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ABSTRACT :  
To utilize renewable energy efficiently to meet the needs of mankind's living demands becomes 
an extremely hot topic since global warming is the most serious global environmental problem 
that human beings are facing today. Burning of fossil fuels, such as coal and oil directly for gen-
erating electricity leads to environment pollution and exacerbates global warning. However, 
large-scale development of hydropower increases greenhouse gas emissions and greenhouse 
effects.  
This research is related to knowledge of wind power forecasting (WPF) and machine learning 
(ML). This research is built around one central research question: How to improve the accuracy 
of WPF by using AI methods? A pilot conceptual system combining meteorological information 
and operations management has been formulated. The main contribution is visualized in a 
proposed new framework, named Meteorological Information Service Decision Support System, 
consisting of a meteorological information module, wind power prediction module and opera-
tions management module. This conceptual framework has been verified by quantitative anal-
ysis in empirical cases. This system utilizes meteorological information for decision-making 
based on condition-based maintenance in operations and management for the purpose of 
optimizing energy management. It aims to analyze and predict the variation of wind power for 
the next day or the following week to develop scheduling planning services for WPEs based on 
predicting wind speed for every six hours, which is short-term wind speed prediction, through 
training, validating, and testing dataset.  
Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This 
study presents a carefully designed wind speed prediction model which combines fully-
connected neural network (FCNN), long short-term memory (LSTM) algorithm with eXtreme 
Gradient Boosting (XGBoost) technique, to predict wind speed. The performance of each mod-
el is tested by using reanalysis data from European Center for Medium-Range Weather Fore-
casts (ECMWF) for Meteorological observatory located in Vaasa in Finland. The results show 
that XGBoost algorithm has similar improved prediction performance as LSTM algorithm, in 
terms of RMSE, MAE and R2 compared to the commonly used traditional FCNN model. On the 
other hand, the XGBoost algorithm has a significant advantage on training time while compar-
ing to the other algorithms in this case study. Additionally, this sensitivity analysis indicates 
great potential of the optimized deep learning (DL) method, which is a subset of machine 
learning (ML), in improving local weather forecast on the coding platform of Python.  
The results indicate that, by using Meteorological Information Service Decision Support System, 
it is possible to support effective decision-making and create timely actions within the WPEs. 
Findings from this research contribute to WPF in WPEs. The main contribution of this research 
is achieving decision optimization on a decision support system by using ML. It was concluded 
that the proposed system is very promising for potential applications in wind (power) energy 
management.  
KEYWORDS: Decision-making, Deep learning, Energy management, Machine learning, Oper-
ations management, Strategic management, Wind power forecasting, XGBoost. 
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1 Introduction  
1.1 Background 
With the deterioration of the global environment and the exhaustion of fossil energy, 
the mineral energy resources consumed in the future will gradually be replaced by re-
newable energy resources. The development and utilization of ecological energy is very 
important for environmental protection and has become a global issue. Renewable 
energy does not pollute the environment at the point of energy generation, and gener-
ally has a much lower pollution footprint than traditional energy from installing to de-
commissioning and can diversify the power generation technology (He et al., 2021). 
Increasing population growth requires more sustainable development of energy. 
 
Wind energy stands out when compared with other energy because it is free, clean, 
inexhaustible, has the capacity to generate greater power, and has lower energy costs. 
Hence, wind power plays an important role as a source of energy supply (Adeyeye, 
Ijumba, & Colton, 2020; Bórawski, Bełdycka-Bórawska, Jankowski, Dubis, & Dunn, 
2020). Wind energy resource is becoming a leader in the current energy transition pro-
cess as the most significant characteristics of wind energy are, clean, ecological, and 
inexhaustible (Gil-García, García-Cascales, Fernández-Guillamón, & Molina-García, 
2019; Saleh Asheghabadi, Sahafnia, Bahadori, & Bakhshayeshi, 2019).  
 
Excessive consumption of traditional fossil energy, hydrocarbon fuel for energy produc-
tion has led to a severe global air pollution and climate change. However, wind energy 
is widely considered to be a qualified renewable as it can mitigate climate change im-
pacts and achieve low-carbon transformation (Cui, Liu, Ali, Gao, & Chen, 2020; Saeed, 
Ahmed, & Zhang, 2020; N. Shen, Wang, Peng, & Hou, 2020). 
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1.2 Wind Power around the World 
According to Renewables 2021 Global Status Report from REN21, the estimated share 
of renewables in global electricity generation was more than 29% by the end of 2020. 
Figure 1 shows wind power global capacity and annual additions during 2020-2020. 
China and the United States accounted for a bit more than three quarters of the global 
electricity production rise in 2020. Wind power capacity and additions of top 10 coun-
tries in 2020 can be seen in Figure 2. Demand of renewable energy resources (RERs) is 
growing as the global population grows continuously and on the other hand fulfilling 
the climate change mitigation aims agreed in UNFCC COP 21 Paris 2015 require that an 
even larger and larger share of energy production be based on renewable energy. Ac-
cording to Renewables 2016 Global Status Report, developed and developing countries 
have had increased investment in solar power by 12% and wind power by 4% while 
biomass and waste to energy, ocean, biofuels, small hydro, geothermal power reduced 
respectively by 42%, 42%, 35%, 29%, 23% in 2015. Global Wind Energy Council claimed 
that global installed wind power capacity has increased by 63,467 MW in 2015, repre-
senting annual market growth of 22%. Although world electricity generation produced 
by wind power is still low, it is growing rapidly. Wind power capacity is 743 megawatts 
and ranked secondly among renewable power capacity while the hydropower capacity 
is 1,170 megawatts by the end of 2020. As well, U. S. Energy Information Administra-
tion data show that particularly some European countries had the largest portion of 
their electricity generation from wind: Denmark (48%), Portugal (25%), Spain (22%), 
Ireland (38%), Germany (27%). So far, the most important wind gross electricity pro-
ducers in the EU are Germany and Spain. The highest increase of wind cumulative in-
stalled capacity in 2022 will be in Croatia (Bórawski et al., 2020). 
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Figure 1. Wind power global capacity and annual additions, 2010-2020. adopted from REN21, 
2021 
 
 
Figure 2. Wind power capacity, top 10 countries, 2020. adopted from REN21, 2021 
 
Changes in temperature, precipitation, sea level, and the frequency and severity of 
extreme events will likely affect how much wind power generation is produced, deliv-
ered, and consumed. For example, various weather phenomena, such as rainstorm, 
hail, thunderstorm, and tornado, can generate damage more or less to wind turbines. 
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Despite the challenges the production of wind power is the foreseen trend (Kandpal & 
Broman, 2014). 
 
The wind power construction In Finland began later than in many other European 
countries. However, from 2012 to 2013, wind power construction has gained momen-
tum and national construction and production statistics have been broken year after 
year. In Finland, the wind turbine capacity in offshore parks will increase to be over 
7MW instead of the largest turbines currently 5MW in the future.   
 
According to Finnish wind power statistics 2021 from Suomen Tuulivoimayhdistys, at 
the end of 2021, there were 962 installed wind turbine generators, with a combined 
capacity of 3257 MW. They generated 11,7% of Finland’s electricity consumption in 
2021. 141 new wind farms were built in Finland in 2021, but annual wind power pro-
duction increased by 26 % comparing with previous year. They generated 9,3 % of Fin-
land’s electricity consumption in 2021. Wind power production for the whole year was 
8,061 TWh, or 11,7 % of all electricity production in Finland. Wind power covered 9,3 % 
of Finland’s electricity consumption and the amount is expected to increase to 25 % by 
2025 at the latest. 
 
Suomen Tuulivoimayhdistys also pointed out that Finland has the potential to increase 
wind power capacity considerably. The objective of the wind power industry is to 
achieve at least 30 TWh of annual wind power production in Finland in 2030, which 
corresponds to approximately 30% of Finland's electricity consumption at that time. 
This means there is great potential in Finland’s wind power development.    
 
1.3 Meteorological Source 
Wind is a type of meteorological phenomena and wind energy is one kind of natural 
resource which is obtained from the wind. It is one of the oldest-exploited energy 
sources by humans and today is the most seasoned and efficient energy of all renewa-
ble energies. Wind energy results from horizontal air pressure differences, which 
16 
means air movement, have regional differences, and are affected by surrounding ter-
rain. Wind power generation is the most efficient technology to produce energy in a 
safe and environmentally sustainable manner. It is a process of converting the energy 
produced by the movement of wind turbine blades driven by the wind, namely as ki-
netic energy of the air, into electric energy (Emeis, 2018).   
 
Wind generated when the pressure gradient force, the Coriolis force and friction are 
combined. The greater pressure gradient force, the greater the wind force. The higher 
the latitude, the greater the Coriolis force. The rougher the underlying surface, the 
greater the friction and the smaller the wind force. Among them, the Coriolis force 
influences wind direction, friction influences wind speed while the pressure gradient 
force influences both wind speed and wind direction. 
 
There are many factors that affect wind speed, such as, topography, meteorological 
factors. Topography includes geomorphology, surface obstacles, and so on. For mete-
orological factors, temperature, humidity, pressure, etc. have a greater impact on the 
changes in wind speed, making the daily variation regularity of wind speed not good, 
and the prediction accuracy is not high.  
 
Wind farms, namely wind parks, where planted groups of wind turbines, are located on 
open land, on mountain ridges, or offshore in lakes or the ocean. Wind farms can be 
either onshore or offshore. 
 
According to the 8th edition of WMO Guide to Meteorological Instructions and Meth-
ods of Observation from World Meteorology Organization (WMO) in 2014, the meas-
urement of wind speed should be taken from a site that is well exposed to the wind, 
and not in the lee of obstructions such as buildings, trees, and hillocks. If it is possible, 
the measurement site should be a good distance from obstructions, namely at least 10 
times of the obstructions’ height and upwind or sideways by at least twice of the ob-
struction’s height. Direction should be estimated from a vane (or banner) mounted on 
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a pole that has pointers indicating the principal points of the compass. The vane is ob-
served from below, and wind direction may be estimated to the nearest of the 16 
points of the compass. 
 
There are advantages and disadvantages of developing wind power generation based 
on its own natural characteristics of wind energy.   
   a. Environment friendly: 
       Wind energy is a source of renewable energy. Wind turbines do not release emis-
sions that can pollute the air or water. Wind turbines may also reduce the amount of 
electricity generation from fossil fuels (Tong, Cheng, & Tong, 2021). 
   b. Inexhaustible:  
       Wind power provides energy from air movement and has the capacity to generate 
greater power. This process will continue as long as there is weather on planet Earth, 
meaning that energy can be gained from air movement forever (Oñederra, Asensio, 
Saldaña, Martín, & Zamora, 2020). 
   c. Unstable: 
       As the wind power is proportional to the cubic wind speed, even small errors in 
estimation of wind speed can have large effects on the energy. 
   d. Unpredictable 
       Renewable energy sources, such as wind energy, solar energy, are innately unpre-
dictable, owing to the uncertain nature of themselves and bring about more challenges 
in the distribution networks (Rezaeian-Marjani, Masoumzadehasl, Galvani, & Talavat, 
2020). Even wind energy is variable but intermittent, but not completely random and 
unpredictable. 
 
1.4 Decision Support 
To ensure the proper operation of renewable energy-based hybrid systems, and ensure 
demand and increase system performance, energy management techniques and a de-
cision support element is needed for efficient management of energy. The strategic 
management process should be turned into a management tool with a decision sup-
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port element in terms of sustainability. A robust energy management strategy allows 
the system to meet demand, to increase the lifetime of the components, increasing 
operating costs and, to ensure maximum use of renewable sources, to reduce energy 
costs output, to protect components from overload damage and enhance the reliability 
of the power system as a result, to optimize system performance (Ammari, Belatrache, 
Touhami, & Makhloufi, 2021; Çetin & Ziya Sogut, 2021). 
 
To establish an assessment model, find crucial solutions, support industrial decision-
makers highlighting specific actions, some models with proposed energy management 
strategy were designed, the energy management strategy was optimized, proved effec-
tive for intelligent energy systems (X. Huang, Zhang, & Zhang, 2021; Trianni, Cagno, 
Bertolotti, Thollander, & Andersson, 2019). The tool may serve as a point of reference 
for energy and environmental decision support aids in communities where important 
cultural resources, values, and traditions are potentially impacted by energy manage-
ment decisions (Necefer, Wong-Parodi, Small, & Begay-Campbell, 2018).  
 
A powerful reliability management tool, to deal with the risk assessment, is indispen-
sable in decision-making. Common requirements for an effective decision support plat-
form include credibility, relevance, legitimacy, model accessibility, end-user satisfaction, 
timeliness, and costs for maintenance and computing. Among these, accurate identifi-
cation of the risks and timely quality management of the risks play an important role in 
improving the quality, safety, and reducing loss costs. Strategic decision-making on 
long-term drought risk management can be supported by integrated assessment mod-
els to explore uncertain future conditions and potential policy actions (Hamilton et al., 
2019; P. Liu & Li, 2021; Mens, Minnema, Overmars, & van den Hurk, 2021). 
 
Deep learning (DL) algorithms train data longer than ML algorithms since training big 
data, so it is meaningless of decision-making in some cases of requiring results in a lim-
ited time. Results are only valuable if they can be obtained within a specified time- 
period. By reviewing articles which related to relevant topics, it is found that lots of 
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articles related to decision support and ML are linked to the domain of clinics and med-
icine, such as, surgical decisions, triage for patients, emerging decision support, and 
diagnostic Decision Support in Radiology. Compared to those topics, fewer articles are 
relevant to the topic of WPF.  
 
The main objective of this research is to support grid dispatchers and decision-makers 
in electricity transition towards climate friendly economies by giving them suggestions 
and options in planning and designing low carbon solutions. To do so, Meteorological 
Information Service Decision Support System integrates artificial intelligence (AI) algo-
rithms with meteorological information decision support platform while it develops 
optimal operational planning via predicting wind speed to optimize energy manage-
ment decision-making. It is an AI decision support system that considers the uncertain-
ty of wind power output and proves that the machine learning (ML)-based system can 
optimize the prediction results while comparing with some other traditional algorithms 
for wind power enterprises (WPEs). 
 
This decision support system consists of a meteorological information module, wind 
power prediction module and operations management module. It utilizes meteorologi-
cal information for decision-making based on condition-based maintenance in opera-
tions and management for the purpose of optimizing energy management. This re-
search attempts to make full use of distributed new energy and rationalize the energy 
management strategy of grid dispatching companies. In this research, decision maker 
refers to the level of person who is involved in the operational decision-making process, 
focuses on more strategic decisions, and makes the final decision organizationally to 
adopt the practice. 
 
The expected result is that, by using Meteorological Information Service Decision Sup-
port System, it is possible to support effective decision-making and create timely ac-
tions within the WPEs. Besides this, findings from this research contribute to WPF in 
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WPEs. The main contribution of this research is to achieve decision optimization on a 
decision support system by using ML algorithms. 
 
1.5 Research Questions 
The main research objective of this research is to improve wind power prediction 
through increasing wind speed accuracy by using AI algorithm as the key research 
method. To achieve its objectives, decision support platform of Meteorological Infor-
mation Service Decision Support System answers the following questions. 
 
Judging from the background and research objectives, the central research question 
(RQ) is as follows. 
Central RQ: How to improve the accuracy of wind power forecasting by using artificial 
intelligence methods? 
The five sub-questions can be formulated:  
Sub-question 1. What is the innovation in the development process of WPF among so 
much relevant research? 
Sub-question 2. How climate change influences WPEs and what factors affect wind 
power output?  
Sub-question 3. Can there be a general framework to help forecasting wind speed and 
wind power more effectively in decision-making?  
Sub-question 4. How to use the global atmospheric reanalysis data to analyze the po-
tential of WERs in Finland? 
Sub-question 5. What is the sufficient ML algorithm to improve the accuracy of wind 
speed prediction? 
 
The five sub-questions are depicted as above and developed from the main research 
objective. The sub-question 1, 2, 3 and 4 are responded respectively by paper 1, 2, 3 
and 4 while sub-question 5 is answered in chapter 3. These four related papers are at-
tached in the appendix. The structure of the research method used is presented in fig-
ure 3.   
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Figure 3. Research method for research questions. 
 
1.6 Opportunities and Challenges 
RERs are one of the solutions to solve the challenges related to energy production and 
mitigation of climate change. It is possible to replace fossil fuels by developing a variety 
of renewable energy, including hydro, wind, solar, wave and biomass, geothermal and 
ocean. Making strategies for converting present energy systems into a 100% sustaina-
ble renewable energy system is crucial (Dincer, 2000; Lund, 2007). As an example, since 
the early 1980s, Denmark has been one of the leading countries in the world in the 
field of wind energy utilization based on the management of development and diffu-
sion of sustainable technologies (Christensen & Lund, 1998). One research predicted 
that global energy demand in 2040 will be approximately 30% higher than it was in 
2010. Because the typical characteristics of wind energy are stochastic and intermittent, 
it is important to know and use appropriate renewable energy technologies in the 
whole process of producing wind power generation (Dashwood, 2012). Another re-
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search in China showed developing green energy business in emerging economies, 
with the aim being long term sustainability of a healthy level of overall flexibility of the 
wind power industry chain, pay special attention to competition flexibility, technology 
flexibility, and intellectual property and talent flexibility (Z.-Y. Zhao, Zhu, & Zuo, 2014). 
In one word, the future development of wind power presents a significant opportunity 
in terms of providing low carbon energy. 
 
As it known to everyone, challenges always go with opportunities. Wind power is fluc-
tuating, intermittent as wind has the characteristics of volatility, intermittent, and low 
energy density. These features do not have a significant impact on the grid when wind 
power accounts for a small proportion of the grid. However, as wind power develops 
rapidly in this decade, wind power production will face serious problems which are 
electrical system safety, operations stability. Meanwhile, there exist also environmental 
challenges and technical challenges. 
 
1.7 Structure of the Study 
This study is published as articles based. The structure of this study is divided into six 
chapters as follows. 
 
Chapter one presents an introduction and background of this research. After describing 
the opportunities and challenges, depicting the function of strategic decision support 
in risk management, it also displays the central research question, five sub-questions, 
opportunities, and challenges. 
 
Chapter two firstly reviews, makes a statistic and analysis on the relevant articles, and 
presents circumstances of mainstream research towards relevant topics. Then it de-
scribes the research gap of this research.  
Chapter three presents the research methodology. It includes research philosophy, re-
search approach, research strategy, research methods, research design and data collec-
tion. Research process is described also. 
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Chapter four depicts the results and findings of the case study. 
 
Chapter five provides the summary of the publications. This section interprets the logic 
connections and depicts the main content of each article. 
 
Chapter six makes conclusions for this study, provides contribution, managerial implica-
tions, and research limitations, gives some final remarks, and proposes for the future 
research.  
 
The Appendix consists of four original articles (paper 1-4) and author’s role in the 
whole research. 
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2 Literature Review 
This chapter firstly makes a statistic of related articles, and then classifies them into 
different categories by time-period, research methodologies and research topics. Chap-
ter 2 also summarizes and reviews state-of-art articles on wind energy resources 
(WERs), wind power prediction, commonly used wind power forecast (WPF) algorithms, 
energy storage system, wind turbine control system, errors, and risk management.  
Research gap is depicted after reviewing literatures. 
 
2.1 Focused Literatures 
There exist large number of issues in aspects of wind energy that must be examined. 
For example, studies may focus on installed capacity, mathematical models, optimiza-
tion of energy output, facility maintenance, or excessive energy storage. On the other 
hand, there also exist many literature reviews investigated in the same areas. For in-
stance, review on forecasting wind speed, wind power density (WPD) and generated 
power, review wind energy resources (WERs) in the urban environment, review on 
wind power short-time prediction, specific wind power forecasting (WPF) models, local 
energy plans and policies. Besides reviewing papers, this study also reviews the state of 
the art of wind energy conversion systems and technologies, wind energy status in a 
specific year, global renewable electricity scenario, wind speed probability distributions 
in application, etc. This research gives a comprehensive review on the WERs, WPF, 
whole developing process, innovative technologies, and the related areas in Chapter 2.  
 
Based on more than 500 selected articles, the main objectives of this review work can 
be formulated as follows: (i) a summary of the previous studies, (ii) a construction 
framework of related research topics, and (iii) the identification of the future research. 
These articles were mainly chosen from SCOPUS (Elsevier), ScienceDirect (Elsevier), 
Web of Science (ISI Web of Knowledge) and Google Scholar, classified by Mendeley, 
and analyzed by Microsoft Excel statistical function. The earlier publications may not be 
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displayed on the Internet, and this may have a small influence on the reviewed litera-
ture work. 
 
