(py2) = y.

Fig. 3 illustrates the design rules (a)-(e) as follows: The
topmost subfigure is a joint example of rules (a) and (b): the
dynamic actors x and y are connected by the chain S1 =
a1, . . ., ai, . . ., aN , and consequently px, py and each DRP of
each DPA within S1 need to be controlled by the same con-
trol output port pq of control actor q. Moreover, each FIFO
{pq, pxc}, {pq, pyc}, as well as {pq, cport(pai

)}, where pai
is a

DRP of actor ai ∈ S1, need to have the same number of delay
tokens.

Subfigure (c) of Fig. 3 illustrates the Connecting subchain
rule: on one hand, actor ai of S1 is not allowed to be a
control actor (CA), and on the other hand ai is not al-
lowed to be part of any connecting subchain that is associ-
ated with dynamic actors other that x and y, such as z in the
figure.

Violation of the Single-sided dynamism rule (Subfigure d) is
illustrated by a dynamic actor x, which incorrectly features both
an input DRP p−x1, and an output DRP p+x2.

Finally Subfigure (e) of Fig. 3 depicts an actor k that does
not belong to the connecting subchain between linked DRPs
{px, py}. The actor k is part of a connecting subchain that is
associated with a different pair of dynamic actors, z and v,
which is disallowed. Additionally, Subfigure (e) also illustrates
(observe actor a1) the case where k is one of the two dynamic
actors that are interconnected by S1. In this case, an actor
a1 ∈ S1 is not allowed to connect to the dynamic actor via a
port pa1 of type SRP — in contrast, the connection is allowed if
pa1 is of type DRP.

V. CONSISTENCY

This section first defines the Dynamic Processing Graph type
used throughout the rest of this paper, and consequently shows
that determining its consistency is a decidable problem.

A. The Switch Type Dynamic Processing Graph

The previously introduced VR-PRUNE MoC (Section III)
and design rules (Section IV) have been defined without unnec-
essarily strict constraints, not to limit expressiveness or future
developments that build on the MoC. However, for ensuring de-
cidable consistency analysis, additional constraints might need
to be incorporated to specific DPG types. Next, we introduce
the Switch DPG (sDPG) type that is a restricted type of DPG,
however generic enough for capturing all the application use
cases presented in Section VI. In addition to enabling anal-
ysis of the application use cases in our experimental study,
the developments we present involving the sDPG demonstrate
how groups of relevant applications can be represented and
formally analyzed by formulating suitable constraints within the
VR-PRUNE modeling framework.
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Each sDPG consists of a) exactly one configuration actor q, b)
exactly two dynamic actors, x and y, and c) any positive number
of linked DRPs that connect x and y. These restrictions a)-c)
are only associated with the sDPG type, and together with the
VR-PRUNE design rules ensure decidable consistency analysis
for sDPGs. Other types of DPGs with different restrictions would
consequently require a separate consistency analysis procedure.

The linked DRPs of an sDPG establish zero or more connect-
ing subchains between x and y. These chains form the dynamic
components (DCs) of the sDPG. Given an sDPG D, the set of
DCs of D is denoted as Zc(D), and the pair of dynamic actors
in D is denoted δ(D) = {x, y}. Fig. 2 shows an example of
such an sDPG with actors q, x and y. The DCs of this graph are
explained in the end of this subsection.

Consider an sDPG D that contains dynamic actor x with K
output DRPs pxi (i = 1, 2, . . . ,K), and dynamic actor y with L
input DRPs pyj (j = 1, 2, . . . , L). We require that each pxi is a
linked DRP with at least one of pyj . Our procedure for finding
the DCsZc(D) associated with a given DPGD can be expressed
as follows:

1) For each SRP pa of actor a ∈ {q, x, y}, remove fifo(pa).
Next, remove all actors and edges that have become discon-
nected from the set of actors {q, x, y} through the preceding
removal of FIFOs fifo(pa).

2) For each linked DRP {pxi, pyj}, where fifo(pxi) =
fifo(pyi), insert a dummy actor d (DPA) such that fifo(pxi) =
fifo(p−d ) and fifo(p+d ) = fifo(pyj).

3) Remove q, x, y, and all FIFOs fifo(pq), fifo(px) and
fifo(py) in D. This removal procedure decomposes D into a set
of connected components that form the DCs. Thus, Zc(D) =
{Z1, Z2, . . . , ZM}, where M ∈ [1,min(K,L)] is an integer
constant.

For an sDPGD to be valid, 1) each DPAawithin eachZk, k ∈
[1,M ] of D must have exactly one control port pa, and 2) within
D, no fifo(p), where p is a DRP, may have delay(fifo(p)) > 0.

Fig. 2 depicts an example of a valid sDPG D. Following the
above described three-stage procedure for discovering DCs, the
resulting DCs are Zc(D) = {Z1, Z2}. The actors related to the
DCs are all DPAs, such that Z1 = {a, b}, Z2 = {c}. Notice that
the SPA actor d was removed in the 1st stage, and is not part of
the DCs. As required by the design rules (Section IV) and sDPG
validity requirements, both DPAs a and b of Z1 have one input
control port each, which is connected to pq1. The control port
of actor c (which belongs to DC Z2) is connected to pq2, and
consequently the token rates of ports related to actors within Z1

and Z2 can vary independently of each other.

B. VR-PRUNE Graph Consistency

VR-PRUNE graphs may consists of several DPGs, but our
design rules ensure that the individual DPGs are independent of
each other. Since the existence of DRPs (and hence non-static
token rates) is limited to within DPGs, a) the actors outside
DPGs and b) ports of DPG actors connecting outside the DPGs
necessarily have static token rates. Hence, the consistency of
the VR-PRUNE application graph G can be validated using
standard SDF validation techniques [31]. Therefore, we limit
our discussion on consistency to within sDPGs.

In the following, a proof for the decidability of the consistency
analysis of sDPGs is presented. The reasoning followed by the
proof is to show that 1) the configuration actor of the sDPG fixes
the token rate of each DRP within the sDPG for the duration of
one complete cycle of an sDPG, 2) consequently, each DC of
the sDPG can be interpreted as a fixed token rate (SDF) graph
for the duration of that complete cycle, and 3) finally, the whole
sDPG can be considered as an SDF graph, for which it is well-
known [4] that determining consistency is a decidable problem.