2.2  Description of Material Reviewed 
2.2.1 Distribution across time-period  
After searching by relevant keywords, the number of reviewed papers is 506. The tem-
poral variation of reviewed publications during the period 1976-2021 is shown in Fig-
ure 4. These are incomplete statistics since the papers produced in 2020 continue to be 
published. Thus, high numbers of publications are found for the time-period between 
2011 and 2021. In general, the total number of papers increases steadily year by year 
during 2014-2020. The review of publications was based on articles from SCOPUS 
(Elsevier), ScienceDirect (Elsevier), Web of Science (ISI Web of Knowledge), Google 
Scholar, national and international renewable energy reports. 
 
 
Figure 4. Distribution of publications per year across the period studied. 
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2.2.2 Distribution of research methodologies 
Five research methodologies were differentiated in this research: (1) theoretical and 
conceptual papers; (2) empirical papers and case studies; (3) surveys and review pa-
pers; and (4) books. It shows the classification of publications according to the research 
methodologies. Among them, the number of empirical papers was the largest group is 
421 while the number of theoretical papers is 33 and the number of review papers is 
42, and the number of books is 10. 
 
2.2.3 Classification of research topics 
While reviewing the research publications, it ended up with classifying the publications 
into seven categories. The seven main topics include: (1) Wind resource assessment; (2) 
Wind speed prediction, numerical weather forecast, climate changes; (3) Wind power 
prediction methods; (4) Wind-solar complementary; (5) Wind energy storage; (6) Wind 
turbine control and service; and (7) Wind power forecast errors and risk management. 
Figure 6 shows the framework and classification of the framework of the publications, 
which based on the inductive analysis approach, revealed that there is a cluster of in-
novative technologies pertaining to wind power generation. 
27 
 
Figure 5. Mind map of related research topics for this article based upon variation of research 
field. adopted from Liu  & Yang, 2015 (Paper 3) 
 
2.3 Circumstances of Mainly Research 
2.3.1 Assessment for wind resources 
Previous research has been done on assessing the potential WERs all around the world. 
Various geographic characteristics also cause a wide variety of temperature and climate 
differences. Among the publications identified in the related searching, some evaluated 
the installed wind capacity, some interpreted wind power assessment metrics, while 
some reviewed the global renewable resources. 
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The capacity of installed wind turbines is increasing in many wind farms all around the 
world. Through statistical methods, Staid and Guikema (Staid & Guikema, 2013) had 
investigated the factors that influence the installed wind capacity in each state of U. S. 
are the physical and geographic characteristics of the state. Flora, Marques, & Fuinhas 
(2014) studied the wind idle capacity during the year of 1998-2011 among 18 European 
countries to help policymakers when adjusting energy policy. In China, there existed a 
large discrepancy between installed capacity and wind power generation even with the 
dramatic increasing installed wind capacity (M. Yang, Patiño-Echeverri, & Yang, 2012). 
Turkey had an extremely low installed wind power capacity 0.22% of the total economy 
power capacity (Güler, 2009).  
 
Chadee and Clarke (Chadee & Clarke, 2014) assessed regional wind resources through 
comparing statistical wind power density (WPD). They used reanalysis wind data for 
the period 1979–2010. The results show that although the prevailing winds are from 
the east-north-east over the eastern Caribbean islands, their wind direction distribu-
tions are bimodal. Moreover, other papers (Carta & Mentado, 2007; Hennessey, 1977; 
Lu, Yang, & Burnett, 2002; Sedefian, 1980; Shamshirband et al., 2016) also estimated 
the WPD distribution function in different districts. 
 
J. Zhang, Chowdhury, & Messac (2014) proposed to use a more comprehensive metric 
named Wind Power Potential (WPP). Compared to WPD, WPP is more credible because 
it not only accounts for wind speed information but also considers the joint distribution 
of wind speed and direction. The results from four sites of North Dakota, that WPD and 
WPP follow different trends, and that the realistic resource potential measure was not 
captured by WPD. Additionally, Ucar & Balo, 2010; W. Zhou, Yang, & Fang (2006) meas-
ured the wind energy resource via WPP. 
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2.3.2 Wind power forecasting 
In practice, ultra-short-term, short-term, medium-term, and long-term time scales are 
used to predict wind power in WPEs (Soman, Zareipour, Malik, & Mandal, 2010). There 
are different timescales when classifying WPF species according to time periods and 
one example is as follows (Colak, Sagiroglu, & Yesilbudak, 2012; De Giorgi, Ficarella, & 
Tarantino, 2011).  
a. Long-term forecasting 
It predicts from one day to one week ahead and aims to optimize maintenance 
and repair of wind turbines. It is usually used for planning and designing wind farms. 
b. Medium-term forecasting 
It predicts from six hours to one day ahead and aims to optimize power system 
management and energy trading. It is usually used for dispatching the electricity grid 
rationally. 
c. Short-term forecasting 
It predicts from thirty minutes to six hours ahead and aims to optimize pre-load 
sharing. It is usually used for repairing and debugging.  
d. Ultra-short-term forecasting 
It predicts from a few seconds to thirty minutes ahead and aims to optimize 
turbine control and load tracking. It is usually used for controlling wind turbines and 
stabilizing electrical energy. 
 
The methods of wind power prediction are mainly divided into the following three 
groups (González-Mingueza & Muñoz-Gutiérrez, 2014; Jung & Broadwater, 2014; Lei, 
Shiyan, Chuanwen, Hongling, & Yan, 2009): 
 
• Physical forecasting approach: 
In contrast to statistic approach, the physical approach is based on the use of 
physical considerations.  It needs detailed physical descriptions of the wind farm and 
their surroundings, including description of the wind farm (wind farm layout and wind 
turbine power curve, etc.) and description of the terrain (orography, roughness, obsta-
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cles, etc.). This approach aims to get the optimized predicting wind speed and direction 
in different hub height of wind turbine generator system. 
• Statistic forecasting approach: 
The statistical approach is based on mathematical statistics analysis of the main 
variables associated with the relationship between energy generation and meteorolog-
ical information. The meteorological data, obtained from historical data or output of 
Numerical Weather Forecast (NWP), mostly used as input. For example, wind speed, 
wind direction, temperature, and atmospheric pressure in the wind farm.  
• Combination approach:  
The hybrid method is a useful predicting way as it can improve the WPF accura-
cy by offsetting random error with one method from each other. In some models, a 
combined approach is used to integrate advantages of both approaches. 
 
2.3.3 Commonly used wind power forecasting algorithms  
Based on different input data, which means whether to use NWF, the WPF can be di-
vided into NWF forecasting method and historical meteorological data forecasting 
method. From 1977 until now, many articles described different algorithms of WPF. 
Some of the representative models are reviewed in this section. 
 
a. Kalman filters 
Kalman filters (KF) is an optimal recursive data processing algorithm, and it has 
been firstly achieved by Stanley Schmidt in 1958. Some papers regarded the KF model 
as an algorithm which applied to wind speed numerical prediction to improve predic-
tion accuracy. Cassola and Burlando (Cassola & Burlando, 2012) reported that meteoro-
logical models are usually unable to provide reliable surface wind speed forecasts due 
to the shortcomings in horizontal resolution, physical parameterizations, initial and 
boundary conditions. Thus, they used KF wind speed data to forecast the wind energy 
output, and the percentage error between simulated and measured wind energy val-
ues was still very low and showed a stable evolution. (Louka et al., 2008) developed a 
wind speed forecasts method, which includes two limited-area atmospheric models 
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based on KF, efficiently eliminating systematic errors, even in the lower resolution cas-
es, and contributing further to the significant reduction of the required CPU time. To 
improve the performance of KF models, (Poncela, Poncela, & Perán, 2013) substituted 
the traditional way of setting the values of the model parameters by estimating them 
by quasi maximum likelihood methods for a certain forecast horizon. They showed that 
the improved model is close to an optimum for all the horizons and provides more ac-
curate predictions, with up to 60% of improvement for the RMSE.  
 
b. Time series model 
Commonly used time series models include auto regressive (AR), moving aver-
age (MA), auto regressive moving-average model (ARMA) and auto regressive integrat-
ed moving average (ARIMA).  
 
Among these, one ARIMA model established by Box and Jenkins (Box & Jenkins, 1976) 
have been widely used for the purpose of time series forecasting. Meanwhile, this 
book is extremely comprehensive because it interprets each kind of time series model 
in detail and gives examples. Huang and Chalabi (Z. Huang & Chalabi, 1995) used AR 
model to forecast wind speed from one hour to a few hours ahead because it takes into 
account the non-stationary nature of wind speed. Based on multidimensional ARMA 
series, Soder (Kavasseri & Seetharaman, 2009) provided a method that can simulate 
possible outcomes of wind speeds based on available forecasts. This method was es-
tablished based on the assumption that wind speed forecasts are available in several 
regions and that the forecast errors in different regions are correlated. Kavasseri and 
Seetharaman (Kavasseri & Seetharaman, 2009) forecasted wind speeds on the day-
ahead (24 h) and two-days-ahead (48 h) by using a fractional-ARIMA model. The results 
showed that significant improvements in forecasting accuracy are obtained with the 
proposed models compared to the persistence method. (Kamal & Jafri, 1997) found the 
ARMA model is suitable for predicting intervals and probability forecasts.  
 
c. Artificial neural network 
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Various Artificial neural network (ANN) models are widely used, such as back 
propagation (BP) and radial basis function (RBF) neural networks. The ANN is an infor-
mation-processing method, which works like a human brain processes to find an algo-
rithmic solution to select the structure from the existing data (Kavasseri & Seetha-
raman, 2009; Olaofe, 2014). Based on the original BP network, one new wind power 
prediction model which optimized the tabu search algorithm with memory function 
was developed by Han, Li, & Liu (2011). Guo, Wu, Lu, & Wang (2011) proposed a new 
hybrid wind speed forecasting method based on a BP neural network and the idea of 
eliminating seasonal effects from actual wind speed datasets using seasonal exponen-
tial adjustment then get lower mean absolute errors. By investigating the use of 
weather ensemble predictions in the application of ANNs, Taylor and Buizza (Taylor & 
Buizza, 2002) found that the average of the load scenarios is a more accurate load fore-
cast than that produced using traditional weather forecasts. Alexiadis, Dokopoulos, & 
Sahsamanoglou (1999) developed an ANN algorithm that significantly improved fore-
casting accuracy compared to the persistence forecasting model. Salcedo-Sanz 
(Salcedo-Sanz, Ortiz-García, Portilla-Figueras, Prieto, & Paredes, 2009) presented the 
hybridization of the fifth-generation mesoscale model (MM5) with ANN to address a 
problem of short-term wind speed prediction. The adopted strategies were individual 
ANN and hybrid strategy based on the physical and the statistical methods. Peng, Liu, & 
Yang (2013) comprehensively compared the performance of two prediction methods 
and his calculated results showed that the individual ANN prediction method can 
quickly produce the prediction results.  
 
d. Support vector machine (SVM) 
Support Vector Machine (SVM) was firstly developed by Corinna Cortes and 
Vapnik in 1995. The most apparent difference between SVM and ANN is that the for-
mer focuses on mathematical methods and optimization mechanisms even though 
they are similar.  
(Mohandes, Halawani, Rehman, & Hussain, 2004) introduced SVM, the latest neural 
network algorithm, to wind speed prediction. The result indicated that SVM compared 
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to multilayer perceptron (MLP) neural networks is closer to the actual wind speed. 
Ortiz-García et al. (Ortiz-García et al., 2011) proposed an improvement to an existing 
wind speed prediction system, using banks of regression Support Vector Machines 
(SVMr) to manage the diversity in input data arising from the use of different global 
forecasting models and several parameterizations of a mesoscale model. They showed 
that the system implementing SVMr banks outperforms the basic system without tak-
ing diversity into account in the input data. (Q. Hu, Zhang, Xie, Mi, & Wan, 2014) devel-
oped a technique of the uniform model of ν-support vector regression for the general 
noise model (N-SVR). The existing studies on using SVM for wind speed prediction are 
very limited as these studies usually only use one particular kernel function and a spe-
cific combination of parameters. J. Zhou, Shi, & Li (2011) applied Least-squares Support 
Vector Machines (LS-SVM) with linear, Gaussian, and polynomial kernels to perform 
short-term wind speed forecasting. 
 
e. Fuzzy logic 
Initially, one approach draws definite conclusions from vague, ambiguous, or 
imprecise information, however it is not widely used because of the low accuracy as 
low ability of fuzzy logic prediction is low when studying (Klir & Folger, 1988). Metter-
nicht developed a useful and practical technique for modelling complex phenomena 
that may not yet be fully understood owing to its ability to deal with imprecise, uncer-
tain data, or ambiguous relationships among data sets (Metternicht, 2001). Fuzzy logic 
is a new and logical approach, which when applied in the field of engineering, a fuzzy 
logic model is useful for predicting wind speed, electrical power, or rotor's speed. 
There are few up-to-date literature reviews about this algorithm for predicting wind 
power. Therefore, this is a promising research gap. 
 
f. Fuzzy logic control 
The Fuzzy logic controller (FLC) approach, which tracks the generator speed 
with the wind velocity to extract the maximum power, takes into account the grid de-
mands and power generation predictions, are used for efficiency optimization and per-
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formance enhancement control in wind generation systems (Sarrias-Mena, Fernández-
Ramírez, García-Vázquez, & Jurado, 2014; Simoes, Bose, & Spiegel, 1997a, 1997b). Mo-
hamed, Eskander, & Ghali (2001) designed the tracking controller of the wind energy 
conversion system based upon fuzzy logic control (FLC) technique and this system has 
been tested to have robustness and effectiveness by simulation. Kamel, Chaouachi, & 
Nagasaka (2010) proposed and developed a new fuzzy logic pitch controller and an 
energy storage ultra-capacitor to smooth the output power of wind turbines and en-
hance Micro-Grid (MG)'s performance in islanding mode, and the results proved that 
the proposed strategies are effective. 
 
g. Hybrid algorithm 
A combined, nonlinear hybrid KF-ANN model was found to be a better way of 
forecasting wind speed than KF and ANN separately, to solve the inaccuracy wind pow-
er forecasting of linear ARIMA (Shukur & Lee, 2015). A hybrid wind speed forecasting 
model consists of ARIMA model and ANN model, predicted the wind velocities with a 
higher accuracy than the ARIMA and ANN model separately (Cadenas & Rivera, 2010). 
Two hybrid methods namely ARIMA-ANN model and ARIMA-Kalman model, which 
were based on single time series model, ANN model and KF model, had good forecast-
ing accuracy and were suitable for the jumping wind samplings. One hybrid model 
named PMERNN and PAERNN, combine SVM with seasonal index adjustment (SIA) and 
Elman recurrent neural network (ERNN) methods, forecasted the daily wind velocities 
with a higher degree of accuracy over the prediction horizon (J. Wang, Qin, Zhou, & 
Jiang, 2015).  
 
Two hybrid models, namely, ARIMA–ANN and ARIMA–SVM, were selected to compare 
with the single ARIMA, ANN, and SVM forecasting models, showed that the hybrid 
methodology does not always outperform the individual forecasting models based on 
ARIMA, ANN, or SVM (Shi, Guo, & Zheng, 2012). 
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A novel hybrid modelling method named SVR–UKF was proposed for integrating un-
scented Kalman filter (UKF) with SVR to precisely update the short-term estimation of 
wind speed sequence. With this method, the prediction errors were closer to zero with 
significantly smaller variations, whereas the prediction errors of the other methods 
were widely scattered (K. Chen & Yu, 2014). 
 
According to Guo et al. (2011), there is no single best forecasting algorithm that can be 
applied to any wind farm since wind speed patterns can be very different between 
wind farms and are usually influenced by many factors that are location-specific and 
difficult to control. Each of the physical models, statistical models, spatial correlation 
models and artificial intelligence models has advantages and disadvantages. For exam-
ple, the time series model is one kind of statistical model, and it is popular because its 
computation is simple. But ANN and KF are more widely used for their good nonlinear 
performance. 
 
2.3.4 State-of-art of machine learning 
DL has higher recognition accuracy on large sample data sets Comparing with tradi-
tional machine learning (ML), such as SVM, convolutional neural network (CNN) has a 
better solution and effect on recognizing objects (P. Wang, Fan, & Wang, 2021). 
 
One new research proposed by Jiang et al develops a short-term wind speed forecast-
ing method which combines statistical method, ANN, and DL. This system consists of 
four parts: optimal sub-model selection, point prediction based on a modified multi-
objective optimization algorithm, interval forecasting based on distribution fitting, and 
forecasting system evaluation (Jiang, Liu, Niu, & Zhang, 2021). 
 
In a photovoltaic power generation system, Shin et al.  demonstrate that RNN and 
LSTM are more suitable for the time series data structures compared with dynamic 
neural networks to achieve the best prediction results (D. Shin, Ha, Kim, & Kim, 2021).  
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Accurate wind speed forecasting. This study proposes a hybrid model named VMD-DE-
ESN incorporating variational mode decomposition (VMD) and differential evolution 
(DE) and echo state network (ESN) for wind speed forecasting. This hybrid model was 
validated, mean absolute percentage errors (MAE) are 2.0161%, 3.4153%, 2.1544%, 
and 2.8478% respectively, which are much lower than several others (H. Hu, Wang, & 
Tao, 2021). 
 
By combining AI methods with statistical knowledge, Zhang et al. proposes a new in-
terval prediction model based on the Fast Correlation Based Filter (FCBF) algorithm, 
the optimized Radial Basis Function (RBF) model and Fourier distribution for wind 
speed. The results show that the maximum and average value of the prediction error 
are only 0.8430 m/s, 0.1749 m/s, which are significantly better than several others (Y. 
Zhang, Pan, Zhao, Li, & Wang, 2020). 
 
2.3.5 Wind-solar complementary 
The site selection plays an important role in wind power farms, photovoltaic power 
farms, and wind-solar hybrid power stations. Matlab, Simulink Software are commonly 
used to evaluate the performance of hybrid systems (Akyuz, Oktay, & Dincer, 2012; 
Dihrab & Sopian, 2010). 
 
In March 1995, Kimura, Onai, & Ushiyama (1996) documented complementary rela-
tionships between solar energy and wind energy in a small-scale wind-solar hybrid 
power system. Ma, Yang, Lu, & Peng, 2014; H. Yang, Lu, & Zhou (2007) utilized the 
model of Loss of Power Supply Probability (LPSP) to minimize the cost of energy and 
help reduce the size of energy storage based on a techno-economic evaluation. Q. 
Huang, Shi, Wang, Lu, & Cui (2015) proposed an approach which used multiple small 
wind turbines instead of one bigger one. The results showed that at low wind speed, 
the former one has more power production.  
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(Chávez-Ramírez et al., 2013) focused on the integration of photovoltaic (PV) system, 
micro-wind turbine (WT), Polymeric Exchange Membrane Fuel Cell (PEM-FC) stack and 
PEM water electrolyzer (PEM-WE), for a sustained power generation system. 
Bhattacharjee and Acharya (Bhattacharjee & Acharya, 2015) performed a small-scale 
application of wind-solar hybrid simulation model in an educational building to allevi-
ate grid dependence. Maouedj’s (Maouedj, Mammeri, Draou, & Benyoucef, 2014) hy-
brid system consists of PV and wind subsystems, battery energy storage, load and a 
hybrid system, controller for battery charging and discharging condition. The experi-
mental results showed that the photovoltaic panel group constituted the primary en-
ergy supplier of the system; while the wind turbine was the secondary supplier since 
the contribution of the wind turbine was small compared to the share of the photovol-
taic subsystem.  
 
To evaluate system efficiency, Xydis (Xydis, 2013) identified the overall Exergetic Capac-
ity Factor (ExCF) for a wind-solar power generation complementary system. ExCF is a 
new parameter which can be used for better classification and evaluation of RESs. One 
research (Y. Shin, Koo, Kim, Jung, & Kim, 2015) presented one PV-wind-battery-diesel 
power generation system which optimizes power generation by sparse matrices and 
the linear programming algorithm. 
 