Lemma 1: Assuming all DAs and DPAs are contained within
sDPGs: if all sDPGs of a VR-PRUNE graph G are consistent,
then the whole VR-PRUNE graph G is consistent.

Proof: Let Zc(D) = Z1, Z2, . . . , ZM be the set of DCs of a
valid sDPGD. The actors of DCs are by the Connecting subchain
rule required to be of type DPA or SPA.

Since we only consider valid sDPGs, each DRP ofactors(Zk)
within a single DC Zk, k ∈ [1,M ] is controlled by the same
output control port pq of configuration actor q. Consequently,
pq sets the atr of all DRPs within actors(Zk) to the same value
for each complete cycle of an sDPG, andZk can be considered as
an SDF graph. Since there is a finite maximum of url − lrl + 1
different token rates per DC, and, considering that the set of DCs
within one sDPG is finite, it is decidable to determine whether
or not the sDPG is consistent.

If all the Zk’s are consistent, then there exists a valid, periodic
schedule P (Zk) for each Zk [4]. P (Zk) defines a schedule for
each actor, actors(Zk), related to the current atr set by pq that
is associated with Zk.

Considering actors(Zk), for each FIFO f connected an actor
a ∈ actors(Zk), there exists a buffer boundBk(f) that indicates
the maximum token count on f at any stage ofP (Zk) execution.
This buffer bound exists as a consequence of SDF graph con-
sistency [4]. Among all DCs Zc, there is a finite FIFO-specific
bound β(f) = max(Bk(f) | Zk ∈ Zc(D)).

The whole sDPG can then be executed by a sequence of
schedules Ω = (O1, O2, . . .) such that for every Ok, there is
an Hk ∈ Zc(D), where Ok = P (Hk). Hk is the kth executed
DC within the sDPG.

As each Zk is assumed to have a valid, periodic schedule,
execution of Ok does not cause a net change to the token counts
of the FIFOs between actors(Zk). Therefore, the token count
of FIFO f is bounded by Bk(f). Finally, the token count of f is
during execution of Ω is limited to β(f). �

VI. EXPERIMENTAL RESULTS

Experiments related to VR-PRUNE were performed on four
application use cases: 1) adaptive digital predistortion, 2) paral-
lel image classification, 3) dynamic-update digital predistortion
and 4) object detection. Examples 1 and 3 concern real-time sig-
nal processing for wireless communications, whereas examples
2 and 4 concentrate on deep convolutional neural networks.

The experimental results show that the increased expressive-
ness of VR-PRUNE (compared to PRUNE [28])
� Enables expressing the same application structure by

clearly fewer dataflow graph elements,
� Enables describing dataflow behavior that cannot be cap-

tured by PRUNE,
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TABLE II
PLATFORMS USED FOR EXPERIMENTS

� Provides means for saving power by adaptive reduction of
computational effort, and

� Does not cause excessive computational run-time over-
head.

The first point listed above results because VR-PRUNE en-
ables more compact representation of design functionality. For
elaboration on the importance of using compact representations
in system-level modeling, see for example [33]. The run-time
measurements have been performed on three platforms (see
Table II), one of which is a regular mobile workstation (i7),
and the other ones are embedded platforms (XU3 and N2), all
equipped with GPUs.

A. Run-Time Framework and Application Programming

In order to conduct run-time experiments for measuring
the efficiency of VR-PRUNE, the PRUNE runtime framework
was extended to accommodate variable token rates. We refer to
the resulting extension as the VR-PRUNE Runtime Framework
(VPRF).

VPRF operates under Linux, and bases its concurrent com-
putation infrastructure on Linux parallel computing primitives:
each actor is instantiated as a separate thread that can either
be assigned to a specific processor core, or be auto-assigned
to a free core by the operating system. FIFOs are implemented
as memory arrays, and read/write access to them is arbitrated
by mutex constructs. Although Section V discussed execution
schedules of VR-PRUNE graphs for the purpose of consistency
analysis, VPRF follows static assignment scheduling [34] where
the operating system determines the execution order of actors at
run-time, subject to dataflow constraints.

VPRF also features deeply embedded support for interfac-
ing GPUs. This means that the FIFO and actor primitives of
VPRF have been designed from the beginning for efficient
data transfers between CPU cores and the GPU, as well as
data exchange between GPU kernels, including functionality for
variable-length data transfer to/from GPU. VPRF also includes a
prototype graph validity checker that inspects application graphs
against VR-PRUNE design rules. The dataflow models and
experiments described in Sections VI-B and VI-C have been
done under VPRF.

The VPRF application programmer writes the application
code using the C language or OpenCL for actor descriptions,
and XML for describing the application graph. VPRF follows
a predefined actor template that originates from the DAL [35]
framework: each actor has initialize, fire and finish functions,
as well as a persistent actor-specific data structure for preserv-
ing actor state between firings. For actors that are aimed to
GPU execution, the actor behavior is expressed in the OpenCL
language (OpenCL was selected over CUDA for reasons of
wider hardware support, as almost all CUDA devices support
OpenCL, but not vice-versa). VPRF provides a compact set of

Fig. 4. The adaptive digital predistortion application. Subfigures: (a) VR-
PRUNE graph, (b) PRUNE graph. In Subfig. (b) double-line arrows depict
2×FIFOs.

function calls for inter-actor data exchange over FIFO buffers.
The function calls effectively hide the complexity related to
GPU programming from the programmer: data transfer from
a CPU-based actor to a GPU-based actor is carried out using the
same function as data transfer between two CPU-based actors.
VPRF includes a compiler that transforms the application graph
XML file into a top-level C file, which can together with the
actor descriptions be compiled into an executable.

Exploiting target platform heterogeneity and parallelism is
an important factor for efficient signal processing. Here, VPRF
follows the approach first introduced by DAL [35], and later
used in PRUNE: using a mapping specification (XML file) the
application programmer can assign each actor to a specific CPU
core, or to the system’s GPU. If an actor is assigned to the GPU,
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the programmer also needs to indicate the number of work items
and work groups as required by OpenCL [36]. If the work size
of an actor exceeds the maximum work size of the GPU, the
underlying OpenCL driver automatically divides the processing
into multiple passes. On the other hand, if the actor work size
is less than the GPU’s maximum work size, the GPU runs with
reduced utilization; simultaneous execution of several actors on
the same GPU is not supported.

CPU core assignments are handled by Linux CPU affinity
masks that define which CPUs/cores are eligible to execute each
thread (actor). Mapping an actor to the GPU requires expressing
the actor’s internal behavior in OpenCL, but data exchange
between the GPU and CPU, as well as GPU initialization are
handled by VPRF.

B. Expressiveness and Computational Efficiency

One of the main advantages of VR-PRUNE over PRUNE
is the increased expressiveness offered by variable token rates
compared to binary (on/off) token rates of PRUNE. The in-
creased expressiveness can be quantified in terms of graph size:
with a more expressive model it is possible to represent the same
functionality with fewer elements (actors, edges) than with a less
expressive model. The adaptive digital predistortion and paral-
lel image classification application examples that are introduced
next highlight that in addition to expressiveness, variable token
rates provide potential for saving power by computational effort
reduction, while maintaining implementation efficiency.

1) Adaptive Digital Predistortion: Digital predistortion is a
signal processing approach for compensating non-linear effects
of a wireless transmitter’s power amplifier [37]. The signal
processing for predistortion is computationally very demanding,
and therefore solutions [38] that trade-off predistortion band-
width against computational effort are useful for saving power
when possible, e.g. due to varying interference conditions.

Fig. 4 shows such an adaptive predistortion filter in two im-
plementations: a) is a VR-PRUNE implementation, and b) is the
conventional PRUNE implementation introduced in [28]. Both
implementations describe the same 10-tap parallel Hammerstein
filter structure [39], with adaptive functionality such that indi-
vidual filter branches can be enabled or disabled on-the-fly at
run time. In Fig. 4, s1 and s2 are source actors that provide
samples from the transmitter baseband side; x is a dynamic
actor that computes polynomial basis functions and distributes
the samples to parallel FIR filter branches f ; y is a dynamic actor
that implements a summation function for combining the filter
branch outputs and compensates for I/Q imbalance; t1 and t2
finally act as output actors towards the power amplifier. Adaptive
processing is controlled by the configuration actor q that based
on external input can enable/disable filter branches f1. . .f4 and
f7. . .f10 in the PRUNE implementation. In the VR-PRUNE
implementation the same effect is accomplished by variable
token rates to/from the actor f . In the PRUNE implementation
the FIR filter actors are SPAs, whereas the VR-PRUNE FIR actor
f is a DPA.

It can be seen that the VR-PRUNE implementation (Fig. 4(a)
compactly captures the adaptive predistortion functionality
within 8 actors and 11 FIFOs, whereas the PRUNE implemen-
tation (Fig. 4(b) requires 17 actors and 46 FIFOs (double-line

TABLE III
ADAPTIVE DIGITAL PREDISTORTION LINES OF CODE PER ACTOR

TABLE IV
ADAPTIVE DIGITAL PREDISTORTION THROUGHPUT IN COMPLEX FLOAT

MEGASAMPLES/S, AS A FUNCTION OF ENABLED FILTER BRANCHES (%), ON

THE I7 CPU AND ON THE N2 CPU. HIGHER IS BETTER

arrows stand for 2×FIFOs, one for the I channel, and one for
the Q channel). This reduction of graph elements comes from
the fact that VR-PRUNE is able to capture the functionality of
actors f1. . .f10 within a single actor f , and consequently reduces
the number of connecting FIFOs from 40 down to 4. Based
on the number of architectural elements, VR-PRUNE therefore
reduces the predistortion model complexity by 70% compared
to PRUNE. This reduction ratio depends on the structure of the
original dataflow graph, more specifically on the count of f
(filter) actors.

One potential fallacy in evaluating model complexity reduc-
tion as described above is that actor and edge counts can often
be reduced by just lumping actors together. For example, an
entire SDF graph can be implemented as a single actor, thereby
reducing the graph size to 1 actor and 0 edges. To show that this
is not the case here, Table III shows the lines of code per actor
for the Fig. 4 graphs. It can be seen, that on average, the VPRF
implementation requires fewer lines per code than the PRUNE
implementation. Looking at the dynamic actors x and y, it can
be seen that the PRUNE implementations of these actors have
around 30% more code than their VPRF counterparts, which is
related to inter-actor communication: initiating and terminating
inter-actor data transfer requires two lines of code per FIFO.
Since the PRUNE x and y actors have 20 FIFOs towards the f
actor each, whereas the VR-PRUNE x and y have only 2, the
difference is obvious. In contrast, the VPRF f actor has 20 lines
of code more than the PRUNE counterpart – this is due to the
fact that the single f actor stores all the filter coefficients that in
the PRUNE implementation are distributed over f1. . .f10.

Finally, Table IV shows the throughput of the adaptive digital
predistortion application for both the i7 and N2 platforms. The
throughput is largely limited by the compute resources of each
platform, but the runtime framework’s impact can still be seen in
the performance figures: due to the considerably simpler graph
structure, the VPRF implementation (Fig. 4(a) causes reduced
computational overhead compared to the conventional PRUNE
implementation (Fig. 4(b). It is worthwhile to point out that
reducing the number of actors as between Fig. 4(b) and Fig. 4(a)
evidently decreases potential for parallel execution. Therefore,
if the underlying execution platform has spare cores, it is not
advisable to collapse all actors f1. . .f10 into a single actor, but
instead consider distributing the computation effort evenly over
available compute resources.
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Fig. 5. The parallel image classification application. Subfigure (a) shows the
static PRUNE graph, whereas (b) shows the adaptive VR-PRUNE graph. In
both graphs, actors a, b, and c are executed on the GPU, and N = 24 images
are classified in parallel.

2) Parallel Image Classification: Image classification is a
fundamental computer vision task that is nowadays exclusively
performed by deep CNNs. Driven for example by surveillance
applications [40], there has also been interest in pushing clas-
sification to be done on low-resource computing devices. Some
edge/IoT computing platforms such as the Odroid XU3 (Table II)
are also equipped with a reasonably powerful GPU that offers
optimal performance and efficiency only when the processing
workload is sufficiently parallel.