2.3.6 Energy storage system 
Zahedi (Ahmad Zahedi, 2014) interpreted several benefits of integrating intermittent 
sources of energy such as solar and wind with energy storage has several benefits for 
the electricity grid. (Wu et al., 2014) identified the distribution of probabilistic methods 
to determine the optimal size of the Energy storage system ESS for a wind farm in elec-
tricity markets.  Maleki and Askarzadeh (Maleki & Askarzadeh, 2014) used a discrete 
version of harmony search (HS) to optimize the size. The decision variables (number of 
PV panels, wind turbines, and batteries) are optimized by use of HS for having a cost-
effective system. 
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• Battery storage 
In 2010, Khalid and Savkin (Khalid & Savkin, 2010) designed a controller which was 
based on model predictive control (MPC) to smooth the wind power output. The pro-
posed controller is capable of smoothing wind power by utilizing inputs from our pre-
diction system, optimizes the maximum ramp rate requirement and the state of the 
charge of the battery under practical constraints. Four years later, they proposed a new 
semi-distributed battery energy storage system (BESS) scheme to minimize the capacity 
of BESS to ensure the lower cost of the system (Khalid & Savkin, 2014).  
 
Ge et al. (2013) used a dynamic mathematical model of Vanadium redox flow battery 
(VRB) in an energy storage system (ESS) to provide a stable and smooth power flow 
injected into the grid though the wind power fluctuated. X. Y. Wang, Mahinda Vi-
lathgamuwa, & Choi (2008) illustrated using the proposed design method, a BESS in a 
buffer scheme, to attenuate the effects of unsteady input power from wind farms. Jan-
nati, Hosseinian, Vahidi, & Li (2016) reduced the cost of BESS by using Smart Parking 
Lots (SPLs).  
 
Two researchers explored the benefit of optimally integrating wind power with 
pumped hydro storage (PHS) because the daily wind speed patterns do not match the 
average daily load pattern. The results of the survey revealed that PHS, in conjunction 
with the wind farm, can reduce the system’s total power output shortage and increase 
the expected daily revenue (Gao et al., 2014; Murage & Anderson, 2014).   
 
Kaldellis, Kapsali, & Kavadias (2010) used an integrated computational algorithm for 
sizing of PHS systems that exploit the excess wind energy produced by local wind farms, 
the contribution to the electrification of the remote islands becomes evident.   
 
• Wind-compressed air energy storage 
Wind-compressed air energy storage (Wind-CAES) is an inexpensive way to 
store massive amounts of energy for long periods of time. Satkin, Noorollahi, Ab-
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baspour, & Yousefi (2014) developed a site selection method for wind-CAES power 
plants to identify the wind energy potential for wind-CAES sites. The case study from 
Fertigand and Apt (Fertig & Apt, 2011) in the U.S. showed CAES brought social benefits 
including avoiding construction of new generation capacity, improving air quality dur-
ing peak times, and increasing economic surplus. In Germany, a stochastic electricity 
market model has been applied to estimate the effects of significant wind power gen-
eration on system operation and on economic value of investments in CAES. This case 
showed that CAES can be economically beneficial in the case of large-scale wind power 
deployment (Swider, 2007). 
 
• Flywheels 
Flywheel based energy storage systems (FESSs) are designed to smooth the net 
power flow injected to the grid by a variable speed wind turbine. In a wind diesel pow-
er system (Sebastián & Peña-Alzola, 2015), the main components of FESS include elec-
trical machine, flywheel, grid converter and electrical machine converter, improving the 
power quality of the isolated micro-grid. According to the intermittency of the wind, 
researchers integrated and validated the energy storage systems. For instance, Zhao et 
al. developed one hybrid energy storage system, which was based on adiabatic com-
pressed air energy storage and flywheel energy storage system, to deal with the wind 
power fluctuations (P. Zhao, Dai, & Wang, 2014; P. Zhao, Wang, Wang, & Dai, 2015).  
 
More RESs will be integrated into the electricity grid worldwide in future. Taking the 
limited storage unit to find a more effective solution to handle the reliability and stabil-
ity for the hybrid energy storage system is important. 
 
2.3.7 Wind turbine control system 
Eriksson and Bernhoff (Eriksson, Bernhoff, & Leijon, 2008) compared three different 
wind turbines through a case study. The vertical axis wind turbine appears to be advan-
tageous to the horizontal axis wind turbine in several aspects. Uddin and Kumar found 
out that life cycle assessment (LCA) study varied from location to location due to indus-
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trial performance, countries energy mix and related issues (Uddin & Kumar, 2014). 
Demir and Taşkın thought that environmental impacts are low for the turbines with 
high hub heights due to increase in electricity production of those turbines (Demir & 
Taşkın, 2013). Novak, Ekelund, Jovik, & Schmidtbauer (1995) proposed a model to de-
sign and evaluate the number of linear and nonlinear control schemes for wind-turbine 
speed regulation. 
 
Normally, wind turbines will reach the end of their service lives after 20-40 years. Or-
tegon, Nies, & Sutherland (2013) considered the management of end-of-service (-) life 
of wind turbines (EOSLWTs) should also be considered by the wind power industry. 
According to ISO 14040 standard, which allows us to make an LCA study quantifying the 
overall impact of a wind turbine and each of its components, Martínez et al. (Martínez, 
Sanz, Pellegrini, Jiménez, & Blanco, 2009) analyzed the wind turbine during all the 
phases of its life cycle, from cradle to grave, with regard to the manufacture of its key 
components (through the incorporation of cut-off criteria), transport to the wind farm, 
subsequent installation, start-up, maintenance and final dismantling and stripping 
down into waste materials and their treatment. Schleisner developed a model to assess 
the life cycle of the production and manufacture of materials in a wind farm in Den-
mark (Schleisner, 2000). Bonou, Skelton, & Olsen (2016) proposed an eco-design 
framework which was based on LCA to drive sustainable innovations in components, 
product systems, technologies, and business models. 
 
2.3.8 Errors and risk management 
The stochastic electricity market is influenced not only by the uncertainty of nature's 
wind resources but also wind power forecast errors, as forecasting plays a crucial role 
in the renewable wind energy market. Holttinen outlined the forecast errors of wind 
power producers in the electricity market, pointing out shorter times between bids and 
delivery of production is to handle the forecast error (Holttinen, 2006). Two research 
(Díaz-González, Hau, Sumper, & Gomis-Bellmunt, 2015; Taraft, Rekioua, & Aouzellag, 
2013) found out that the measurements of the power output and reduction of the en-
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semble wind power forecast error depends on the size of the region. Pinson and Ka-
riniotakis introduced a new methodology for assessing the prediction risk of short-term 
wind power forecasts. Their purpose was to find a linear relation between the Meteo-
risk Index (MRI) and the resulting prediction errors (Pinson & Kariniotakis, 2004).  
 
Considering the wind power fluctuations under extreme weather conditions, Lin et al. 
proposed a model in the frequency domain to assess the wind power reduction under 
extremely high wind speed conditions. This model was validated and demonstrated to 
be valuable for both power system planning and operation with high wind penetration 
under extreme wind conditions (Lin, Sun, Cheng, & Gao, 2012). Hosseini-Firouz used 
the conditional value-at-risk methodology based on stochastic programming to opti-
mally solve the wind power problem faced by the uncertainty issues, derived from 
wind availability, market prices, and balancing energy needs (Hosseini-Firouz, 2013). 
Soukissian and Papadopoulos used the Error-In-Variables approach to find the effects 
of alternative wind data sources on the wind climate analysis by examining the off-
shore WPD (Soukissian & Papadopoulos, 2015).  
 
González-Aparicio and A. Zucker used the stochastic scenario extensions of dispatch 
models to take the value of flexibility into account to combine with the nature of fore-
cast uncertainties. It applied clustering techniques to reduce the range of uncertainty, 
and regressive techniques to forecast the probability density functions of the intra-day 
price. (González-Aparicio & Zucker, 2015). 
 
2.4 Research Gap 
Even though many published articles refer to topics which are classified as above, the 
trend is more and more publications are mainly about using AI in the science of WPF in 
WPEs. Many recent studies show that AI technology can improve the accuracy of wind 
speed prediction. Table 1 shows the searching methodologies used for this research. 
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Table 1. Summary of searching methodologies used for this study. 
Literature search strings  Search field  Numbers of 
documents 
results 
Limit to 
(“wind” and “speed” and “prediction”)  Article title, 
Abstract, 
Keywords 
8911 Search field 
Documents, 
(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) 
Article title, 
Abstract, 
Keywords 
144 Documents, 
English 
(“wind” and “speed” and “prediction”) AND 
(“machine” and “learning”) 
English 215 Documents, 
English 
(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) AND (“ma-
chine” and “learning”) 
Article title, 
Abstract, 
Keywords 
39 Documents, 
English 
(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) AND (“ma-
chine” and “learning”) AND (“deep” and 
“learning”) 
English 4 Documents, 
English 
(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) AND (“ma-
chine” and “learning”) AND (“deep” and 
“learning”) AND (“xgboost”) 
Article title, 
Abstract, 
Keywords 
39 Documents, 
(“wind” and “speed” and “prediction”) AND 
(“machine” and “learning”) AND (“xgboost”) 
English 0 Documents, 
English 
(“wind” and “speed” and “prediction”) AND 
(“machine” and “learning”) AND (“deep” and 
“learning”) AND (“xgboost”) 
Article title, 
Abstract, 
Keywords 
3 Documents, 
English 
(“wind” and “speed” and “prediction”)  English 2 Documents, 
English 
(“wind” and “speed” and “prediction”) AND 
(“artificial” and “intelligence”) 
Article title, 
Abstract, 
Keywords 
0 Documents, 
English 
 
From the angle of artificial intelligence (AI) algorithm, there are 144 journal papers 
searched within article title, abstract, keywords with “artificial intelligence” among 
8911 papers with “wind speed prediction” in SCOPUS (Elsevier) database. After explor-
ing with narrow down, only 2 document results display. In other words, there only ex-
isted two published articles which show in figure 6 are specifically related to wind 
speed prediction, machine learning (ML), deep learning (DL) and eXtreme Gradient 
Boosting (XGBoost) technique. 
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Figure 6. Literature search results. adopted from screenshot of SCOPUS (Elsevier) database 
 
The research uses Uncertainties in Ensembles of Regional Reanalysis (UERRA) database 
which contains a big amount of data but not big data. Using these reanalysis data can 
solve the problem of lacking real measured data. From the aspect of AI technology, 
noise refers to unreal data or wrong data and not all of them can be seen from human 
beings. The noise may come from sensor failures or inaccurate measurement. Noise is 
a problem for analyzing data by AI method since AI algorithms cannot recognize which 
are real useful data, and which are noise. In this circumstance, there is a need to do 
data cleaning to get a good result. However, manually cleaning data is a heavy work-
load and it cannot be done by manpower as this massive data brings burden to work-
ing stations, even some computers. On the other hand, machine learning (ML) cannot 
recognize right or wrong data and treat all wrong data as right data, so if training real 
measured data from meteorological observatory directly then the result can have er-
rors. Deep learning is more suitable for predicting wind speed in a very long term by 
training massive amounts of data without noise.  
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The main innovation of the research is to develop an effective machine learning (ML) 
algorithm which is based on LSTM algorithm and XGBoost and the final goal is to im-
prove the accuracy and save the model running time of wind speed prediction base as 
the decision-making time is limited. These two newly published journal papers which is 
described in figure 7 has been listed above sets a benchmarking for researchers who 
explore the topic of optimizing algorithms in WPF area using AI technology through 
reanalyzing meteorological reanalysis data. This research develops a neural network 
algorithm, which is based on LSTM and XGBoost, and this algorithm is validated to 
show better performance when compared with traditional ones. XGBoost is the opti-
mal choice as it needs no big data and operates quickly. Searching for these predic-
tions, high accuracy requirement with limited data and the computational time of 
XGBoost must be reasonably low. 
 
More attention has been paid to utilize renewable energy to produce electricity, but 
the random input does not always match the demand. Therefore, a set of management 
policies with different levels of participation of the decision maker can optimize pro-
cesses in energy management (Azcárate, Blanco, Mallor, Garde, & Aguado, 2012). Be-
sides this, effective information could be provided to support decision-making toward 
appropriate energy models and systems for isolated areas with different scales and 
demands (Y. Liu, Yu, Zhu, Wang, & Liu, 2018). Effective wind energy potential analysis 
and accurate forecasting can reduce the operating cost of wind parks. A wind energy 
decision system which combines these two can not only provide an effective wind en-
ergy assessment but can also satisfactorily approximate the actual wind speed forecast-
ing rather than poor decisions (X. Zhao, Wang, Su, & Wang, 2019). 
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3 Methodology 
This chapter covers the research philosophy, approach, strategy, and method where 
methodological choice is described as following based on the theory of Research Onion 
developed by Sauders et al. firstly in 2007. This is interdisciplinary research that com-
bines the knowledge of Industrial Management, Artificial Intelligence and Meteorology. 
The main method is quantitative analysis and Python is the programming tool. This 
chapter also depicts research strategy, research design, data collection and results, 
data analyzes and application and managerial implications. 
 
3.1  Research Strategy 
3.1.1 Research philosophy 
This research is a positivism one based on it is quantitative research which aims to pre-
dict wind speed and explain the whole process.  The results are verified and depicted in 
chapter 4. The science used in this research can be judged by logic rather than com-
mon sense.  
 
Positivism adopts a clear quantitative approach to investigating phenomena, as op-
posed to post-positivist approaches, which aim to describe and explore in-depth phe-
nomena from a qualitative perspective (Crossan, 2003).  
 
The five main principles of positivism research philosophy can be summarized as the 
following (Dudovskiy, 2018): 
1. There are no differences in the logic of inquiry across sciences. 
2. The research should aim to explain and predict. 
3. Research should be empirically observable via human senses. Inductive reasoning 
should be used to develop statements (hypotheses) to be tested during the research 
process. 
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4. Science is not the same as common sense. Common sense should not be allowed to 
bias the research findings. 
5. Science must be value - free and it should be judged only by logic. 
 
3.1.2 Research approach 
The logical sequence of deduction is from rule to case to result, and induction is from 
case to result to rule, whereas abduction follows another process – from rule to result 
to case (Taylor, Fisher & Dufresne 2002; Danermark 2001). This research uses both in-
ductive and deductive approaches to develop theory.  This research uses mainly deduc-
tion to test and evaluate the data-driven model in empirical research by carrying out 
three different algorithms. In paper 4, it also uses some induction to build theory from 
case study research, for example the integration of individual models of meteorological 
information, wind power prediction module and operations management module to 
construct a holistic model, named Meteorological Information Service Decision Support 
System. 
 
 
Figure 7. Approach to theory development. 
 
Figure 7 depicts the logic relationship of research approach among four papers. Paper 1 
made a literature review about state-of-art from related articles. This research uses an 
inductive approach to indicate and display the core content in paper 3 by finding and 
observing the universality or commonality both from paper 1 and paper 2, to summa-
rize the theory and framework. Paper 4 used a deductive method to test the proposed 
framework and system from paper 3. 
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Figure 8 describes the process to build a dataset for machine learning. It mainly in-
cludes training dataset and test dataset by using different algorithms. 
Data driven approaches include machine learning, deep learning, parameter tuning, 
training, validation, and test.  
Training: to train the models. 
Validation: to make sure the models are not overfitting. 
Test: to determine the accuracy of the models.   
 
 
Figure 8. To build a dataset for machine learning. 
 
3.1.3 Research strategy 
This is empirical research which draws conclusions strictly from concretely empirical 
and verifiable evidence.  The empirical evidence can be gathered using both quantita-
tive market research and qualitative market research methods. This research chooses a 
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quantitative method to carry out research. It uses case study and archival research as 
research strategies.  
 
This research chooses Vaasa wind farm as research site (63.05641°N，21.55187  
°E) since the fourth related paper has done data analysis there. Besides this, this re-
search obtained the collected reanalysis data of 2015-2018 from open sources to pre-
dict wind speed of 2019 then compared them with reanalysis data itself to get the 
comparison difference.  
 
Overall plan is to predict wind speed and wind power density in 2019 by analyzing me-
teorological reanalysis data 2015-2018 in the way of traditional commonly used wind 
power forecasting methods, ML and DL mathematical modelling, combined with 
XGBoost technique in a real case study. After comparing the performance and accuracy 
from them, it can be shown which algorithm makes the strategy reliable.  
 
The whole procedures and action include start, establishing research topic, reviewing 
literature, and exploring, defining research questions, mathematical modeling, collect-
ing data, analyzing data, results, validating and end. There are several steps taken to 
complete the study. 
 
3.2 Research Methodology 
3.2.1 Main research methodology 
There are two basic approaches to research, qualitative and quantitative approaches. 
The quantitative approach can be sub-classified into inferential, experimental and sim-
ulation approaches to research (Kothari, 2004). This is applied, quantitative, and empir-
ical research. The preferred main research methods are quantitative ones.  
 
To be specific, this research firstly gives deeper literature review by using systematic 
review, association analysis and cluster analysis method to find out the research gap. 
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After summarizing and classifying innovative topics, it explores the research content 
and describes the research questions.   
 
The case study in Vaasa region in Finland has been studied by analyzing reanalysis data. 
Meanwhile, the core part of this research depicts machine learning (ML), deep learning 
(DP) algorithms through mathematical modelling which needs quantitative analysis 
methods including time series analysis, regression analysis, decision tree, ML. 
In general, this is interdisciplinary research and uses an interdisciplinary approach.  
 
Attached are four papers and this study uses a variety of research approaches which 
are shown as below.  
Paper 1 uses qualitative analysis methods including literature review and descriptive 
research. 
Paper 2 uses qualitative analysis methods including literature review, descriptive re-
search, and contingency approach. 
Paper 3 uses qualitative analysis methods including literature review, descriptive re-
search, exploratory research, and interdisciplinary approach. 
Paper 4 is the starting of quantitative research and it is exactly a case study to get into 
the core part of this research. This paper uses mathematical modeling and quantitative 
analysis, such as, time series analysis, regression analysis, to improve algorithms. 
 
3.2.2 Programming platform 
MATLAB is a high-level language and interactive environment that enables it to perform 
computationally intensive tasks faster than with traditional programming languages 
such as C, C++, and Fortran. It is designed for the way of analyzing data, developing 
algorithms, or creating models. Python is an interpreted, high-level, general-purpose 
programming language and aims to help programmers write clear, logical code for 
small and large-scale projects. Python is more productive when compared with other 
programming languages, such as, C++ and JAVA. This research adapts Python to exe-
cute quantitative analysis since Python can be used to make decisions involving big 
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data while Matlab can be used to teach introductory mathematics such as calculus and 
statistics.    
 
3.3 Method Design 
3.3.1 Artificial intelligence, machine learning and deep learning 
Artificial intelligence (AI) refers to any technique that enables computers or other de-
vices to mimic human behavior. Machine learning (ML), a subset of AI, aims to make 
predictions or decisions by building mathematical models to train datasets. As a branch 
of ML, Deep learning (DL) underlying features a great amount of data using deep neu-
ral networks. Figure 9 shows the relationship among AI, ML and DL. In general, DL is a 
subset of ML while ML is a subset of AI. 
 
 
 
 
 
 
 
 
Figure 9. Structure chart of artificial intelligence. 
 
ML are commonly used in image and video recognition, face recognition, picture de-
scription, image style conversion, automatic speech recognition and synthesis, text 
classification, machine translation, image, and poetic creation and so on in daily life 
over the past several years and now. ML is an interdisciplinary technique which tries 
 
 
 
 
 
 
Machine Learning 
 Data Science Deep Learning 
Artificial Intelligence 
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training computers or other devices to forecast the unknown features by describing the 
behavior of the dataset, inputting models with features regards to the expected output, 
forecasting output with features regards to historical data by feature extraction (Alpay-
din, 2019; Griffith, 1974). Figure 10 depicts the differences of the mode between ML 
and human thought. ML algorithms are one of the alternatives to forecast wind power 
based on wind speed data as it can increase productivity, quality, and profit levels by 
predicting effectively in academia as well as industry (Lee, Yoo, Kim, Lee, & Hong, 2019). 
Deep learning (DL) is a subset of ML and pushes ML technology to be one of the essen-
tial enablers for the renewed AI success with a great process (Duan, Edwards, & 
Dwivedi, 2019). 
 
 
Figure 10. Machine learning and human thinking mode. 
 