Fig. 5(a) shows a PRUNE graph for parallel image classifi-
cation: actor s is the source actor that acquires N = 24 parallel
images from a source (e.g., camera interface), and using the
underlying PRUNE CPU-GPU interface sends the N 96 ×
96 RGB images in parallel to the GPU-mapped actor a that
performs 2D convolution, ReLU non-linearity, max-pooling and
2× subsampling to all N input images in parallel. Actor b (on
GPU) also performs 2D convolution, max-pooling and subsam-
pling, followed by the GPU-mapped actor c that implements a
dense layer. After actor c, the feature maps of the N images are
transferred back to CPU processing by the PRUNE infrastructure
for final processing by two small dense layers, ReLU activations
and softmax output, all performed by actor t. All actors in the
Fig. 5(a) graph are SPAs.

Fig. 5(b) shows the VR-PRUNE graph for the same CNN-
based image classifier, however modified such that the configu-
ration actor q can at runtime determine which of the N parallel
images will undergo classification, and which are skipped. For
this, the VR-PRUNE graph contains additional dynamic actors
x and y (a, b and c are DPAs in Fig. 5(b).

Fig. 6 shows a useful effect of this adaptivity: the computation
effort decreases almost linearly on the i7 platform from the
maximum ofN = 24 processed images down to 0, offering great
potential for saving processing power. Fig. 7 shows the similar
effect on the XU3 embedded platform for N = 4 images.

Fig. 8 shows the power scaling effect of VPRF parallel image
classification on the embedded XU3 platform. Summing the
power dissipation of the GPU, CPU, and memory, it can be
seen that when all frames (100%) are classified, the total power
dissipation by the application is 3.4 W. Decreasing the number of
classified frames down to 0% by adjusting the token rate, makes
the application power dissipation as small as 20 mW. For each

Fig. 6. Parallel image classification performance on the i7 GPU platform
for N = 24 parallel images: static processing pipeline of PRUNE vs. VPRF
adaptive processing by variable token rates.

Fig. 7. Parallel image classification performance on the XU3 GPU platform
for N = 4 parallel images. VPRF adaptive skipping of frames by variable token
rates vs. no adaptiveness.

Fig. 8. Parallel image classification power dissipation on the XU3 platform
under VPRF forN = 4 parallel images. Thex axis depicts percentage of frames
processed (e.g. 25% = on average every fourth frame undergoes classification).

hardware component (GPU, CPU, memory), the power figures
were acquired from the on-board current sensors of the XU3
platform.
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Fig. 9. The dynamic-update predistortion (DU-DPD) filter application. Sub-
figures: (a) VR-PRUNE and (b) PRUNE graphs. Both graphs implement two
alternative token rates: N and N

2 .

C. Further Application Examples

1) Dynamic-Update Predistortion Filter: The GPU-based
dynamic-update predistortion filter (DU-DPD) for 5 G small
cells is based on a recent architecture presented in [37]. The
original dataflow implementation of [37] was imported to VPRF
and modified such that the sample rate of the learning part can
be changed adaptively at run-time for the purpose of saving
computation effort in situations where radio frequency interfer-
ence is low. The VR-PRUNE graph of the DU-DPD is shown
in Fig. 9(a); the actor s contains essentially a power ampli-
fier model, l encapsulates decorrelation-based filter coefficient
learning functionality, whereas the actor u updates filter coef-
ficients. Actual signal predistortion is performed by the f actor
that has a constant I/O sample rate of N and is executed on the
GPU. In practice, N can be e.g. 10000 or 65535 [37].

The variable-rate processing feature of the DU-DPD is exhib-
ited between the actors s, l and u: the current sample rate (atr)
can be adaptively changed among N

2 and N , as dictated by the
q actor. The subset of the four aforementioned actors also form
the sDPG for the DU-DPD application: s and u are the pair of
dynamic actors δ for the sDPG, and l is a DPA. The actor f has
static token rates at all its inputs and outputs, and hence it is an
SPA.

With respect to computational characteristics, DU-DPD dif-
fers from the adaptive digital predistortion application of Sec-
tion VI-B in two ways: 1) DU-DPD includes a feedback loop,

Fig. 10. The object detection and tracking application. VR-PRUNE graph
of the SSD-Mobilenets object tracking component. The full application graph
consists of 53 actors and 72 edges.

and 2) the learning algorithm (actor l) is recursive by nature.
Here, recursiveness means that the algorithm operates on blocks
of samples, and with respect to the algorithm’s output, sample
value si+1 depends on sample value si (i ∈ [0, N − 1]). There-
fore, output sample si+1 cannot be computed independently of
sample si, for all i ∈ [0, N − 1].

The significantly higher expressiveness of VR-PRUNE over
PRUNE is illustrated in Fig. 9(a) and Fig. 9(b). Using the
PRUNE MoC, implementing several learning rates would re-
quire replicating the l actor for each different token rate; Fig. 9(b)
shows an example, where the l actor can operate at sample rates
N and N

2 . For a finer-grained set of token rates of, e.g., 8 different
sample rates, the l actor and its associated edges would need to be
replicated 8 times. In contrast, the VR-PRUNE model is capable
of supporting any number of integer sample rates with the simple
graph that is shown in Fig. 9(a): the only change required is the
token rate range (or rate list) in the control table.

2) Object Detection and Tracking: Visual object detection
has been one of the most successful applications of computer
vision since the introduction of deep CNNs. A CNN-based
object detector can be understood to consist of a few main
components: 1) A CNN-based feature extractor, 2) the actual
object detector, and 3) object post-processing for application
specific purposes. One of the most apparent post-processing
operations for object detection is object tracking that can be used
to discover the motion trajectories of objects and for maintaining
object identifiers across sequences of images.

For VPRF, an object tracker was implemented based on the
MobileNets [41] CNN for feature extraction, followed by the
SSD (single-shot detector) [42] object detector, and an object
tracking block.3 Fig. 10 depicts the final stages of this 53-
actor VR-PRUNE graph: the Non-max suppression (NMS) actor
receives object predictions and coordinates from the feature
detector CNN, resolving these into the number of detected
objects (object_count). This number is distributed from the

3This MobileNet-SSD implementation is fully stand-alone and requires no
external computer vision frameworks or libraries. The trained weights for CNN
layers were extracted from TensorFlow using a prototype software tool written
by one of the paper authors, M. Khan.
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output control port pnc to the Object tracking actor (DPA)
and to the Output actor (DA) that performs visualization. The
number of detected objects varies frame-by-frame between 0
and MAX_OBJECTS, which is a compile-time constant. Con-
sequently, the number of detected objects directly controls how
many bounding boxes (boxes), class predictions (classes) and
prediction scores (scores) are communicated from NMS to the
object tracking actor. Similarly, this number also adjusts the
number of tracked boxes (iboxes), and motion vectors (dx and
dy) between the Object tracking and Output actors. As Fig. 10
shows, the NMS actor is a joint configuration and dynamic actor,
and hence the pair of dynamic actors δ(D) is {NMS, Output}.
Such a merged actor can be beneficial for, e.g., simplifying the
actor network [28]. For the purpose of consistency analysis, as
described in Section V, the configuration and dynamic actor
should be treated as separate actors, however.

Similar to the DU-DPD application example, implementing
the varying object count feature of Fig. 10 without the variable
token rate feature of VR-PRUNE would be complicated. The
VR-PRUNE graph displayed in Fig. 10 shows an implemen-
tation where the tracked object count can vary between 0 and
9 (visible within the control table) — implementing this rate
scalability feature within PRUNE would require 9 instances of
the object tracking actor.

D. Comparison With Other Frameworks

For years, efficient computing has been of highest importance
in signal processing and machine learning, especially in the
embedded systems context. Unfortunately, achieving highest
computation efficiency requires adapting software to the intrica-
cies of the hardware architecture, which is a very work-intensive
task. To this extent, computing hardware manufacturers active in
the machine learning domain (NVidia, Intel, ARM, Qualcomm,
etc.) have in the recent years released proprietary libraries and
frameworks for accelerating machine learning inference on their
computing architectures.

The performance of a dataflow flavored runtime framework
consists of two components: 1) the actor implementations, and
2) inter-actor communication and synchronization. The scope
of the proposed VPRF framework is entirely related to the latter
(2) item, whereas towards actor implementations (1) VPRF is
implementation-agnostic. To provide perspective over VPRF
efficiency, this section shows some results for VPRF in the
context of commercial frameworks that utilize optimized actor
implementations (1).

In order to benchmark VPRF synchronization efficiency (2)
meaningfully, we chose to adopt actor implementations (1)
from ARMCL and oneDNN libraries for machine learning on
ARM and Intel platforms, respectively. As the programming
interface of ARMCL is not directly compatible with VPRF, the
experiment required manual program adjustments to the VPRF
implementation after automatic VPRF code generation.

Table V provides a performance evaluation on the Image clas-
sification application (Fig. 5(a), reflecting the performance of
VPRF against TensorFlow, and the optimized actor implementa-
tions of ARMCL and oneDNN. The comparison between VPRF
and PRUNE is omitted here, because with this graph the runtime
computations for VPRF and PRUNE are identical. The first

TABLE V
IMAGE CLASSIFICATION PERFORMANCE IN THE CONTEXT OF COMMERCIAL

FRAMEWORKS. EACH CELL REFLECTS PROCESSING TIME IN MILLISECONDS

PER FRAME FOR N IMAGES PROCESSED IN PARALLEL USING THE GRAPH OF

FIG. 5(A), AND 100% OF IMAGES UNDERGO CLASSIFICATION

column of the table shows results of an experiment, where image
classification has been performed by VPRF and TensorFlow4 on
the i7 CPU, both leveraging oneDNN. It can be seen that VPRF
provides a substantially higher processing performance than
TensorFlow, related to the fact that VPRF programs are compiled
and optimized by the GNU C compiler, whereas TensorFlow
emphasizes ease of programming by Python. The last row of
column 1 shows for reference the execution time of the same
program implemented as single-threaded C code, leveraging the
same computation kernels as the VPRF implementation. VPRF
distributes the computations across the different cores of the i7
platform, providing higher throughput than the Baseline imple-
mentation. For reference, the second row shows a performance
figure from Fig. 6 whereN = 24 images are classified in parallel
on the i7’s GPU using generic OpenCL actor implementations.
It can be seen that the performance-optimized oneDNN CPU
actor implementations outperform GPU acceleration in this case.
Since TensorFlow requires a CUDA compatible GPU (and Ten-
sorFlow Lite requires Android or IOS for OpenCL), the column
2 experiment could not be done for the TensorFlow framework.

The last two columns show results using the embedded N2
platform with and without use of the GPU. In the last column, ac-
tor implementations were adopted from the ARMCL library and
executed on the GPU from a) the Baseline C language program,
and b) VPRF, yielding almost identical performance. Since all
the significant actors of the Image classification application are
executed on the single GPU of the system, there are no possibili-
ties to leverage concurrent computing, and consequently both the
Baseline C and VPRF versions effectively execute the classifica-
tion sequentially. However, the result shows that the concurrent
thread-based VPRF runtime adds negligible overhead com-
pared to the ARMCL accelerated Baseline C implementation. To
achieve highest performance, GPU-mapped FIFOs were used in
VPRF. Details on this technique are explained in Appendix A.
Column 3 also shows a comparison between VPRF with generic
actor implementations against TensorFlow5 CPU on the N2
ARM platform, indicating faster execution for VPRF.

Finally, Table VI shows a detailed comparison of VR-PRUNE
vs. other dataflow models in terms of graph sizes. The table
shows that for each application VR-PRUNE clearly outper-
forms both PRUNE and SADF [19] models in expressiveness.
VRDF [29] and Dataflow Process Networks (DPN) [21], on
the other hand, are more expressive than VR-PRUNE and can
consequently capture VR-PRUNE graphs with similar, but a
slightly fewer number of components. However, the DPN model

4Python 3.6.9, TensorFlow 2.3.1 with eager execution and JiT compilation
enabled.