The traditional ML approaches have unavoidable limitations while producing satisfacto-
ry accuracy. Firstly, the traditional ML methods lack capability to analyze and derive full 
value from large volumes of data. Another limitation is that the performance of the 
traditional ML methods highly depends on how the undergoing trend of the data could 
be represented by the extracted characteristic features (S. Shen, Sadoughi, Chen, Hong, 
& Hu, 2019; Sheng Shen, Mohammadkazem Sadoughi, Xiangyi Chen, Mingyi Hong, 
2019). In other words, DL is large neural networks due to DP dealing with big data 
compared with extracting features of ML. However, it is very hard to identify appropri-
ate characteristic features when establishing ML models. 
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DL, as a kind of supervised learning technique, has acquired growing attention and it 
has become more popular in recent years. It is well known for its capacity for learning 
hidden patterns in data (LeCun, Bengio, & Hinton, 2015). Moreover, the performance 
of DL models tends to be better when the dataset size grows, and DL techniques have 
become useful tools in data analytics (Le Cun et al., 2015). However, when the data size 
is small, the performance of DL tends to be jeopardized (C. Chen, Liu, Kumar, Qin, & 
Ren, 2019). Figure 11 shows the performance level of DP, traditional ML and human 
thinking. Traditional ML methods perform stable and better with a minimum intake of 
data. However, after crossing the threshold point, DL methods performance increases 
with increasing the amount of data. (Sharma, Sharma, & Jindal, 2021). 
 
Figure 11. Deep learning performance. adopted from Bhardwaj & Di, 2018 
 
3.3.2 Fully-connected neural network, long short time memory, XGBoost 
Fully-connected neural networks (FCNNs) are a classic type of artificial neural network 
architecture, in which all the nodes or neurons in one layer are connected to the neu-
rons in the next layer. A fully connected layer offers learning features from all the com-
binations of the features of the previous layer, but they are incredibly computationally 
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expensive. Usually, FCNNs are only used to combine the upper layer features (Fiesler, 
Caulfield, Choudry, & Ryan, 1990). Figure 12 shows the network structure of FCNNs. 
 
Figure 12. Fully-connected neural network. 
 
Long Short-Term Memory networks (LSTMs) were introduced by Hochreiter & Schmid-
huber (1997), and were refined and popularized by many people in the following work. 
LSTMs inspired mostly by circuitry, not so much biology, try to combat the vanishing / 
exploding gradient problem by introducing gates and an explicitly defined memory cell. 
LSTMs are explicitly designed to avoid the long-term dependency problem. The biggest 
advantage of LSTMs is that remembering information for long periods of time is practi-
cally their default behavior rather than struggling to learn. Figure 13 shows the net-
work structure of LSTMs (Hochreiter & Schmidhuber, 1997). 
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Figure 13. Long short-term memory network. 
 
Extreme gradient boosting (XGBoost) is an efficient and scalable implementation of 
gradient boosting framework by Friedman in 2001. (Friedmanet, 2001). XGBoost pack-
age includes an efficient linear model solver and tree learning algorithm. It supports 
various objective functions, including regression, classification, and ranking. XGBoost 
has emerged as a robust ML technique that has been applied in several areas (Lim & 
Chi, 2019; D. Zhang et al., 2018) 
 
 XGBoost is a decision-tree-based ensemble ML algorithm that was developed for re-
gression and classification problems, which produces a prediction model in the form of 
an ensemble of weak prediction models. When a decision tree is the weak learner, the 
resulting algorithm is called gradient boosted trees, which usually outperforms random 
forest (Friedman, 2001). 
 
3.3.3 Research design 
WPF uses wind farm historical power, historical wind speed, topography and terrain, 
and wind turbine operating status to establish a wind farm output power prediction 
model. Wind speed, power, or numerical weather forecast data are used as input for 
the model. Equipment status and operating conditions to get the future output power 
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of the wind farm. The real-time operation of a WPF system needs NWF data, real ane-
mometer tower data, real wind power output data, wind turbine generators, and wind 
farm running status. 
 
This is a prediction method which uses NWP rather than historical data. NWP cannot 
be used for predicting wind power directly, so the power of wind farms is calculated by 
NWP models. As it is depicted in Chapter 2 Literature Review part, WPF usually pro-
ceeds by physical forecasting approach or statistical forecasting approach. This research 
chooses the former approach to predict wind speed, wind direction and air density in 
the selected wind farm. It is important to do horizontal extrapolation from measure-
ment height to hub height, from meteorological observatory site to wind farm.  
 
This research uses reanalysis data of 2015-2018 from Public Datasets in European Cen-
tre for Medium-Range Weather Forecasts to predict wind speed of 2019 then compare 
them with historical data. The reanalysis data in this research uses short term forecast-
ing and picks up wind speed data every six hours. Some related information of the se-
lected wind farm is listed as follows. 
 
Kunta (Municipality):Vaasa site 
Sijainti (Location):（63.05641°N，21.55187°E） 
Vuosi (Year):2012 
Kokonaisteho (Total power):4 MW 
Turbiineja (Turbines):1 
Omistaja (Owner):Wasa Wind Oy 
Laitevalmistaja (Equipment manufacturer): Mervento 
Located area: Kronvik  
Wind power station code: 6741 
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Figure 14. System structure and process. adopted from Liu & Yang, 2015 (Paper 3) 
 
Table 2. Typical failures related to weather conditions. 
Source: Meteorological information service support system in wind park application, 2015 (pa-
per 3) 
Failure parts Possible reasons Weather condi-
tions 
Actions 
Blade Blade drive not ready EWEs Emergency 
stop 
Rotor Result of imbalance, blades 
and hub corrosion etc., 
brake sensor failure 
Rain, snow and 
other hash me-
teorological con-
dition 
Normal 
stop 
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Gearbox Over temperature, gearbox 
oil pressure too low 
High tempera-
ture 
Normal 
stop 
Generator Over speed, over tempera-
ture, bearing faults, current 
too high/low, frequency 
sensor failure 
High tempera-
ture and/or hu-
midity 
Emergency 
stop 
Normal 
stop 
Yaw system Yaw brake set 
unintentionally 
Extreme changes 
in wind speed / 
direction 
Normal 
stop 
Tower Weather or other failure 
may cause excessive vibra-
tion 
EWEs Emergency 
stop 
 
Maintenances include regular, active, and passive maintenance. Passive maintenance, 
which is sudden maintenance, accounts for a portion of operating maintenance ex-
penses and revenue. Sudden maintenance includes all unplanned failures that require 
man-made repair, from manually resetting the wind turbine to replacing damaged 
gearbox. Accidental failure of critical components (including gearbox, generator, shaft, 
blade, hydraulic system, transformer, and converter) can significantly increase mainte-
nance costs. Failure to replace these components in a timely manner can lead to signif-
icant wind turbine downtime and loss of revenue. Maintenance should be scheduled to 
carry out in time of low wind power. 
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3.3.4 Data collection 
The important quantitative process is to predict wind speed in 2019 through ML and DL 
algorithms by training reanalysis data during 2015-2018, which retrieved from Climate 
Data Store.  
 
This research analyzes reanalysis data, which named Uncertainties in Ensembles of 
Regional Reanalysis (UERRA), obtained from Public Datasets in European Centre for 
Medium-Range Weather Forecasts (ECMWF). ECMWF aims at advancing global numer-
ical weather forecasting (NWP) through international collaboration. UERRA is a re-
search project among 5 pre-operational Copernicus Projects in ECMWF during 2014-
2018. The objective of UERRA is to produce ensembles of European regional meteoro-
logical reanalysis of Essential Climate Variables (ECVs) for several decades and to esti-
mate the associated uncertainties in the data sets. It also includes recovery of historical 
(last century) data and creation of user-friendly data services. Data format is .netcdf 
and .grib and this research retrieved the former format. Python is used for creating 
mathematical models and analyzing data in this research. The reanalysis data of wind 
speed obtained four times in each day for 00-, 06-, 12-, and 24-h. 
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4 Result and Findings 
This chapter depicts results and findings of this research about three algorithms. The 
training performance and testing performance are also showed here. 
 
4.1 Results of Algorithm 
This research uses AI technologies, such as, fully-connected neural network (FCNN), 
long short time memory (LSTM) and extreme gradient boosting (XGBoost). Figure 15 
shows the hierarchy diagram about them. 
 
 
Figure 15. Tree structure of technologies related to Artificial Intelligence. 
 
• Fully-connected neural network 
The line chart of predicted wind speed by using a FCNN is shown in figure 16 and figure 
17 depicts its prediction performance. 
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Figure 16. Wind speed prediction using fully-connected neural network. 
 
 
Figure 17. Prediction performance of fully-connected network. 
 
• Long Short-Term Memory network 
The line chart of predicted wind speed by using a fully-connected neural network is 
shown in figure 18 and figure 19 depicts its prediction performance. 
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Figure 18. Wind speed prediction using LSTMs. 
 
 
Figure 19. Prediction performance of LSTMs. 
 
• XGBoost Regression 
The line chart of predicted wind speed by using a fully-connected neural network is 
shown in figure 20 and figure 21 depicts its prediction performance. 
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Figure 20. Wind speed prediction using XGBoost Regression. 
 
 
Figure 21. Prediction performance of XGBoost Regression. 
 
Training performance and testing performance, which include the value of RMSE, MAE, 
R2, for each algorithm are displayed in table 3. 
 
Table 3. Performance for each algorithm. 
Algorithm Value Training Performance Testing Performance 
Fully-connected  
neural network 
RMSE 1.892591 2.006670 
MAE 1.428197 1.526733 
R2 0.667309 0.685465 
LSTMs RMSE 1.81 1.90 
MAE 1.37 1.46 
R2 0.694925 0.717418 
XGBoost Regression RMSE 1.394653 1.938518 
MAE 1.084520 1.472376 
R2 0.819341 0.706468 
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Training time and testing time for each algorithm are displayed in table 4. 
 
Table 4. Training time and inference time for each model. 
                                                                                                                                             (second : s) 
 Training Time Inference Time 
Fully-connected  
neural network 
151.4038s for 1 time 
epochs=60 
batch size=2 
verbose=2 
1.8487s for 10 times 
LSTMs 182.8195s for 1 time 
epochs=20 
batch size=1 
verbose=2 
0.5338s for 10 times 
 0s 42.037s for 10 times 
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XGBoost is applied to quickly achieve comparable accuracy with LSTM but a lot less 
time to improve the prediction. As it can be seen from table 3, XGBoost performs bet-
ter than FCNNs and can also reach nearly the same effect as LSTMs. From the aspect of 
statistics, the results of XGBoost and LSTMs are equivalent. XGBoost only has a little bit 
overfitting when using the model to train the data set and predict as it can be neglect-
ed that the differences in a few digits after the decimal point. With the help of this sit-
uation, the uncertainty in this decision-making process can be handled more effectively. 
Besides this, it is also employed to reduce computational time. XGBoost is not DL but a 
ML technique used for regression and classification problems, so its significant ad-
vantage is running many times faster than DL algorithm.  It is a ML algorithm rather 
than a neural network or DL, so it has no training time but learning time, which is the 
same as running time of model, so-called inference time which is shown in table 4.  
 
As it can be seen in table 3 and table 4, the results clearly demonstrate that the 
XGBoost algorithm shows an overall better performance as compared to the traditional 
FCNN and LSTMs method as it saves much model running time and has equivalent MAE, 
RMSE and R2 with DL algorithm. It is a regression based on a decision tree. Wind speed 
forecasts can be deep ML or not deep. It is commonly believed that DL has better per-
formance. The algorithm used in this research compares both, XGBoost is one of the 
best algorithms for which is not DL since it is validated that it can reach the same level 
of accuracy but save much computational time. 
 
Figure 22 shows reanalysis data, training data and testing data of wind speed from 
2015 to 2019. As it can be seen from the graph, the blue curve displays the trend of 
reanalysis data during 2015-2019, the orange curve represents the variation of training 
data on wind speed and green curve shows the predicted wind speed.  
 
Besides these, it presents the variation of wind speed for each year during 2015-2019. 
The highest wind speed occurred in March, February, April, March, and April separately 
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in the years of 2015, 2016, 2017, 2018 and 2019. Vice versa, the lowest wind speed 
occurred in August, February, July, August, and December separately in the years of 
2015, 2016, 2017, 2018 and 2019. 
 
 
Figure 22. Average daily wind speed during 2015-2019. 
 
As it can be seen in figure 23, the average wind speed for every 6 hours in each month 
in the year of 2019 are drawn individually. The variation features of wind speed are: 
Judging the variation of wind speed in 2019, the highest wind speed occurred in April 
and the lowest wind speed occurred in December in the year 2019. 
 
 
66 
Figure 23. Monthly wind speed in each month in 2019. 
 
According to Finnish Meteorological Institute, Finland located in the zone of westerly 
air disturbances, there are great variations in air pressure and winds, especially in win-
ter. In the whole country, the wind blows most commonly from the southwest and 
least commonly from the northeast. The average wind speed is between 2.5 and 4 m/s 
inland, slightly higher on the coast and 5 to 7 m/s in maritime regions. Wind speeds are 
typically highest in winter and lowest in summer. Moderate winds are typical of Finland; 
high winds are rare, particularly inland. Vaasa located in the southwest coast of Finland. 
The research results are consistent with features above. 
 
4.2 Findings 
4.2.1 Findings of algorithm 
ML and DL algorithms include an exciting prospect for many industries and businesses 
to drive self-service, increase agent productivity and make workflows more reliable. 
Based on the overview of ML and DL with illustrations and differences, each of them is 
focusing on respective characteristics and future trends. DL algorithms need to clean 
up big data and they do not suit every case. In some practical cases, it makes nonsense 
when making decisions in the management layer as the dataset training time for DL 
algorithms is too long. In the Research Design part of Chapter 3, it has been found that 
an ML approach has been applied to predict wind speed. Wind power prediction mod-
els are achieved in an adaptive and effective way by effectively reducing training time 
of FCNN and LSTM respectively. The hybrid algorithm introduced in this research, 
which is based on FCNN, LSTM and XGBoost is completely novel in this disciplinary area, 
which uses hybrid DL algorithm to execute energy management, basically only two re-
lated exist in the existing literature. Moreover, from the data analysis and results, the 
optimized algorithm which is based on LSTMs algorithm and XGBoost technique has 
better performance in the Vaasa meteorological observation site.   
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The WPF method is an effective way to reduce the impact of wind power intermittently 
to the power grid. Forecast results can be published and sent to the power grid dis-
patch terminal and wind farm monitoring center in real time. Meanwhile, the grid 
scheduling center and wind farm monitoring center can make prediction requests to 
the forecast server at any time. 
 
4.2.2 Findings of managerial aspect 
This research uses meteorological methods to provide a decision support tool for deci-
sion-makers. This meteorological information service decision support system in wind 
park application is beneficial both to wind farms and power systems. One hand, it pro-
vides support for reasonable maintenance plans, participates in market competition, 
and reduces the operating cost of wind farms. On the other hand, it provides support 
for power grid scheduling and proper scheduling, effectively reducing the adverse ef-
fects of intermittent wind power on power systems. Its successful implementation will 
produce enormous economic and social benefits. 
 
The main contribution of this research is to achieve decision optimization on a decision 
support system by using AI technology. It was concluded that the proposed system is 
very promising for potential applications in wind (power) energy management. The 
findings of this research will provide strategic management for more enterprises in the 
field of wind power, which plan to implement systems with awareness of risk factors to 
avoid equipment failure, supply with regular, active, and passive maintenance, optimize 
energy management, give businesses an advantage over competitors and always be 
aware of the changing market.    
 
For further work, it is necessary to use many methods to reach the optimum results in 
wind speed prediction, EWEs risk management and optional service decisions, the 
comparison between many methods ensure best performance of the system and real-
ize the objective aims of the research. 
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5 Summary of Publications 
5.1 Overview of Papers 
Titles of published articles with keywords are listed in Table 5. An overview of the aims, 
methods and the main results/contribution are shown in Table 6.  
The original articles (paper 1-4) are attached in Appendix. 
 
Table 5. List of articles´ titles with key words. 
Paper  Title Key words 
Paper 1 A review of Innovation in Wind 
Power Forecast 
Wind energy resource, WPF, wea-
ther forecast, literature research, 
descriptive research. 
Paper 2 The Impact of Climate Change 
on Wind Power Enterprises 
WPF, WPEs, climate change, glo-
bal wind energy resource distri-
bution, climate data record. 
Paper 3 Meteorological information 
service support system in wind 
park application 
Operations management, Deci-
sion support systems, Informa-
tion management, 
Paper 4 A Study on Renewable Energy 
Potential based on the Global 
Atmospheric Data 
Renewable energy, climate 
change, reanalysis, ERA-20C data, 
resources potential. 
 
Table 6. Overview of the articles’ aims, methods and the main results/contribution. 
 Aims Methods Main 
results/contribution 
Paper 1 To review the most 
recent articles in the 
topic of WER and WPF 
Systematic review, 
cluster analysis, asso-
ciation analysis, litera-
Explore the research gaps 
in this area and highlight 
the possible future 
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methods. To review 
the innovations. 
ture review, descrip-
tive research. 
 
research points.  
Paper 2 To survey the impact 
of climate change on 
WPF and the in-
fluences on WPEs. 
Literature review, des-
criptive research, con-
tingency approach. 
WPD, which represents 
wind resources, plays a 
critical role. Air tempera-
ture, humidity, wind di-
rection, wind speed, air 
pressure and rainfall di-
rectly influence the wind 
power output. 
Paper 3 To propose a concep-
tual framework and 
make it can be used 
for decision-making. 
Literature review, des-
criptive research, ex-
ploratory research, 
mathematical mode-
ling, interdisciplinary 
approach. 
This structured frame-
work, which involves 
three major modules and 
certain processes, pro-
vides new insight for de-
cision making in WPEs. 
Paper 4 To find a correlation 
between the meteoro-
logical factors and the 
renewable energy po-
tential and make the 
conceptual framework 
empirical.  
Literature review, case 
study, quantitative 
analysis, mathemati-
cal modeling, time 
series analysis, re-
gression analysis, in-
terdisciplinary ap-
proach. 
Use the global atmosphe-
ric reanalysis data to ana-
lyze the potential of 
renewable energy 
sources In Vaasa region in 
Finland. 
 
5.2 Logical Connection of Papers 
This study is founded on a thorough literature review. Hence paper 1 is the foundation 
for the following research since it reviews the innovations in the domain of WPF. Paper 
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2 makes a survey on the specific branch. In fact, paper 4 tests the framework which 
was proposed from paper 3.  
 
Figure 24 shows the logical connections among four papers. 
 
Figure 24. Logical connections among the papers. 
 
5.3 Summary of Individual Papers 
5.3.1 A review of innovation in wind power forecast 
Sub-question 1. What is the innovation in the development process of WPF among so 
much relevant research? 
 
This paper is the theoretical foundation of the whole research.  It roughly researches 
main topics in the field of WERs and WFP. 
 
In answering sub-question 1, Paper 1 uses different methods to review relevant articles 
to find the possible research prospect.  
 
In this paper, several methodologies, including systematic review, cluster analysis and 
association analysis, are used to depict and generalize different popular WPF methods. 
Paper 1 reviewed several different WPF methods, which were used in wind energy sys-
tems, to summarize their own theory and characteristics. The corresponding innova-
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tions are also reviewed in detail. This paper aims to find out the research gap and open 
a new view to provide a research path for researchers in this same field. 
 
Paper 1 describes some single algorithms, such as Kalman Filters (KF), Artificial Neural 
Network (ANN), Support Vector Machine (SVM), fuzzy logic and time series model. 
Time series model includes auto regression (AR), moving average (MA), autoregressive 
moving-average (ARMA) and autoregressive integrated moving average (ARIMA). Some 
hybrid algorithms, such as KF+SVM, ARIM+ANN, ARIMA+KF, ARIMA+SVM, also are 
compared in determined case studies. 
 
As it can be seen, there is no single best forecasting algorithm that can be applied to 
any wind farm. As a result of this study, it can be said that each algorithm or combined 
algorithm both has its advantages and disadvantages. Meanwhile, the characteristics of 
terrain in a variety of districts in different countries are different. Therefore, paper 1 
shows there is still space to increase the prediction accuracies respectively in scales of 
long-term, medium-term, short-term, and very short-term WPF.  
 
Paper 1 suggests that the future study can be topics about increasing the prediction 
accuracy and system reliability. 
 
5.3.2 The impact of climate change on wind power enterprises 
Sub-question 2. How climate change influences WPEs and what factors affect wind 
power output?  
 
This paper is a preliminary basis of connecting wind power with meteorology. It aims to 
study the impact of climate changes on WPEs and draw a framework to determine the 
relationship between wind power density and wind power. 
In answering sub-question 2, Paper 2 was developed based on paper 1. It reviewed 
some most recent relevant research which combines climate change with wind power 
predicting and summarized the art-of-state. Paper 2 draws a framework which assesses 
72 
wind resources and finds correlations between wind power and some meteorological 
elements. 
 
Six major meteorological elements, including air temperature, humidity, wind direction, 
wind speed, air pressure and rainfall, may have a relationship with wind power. Besides 
these, other meteorological elements may also be connected to wind power, such as 
relative humidity, rainfall, and snowfall. In some practical cases, wind farms can be lo-
cated in places with complex terrain. However, different terrain, surface roughness, 
obstacles, and ground conditions such as undulating terrain, land-to-sea junctions, or 
uneven distribution of precipitation or cloud volumes also influence wind speed. 
 