5Python 3.5.7, TensorFlow 1.14
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TABLE VI
GRAPH SIZE VERSUS OTHER DATAFLOW FRAMEWORKS. THE RATE ROW

EXPRESSES TOKEN RATE VARIATION FOR EACH APPLICATION, E.G. [0..24]
EQUALS TO 25 DIFFERENT TOKEN RATES, AND “N

2 OR N” EXPRESSES TWO

ALTERNATIVE RATES. FOR EACH FRAMEWORK AND APPLICATION, THE CELLS

DENOTE NUMBER-OF-VERTICES, NUMBER-OF-EDGES. FOR EXAMPLE: (8, 11):
8 VERTICES AND 11 EDGES

is so general that possibilities for graph consistency verification
at design time are very limited, whereas for VRDF no practical
design frameworks have been released so that the MoC’s appli-
cability to high processing performance could be evaluated. A
detailed explanation of the graph size calculations is presented
in Appendix B.

VII. DISCUSSION AND FUTURE WORK

Section I presented a weakly consistent dataflow graph that
was originally introduced in [1], with a note that for example the
TensorFlow dataflow environment produces version-dependent
behavior upon execution of this graph.

How does VR-PRUNE handle this graph of Fig. 1? As such,
the graph is not a valid VR-PRUNE graph. Since the graph
contains dynamic token rate ports, an sDPG structure needs
to be identified for VR-PRUNE compliance. Evidently, conf
would serve as the configuration actor q, whereas switch and
proc would represent the pair of dynamic actors δ associated
with q. However, VR-PRUNE requires that both dynamic actors
of δ need to be controlled by the same configuration actor, and
hence the output of conf is required to be connected to proc as
well. Now, the output port psT of switch and its counterpart pp1
in proc could be interpreted as DRPs controlled by the output of
conf. With these changes, the graph would be a valid VR-PRUNE
graph, and would also avoid unbounded use of memory: upon
emitting a False token, the conf actor would set the atrs of the
two DRPs (psT and pp1) to zero, allowing proc to consume the
token arriving from input independent of sample values. This
example highlights the importance of formal design rules and
computation models for detecting and diagnosing model flaws
as early as possible.

Since one of the major attributes of VPRF is high process-
ing performance on multicore and heterogeneous (CPU+GPU)
platforms, one might wonder how VPRF compares to other
similar frameworks in terms of performance. Table IV and Fig. 6
illustrate the processing performance of VPRF versus PRUNE,
showing that performance differences between the frameworks
are minimal, which is expectable because the differences in
the runtime frameworks are modest. On the other hand, the
PRUNE paper [28] presented extensive benchmarks, where it
was shown that PRUNE outperformed the DAL [35] framework
in all application benchmarks.

Currently, VPRF only supports a single OpenCL device in
the system. As future work, this could be extended to en-
able multiple OpenCL devices including multiple GPUs and/or

OpenCL-compatible CPUs. A further interesting direction worth
exploring would be introducing distributed computing [35] for
executing parts of VR-PRUNE graphs in a cloud similar to [43].

VIII. CONCLUSION

In this paper we have presented VR-PRUNE, a Model of
Computation for high-performance signal processing applica-
tions, which features variable token rates and is accompanied
with VPRF, a runtime library that has deeply integrated support
for heterogeneous computing. VPRF is going to be released as
open source similar to its predecessor PRUNE.

We have formally defined the VR-PRUNE Model of Compu-
tation, design rules, and consistency analysis, and have discussed
its decidability. Compared to previous related Models of Compu-
tation, VR-PRUNE offers a unique combination of analyzability,
expressiveness and practical applicability for high-performance
applications.

Through extensive experiments using VPRF with four appli-
cation examples, we have shown how VR-PRUNE
� Is applicable to practical signal processing algorithms,
� Offers considerably higher expressiveness than previous

work,
� Enables adaptive processing for saving power, and
� Provides high processing performance.

APPENDIX A
GPU-MAPPED FIFOS

Heterogeneous computing across CPU and GPU resources
needs to be implemented carefully to avoid unnecessary com-
putation time overheads. One significant source of overhead
in GPU based computation acceleration are memory transfers
between the CPU and the GPU.

In VPRF, the memory structures related to dataflow actors and
FIFOs reside by default in CPU memory. However, especially in
machine learning applications, it is common that the application
consists of a pipeline of actors (neural network layers) that are
processed on the GPU. In such cases, highest performance is
achieved when FIFOs between GPU-mapped actors reside in
the GPU memory, avoiding unnecessary data transfers between
the CPU and GPU: tokens flow within GPU memory from one
GPU-mapped actor to the next GPU-mapped actor.

Although it is common practice in GPU computing to main-
tain intermediate data between GPU kernels (≈ actors) in GPU
memory buffers (≈ FIFOs), implementing GPU buffering in the
dataflow computing context requires some additional consider-
ation to maintain data-driven application behavior.

In VPRF, this is achieved such that each FIFO buffer, which
is mapped to GPU memory, has a dummy counterpart in CPU
memory. This dummy counterpart of a FIFO does not carry any
data (as the token data is in GPU memory) — it only serves for
implementing synchronization between actors. By using these
dummy synchronization FIFOs, the VR-PRUNE application
simultaneously maintains data-driven behavior, while avoiding
computation time overhead by keeping token data in GPU
memory.

In the Image classification application, the use of GPU-
mapped FIFOs decreases average image classification time from
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18.7 ms to 16.2 ms when the ARMCL library is used for actor
implementations on the N2 platform.

APPENDIX B
GRAPH COMPLEXITY COMPARISON

Details of the graph complexity comparison in terms of edge
counts and vertex counts are explained below for PRUNE,
SADF [19] and VRDF [29] models.

In terms of graph complexity, the PRUNE [28] model differs
from VR-PRUNE in two significant ways: 1) PRUNE does
not inherently support variable token rates, and hence token
rate changes need to be emulated by a series of actor (vertex)
instances that can individually be enabled or disabled, which
increases graph component count compared to VR-PRUNE. 2)
PRUNE does not require edges from configuration actors to
those actors that are enabled/disabled at runtime. This decreases
graph component count compared to VR-PRUNE. For an il-
lustration related to these differences, the reader should refer
to Fig. 4 whose subfigures a) and b) show equivalent PRUNE
and VR-PRUNE graphs. Related to the PRUNE model of the
Fig. 5 parallel image classifier, it is important to notice that
subfigures a) and b) do not depict graphs of equivalent behavior.
A PRUNE graph equivalent to the Fig. 5(b) VR-PRUNE graph
would consist of 24 instances of actors a, b, and c, which would
result in the 77 actors and 100 edges, as shown in Table VI.