The outcome of Paper 2 is proposing a rough framework which aims to help decision-
makers of WPEs to make strategic decisions including site selection, management and 
maintenance of wind power station, and long-term wind power generation forecast etc.  
Paper 2 suggested that future research should explore deeply in climate data record 
(CDR) to help develop more effective wind speed and WPF methods by finding specific 
algorithms. 
 
5.3.3 Meteorological information service decision support system in wind park ap-
plication 
Sub-question 3. Can there be a general framework to help forecasting wind speed 
and wind power more effectively in decision-making?  
 
This paper is the hub of this interdisciplinary research as it is involved in domains of 
operation management, weather forecast and wind power generation. It mixes these 
subjects together and practices them in a conceptual framework.  
 
In answering sub-question 3, this paper designs and provides a meteorological infor-
mation service system. The proposed system, which involves meteorological infor-
mation module, wind power prediction module and operations management decision-
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making module, can be seen in the picture of system structure and process in Figure 10. 
It provides benchmarking to support decision making directly and indirectly based on 
processing meteorological information and evaluating its impact on service operations. 
Additionally, it provides meteorological forecasting and decision support in case of 
EWEs. 
 
The Meteorological Information module includes meteorological data collection and 
NWP. This module also sends early warning messages in case of EWEs, so managers can 
take countermeasures in advance to avoid economic losses. Wind Power Prediction 
module utilizes meteorological data to predict wind power output based on real-time 
measuring, NWP, and WPF. Operations Management module uses predicted results 
from the previous module to evaluate failure probabilities in different parts of the wind 
turbines.  It can help a lot in decision making to optimize maintenance schedules and 
maximize wind power output. Table 1 shows the corresponding actions to specific ma-
chine failures. 
 
Paper 3 suggests the future research will be implemented with the proposed concep-
tual model. To some extent, paper 3 is the theoretical foundation of paper 4 which 
demonstrates empirical research by analyzing CDR data. 
 
5.3.4 A Study on renewable energy potential based on the global atmospheric data 
Sub-question 4. How to use the global atmospheric reanalysis data to analyze the 
potential of WERs in Finland? 
 
This paper analyzes ERA-20C global datasets from ECMWF and tries to identify the me-
teorological factors (wind speed, solar radiation, rainfall, evaporation etc.) with their 
effects on the overall utilization potential of these RERs. What is the correlation be-
tween the meteorological factors and the renewable energy potential? 
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Paper 4 is developed based on paper 3 and uses the proposed pilot conceptual mete-
orological information service decision support system from paper 3. 
 
In answering sub-question 4, this paper starts by retrieving the dataset of ERA-20C to 
analyze how climate change reflects on WPF. This paper continues such analysis in me-
teorological information service decision support systems, with deeper insights into 
WPD during the past 50 years, and to verify how this system helps decision-making in 
WPEs especially when EWEs come. This paper covers an important topic with the clear-
ly presented purpose in terms of RQ 4, WPD of past fifty years 1961-2010 were studied 
from a point of view by analyzing global atmospheric reanalysis data, to find out the 
correlation between the meteorological factors and wind energy potential.  
 
This research analyzes the existing ERA-20C global datasets describing the state of the 
atmosphere as well as land-surface and ocean-wave conditions from 1900 to 2010 ob-
tained from Public Datasets in European Centre for Medium-Range Weather Forecasts 
(ECMWF). ECMWF aims at advancing global NWP through international collaboration. 
The data format is .netcdf and .grib. MATLAB and Python are used for creating models 
and analyzing data in this research. 
 
Paper 4 demonstrates how to analyze the potential of WERs by using reanalysis data in 
a real case study. The specified location is Vaasa region in Finland and retrieved format 
is NetCDF. The highest resolution grid 0.125 degree * 0.125 degrees was chosen and a 
total data of 18262 days in 50 years were analyzed. Paper 4 uses MATLAB R2014a as 
the programming language to calculate, analyze and plot figures. It also plotted the 
variations of maximum WPD from every five years and every ten years. Analyzed re-
sults present a trend of WPD and give alarm to decision-maker to take action to avoid 
machine failures and financial losses. This Meteorological Information Service Decision 
Support system which was proposed in paper 3 can effectively help decision-maker at 
macro level and paper 4 is exactly a case study to validate this framework. The contri-
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bution of this paper is analyzing the potentials of WERs in terms of mastering the trend 
of WPD in Vaasa region in Finland.  
 
Paper 4 proposes that the future research could be focused on forecasting the global 
potentials of RERs in the next decades. 
 
5.3.5 Research in this study 
Sub-question 5. What is the sufficient ML algorithm to improve the accuracy of wind 
speed prediction? 
 
The follow-up research after these four papers in this study answers sub-question 5. It 
is developed based on paper 4 and reanalysis data of Uncertainties in Ensembles of 
Regional Reanalysis (UERRA) while paper 4 uses ERA-20C global datasets also retrieved 
from European Centre for Medium-Range Weather Forecasts (ECMWF). The research 
design in this study is the core part of this entire research. It uses reanalysis data of 
2015-2018 from Public Datasets in ECMWF to predict wind speed of 2019. The reanaly-
sis data in this research uses short term forecasting and picks up wind speed at the 
selected site for every six hours. 
 
In answering sub-question 5, the research design in this study compares traditional 
algorithm FCNN, ML algorithm LSTM and DL algorithm XGBoost, by calculating RMSE, 
MAE, R2 in terms of training performance and test performance, to find an optimal 
wind speed predicting method.  Besides this, it observes training time and inference 
time for each algorithm. The results come out that the XGBoost algorithm shows better 
performance as compared to the traditional FCNN and LSTMs method as it saves quite 
much model running time but also reaches the equivalent effect of MAE, RMSE and R2 
as DL algorithm LSTM.  
 
Besides this, the research design included in this study aims at optimizing energy man-
agement decision-making by optimal operational planning via predicting wind speed. It 
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provides a plan about when to turn off wind turbine group in order to repair and carry 
out maintenance during the low power generation period for wind power forecast to 
the next year, provide better wind energy assessment results and to optimize energy 
storage for the whole electrical grid, and aims at reducing carbon emissions by utilizing 
renewable energy maximally instead of fossil fuel. Wind power needs to be predicted 
accurately to make up for problems derived from burning fossil fuels.  
Central research question: How to improve the accuracy of wind power forecasting by 
using artificial intelligence methods? 
 
In answering the central research question, the research design in this study compares 
traditional algorithm and DL algorithms and determines a ML algorithm namely 
XGBoost to predict wind speed. And it is the core part of the whole research. It is pos-
sible that Meteorological Information Service Decision Support System, which was pro-
posed in paper 3, can support decision-making effectively and create timely actions 
within the WPEs. Findings from this research contribute to WPF in WPEs. The main 
contribution of this research is to achieve decision optimization on a decision support 
system by using AI. It was concluded that the proposed system is promising for poten-
tial applications in wind (power) energy management. 
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6 Discussion and Conclusions 
6.1 Contribution 
The motivation of this research comes from the “environmentally friendly society”, 
“sustainable development” and “clean energy”. As everyone knows, the natural re-
sources which human beings depend on are not unexhausted. Therefore, how to de-
velop and utilize RERs in an efficient way is a popular and forever topic. Among all the 
RERs, wind energy has advantages, such as, low cost of wind power generation, clean 
to environment resource renewable despite the characteristic of uncertainty. 
 
A lot of WPF techniques and methods used in wind energy systems have been re-
viewed in Chapter 2 of this study to summarize their own theory and characteristics in 
a variety of methods. And their corresponding innovations are also reviewed in detail. 
However, the main contribution of Chapter 2 is to provide a path for researchers in this 
same field. 
 
The important points of view for this research were described and summarized from 
Chapter 3 to Chapter 5. The proposed structure and process of this conceptual infor-
mation service system for improving productivity can help decision makers in WPEs 
while the electricity grid balance must be maintained between electricity consumption 
and generation at any moment. In the module of Meteorological Forecast, real-time 
meteorological data and weather forecasts are collected through meteorological sen-
sors and equipment. Managers can get warning signals and take countermeasures 
quickly in advance when EWEs happen by predicting 50-year maximum wind speed 
uninterrupted. In the module of Power Prediction, it can provide WPF prediction by 
utilizing real-time wind measuring data and historical data as input. Models which 
combine different algorithms usually have higher accuracy and reliability than compar-
ing using just a single algorithm. In the module of Operation Management, failure 
probabilities are evaluated to help decision makers to reduce maintenance cost and 
time and to improve the operational efficiency and reliability. Correspondent actions 
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can be taken regarding typical failures in different parts of wind turbines according to 
real case statistics. Condition-based maintenance needs to be taken while there is a 
direct connection between business performance and operational management based 
on condition-based maintenance in WPEs.  
 
6.2 Managerial Implications 
This research develops a decision support tool for decision-maker from the domain of 
grid dispatching companies. The important quantitative process of it is predicting wind 
speed in 2019 through ML algorithm by training reanalysis data during 2015-2018, 
which retrieved from Climate Data Store. Then validate through analyzing the values of 
MAE, RMSE, R2 in the categories of training performance and testing performance.  
 
The practical impact of this research is that it examines a method which can help the 
whole wind power generation process in a systematic way, develop a practical evalua-
tion tool for management level, improve wind power prediction accuracy and reduce 
economic losses by increasing wind speed prediction accuracy. In the long term, it can 
effectively alleviate air pollution, water pollution and global warming problems. Be-
sides of these, this research supports the growing recognition that the timeliness of 
making decision is just as important to the effectiveness of weather warnings as infor-
mation provided in risk management of EWEs and actions of machine failures, and this 
factor should be considered in future research in addition to the investments and at-
tention given to improving detection and warning capabilities.  
 
The major managerial implications of this research are described as follows.  
a. Provides a plan about when to turn off the wind turbine group to repair and carry 
out maintenance during the low power generation period for wind power forecast to 
the next year. Therefore, it can serve as an effective tool for wind farm management 
and decision-making. 
The proposed structure and process of this conceptual information service system for 
improving productivity can help decision makers in WPEs while the electricity grid bal-
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ance must be maintained between electricity consumption and generation at any mo-
ment. It is a holistic wind energy decision support system based on condition-based 
maintenance (CBM), which includes meteorological information module, wind power 
prediction module and operations management decision-making module, for decision 
makers to cut down operation and maintenance costs and implement a successful CBM 
strategy to achieve higher level of cost effectiveness.  
 
b. Provides better wind energy assessment results and to optimize energy storage for 
the whole electrical grid. 
It can generate a lot of value, such as, making electricity price can falling faster than 
expected. The development of energy storage has a close relationship with transition 
to the smart grid. Energy storage plays a crucial role in offsetting the intermittency of 
renewable energy including wind energy predictable plan helps in dispatching effec-
tively and helps users to save electricity cost. Energy storage can help balance the 
power generation and improve power quality. Optimal plan of energy management can 
reduce economic loss when making decision. 
 
c. Reduces the carbon emissions by utilizing renewable energy maximally instead of 
fossil fuel. 
Burning fossil fuel is the main cause of climate change. Among a variety of traditional 
and new energy, to find the best plan of energy allocation among them to minimize 
carbon emissions and to make balance between them is becoming a popular topic. In 
the long term, this information system can reasonably help balancing the fossil fuels 
and renewable energy in the purpose of protecting the environment for human beings. 
 
6.3 Research Limitations 
From this research itself, reanalysis data are retrieved at the height of 30 meter as the 
same as a meteorological observatory.  
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This research originally plans to use reanalysis data of 2015-2018 from ERA5 data to 
predict wind speed of 2019 then compare them with historical data from Finnish Me-
teorological Institute in 2019. In practice, it is not easy to compare the predicted wind 
speed with historical wind speed in the year 2019 since there exists distortion since 
many observation data are missing. 
 
Wind energy is one of the most dynamic renewable sources of energy with commercial 
potential, clean and green, low-cost, widespread, inexhaustible. Wind power can effec-
tively mitigate air pollution, water pollution and global warming while providing a sta-
ble power supply for economic growth. However, wind power is intermittent and fluc-
tuating as intermittent is a nature characteristic of wind energy itself. Wind power in-
terval prediction plays an increasingly important role in evaluations of the uncertainty 
of wind power and becomes necessary for managing and planning power systems. Be-
sides of this, energy storage systems with new technology can also compensate for 
improving the reliability of the system pertaining to power availability (Abazari, Babaei, 
Muyeen, & Kamwa, 2020; Vijay M, Singh, & Bhuvaneswari, 2020; R. Wang, Li, Fu, & 
Tang, 2020). Hannele, Jari and Samuli in Ilmatieteen Laitos (Finnish Meteorological In-
stitue) have done related research about WPF accuracy and uncertainty in Finland in 
the year of 2013. They pointed out that the aggregation of wind power production will 
not only decrease prediction errors, but also decrease the variation and uncertainty of 
prediction errors by analyzing density function and kernel densities in three sites (Holt-
tinen, Miettinen, & Sillanpää, 2013). 
 
The ecological problem of wind power generation is interference to birds. Some types 
of wind turbine projects cause bird death, and these deaths may contribute to declines 
in the population of species also affected by other human-related impacts. The wind 
energy industry and the U.S. government are researching ways to reduce the effect of 
wind turbines on birds and bats. Modern wind turbines can be very large machines, 
and they may visually affect the landscape. Some people do not like the sound that 
wind turbine blades make as they turn in the wind. Producing the metals and other 
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materials used to make wind turbine components has impacts on the environment, 
and fossil fuels may have been used to produce the materials. 
 
The main solution is offshore wind power generation with higher cost from power gen-
eration but also high efficiency. Onshore wind power generation influences fisheries 
trade and marine mammals. In some regions over the world where the population is 
denser, to find the location for installing wind turbines are more restricted sometimes, 
offshore wind farms will be vigorously developed. Meanwhile, wind power generation 
makes a lot of noise, building wind farms in some empty places can be a possible bet-
ter choice.  
 
For the algorithms, there is no single best forecasting algorithm that can be applied to 
all renewable energy systems. As a result of this research, it can be shown that each 
algorithm or combined algorithm has its advantages and disadvantages. There is still 
space to increase the prediction accuracies respectively in scale of very short-term, 
short-term, medium-term, and long-term wind power predictions. 
In general, there is considerable room for WPF development as wind power generation 
technology is not fully mature as there existed objective constraints. The limitations of 
this study include the research being established based on the existing literature. 
Meanwhile, some aspects are potentially ignored as this research is initially based on 
the existing literature. Furthermore, portability needs to be improved when planting 
into other wind farms. 
 
6.4 Future Research 
As wind power generation develops rapidly and the installed capacity is increasing fast 
in recent years, the innovative application of “environmentally friendly power supply” 
is getting much closer to our daily life. The dependence on electricity is increasing 
while the rapid development of society is changing day by day. The improvement of 
social production and the continuous development of people's standard of living have 
a strong demand for power resources. Human society urgently needs to improve the 
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efficiency of electricity consumption as the power resources are in shortage. (Rudenko, 
Ershov, & Evstafiev, 2017). 
 
Currently, mostly WPEs consider the results of weather forecasts as a factor in helping 
managers to make decisions which rely on historical and prevailing meteorological data. 
However, nearly no research considers the impact of climate change while climate 
change over 10 years or even longer. Further research may mainly aim at figuring out 
how climate change over decades can influence wind power through comparing and 
analyzing climate data records in complex terrain. More specifically, the objective is to 
explore the impact of climate change on weather conditions, especially EWEs which 
influence the wind power output in wind power enterprises. Besides this, as wind 
power has a cubic dependency on wind speed, this error from wind speed forecast can 
increase when predicting wind power. Therefore, finding solutions for getting higher 
accuracy of wind speed observation sites and developing better prediction models are 
continuously research tasks. In the future, more research is needed in the field of wind 
power prediction for the purpose of optimizing real time data, increasing the predic-
tion accuracy and system reliability.  
 
ML is widely used in many domains. The concept of DL has been introduced by Geof-
frey Hinton, Yoshua Bengio, Yann Lecun in 2006. Recently, DL techniques have started 
to be used in the WPF area. DL usually has better performance than traditional ML in 
certain conditions when the training set is big enough. 
 
Electric energy is one kind of secondary energy, it cannot be stored since electricity 
must be generated as much as needed. It is waste if it generates more than needed 
while power cuts will happen if less than needed. Therefore, the power generation 
must follow the load of the power to adjust which is called peak regulation. Thermal 
power plants have strong peak-regulating capacity while wind farms have poor peak-
regulating capacity. For this reason, wind power and thermal power plants must be 
packaged into the grid, to achieve wind power peak. Aims to be integrated into the 
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power grid, the wind power grid connection has always been a problem. The future 
research could include increasing electricity generating stability in power companies 
based on better peak regulation in practice. 
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Abstract   
It can be noticed that most existing literature related to the topic of wind energy resource focus on specif-
ic areas, such as, specific forecasting model, local energy plan and policy, power engineering, etc. The 
purpose of this paper is to contribute to the topic of wind resource exploitation and wind power prediction 
for relevant researchers and professionals. A review of existing literature in the areas of wind energy re-
source (WER) and wind power forecast (WPF) methods are presented in this paper, and the innovations 
in these relevant areas are also reviewed. We try to explore the research gaps in these areas to highlight 
the possible future research topics for the society. 
Keywords wind energy resource, wind power forecast, weather forecast, literature review 
1 Introduction 
In the last few decades, numerous researchers have put effort on exploiting, utilizing and optimizing en-
ergy. However, in recent years a large number of countries are moving to the exploitation of renewable 
and clean energy and this will be a long-term trend. Meanwhile, renewable energy education is becoming 
more and more popular and plays an important role in the improving of the quality of life (Kandpal & 
Broman, 2014). 
In contrary to fossil fuel based and nuclear energy sources, renewable energy sources (RES) can effec-
tively utilize natural resources, alleviate the pressure of energy crisis, and minimize the negative envi-
ronmental impacts (Ozcan, 2014). A new research predicts that global energy demand in 2040 will be 
approximately 30% higher than it was in 2010. It is urgent that. Because the typical characteristics of 
wind energy are stochastic and intermittent, it is important to know and use appropriate renewable energy 
technologies in the whole process of producing wind power generation (Dashwood, 2012). 
Changes in temperature, precipitation, sea level, and the frequency and severity of extreme events will 
likely affect how much wind power generation is produced, delivered, and consumed. One hand, weather 
forecast data as input of WPF system influence a lot. On the other hand, there exist various weather phe-
nomena, such as, rainstorm, hail, thunderstorm and tornado, have high probability generate more or less 
damage to wind turbines.    
The structure of the rest of the paper is as follows: Section 2 describes the methodology of writing a liter-
ature review upon which this paper is based and introduces some other methods. Section 3 reviews the 
major contribution and innovation of all the existing classic models in the wind power forecast and their 
links between in order to find research gaps. Section 4 discusses the research gaps and proposes for the 
future research. Section 5 concludes the paper and some final remarks. 
2 Research methodology 
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The main methodology of this review paper is systematic review. The purpose of using this method is to 
find what kinds of advanced outcome did researchers have done before and specify the research gap, then 
determine what research content remain to study. Meanwhile, it can also provide a blueprint of state-of-art. 
The systematic review is a quite common way of collecting data, published in the literature, assessing 
methodological quality for high quality research questions. Systematic review are quite common in sci-
ences where data are collected, published in the literature, and an assessment of methodological quality 
for a precisely defined subject would be helpful (Laberge, 2011). In this paper, contribution of each litera-
ture were associate and analyze together, it aims at finding out advanced things filling out the research 
gap.  
Besides of this, cluster analysis helped to classify wind power forecast (WPF) methods. Furthermore, the 
methods of association analysis has also been used to do a synthesized analysis. Through a review of 
evidence from both qualitative and quantitative studies, disparate data are synthesized in order to better 
understand the topic of WER and WPF. 
3 Descriptive analysis 
3.1 Wind power forecasting by time scale 
People usually use ultra-short term, short-term, medium-term and long-term time scales to predict wind 
power prediction in practice (Soman et al., 2010). There are different time scales when classifying wind 
power forecasting species according to time periods and one example is as follows (Peng et al., 2013; 
Soman et al., 2010).  
a. Long term forecasting 
Long-term wind power predictions are utilized for maintenance and repair of the wind turbine 
and include the predictions from 1 day to 1 week. 
b. Medium term forecasting 
Medium-term wind power predictions are utilized for power system management and energy 
trading and include the predictions for 6 h to 1 day ahead. 
c. Short term forecasting 
Short-term wind power predictions are utilized for pre-load sharing and include the predictions 
from 30 min to 6 h. 
d. Ultra-short term forecasting 
Very short-term wind power predictions are used for turbine control and load tracking and in-
clude the predictions for few seconds to 30 min ahead. 
3.2 Wind power forecasting by predicting model 
The methods of wind power prediction are usually divided into three groups (González-Mingueza & 
Muñoz-Gutiérrez, 2014). 
● Statistic model 
Statistical models are based on mathematical statistics analysis of the main variables associated with 
energy generation, such as wind speed and temperature at some points of measurement as well as the 
measures of wind generation at different point in the network. 
● Physical model 
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Physical models are based on the use of numerical models. At first, get the results of meteorological data, 
such as, wind direction, wind speed, atmospheric pressure and air density. Then use some physical char-
acteristics surrounding wind turbine to get the optimized predicting wind speed and direction in different 
hub height of wind turbine generator system. Finally, the wind power output can be predicted based on 
established physical model.  
● Hybrid method  
Hybrid method is a useful predicting way as it can improve the WPF accuracy by offsetting random error 
with one method from each other. However, this technique is not very mature even it is commonly used 
nowadays.  
3.3 Commonly used wind power forecasting methods 
In light of different input data which means whether use Numerical weather forecast (NWF), the wind 
power forecasting can be divided into numerical weather forecast forecasting method and historical mete-
orological data forecasting method. 
● Kalman filters 
Kalman filters (KF) is an optimal recursive data processing algorithm and it has been firstly achieved by 
Stanley Schmidt in 1958. The preliminary application of KF method for numerical weather forecasting 
has been reported in a few papers (Persson, 1991). In one case, a modified KF algorithms was applied to 
wind speed numerical predictions so as to improve the WPF accuracy. This literature indicates high per-
formance in eliminating of any type of systematic errors and reducing the requirements in CPU time. In 
the end, this paper also mentions that this technique can not only be used in the traditional meteorological 
use but also engineering sector, such as, wind power integration (Louka et al., 2008). 
 
● Time series model    
Commonly used time series models include auto regressive (AR), moving average (MA), autoregressive 
moving-average model (ARMA) and auto regressive integrated moving average (ARIMA). Among these, 
one ARIMA model established by Box and Jenkins have been widely used for the purpose of time series 
forecasting (Box & Jenkins, 1976). Meanwhile, this book is extremely overall because it interpretes each 
kind of time models in detail and also gives samples of modelling.    
 
● Artificial neural network (ANN)  
Various artificial neural network (ANN) models are widely used, such as back propagation (BP) and 
radial basis function (RBF). An ANN is an information processing method which works like a human 
brain processes to find an algorithmic solution algorithmic solution in order to pick out the structure from 
the existing data (Carolin Mabel & Fernandez, 2008; Kariniotakis, Stavrakakis, & Nogaret, 1996). Based 
on normal BP network, one new wind power prediction model which optimized tabu search algorithm 
with memory function was developed (Han et al., 2011).  
Existing methods for this purpose tend to yield results with poor accuracy because they cannot properly 
account for seasonal effects over the long term. However, one updated method improve the accuracy of 
daily average wind speed forecasting. This study aims to forecast the daily average wind speed over a 
109 
long period of time, such as one year ahead. This method can forecast the daily average wind speed one 
year ahead with lower mean absolute errors compared to figures obtained without adjustment (Guo et al., 
2011). 
 
● Support vector machine (SVM) 
This method was firstly developed by Corinna Cortes and Vapnik in 1995. It is similar to ANN but the 
most apparent difference is SVM focus on mathematic method and optimization mechanism. One typical 
research applied this SVM method to wind speed prediction has been done in 2004. The paper introduces 
SVM, the latest neural network algorithm, to wind speed prediction and compares their performance with 
the multilayer perceptron (MLP) neural networks. The result indicates that SVM comparing to MLP is 
closer to the actual wind speed (Mohandes et al., 2004). 
The existing studies on using SVM for wind forecasting are very limited in that usually only one particu-
lar kernel function and a specific combination of parameters are picked and used in these studies. A sys-
tematic investigation focuses on kernel function encourage people to apply this method for wind energy 
applications. One research fill the research gap, it briefly introduce the principle of LS-SVM and analyze 
procedure for tuning LS-SVM parameters for optimal performance (J. Zhou et al., 2011). Least-squares 
support vector machines (LS-SVM) is a powerful technique which aims at getting higher accurate fore-
casting of wind speed. And it is widely used for forecasting short-term wind speed forecasting.  
 
● Fuzzy logic 
It is a useful and practical technique for modelling complex phenomena that may not yet be fully under-
stood owing to its ability to deal with imprecise, uncertain data, or ambiguous relationships among data 
sets (Metternicht, 2001). This approach provides a simple method to draw definite conclusions from 
vague, ambiguous, or imprecise information, however it is not widely used because of the low accuracy 
as low ability of fuzzy logic prediction is low when studying (Klir & Folger, 1988). There are few up to 
date literature researching in this area, providing a possible research gap basing on its promising nature. 
 
● Hybrid algorithm 
There is no single best forecasting algorithm that can be applied to any wind farm due to the fact that 
wind speed patterns can be very different between wind farms and are usually influenced by many factors 
that are location-specific and difficult to control (Guo et al., 2011). 
In a very recent literature, a novel hybrid modelling method which named SVR–UKF is proposed, inte-
grating unscented Kalman filter (UKF) with support vector regression (SVR) in order to precisely update 
the short-term estimation of wind speed sequence (K. Chen & Yu, 2014). Using this method, the predic-
tion errors are closer to zero with significantly smaller variations, whereas the prediction errors of the 
other methods are scattered more widely. 
Each one of  physical models, statistical models, spatial correlation models and artificial intelligence 
models has its advantages and disadvantages, for example, the time series model is one kind of statistical 
models and it is popular in use because its computation is simple, ANN and KF are popular due to their 
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good nonlinear performance. Thus, another research which introduces two hybrid algorithms and com-
pare show both of them have good performance. In this literature, the authors establish two hybrid meth-
ods namely ARIMA-ANN model and ARIMA model based on single time series model, ANN model and 
KF model. The results show that: (1) Both of them have good forecasting accuracy; and (2) they are suit-
able for the jumping wind samplings, which can be applied to real-time wind power systems (H. of two 
new A.-A. and A.-K. hybrid methods for wind speed prediction Liu, Tian, & Li, 2012).  
Other similar hybrid algorithms also exist, e.g. one research systematically and comprehensively investi-
gated the applicability of this methodology based on two case studies on wind speed and wind power 
generation, respectively. Two hybrid models, namely, ARIMA–ANN and ARIMA–SVM, are selected to 
compare with the single ARIMA, ANN, and SVM forecasting models. The results show that the hybrid 
methodology does not always outperform the individual forecasting models based on ARIMA, ANN, or 
SVM. As such, the argument in some literature that the hybrid methodology is always superior to single 
models cannot hold for wind speed or power generation forecasting (Shi et al., 2012). 
 
Table 1 Innovations in different forecasting methods 
Methods Literature  Innovation 
Kalman filters (Louka et 
al., 2008) 
This literature has introduced two limited-area atmospheric 
models for wind speed forecasts, and particularly utilise 
Kalman filter to these data to eliminate any possible system-
atic errors, even in the lower resolution cases, contributing 
further to the significant reduction of the required CPU time. 
In particular, the paper contributes in the case of wind power 
prediction, which showed a remarkable improvement in the 
model forecasting skill. 
The major innovation is to counteract the drawback of Nu-
merical Weather Prediction (NWP) models exhibiting sys-
tematic errors in the forecasts of certain meteorological pa-
rameters. Instead of increasing the model resolution that may 
provide considerable improvement of smaller scale flow 
characteristics, which remains as an open question to whether 
the use of higher resolution improves the forecast skill con-
siderably, the methodology introduced in this paper showed 
high performance to the elimination of any type of systematic 
errors and most importantly it reduced the requirements in 
CPU time since its application to lower resolution data led to 
similar or even more accurate results compared to the costly 
high-resolution direct model outputs. 
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ANN (Han et al., 
2011) 
It is urgent to improve the accuracy of short-term wind power 
forecast by NWF. BP network, as one of ANN, has been 
widely used in wind speed and wind power prediction. How-
ever, the BP algorithm has its apparent disadvantages, easily 
getting into local minima and the convergence rate is slow. 
The major innovation in this literature is that the authors use 
Tabu Search (TS), another algorithm which can achieve the 
global optimizations, to train BP network. It can be shown 
that the new method namely MTS-ANN model can solve the 
inherent shortcoming of BP network by improving the con-
vergence probability and precision of BP network apparently. 
(Guo et al., 
2011) 
Another BP model also used to predict wind speed in the 
same year of 2011. In this literature, the authors integrate BP 
network with the idea of eliminating seasonal effects from 
actual wind speed datasets using seasonal exponential ad-
justment. This study aims to forecast the daily average wind 
speed over a long period of time, such as one year ahead. 
Existing methods for this purpose tend to yield results with 
poor accuracy because they cannot properly account for 
seasonal effects over the long term. To improve the accuracy 
of daily average wind speed forecasting, 
SVM (Mohandes 
et al., 
2004) 
This literature introduces support vector machine method for 
wind speed prediction, and compares it with multilayer per-
ceptron (MLP). For these two algorithms, some results are 
shown after validating data from one case study which named 
Saudi Arabia which located in Madina city. One of the most 
important contributions is that parameters for both algorithms 
were optimized. Another finding is the lowest MSE of SVM 
is better that MLP in this case study. 
 
LS-SVM (J. Zhou et 
al., 2011) 
This literature, for the first time, presents a systematic study 
on fine tuning of LS-SVM model parameters for one-step 
ahead wind speed forecasting. The authors impleted three 
SVM kernels which including linear, Gaussian, and polyno-
mial kernels. The results show that the performance of linear 
kernel is worse than the other two kernels when the training 
sample size or SVM order is small. For Gaussian and poly-
nomial kernels, both types of parameters should be consid-
ered jointly rather than independently for both kernels. 
LS-SVMs are compared against the persistence approach, 
and it is found that they can outperform the persistence model 
in the majority of cases. 
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Kalman filters+ SVM (K. Chen 
& Yu, 
2014) 
Accuracy of wind speed forecasting is very important for 
improving and optimizing renewable wind power generation. 
However, one of the most apparent characteristics of the 
wind is strong stochastic nature and dynamic uncertainty. In 
this literature, a proposed approach named SVR–UKF, inte-
grated unscented Kalman filter (UKF) with support vector 
regression (SVR), is developed to update the short-term 
estimation of wind speed sequence. The results indicate that 
the proposed method has much better performance in wind 
speed predictions than the other approaches across all the 
locations. 
 
ARIMA+ANN, ARIMA+Kalman (H. of two 
new A.-A. 
and A.-K. 
hybrid 
methods 
for wind 
speed 
prediction 
Liu et al., 
2012) 
This literature introduces two new hybrid models namely 
ARIMA-ANN model and an ARIMA-Kalman. After respec-
tively comparing the multi-step ahead prediction results by an 
ARIMA-ANN model, an ARIMA-Kalman model and a pure 
ARIMA model, it can be proved that the performance of the 
two hybrid models is better than that of the pure ARIMA 
model, and the performance of the ARIMA-Kalman model is 
better than that of the ARIMAANN model.  
The major innovation is they improved the performance of 
the pure ARIMA model and utilize in bigger number of fore-
casting steps in order to lower the accuracy. 
ARIMA+ANN, ARIMA+SVM (Shi et al., 
2012) 
This literature compares two typical hybrid models, namely 
ARIMA–ANN and ARIMA–SVM, with three separately 
single models through two case studies about wind speed and 
wind power generation. The results show two hybrid models 
are viable when predicting wind speed and wind power gen-
eration. However, the most important contribution is that they 
found hybrid models are not superior to single methods in 
performance for all the forecasting time horizons investigat-
ed. 
 
4 Discussions and future research 
The present review provides a useful overview of the research on the use of identifying topic and key 
terms, identifying database and access software, conducting searches, identify sources as primary or sec-
ondary, summarizing and analyzing primary sources, organizing and writing reviews. The purpose of this 
paper is to contribute to the topic of WES exploitation and WPF for relevant researchers and amateurs. 
Furthermore, this paper also gives an overall roadmap of each knowledge and descriptive analysis.  
Limitations of this review article are due to the scope and methods used. Only writing methods, classifi-
cation of wind power forecast has been included. Surely, research derived from with other areas, for ex-
ample, specific forecasting model, local energy plan and policy, power engineering. Meanwhile, the num-
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ber of review papers is merely more than 20. Better statistic results are expected when there are more 
review samples. 
Currently, mostly wind power enterprises consider the results of weather forecast as a factor in helping 
managers to make decisions which rely on historical and prevailing meteorological data. However, nearly 
no research considers the impact of climate change while climate change over 10 years or even longer. 
Further research may mainly aim at figuring out how climate change over decades can influence the wind 
power through comparing and analyzing climate data record in complex terrain. More specifically, the 
objective is to explore the impact of climate change on weather condition, especially extreme weather 
events which influence the wind power output in wind power enterprises. 
5 Conclusions 
In this paper, several methodologies, which including systematic review, cluster analysis and association 
analysis, are used to depict and generalize different popular WPF methods.  
Many different wind power forecasting methods used in wind energy system have been reviewed in this 
paper to summarize their own theory and characteristics in different methods. And their corresponding 
innovations are also reviewed in detail. The important points were descripted in Section 3. So the main 
contribution is to provide a path for researchers in this same field. 
There is no single best forecasting algorithm that can be applied to any wind farm and each algorithm. As 
a result of this study, it can be said that each algorithm or combined algorithm both has its advantages and 
disadvantages. There is still space to increase the prediction accuracies in very short-term, short-term, 
medium-term and long-term wind power predictions, respectively. 
In the future, more research will still to be tried in wind power prediction for the purpose of increasing the 
prediction accuracy and system reliability.  
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Abstract   
The aim of this study is to survey impact of climate change on wind power enterprises (WPEs). So the 
main work is to develop a new framework to determine the impacts climate change on WPEs. A huge 
database of climate data record (CDR) in used with meteorological and geographic variables for period 
1979-present three times per day for 10 meter U wind component, 10 meter V wind component, total 
column water vapour, 2 meter temperature, medium cloud cover, mean sea level pressure, gravity wave 
dissipation, etc. Among these meteorological data, air density and wind speed can be used to predict the 
wind power density for wind farm site selecting. And wind speed, relative humidity, rainfall, snowfall 
over few decades can be chosen to draw graphs in order to analyze the significant correlation with wind 
power.  
Keywords wind power forecast, WPEs, climate change, global wind energy resource distribution, CDR. 
 