The SADF model captures dynamic (runtime) changes on
graph topology by scenarios such that each possible topol-
ogy is described by a separate SDF graph. In the Adaptive
DPD application the number of active filter branches ranges
between 1 and 5, resulting in 5 scenarios (graphs), each of which
has a different number of actors and edges in the branches:
Sadpd
edges = ΣN

i=18i+ 4, and Sadpd
vertices = ΣN

i=12i+ 6. For N = 5,
a total of 60 actors and 140 edges ensue when all scenarios are
added together. In the Image classification application, between
0 and N = 24 images can be classified in parallel, resulting
in 25 graph scenarios: Simcl

edges = ΣN
i=04i+ 2, and Simcl

vertices =

ΣN
i=03i+ 4, which totals into 1000 actors and 1250 edges (the

numbers are exact) for N = 24 + 1. For DU-DPD the number
of scenarios is N = 2 (Sdudpd

edges = ΣN
i=14i+ 3, and Sdudpd

vertices =

ΣN
i=1i+ 3), and for Object detection there are N + 1 = 10

scenarios: Sobjd
edges = ΣN

i=06i+ 65, and Sobjd
vertices = ΣN

i=0i+ 52.
Since SADF does not explicitly mention the need of configura-
tion actors, the component counts do not include the configura-
tion actor, or edges connected to the configuration actor.

Finally, the VRDF [29] and DPN [21] models are slightly
more expressive than VR-PRUNE: neither of these models
requires symmetric token rates, nor any need for configuration
actors. To this extent both VRDF and DPN are able to directly
capture VR-PRUNE graphs, albeit without configuration actors
and edges. Consequently VRDF and DPN graph complexities
are very similar, but slightly lower than those of VR-PRUNE
graphs.

REFERENCES

[1] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory
using the token flow model,” Ph.D. dissertation, Dept. Elect. Eng. and
Comput. Eng., Univ. California Berkeley, 1993.

[2] G. F. Zaki, W. Plishker, S. S. Bhattacharyya, C. Clancy, and J. Kuykendall,
“Integration of dataflow-based heterogeneous multiprocessor schedul-
ing techniques in GNU radio,” J. Signal Process. Syst., vol. 70, no. 2,
pp. 177–191, 2013.

[3] M. Abadi et al., “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems,” 2016, arXiv:1603.04467.

[4] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. C-36, no. 1, pp. 24–35, Jan. 1987.

[5] K. Ravindran, A. Ghosal, R. Limaye, G. Wang, G. Yang, and H. Andrade,
“Analysis techniques for static dataflow models with access patterns,” in
Proc. Conf. Des. Architectures Signal Image Process., 2012, pp. 1–8.

[6] Agilent EEsof EDA SystemVue 2011 Technical Overview, Agilent Tech-
nologies, Inc., May 2011.

[7] A. Veit and S. Belongie, “Convolutional networks with adaptive inference
graphs,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–18.

[8] R. T. Mullapudi, W. R. Mark, N. Shazeer, and K. Fatahalian, “Hy-
dranets: Specialized dynamic architectures for efficient inference,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8080–8089.

[9] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs with
bounded memory using the token flow model,” in Proc. Int. Conf. Acoust.,
Speech, Signal Process., 1993, vol. 1, pp. 429–432.

[10] Y. Yu et al., “Dynamic control flow in large-scale machine learning,” in
Proc. 13th EuroSys Conf., 2018, pp. 1–15.

[11] Y. Ma, J. Wu, S. S. Bhattacharyya, and J. Boutellier, “Decidable variable-
rate dataflow for heterogeneous signal processing systems,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2020, pp. 1683–1687.

[12] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp. 223–252,
1977.

[13] K. M. Kavi, B. P. Buckles, and U. N. Bhat, “A formal definition of data
flow graph models,” IEEE Trans. Comput., vol. 35, no. 11, pp. 940–948,
Nov. 1986.

[14] K. M. Kavi, B. P. Buckles, and U. N. Bhat, “Isomorphisms between Petri
nets and dataflow graphs,” IEEE Trans. Softw. Eng., vol. SE-13, no. 10,
pp. 1127–1134, Oct. 1987.

[15] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“PREESM: A dataflow-based rapid prototyping framework for simplifying
multicore DSP programming,” in Proc. Eur. Embedded Des. Educ. Res.
Conf., 2014, pp. 36–40.

[16] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in Proc. Int. Conf. Compiler Construction,
Springer, 2002, pp. 179–196.

[17] H. P. Huynh, A. Hagiescu, O. Z. Liang, W.-F. Wong, and R. S. M.
Goh, “Mapping streaming applications onto GPU systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 9, pp. 2374–2385, Sep. 2014.

[18] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
dataflow,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 397–408,
Feb. 1996.

[19] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications,” in Proc.
Int. Conf. Embedded Comput. Syst., 2011, pp. 404–411.

[20] E. Jeong, D. Jeong, and S. Ha, “Dataflow model-based software synthesis
framework for parallel and distributed embedded systems,” ACM Trans.
Des. Automat. Electron. Syst., vol. 26, no. 5, pp. 1–38, 2021.

[21] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. IEEE,
vol. 83, no. 5, pp. 773–801, May 1995.

[22] J. Eker and J. W. Janneck, “CAL language report,” UC Berkeley, Tech.
Rep. UCB/ERL M03/48, 2003.

[23] M. Mattavelli, I. Amer, and M. Raulet, “The reconfigurable video coding
standard [standards in a nutshell],” IEEE Signal Process. Mag., vol. 27,
no. 3, pp. 159–167, May 2010.

[24] G. Cedersjö and J. W. Janneck, “Tÿcho: A framework for compiling stream
programs,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 6, pp. 1–25,
2019.

[25] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and M. Raulet,
“ORCC: Multimedia development made easy,” in Proc. ACM Int. Conf.
Multimedia, 2013, pp. 863–866.

[26] O. Rafique and K. Schneider, “SHeD: A framework for automatic software
synthesis of heterogeneous dataflow process networks,” in Proc. Euromi-
cro Conf. Digit. Syst. Des., 2020, pp. 1–10.