1 Introduction 
Changes in temperature, precipitation, sea level, and the frequency and severity of extreme events will 
likely affect how much energy is produced, delivered, and consumed. It can be noticed that quite few 
researches regard climate change as a long-time measurement factor for renewable energy plant. Today, 
wind energy is widely used to produce electricity in many countries all over the world, such as China, 
United States, Germany, Spain, India, and Denmark. For wind energy, mostly wind power enterprises 
consider results of weather conditions as a factor for helping managers to make decisions which rely on 
historical and prevailing meteorological data. For example, they are more interested in the predicted and 
actual data of wind speed, wind direction and the rated power of the wind turbine. Long-term wind pro-
jects do not include the yet unknown impacts of climate changes on wind power (Pereira, Martins, Pes, da 
Cruz Segundo, & Lyra, 2013). 
However, climate change is another concept which is not as same as weather condition. Climate change is 
a long-term accumulated effect of weather condition caused by many factors, and it directly results ex-
treme weather events (EWEs) which has significant impacts on power generation. EWEs may generate 
rainstorm, typhoon, mudslide, extreme temperatures, hailstone across most parts of the world. With rising 
concerns about climate change, a recent similar climate change research report, man-made climate change 
contributed to some of 2012’s most extreme weather, including the spring and summer heat waves that 
baked parts of the United States and Hurricane Sandy, which devastated coastal communities along the 
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eastern coast of the country. Understanding the climate change phenomenon and its impact on wind pow-
er system is of increasing importance all over the world.  
Wind power generations depend on the natural environment especially under extreme wind condition, 
which means the wind speed is near or over the cut-out speed (Lin et al., 2012). In addition to this, other 
disaster events including, lightning, strong wind, extreme temperatures, haze, fog acid rain and hail will 
result in sudden power drop under an extreme condition.  
However, lack of good quality data, of sufficient record length and spatial coverage usually restricts mod-
el development and performance geared towards assessing the effects of climate change in these areas 
(Kenabatho, Parida, & Moalafhi, 2012). 
This research mainly aims at figuring out how climate change over decades can influence the energy 
power through comparing and analyzing climate data record. More specifically, the objective is to explore 
the impact of climate change on weather condition especially extreme weather events which influence the 
power output in wind power enterprises from the sight of meteorology. Meanwhile, make summarize 
typical climatical characteristics over three selected meteorological stations. The specific goals are 
described here, 
• Observe and analyze climate data record from approximately 1970 to recent days, and identify 
the main developing trend of climate change for three selected dissimilar typical meteorological 
stations. 
• Explicit how climate data record can be used to eliminate economic loss in wind power enter-
prises.  
Section 2 will give a literature review about the current research situation and also summarize the art-of-
state. Section 3 will draw a framework which assessing wind resources and finding correlation between 
wind power and some meteorological elements. Section 4 presents discussions and finally summary, this 
part also gives future research prospects. 
2 Literature review 
Kenabatho et al. (2012) present an analysis of rainfall and climate data in order to determine the time of 
change in rainfall series and identify possible correlations between rainfall and temperature. They use 
historical rainfall, climate data from rainfall stations and large-scale CDR from 1965 to 2008. The results 
indicate that temperature is a significant rainfall predictor in Botswana. Meanwhile, they make predic-
tions of future rainfall patterns in Botswana(Kenabatho et al., 2012).  
According to Birgit Mannig et al. (2013), central Asia has already implemented the high-resolution re-
gional climate REMO and they use REMO simulations to get higher accuracy results which are closer to 
observational data(Mannig et al., 2013).  
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From geographic aspect, Turkey is a country which located between Europe and Asia, bordering the Med-
iterranean, Aegean and Black Seas. One of the most apparent characteristics of this country is that its 
location between the colder European and warmer Asian and African systems also cause a wide variety of 
temperature and climate difference. Turkey has a rich potential of wind energy with 1002MW due to that 
this country surrounded by many mountains, and its unique geographical character creates a regular and 
moderate air inflow through its mountainous valley structures. A research investigated the renewable 
energy situation including hydropower, wind and geothermal potential in Turkey(Çapik, Yılmaz, & 
Çavuşoğlu, 2012). 
A research review and explicit the trends of observed terrestrial near-surface wind speeds for many coun-
tries all over the world, and study the observed rates of atmospheric evaporative evaporation. In this study, 
they separately describe the trends of near-surface terrestrial wind speed and the trends in evaporative 
demand, then analyze the importance of wind speed to the evaporative process. It is not a review paper 
about wind resource but also a relevant reference to water resource assessment. The result show that near-
surface terrestrial wind speeds are declining in both hemispheres for both the tropical and mid-latitudes. 
Four primary meteorological variables, which including wind speed, atmospheric humidity, radiation and 
air temperature, were also assessed. This paper also highlight the important role that wind speed trends 
play in governing evaporative demand trends (McVicar et al., 2012).   
Another similar literature provides global and seasonal estimate of the “practical” wind power, which 
defined as delivered from wind turbines in high-wind locations over land and near-shore, obtained with a 
3-D numerical model. They found that the global practical wind power potential varies significantly with 
season and hemisphere. Such as the highest wind power output are generated in the season of winter and 
oppositely the lowest are in summer (Archer & Jacobson, 2013).  
One relevant research focuses on studying wind energy, solar energy, bio-energy resource separately in 
Mali by using modelling, satellite imagines and existing global datasets. The methods applied make ex-
tensive use of satellite remote sensing and meteorological mesoscale modeling. In this study, the prelimi-
nary wind resource map produced show that the North of Mali has more potential of wind energy (Ny-
gaard et al., 2010). 
3 Towards a conceptual framework 
Some changes associated with climate evolution will likely benefit the wind energy industry while other 
changes may negatively impact wind energy developments, and expansion of wind energy installed ca-
pacity is poised to play a key role in climate change mitigation (Pryor & Barthelmie, 2010). Various wind 
power stations have different terrain feature which can be seen from global wind energy resource distribu-
tion. 
This research mainly aims at figuring out how climate change over decades can influence the energy 
power through comparing and analyzing climate data record. More Specifically, classify all relative mete-
orological phenomenon which are closely related to power output of wind power enterprises after analyz-
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ing climate data record, and determine what factors influence them. Whether seasons effect? Whether 
time periods effect? Whether regional differences exist?  
On one hand, there are different ways to estimate the wind resources at a site and wind resource varies 
significantly from one location to another. Wind power density (WPD) (W/m2) can be predicted form 
wind speed and air density. WPD is a nonlinear function of the probability density function of wind speed 
[9]. Estimates of WPD are presented as wind class which ranging from 1 to 7 and the assessment of WPD 
play important role when site selecting. Accurate assessment of wind resource will not only reduce eco-
nomic loss caused by EWEs but also increase the wind power output. 
On the other hand, some few meteorological elements may have relationship with wind power. Six major 
meteorological elements including air temperature, humidity, wind speed, wind direction, air pressure and 
rainfall are analyzed. Besides of these, there are evaporation, snow depth, snowfall, total cloud cover, 
sunshine duration and so on. Among these, we propose the assumption that meteorological elements such 
as wind speed, relative humidity, rainfall, snowfall over few decades have correlations with wind power, 
which needs to be proved by analysis with longitudinal data over decades, and then try to determine the 
function expression by using variety of CDR variables and draw graphs to analyze the relationship be-
tween them.   
4 Discussion and conclusion 
Robert Vautard and his colleagues used a sophisticated regional climate model (this model describes the 
interactions between wind turbines and the atmosphere) to determine the climate impacts on all current 
(2012) and near-future (2020) wind energy production according to European Union energy and climate 
policies. The team found that wind farms form a weak but stable anticyclonic flow over Europe but only 
in winter there will be a significant impact on daily temperature and rainfall, and this effect is weaker than 
what natural interannual changes result for the climate change. They use a regional climate model de-
scribing the interactions between turbines and the atmosphere, and find limited impacts. However, the 
impacts remain much weaker than the natural climate interannual variability and changes expected from 
greenhouse gas emissions (Robert Vautard, Françoise Thais, Isabelle Tobin, François-Marie Bréon, Jean-
Guy Devezeaux de Lavergne, Augustin Colette, 2014). This recent valuable research suggests a new and 
contrary direction to the impacts of climate change on WPEs. 
The exploitation of off-shore wind power has more potential prospects comparing to that of on-shore as 
the coastal wind speed is higher than inland. Meteorological and hydrological factors definitely influence 
the wind power output, especially typhoon and seawater corrosion. Sea waves can scour foundation of 
wind turbine tower, corrode undersea cables affecting and affect its stability. Meanwhile, the historical 
meteorological data of wind and tide directly influence wind power site selection. Therefore, the further 
research may be related to coastal wind power forecast, and focus on the impact of climate change on off-
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shore wind power plants due to its typical climatic characteristics. This suggests that further research into 
the links between large-scale climate variability and wind power generation is necessary and important. 
In this paper, this work presents some of the most recent relevant research which combines climate 
change with wind power predicting. The outcome of this research is to help decision-makers of wind 
power enterprise on making strategic decisions which including site selection, management and mainte-
nance of wind power station, and long-term wind power generation forecast etc. Furthermore, it also 
develops a proposal framework which to determine the relationship between and wind power density and 
wind power. And the further research should explore deeply in CDR so as to help the researchers in the 
field develop more effective wind speed and power forecasting methods by finding specific function 
expression.  
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Meteorological information service support sys-
tem in wind park application 
Abstract 
Purpose – This paper introduces a holistic decision support system based on condi-
tion-based maintenance which utilizes meteorological forecasting information to sup-
port decision-making process in services of wind power enterprises. 
Design/methodology/approach – A pilot conceptual system combining with meteoro-
logical information and operations management has been formulated in this study. The 
proposed system provides benchmarking to support decision-making directly and indi-
rectly basing on processing meteorological information and evaluating its impact on 
service operations. It collects meteorological data to predict failure probabilities in 
different areas which need corresponding maintenance service and schedule the opti-
mal maintenance periods. In addition, it provides meteorological forecasting and deci-
sion support in case of extreme weather events.  
Findings – The conceptual study shows that there is a connection between the meteor-
ological conditions and failures, and it is feasible to make service decisions based on 
the predictions of weather conditions and their impacts to failures. 
Research limitations/implications – The research presented at the present phase is 
not much beyond a conceptual framework. The actual implementation and all possible 
related practical issues will be dealt with in future research. 
Practical implications – It helps decision-makers to predict and identify possible cat-
egories of faults in wind turbine, make optimal service decisions to enhance the output 
performance of wind power generation, and take in advance emergency counteractions 
in case of extreme weather events. 
Originality/value – It presents a novel concept and provides a roadmap to achieve op-
timal operations in wind park application through combining meteorological infor-
mation system with service decision-making. 
Keywords – information system, meteorological service, extreme weather events, de-
cision-making, strategic management, condition-based maintenance.  
Paper type – Research paper 
1. Introduction  
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According to Global Wind Energy Council (2012), the number of wind turbines 
spinning around the world by the end of 2011 is 199,064. Among that, the amount of 
wind turbines up and running in China is 45,894 which count 23% of the total amount. 
That is to say, China’s leadership in wind energy deployment is both an opportunity 
and a challenge for European and American companies to compete in this market and 
internationally. Europe remains a technology leader and is carving out the next frontier 
of wind energy with onshore and offshore deployments (Global Wind Energy Council, 
2012). The wind energy potential of the Earth is huge and enough, in principle, to meet 
all the world’s electricity needs. Virtually every country has sites with average wind 
speeds of more than 5 m/s measured at a height of 10 m, which are sufficient for using 
wind power to generate electricity (Sesto and Ancona, 1995).  
Many of critical wind turbine faults are directly or indirectly related to weather condi-
tions and extreme weather events (EWEs). This research intends to propose a pilot ser-
vice support system which utilizes meteorological information to predict such situations 
which may lead to breakdowns and make it possible to take precautions in advance, and 
in addition to suggest other service related decisions based on condition-based mainte-
nance (CBM), such as deciding the optimal time for maintenance during the predicted 
idle period. CBM is defined by a set of maintenance actions taken as a consequence of 
knowing the current operating status of equipment. Recent study considers it is a form 
of proactive equipment maintenance that forecasts incipient failures based on a real-
time assessment of equipment condition obtained from embedded sensors and or exter-
nal tests and measurements that are extracted directly from the equipment (Gulledge, 
Hiroshige and Iyer, 2010). Many recent studies show there is direct connection between 
service and business performance in wind power systems and demonstrate business po-
tential analysis that optimal service decisions based on CBM in wind park application 
can significantly cut down operation and maintenance costs (El-Thalji and Jantunen, 
2012; Tian et al., 2011; Nielsen and Sørensen, 2011), and by implementing a successful 
CBM strategy can also achieve higher level of cost effectiveness (El-Thalji and Jan-
tunen, 2012), thus improve the operation and business performance.  
In many recent studies, the relationship between wind speed modelling and electricity 
generation from wind turbines is also studied. In fact, wind park investors are interested 
in long-range forecasts and simulation of wind speed for two main reasons: to evaluate 
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the profitability of building a wind farm in a given location, and to offset the risks asso-
ciated with the variability of wind speed for an already operating wind farm (Caporin 
and Preś, 2012). The percentage of the world’s electricity that could be produced from 
offshore devices is estimated to be around 7% by 2050, and this would employ a signif-
icant amount of people by this time, possibly around 1 million, mostly in the mainte-
nance of existing installations (Esteban and Leary, 2012). 
Optimal maintenance are affected by various factors, such as availability of re-
sources, dependency on meteorological surrounding conditions, as well as a complex 
logistical process chain (Tracht, Westerholt and Schuh, 2013), and failure probability 
can be predicted based on condition monitoring data of wind energy systems (Tracht et 
al., 2013). Based on these theories, this paper develops a holistic system which com-
bines with meteorological information and operations management. The proposed sys-
tem provides benchmarking to support decision-making basing on processing meteoro-
logical information and evaluating its impact in service operations of wind power en-
terprises. The concept of such decision support system is built based on years of well-
established previous studies utilizing sense and respond type of continuous adjust-
ments in decision-making to achieve sustainable competitive advantage in operations 
strategy implementation (Liu, 2013). 
The structure of this paper is as follows. Section 2 reviews the latest related studies. 
Section 3 introduces the research methodology. Section 4 describes the system structure 
and process in a conceptual framework. Section 5 discusses the managerial implications, 
research limitations and also recommendations for future research. Section 6 draws con-
clusions.  
2. Review of related studies 
2.1 Wind power as an energy source 
Energy is the main intermediate strategic resource for economic development and 
growth in any country. This usually translates to better quality of life, and therefore it 
leads to higher primary energy consumption in all sectors, transportation, industry, 
services, household, etc. (Abulfotuh, 2007). Nowadays, the world faces a great chal-
lenge of saving our future in terms of developing renewable energy. Until now, a huge 
amount of the energy requirements all over the world is supplied originally from con-
ventional energy sources like coal, crude oil, natural gas, etc. However, these patterns 
154 
of energy are limited and often lead to pollution. Therefore, renewable energy re-
sources will play an important role in our daily life in the world’s future. 
Renewable energy sources are those resources which can be used to produce energy 
again and again, e.g. solar energy, wind energy, biomass energy, geothermal energy, 
etc. and are also often called alternative sources of energy (Rathore and Panwar, 2007). 
Among the renewable energy sources wind energy is currently viewed as one of the 
most significant and attractive sources, which is a clean energy rather than coal, crude 
oil and natural gas. The outstanding characteristic of wind power is to save energy and 
protect environment although the intermittent character is a very critical problem.  
The use of renewable energy sources is closely linked to sustainable development, 
because a sustainable supply of energy resources which must be used effectively and 
efficiently is required for it, as well as for progressing in environmental problems (To-
lón-Becerra, Lastra-Bravo and Bienvenido-Bárcena, 2011). It is undoubtedly that sus-
tainable development will definitely let managers handle with problems during the 
period of decision-making. 
    On one hand, wind power generation is becoming more and more popular in many 
countries, but it differs from conventional thermal generation due to the stochastic na-
ture of wind. Thus wind power forecasting plays a key role in dealing with the chal-
lenges of balancing supply and demand in any electrical system, given the uncertainty 
associated with the wind park power output. Accurate wind power forecasting reduces 
the need for additional balancing energy and reserve power needed to utilize wind 
power (Foley et al., 2012). 
On the other hand, the Nordic countries particularly experienced a number of ex-
treme weather events (EWEs) during recent years and a significant number of wind 
power businesses were affected as a result. With the intensity and frequency of ex-
treme weather predicted in the future, enhancing the resilience of businesses, especial-
ly wind power enterprises (WPEs) which are considered as highly vulnerable, has be-
come necessary (Wedawatta et al., 2011). However, little research has been undertaken 
on how construction of WPEs is responding to the risk of EWEs.  
2.2 Meteorological service and decision-making 
Traditional maintenance techniques, such as preventive maintenance is scheduled in 
advance of failure and usually at regular intervals which are typically determined by 
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the analysis of historical reliability data (Gulledge, Hiroshige and Iyer, 2010), and 
time-based maintenance (TBM) is labour intensive, ineffective in identifying problems 
that develop between scheduled inspections, and not cost-effective (Ahmad and Kama-
ruddin, 2012). Whereas CBM is scheduled by predicting the future status of the 
equipment based on operational or other characteristics. (Gulledge, Hiroshige and Iyer, 
2010). Recent studies develop optimal CBM strategy and decision for wind power 
applications systems (Tian et al., 2011; Nielsen and Sørensen, 2011; El-Thalji and Jan-
tunen, 2012). CBM is more efficient compared to preventive maintenance in many 
ways, e.g. condition monitoring and diagnostic practices have become significantly 
important part of offshore wind farms in order to cut down operation and maintenance 
costs (El-Thalji and Jantunen, 2012), and more realistic and worthwhile to apply than 
time-based maintenance (Ahmad and Kamaruddin, 2012). However, in wind park ap-
plication it is typically hard to accurately predict with standalone meteorological data 
and may lead to a failure prediction. The other challenge is to enable CBM strategy to 
provide maintenance decisions and services at the right time i.e. maintenance is per-
formed when it is needed and not too early and not too late i.e. causing breakdown and 
downtime (El-Thalji and Jantunen, 2012). Therefore a holistic system combining the 
complete meteorological service and decision-making is needed to increase the predic-
tion accuracy and work together with the traditional preventive/corrective measures to 
provide optimal maintenance decisions.  
Short-term prediction is mainly oriented to the spot (daily and intraday) market, sys-
tem management and scheduling of some maintenance tasks, being of interest to sys-
tem operators, electricity companies and wind park promoters (Costaa et al., 2008). 
Wind forecasting for energy generation and power system operations mainly focuses 
on the immediate short-term of seconds to minutes, the short-term of hours up to two 
days, and the medium term of two to seven days. This is because power system opera-
tions such as regulation, load following, balancing, unit commitment and scheduling, 
are carried out within these time frames. The science of wind power prediction is de-
scribed as the application of the theories and practices of both meteorology and clima-
tology specifically to wind power generation (Petersen et al., 1997). 
- Numerical weather prediction 
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- In case of non-saturated power, because the wind power is equal to wind speed 
third cube and wind speed are much more regular than that of wind power, 
consequently a small wind speed error will amplify wind power errors much. It 
is wide and effective by using short-term wind power forecasting methods 
which combining numerical weather prediction (NWP) model with statistical 
models, so that we can develop operating mode for electric grid dispatching, 
provide support for arranging dispatch rationally, reduce the effects of intermit-
tent power to wind power systems effectively. The wind data from now, yester-
day, or last year in the same period cannot be used to predict wind in the next 
24 hours, because wind is dependent on the weather, and the wind power out-
put cannot be guaranteed at any particular time. Thus the integration of wind 
power into electrical grids can cause difficulties in the management of the 
power system (Marciukaitis, Katinas and Kavaliauskas, 2008).Meteorological 
service  
Climate change is predicted to have a significant effect on the frequency of EWEs and 
the occurrence of natural disasters, such as hail, flood, tornado and thunderstorm. 
There is a need for facility managers to mitigate potential disruption and prepare for 
future events caused by natural phenomenon. Meteorological sector sends out early 
warnings to WPEs, using the results of real-time monitoring and weather forecasting 
from satellite, radar, observation stations.  
The meteorological ensuring system is a derivative product which mainly involving 
EWE forecasting and warnings. This can prevent and mitigate climate change on cru-
cial facilities and the impact of the project effectively. In current practice, however, 
that little risk assessment is undertaken by few organizations preparing integrated dis-
aster management plans or business continuity plans to help them meet the challenge 
(Warren, 2010). As we learn more about possible climate change impacts, certain WPE 
protection strategies may become more desirable and feasible in management, and we 
can adopt strategies to minimize its negative impacts on wind power generation. 
After studying how climate will change by predictions with wind power production 
and provide guidance in facing of EWEs, then facility managers can prepare for risk 
assessment and disaster plans after collecting scientific data related to the potential 
effects of climate change (Warren, 2010). 
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- Decision-making 
There is relatively little research in the area of operations and service management in 
renewable energy sector such as wind power by utilizing meteorological information. 
Some notable studies connecting meteorological forecasting with renewable energy 
include e.g. Kaplan & Norton (2011) and Eckman & Stackhouse (2012). Changes in 
competitive environments have increased the importance of strategic management in 
corporations. Successful companies must be able to anticipate changes in operating en-
vironments and be able to react faster than their competitors (Kaplan and Norton, 2011). 
Earth observations are critical in enhancing the implementation of renewable energy 
technologies and improving energy efficiency (Eckman and Stackhouse, 2012). Other 
related research has been implemented by Liu, et al. (2012). According to the research 
from this group, they proposed a novel wind turbine fault diagnostic method based on 
the local mean decomposition technology, which is a new iterative approach to demodu-
late amplitude and frequency modulated signals, which is suitable for obtaining instan-
taneous frequencies in wind turbine condition monitoring and fault diagnosis. Finally, 
the experimental analysis of the wind turbine vibration signal proves the validity and 
availability of the new method (Liu et al., 2012).  
Our research presented in this paper addresses this problem from a conceptual level to 
bridge the gap between meteorological information and decision-making in service 
operations management. Even though this whole concept is a huge research which is 
still in progress, nevertheless this paper can be a pilot which leads to new ideas and 
opens more research paths. 
3. Research methodology 
3.1 Overview 
There are various types of strategies for conducting research in management and social 
sciences. Reisman (1988) defines research strategies such as ripple, embedding, bridg-
ing, transfer of technology, creative application, structuring, and empirical validation. 
This study uses mainly the following research strategies. Ripple is used to develop 
analytical models for assessing failure probabilities based on meteorological infor-
mation and NWP. Embedding and bridging are used to associate the decision-making 
process in connection with the service needs which are based on the failure forecasts. 
Empirical validation is used to validate the developed theories by performing various 
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case studies in different countries. Arbnor & Bjerke (1997) introduce three methodo-
logical approaches i.e. analytical, systems, and actors. The nature of this study is to 
create a holistic system which is a set of components and the relations among them. 
Holweg (2005) applies the systems approach and contingency theory to review exist-
ing contributions and synthesizes them into a conceptual model, which is very similar 
to the nature of this work. Therefore, systems and contingency based methodological 
approach is proposed to carry out this work. As the main contribution of this study is 
the integration of meteorological information with decision-making in service opera-
tions, it requires a new design in the research methodology to integrate the classic 
components. Kasanen, et al. (1993) describe the constructive approach as “problem-
solving through the construction of organizational procedures or models”, and also 
propose a market-based validation for assessing this aspect of a construction. In this 
work the construct is the integrative holistic system and it is feasible to apply a weak 
market test to validate and implement the research objectives. In summary, the re-
search methods include literature survey, descriptive conceptual analysis, analyzing 
qualitative data based on Silverman (2001) and also quantitative data, classification by 
simple statistics, and finally using Kasanen et al.’s (1993) the constructive research 
approach with weak market tests and pilots for implementation. 
3.2 Case study 
To achieve the entire objectives of this conceptual research, the empirical studies are 
important and numerous case studies should be carried out from different countries, 
and analyzing them with the proposed existing analytical models and creating new 
analytical models for further evaluation. Therefore, the selection of the case companies 
must be mostly representative wind park applications. The case studies will be carried 
out in future research.  
3.3 Data collection and analysis 
The data of cases in different countries are collected in the same manner: by asking 
senior managers or directors to answer the questionnaires. The interviewees are nor-
mally decision makers and middle management groups, who have good knowledge 
about the operations of their own wind parks. The interviewed high competence ex-
perts should be representative to know well the operations of the studied wind park. 
The data collected typically from limited and described application problems is mainly 
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qualitative in nature and its validity and reliability can be ensured by improving the 
required careful documentation of the cases (Sykes, 1990; 1991). Firstly, the managers 
or directors are trained to understand every item of the questionnaires correctly by 
interview, email or telephone. Secondly, after they finish the questionnaires, the an-
swers are analyzed with software. Thirdly, the discussion with the managers or direc-
tors reveals the results and verifies the validity and reliability of the data further. 
4. System description 
This section develops a conceptual framework for service support in wind park applica-
tion. The proposed system involves 3 major modules: meteorological information mod-
ule, wind power prediction module and operations management decision-making mod-
ule.  The complete system structure and process are illustrated in Figure 1. 
4.1 Meteorological information module 
This module includes meteorological data collection and NWP. First, meteorological 
data are collected by the wind speed sensor, wind direction sensor, temperature sensor, 
atmospheric pressure sensor, humidity sensor etc. installed on the wind-testing tower of 
the targeted wind park. Through wireless communicating module, original meteorologi-
cal data from the wind-testing tower is converted into a digital signal and finally trans-
mitted to the receiving terminal. Then NWP processes the meteorological data to pa-
rameters related to wind power output. NWP is a special version tailored to predicting 
wind power output and is different from the version used for commercial public weather 
forecasts. On the other hand, it also sends early warning messages in case of EWEs and 
managers in WPEs can get alarming signals in advance and take countermeasures 
quickly. With the new forecasting system it effectively links up the NWP model geared 
towards very short-range forecast of severe weather system. Currently, the suit is proba-
bly one of the few operational forecasting systems that effectively combine radar infor-
mation, dense mesoscale NWP model prognoses for real-time EWEs risk assessment.  
The following example illustrates how this is done in reality. A mountain area site locat-
ed in central China has been chosen to test the proposed theory. The site is located near-
by a wind park in operation, also including a meteorological station with anemometers 
between 30 and 70 m. This wind-testing tower has been brought into operation since 
November 2011. The mountain top has a height of 700 meters and has a direct distance 
of 34 kilometers to the local meteorological station, which has good correlation to pre-
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dict the weather conditions for the wind park. The common meteorological disasters in 
this location are thunderstorm, flood, drought, low-temperature freeze and continuous 
rain. 
- Measuring the maximum wind speeds in the meteorological station 
The meteorological station is used to predict the 50-year wind base on annual average 
10-minute maximum wind speeds. Through T-test to inspect the consistency for se-
quence of annual maximum wind speed from 1974 to 2011, it has been discovered that 
the values in 1982 experienced a mutation. It is necessary to correct references of max-
imum wind speeds from 1982 to 2011due to the diversion of the meteorological station. 
According to National Wind Energy Resource Evaluation Technology Provision and the 
type I extreme value distribution, the 50-year average 10-min maximum wind speed is 
28.38 m/s. 
 
- Predicting the 50-year maximum wind speed in the wind park 
𝑉50_𝑚𝑎𝑥 = 𝑢 −
1
𝛼
𝑙𝑛 𝑙𝑛 (
50
50−1
  )]                      (1) 
𝜇 =
1
𝑛
∑  𝑛𝑖=1 𝑉𝑖                    (2) 
𝜎 = √
1
𝑛−1
∑   𝑛𝑖=1 (𝑉𝑖 − 𝜇)
2                  (3) 
𝛼 =
𝐶1
𝜎
                     (4) 
𝑢 = 𝜇 −
𝐶2
𝛼
                         (5) 
Using Eqs. (1)-(5), it can be calculated that the 50-year maximum wind speed is 30.5 
m/s. 
- Predicting the 50-year extreme wind speed in the wind park 
Gust factors are a ratio between a peak wind speed of some duration within a given data 
segment and the mean wind speed of the same segment. An optimum gust factor of 
about 1.4 is suggested for all types of fabric structures in general, which is an interna-
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tional standard value. Then it can be calculated that 50-year extreme wind speed is 42.7 
m/s. 
4.2 Wind power prediction module 
This module utilizes the processed meteorological data to predict patterns of values re-
lated to wind power output. It is an intermediate process to obtain parameters to evalu-
ate failure probabilities and calculate the optimal service decisions which are crucial 
information for the next process - operations management decision-making. 
 
Figure 1. System structure and process 
The wind power prediction module calculates the predicted amount of power output 
during particular hours and days based on the real-time meteorological data. In order to 
have an accurate prediction, short-term weather forecast is important for the dynamic 
control of wind turbine and for minimizing the scheduling errors which impact on grid 
reliability and market service costs (Lerner, Grundmeyer & Garvert 2009). Depending 
on their inputs, the forecast models are classified as physical or statistical or hybrid ap-
proaches. The best way is to use meteorological forecast data from NWP systems com-
bining several prediction techniques (Giorgi, Ficarella & Tarantino 2011).  
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The module involves real-time wind measuring, NWP, and wind power forecasting. 
WPEs establish the forecasting model based on NWP and historical data related to wind, 
and they participate in prediction and report survey to dispatch center on time. Whether 
using ultra-short term wind power forecasting or long term wind power forecasting, 
they are all based on the foundation of real-time wind measuring data. 
According to predicting and actual wind speed in wind parks, a mixed model of time 
series method and back-propagation neural networks arithmetic combining with mete-
orological data can be used in wind power prediction. The more accuracy of meteoro-
logical data is, the better forecasting results can be obtained. In addition, meteorological 
ensuring service can be provided to wind parks in the meantime. 
This wind power predicting system mainly includes five parts: (i) data collection; (ii) 
NWP; (iii) wind power prediction; (iv) graphical user interface (GUI) software; (v) pre-
dicting database. The structure is shown in Figure 2. 
 
Figure 2. Structure of wind power prediction module  
- Data collection aims to select a site to set up wind-testing tower and collect wind 
speed, wind direction, temperature, pressure etc. which are also the input varia-
bles of the wind power prediction module. 
- NWP incorporates information representing the outer scale geophysical variabil-
ity through evolving boundary conditions and by assimilating observations of 
the current state of the atmosphere to predict flow characteristics. In this re-
search, NWP is responsible for dealing with all collected meteorological refer-
ences, adapting rational mathematical models to calculate the results of future 
weather. 
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- Wind power prediction mainly focuses on predicting wind speed and wind pow-
er output which are crucial information for the next decision-making process. 
Wind speed and wind direction are the most important variables. Wind power is 
equal to wind speed third cube and wind speed are much more regular than that 
of wind power, and therefore it requires accurate wind measurement. 
- GUI Software deals with data transforming and interactive interfaces. 
4.3 Operations management decision-making module 
This module mainly utilizes the prediction data from previous process to evaluate fail-
ure probabilities in different parts of the wind turbine and calculate the optimal service 
decisions for the wind park operations management. 
The significance of failure analysis and fault diagnosis for wind turbine results lower 
breakdown rate, reduced maintenance cost and time, and improves the operational effi-
ciency and reliability (Ma, He and Feng, 2012). The wind turbine is a complex system 
which transforms kinetic energy from wind power to electrical power. (Kostandyan and 
Sørensen, 2012). It consists of electrical, mechanical, hydraulic, structural, and software 
subsystems.  
Many of critical wind turbine faults are directly or indirectly related to weather condi-
tions and EWEs. Analysis to weather related faults can reveal the causes which can be 
even predicted, since the weather conditions resulting faults can be predicted with me-
teorological information system, making it possible to take precautions in advance to 
prevent such situations from happening. Other service decisions such as the optimal 
time for maintenance during idle period can be also predicted and scheduled in advance 
basing on meteorological information. 
Statistics show that the determining time for the fault diagnosis takes up 70% to 90% of 
the total time, while the repair time takes up only about 10% to 30% (Wang and Fent, 
2004). A wind turbine can be unavailable because of planned maintenance activities or 
because of unforeseen failures, incidents or accidents. Analysis of predictable sources of 
wind turbine failures such as weather conditions can help a lot in decision-making to 
optimize maintenance schedule and maximizes wind power output.  
Each component has different physics of failure behavior depending on structure, shape, 
operational environment and many other parameters (Kostandyan and Sørensen, 2012). 
From the current structural characteristics of wind turbine shown in Figure 3 and its 
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actual fault conditions, faults usually occur in parts such as gears, shafts, bearings, fas-
tener and box.  
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Figure 3. Main structure of wind turbine 
According to real case statistics, Table 1 shows typical fault diagnosis related to weather 
conditions and the relevant actions need to be taken. The decision model can be built 
based on failure probabilities according to these conditions shown in Table 1. 
Table 1. Typical failures related to weather conditions 
Failure parts Possible reasons Weather conditions Actions 
Blade Blade drive not ready EWEs Emergency stop 
Rotor Result of imbalance, blades 
and hub corrosion etc., brake 
sensor failure 
Rain, snow and other 
hash meteorological 
condition 
Normal stop 
Gearbox Over temperature,  gearbox 
oil pressure too low 
High temperature Normal stop 
Generator Over speed, over tempera-
ture, bearing faults, current 
too high/low, frequency sen-
sor failure 
High temperature  and 
/ or humidity 
Emergency stop 
Normal stop 
Yaw system Yaw brake set 
unintentionally 
Extreme changes in 
wind speed / direction 
Normal stop 
Tower Weather or other failure may 
cause excessive vibration 
EWEs Emergency stop 
 
5. Discussion and future study  
Based on collecting official documents, analytical results, lab experiments, and hypoth-
esis test result, this investigation discuss the possible causes of wind power system fail-
ure from these four perspectives and presents practical suggestions for wind tower risk 
management and future action plans for the areas of structural design evaluation, con-
struction and quality management, and engineering document review. By addressing 
study recommendations, project stakeholders can improve their risk management strate-
gies. Construction firms can also utilize these findings to learn lessons for future refer-
ence. In terms of risk management, identifying the major causes of failure, one must 
understand the risk associated with these causes, and generate action plans that allow 
project managers to mitigate risk or employ control measures (Chou and Tu, 2011). 
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    In addition to the conceptual design, this study has provided new insight for practi-
cal operations management in wind park application. It helps decision-makers to pre-
dict and identify possible categories of faults in wind turbine and make optimal service 
decisions to enhance the output performance of wind power generation. 
Further research is needed related to sensitivity analysis of:  
(1). Wind surveys and installations have so far concerned mostly onshore sites. Howev-
er, a very interesting wind potential seems to exist also in offshore, shallow water loca-
tions, where there is the advantage of better wind conditions and less environmental 
restrictions, although the disadvantage of more difficult access and higher installation 
and maintenance costs must be taken into account (Sesto and Claudio, 1998). In that 
situation, the seawater salinity is one critical meteorological factor which will be studied 
in future research.  
(2). Accumulated plastic strain depending on the temperature 
Mean and temperature range factors. The proposed model is useful to predict damage 
values for solder joint in power electrical components. However, the real test data are 
required for the accurate model parameter estimation. 
(3). In addition, operation and maintenance strategies might be developed based on the 
proposed approach. Especially strategies for renewable and replacement systems, where 
reliability updating might be implemented based on failure times. 
6. Conclusions 
This paper develops a conceptual system which utilizes the meteorological infor-
mation for decision-making based on CBM in operations and service management for 
wind parks, which is a form of proactive equipment maintenance that forecasts incipient 
failures based on a real-time assessment of various external and internal conditions ob-
tained from e.g. meteorological data and equipment monitoring system etc. The objec-
tive is to design an optimal service decision-making system based on CBM in wind park 
application to significantly cut down operation and maintenance costs and also imple-
ment a successful CBM strategy to achieve higher level of cost effectiveness, thus im-
prove the operation and business performance. This paper bridges the gaps in current 
research of this area and opens up new research paths in the development of forecasting 
practices for service related decision-making, operations and risk management of EWEs 
in wind parks. It has shown that through the analysis of the meteorological information, 
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it is possible to predict hash weather conditions which are harmful to cause faults in 
wind turbines. Modern NWP can provide reliable forecasts for wind parks as accurate as 
per quarter hour basis in the next couple of hours and also useful trend forecast up to 
days. By analyzing the approximate time-period of the 50-year maximum wind speed 
and extreme wind speed through EWEs forecasting, WPEs can effectively reduce and 
even avoid a huge number of losses in maintenance, and schedule service operations in 
more optimal periods. The basic idea has been already tested in a wind park in central 
China as depicted, but still lacks of systematic theory construction to be used as a deci-
sion support system. The implementation of this conceptual model will be dealt with in 
future research.  
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Abstract 
According to U.S. EIA (Energy Information Administration) International Energy Statis-
tics, nowadays fossil fuel is still the primary sources of energy, and the amount of fossil 
fuel power generation accounts around three-fifth in the world’s total annual electricity 
net generation. However, fossil fuel power generation based on coal, oil and natural gas 
is now gradually being substituted due to the limited availability and environmental 
aspects such as global warming and pollution. In response to the concerns of climate 
change, many policy makers are becoming keen to re-examine the use of fossil fuels 
and promote renewable energy. Hydro, wind, tide, photovoltaic, geothermal are com-
mon renewable energy resources to generate electricity. In an effort to mitigate the 
pressure of burning fossil fuel on climate changes, it becomes more and more essential 
that renewable energy will eventually replace the conventional fuel. However, do we 
have sufficient renewable energy potential to replace conventional fuel and fulfil the 
world’s energy consumption demands? Since many types of renewable energy such as 
the wind, solar, hydro are directly or indirectly related to meteorological factors and 
largely affected by them, this study analyzes the existing ERA-20C global datasets de-
scribing the state of the atmosphere as well as land-surface and ocean-wave conditions 
from 1900 to 2010 obtained from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) and tries to identify the meteorological factors (wind speed, solar 
radiation, rainfall, evaporation etc.) with their effects on the overall utilization potential 
of these renewable energy resources. From this study, it can be found that a correlation 
between the meteorological factors and the renewable energy potential does exist, 
which implies forecasting models of renewable energy potential can be invented based 
on the global atmospheric data. The future study will focus on forecasting the global 
potential of these renewable energy resources in the next decades.   
 
Keywords: 
Renewable energy, climate change, reanalysis, ERA-20C data, resources potential. 
 
1.   Introduction 
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With an increasing energy demand, renewable energy is an appropriate way to satisfy 
energy consumption without environmental degradation (Hua, Oliphant, & Hu, 2016; A. 
Zahedi, 2010). Meanwhile, renewable energy technologies can play a crucial role in the 
transition towards a low-carbon economy (Albrecht, Laleman, & Vulsteke, 2015). Re-
newable energy development is a major response to address the issues of climate 
change and energy security. The utilization of renewable resources, however, highly 
depends on the climate conditions, which may be impacted in the future due to global 
climate change.  
 
When discussing why climate changes occur and reduce its influence to human beings, 
it is essential to consider atmospheric dynamics rather than only focus on surface vari-
ables, in particular, temperature and precipitation (Trenberth Kevin E., 1990). Jacobsson 
and Karltorp (2012) pointed out that, in response to the threat of climate changes, the 
European Union electricity sector has to undergo a large-scale transformation process 
to reduce loss. 
 
Many researchers have turned to use reanalysis data instead of historical data, for ex-
ample, NARR, ERA-40, MERRA, and CFSR (Mesinger et al., 2010; Rienecker et al., 2011; 
Rose & Apt, 2015; Saha et al., 2010; Uppala et al., 2005).  
The data resource is ERA-20C archive Version 2.0 by an independent intergovernmen-
tal organisation European Center for Medium range Weather Forecasting (ECMWF) 
which supported by 34 states. Long time period of measured meteorological data were 
revised by reanalysis of meteorological observations in ERA-20C project. ERA-20C is a 
global, high-resolution, coupled atmosphere–ocean–land surface–sea ice system to 
provide the best estimate of the state of these coupled domains over this period. 
 
    The aim of this research is to find out a correlation between the meteorological fac-
tors and the renewable energy potential, which implies that the forecasting models of 
renewable energy potential can be invented based on the global atmospheric data. In 
this paper, wind energy potential and solar energy potential in Vaasa region in Finland 
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were roughly assessed by analysing ERA-20C reanalysis data.  
 
2. Literature Review 
Breslow and Sailor (2002) tried to find out the impacts of climate changes on wind 
speed and wind power output across the continent US. Two general circulation models 
provided similar trend until 2050 but various in the future 20 years. 
 
After six years, Sailor et al. (2008) put further this idea by investigating in wind statistics 
from models about five-state region within the Northwest US. The results showed that 
summertime wind speeds may decrease by 5–10% while wintertime wind speeds may 
decrease or increase slightly.  
 
In order to identify the changes in the future wind- and hydro-power resource potential 
in Norway, Seljom et al. (2011) evaluated the impact of climates changes with MARKAL 
Norway model. They found out that the reduction of heating demand will be signifi-
cantly higher than the increase of cooling demand, and there may be lower cost of en-
ergy system and electricity production. 
 
Wang et al. (2014) developed a general framework and applied grey cluster analysis 
method to compare analysis renewable energy vulnerability to climate change in China. 
The results depicted the distribution of areas rich in hydropower, wind power and solar 
energy potential, which helps to improve decision-making analysis. 
 
In response to promote the transition towards a low carbon economy in Scotland, 
Sample et al. (2015) reviewed the potential impacts climate change and presented state 
of knowledge regarding the resilience of Scotland’s hydropower resource to a changing 
climate. 
 
Chang et al. (2015) proposed a new statistical downscaling framework using simulated 
weather research and forecasting (WRF) model to evaluate the climate change impact 
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on wind resources in Taiwan Strait. It was found out that in the future wind energy den-
sity distributions are higher in the eastern half of Taiwan Strait but will reduce slightly 
comparing to the past time period. 
 
Fant et al. (2015) presented a method that estimates the risk of climate-change on 
wind and solar resource potential. The assessment combines the risk-based climate 
projections from the Integrated Global Systems Model (IGSM), which considers emis-
sions and global climate sensitivity uncertainty, with more regionally detailed climate 
information from 8 GCMs available from the Coupled Model Intercomparison Project 
phase 3 (CMIP-3). 
 
3.   Data analysis 
3.1 Wind energy 
Instead of pick out continent area, we identify the specific coordinate of longitude and 
latitude of the interested area (in this case the Vaasa region in Finland), then retrieve 
the dataset in the format of NetCDF. In order to retrieve specific geographic site in the 
particular observation area, we choose the highest resolution grid (0.125 degree * 
0.125 degree) while the lowest resolution is 3 degree * 3 degree. We retrieve everyday 
meteorological record midnight 00:00 from 1st January 1961 to 31st December 2010, 
and a total data of 18262 days in 50 years were analyzed.   
 
Wind speed V at the height of 100 meter can be calculated through 100 meter u wind 
component and 100 meter v wind component (Eq.1). Wind power directly depends on 
ambient natural resources and hence it is sensitive to climate variability. Wind power 
density is directly related with the electric power generation. It is proportional to the 
cube of speed and can be divided into different classes.  
 
𝑉 = √𝑢2 + 𝑣2  (1) 
𝐷𝑤𝑝 =
1
2𝑛
∑
𝑛
𝑖=1
(𝜌 ∙ 𝑉𝑖
3) (2) 
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In this research, we use MATLAB R2014a to calculate, analyze, and plot figures. Fig.1 
shows the historical trend of wind power density in Vaasa region at the height of 100 
meter from 1960 to 2010.  
Fig. 1 Wind Power Density for all past 50 year (Year 1961-2010) 
 
As can be seen from Fig. 1 that there are apparently fluctuations all through the past 50 
years. We separately picked out maximum wind power density from every ten years 
and every five years, for example, time period 1971-1980 and 1971-1975. For each 
peak value in every ten years or every five years, the general variations are plotted in 
Fig. 2 and Fig. 3.   
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Fig 2. Peak of Wind Power Density for every 5 years 
 
 
Fig 3. Peak of Wind Power Density for every 10 years 
 
Therefore, it can be judged from the wind power density in above figures. Fig. 3 shows 
a more apparent trend when comparing with Fig. 2. It reveals a trend of fast increase 
from 1961 to 1973 and after that keeps stable during 1973-1990. And it presents a gen-
eral trend of dramatic increase in the short period of 1990-1992 then a trend of sharp 
decrease in long-term 1992-2010. 
 
3.2 Solar energy 
Total radiation approximately equals to sum of direct radiation and diffuse radiation. 
Except of solar radiation, there are many other meteorological elements, which includ-
ing cloud, sunny/rainy day, temperature and humidity, could influence solar power. 
These problems remain to be done in the future. 
 
4. Conclusion 
This study demonstrates the great potential of using global atmospheric reanalysis data 
to analyze the potential of renewable energy sources which are related with climate 
change. It can effectively help decision-maker in macro level through analyzing long-
term atmospheric data. For the 20th century, we observed and analyzed the wind power 
252,5922
262,5922
272,5922
282,5922
292,5922
302,5922
312,5922
1967 1973 1990 1992 2005
Peak values in every 10 years
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density of past fifty years 1961-2010. In this study, the correlation between the mete-
orological factors and wind energy potential has been found out. The main outcomes of 
the present study are presented as follows: 
(a) As illustrated in Fig. 1, wind power density for all the past 50 years from 1961 to 2010 was in fluc-
tuation all the time.  
(b) From Fig. 2 and Fig. 3, the characteristics of peak values about wind power density in every 5 and 
10 years were separately depicted in the section of Data Analysis. And comparing peak values for 
each 10 years is easier than each 5 years. 
(c) According to Climate Change 2014 Synthesis Report, 2005 and 1998 were the warmest two years 
in the instrumental global surface air temperature record since 1850, and twelve years (1995 to 
2006) ranked among the 12 warmest years on record since 1850. 
(d) The variation trend of wind power density is basically consistent with the changes in surface cli-
mate, in particular with the temperature.  
(e) This study only focuses on peak values analysing as an exploratory study. More useful statistic in-
formation are expected in the future. For instance, investigating the trend about annual sum of wind 
power density. 
Since ERA-20C global datasets includes the atmosphere, land-surface and ocean-wave 
reanalysis data from 1900 to 2010, we could also obtained the variation trend of nat-
ural resources (wind energy, solar energy, tidal energy, etc.) and forecast resources 
potential in the future. The future study may focus on forecasting the global potential 
of these renewable energy resources in the next decades.   
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