BOUTELLIER et al.: VR-PRUNE: DECIDABLE VARIABLE-RATE DATAFLOW FOR SIGNAL PROCESSING SYSTEMS 1833

[27] G. Gao, R. Govindarajan, and P. Panangaden, “Well-behaved dataflow
programs for DSP computation,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 1992, vol. 5, pp. 561–564.

[28] J. Boutellier, J. Wu, H. Huttunen, and S. S. Bhattacharyya, “PRUNE:
Dynamic and decidable dataflow for signal processing on heterogeneous
platforms,” IEEE Trans. Signal Process., vol. 66, no. 3, pp. 654–665,
Feb. 2018.

[29] M. H. Wiggers, M. J. Bekooij, and G. J. Smit, “Buffer capacity computation
for throughput constrained streaming applications with data-dependent
inter-task communication,” in Proc. IEEE Real-Time Embedded Technol.
Appl. Symp., 2008, pp. 183–194.

[30] L. Schor, A. Tretter, T. Scherer, and L. Thiele, “Exploiting the parallelism
of heterogeneous systems using dataflow graphs on top of OpenCL,” in
Proc. IEEE Symp. Embedded Syst. Real-time Multimedia, 2013, pp. 41–50.

[31] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[32] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A hierarchical multipro-
cessor scheduling system for DSP applications,” in Proc. Asilomar Conf.
Signals, Syst. Comput., 1996, vol. 1, pp. 122–126.

[33] J. McAllister and M. Davis, “Graph coordination for compact represen-
tation of regular dataflow structures,” in Proc. IEEE Workshop Signal
Process. Syst., 2020, pp. 1–6.

[34] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time
DSP,” in Proc. IEEE Glob. Telecommun. Conf. Exhibition’Commun. Tech-
nol. 1990 s Beyond’, 1989, pp. 1279–1283.

[35] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” in Proc. Int. Conf. Compilers, Architectures
Synth. Embedded Syst., 2012, pp. 71–80.

[36] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous
Computing With openCL: Revised openCL 1 1.2 edition Newnes, 2012.

[37] P. P. Campo, V. Lampu, A. Meirhaeghe, J. Boutellier, L. Anttila, and
M. Valkama, “Digital predistortion for 5G small cell: GPU implemen-
tation and RF measurements,” J. Signal Process. Syst., vol. 92, no. 5,
pp. 475–486, 2020.

[38] M. Aghababaeetafreshi, D. Korpi, M. Koskela, P. Jääskeläinen, M.
Valkama, and J. Takala, “Software defined radio implementation of a
digital self-interference cancellation method for inband full-duplex ra-
dio using mobile processors,” J. Signal Process. Syst., vol. 90, no. 10,
pp. 1297–1309, 2018.

[39] L. Anttila, P. Handel, and M. Valkama, “Joint mitigation of power amplifier
and I/Q modulator impairments in broadband direct-conversion transmit-
ters,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 730–739,
Apr. 2010.

[40] K. Muhammad, S. Khan, V. Palade, I. Mehmood, and V. H. C. De
Albuquerque, “Edge intelligence-assisted smoke detection in foggy
surveillance environments,” IEEE Trans. Ind. Informat., vol. 16, no. 2,
pp. 1067–1075, Feb. 2020.

[41] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[42] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis., Cham, Switzerland: Springer, 2016, pp. 21–37.

[43] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Architecture News,
vol. 45, no. 1, pp. 615–629, 2017.

Jani Boutellier (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees from the University of Oulu,
Oulu, Finland, in 2005 and 2009, respectively. He
is currently an Associate Professor with the School
of Technology and Innovations, University of Vaasa,
Vaasa, Finland. In 2007-2008, 2013 he was a Visit-
ing Researcher with the Swiss Federal Institute of
Technology Lausanne, Lausanne, Switzerland. His
research interests include dataflow programming, sig-
nal processing, heterogeneous computing and ma-
chine learning for computer vision. Between 2016

and 2021, he was a Member of the IEEE Signal Processing Society Design
and Implementation of Signal Processing Systems (DISPS/ASPS) Technical
Committee.

Yujunrong Ma received the bachelor’s degree in
automation from the Harbin Institute of Technology,
Harbin, China, the Ph.D. degree from the Department
of Electrical and Computer Engineering, University
of Maryland, University of Maryland, College Park,
MD, USA. He held third position with the National
Institute of Justice (NIJ) recidivism prediction chal-
lenge. His research interests include dataflow im-
plementations, deep learning and evolutionary algo-
rithms. He was the recipient of the Dean’s Fellowship
in 2019.

Jiahao Wu received the bachelor’s degree from the
University of Electronic Science and Technology of
China, Chengdu, China, the Ph.D. degree from the
Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, USA.
His research interests include model-based design
for parallel computing, dataflow implementations and
synthesis of digital signal processing systems.

Mir Khan received the bachelor’s degree from the
University College of Bahrain, Janabiyah, Bahrain,
the master’s degree from Tampere University,
Tampere, Finland, where he is currently working to-
ward the Ph.D. degree. His research interests include
optimizing neural networks inference implementa-
tions for graphical processing units and embedded
systems.

Shuvra S. Bhattacharyya (Fellow, IEEE) received
the Ph.D. degree from the University of California,
Berkeley, Berkeley, CA, USA. He is currently a Pro-
fessor with the Department of Electrical and Com-
puter Engineering, University of Maryland, College
Park, MD, USA. He holds a joint appointment with
the University of Maryland Institute for Advanced
Computer Studies, and is affiliated with the Maryland
Crime Research and Innovation Center. He also holds
a part time visiting position as the Chair of Excellence
in Design Methodologies and Tools with the Institut

National Des Sciences Appliquées, Rennes, France. He has held industrial
positions as a Researcher with the Hitachi America Semiconductor Research
Laboratory, and Compiler Developer at Kuck & Associates. From 2015 to
2018, he was a part time Visiting Professor with the Department of Pervasive
Computing, Tampere University of Technology (now Tampere University),
Tampere, Finland, as part of the Finland Distinguished Professor Programme.
He has also held Visiting Research positions with the U.S. Air Force Research
Laboratory.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


