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Multi-energy Microgrids Incorporating EV
Integration: Optimal Design and Resilient Operation

Hasan Masrur, Student Member, IEEE, Miadreza Shafie-khah, Senior Member, IEEE, M. J. Hossain, Senior
Member, IEEE, and Tomonobu Senjyu, Senior Member, IEEE

Abstract—There are numerous opportunities and challenges
in integrating multiple energy sources, for example, electrical,
heat, and electrified transportation. The operation of multi-
energy sources needs to be coordinated and optimized to achieve
maximum benefits and reliability. To address the electrical,
thermal, and transportation electrification energy demands in a
sustainable and environmentally friendly multi-energy microgrid,
this paper presents a mixed integer linear optimization model
that determines an optimized blend of energy sources (battery,
combined heat and power units, thermal energy storage, gas
boiler, and photovoltaic generators), size, and associated dispatch.
The proposed energy management system seeks to minimize total
annual expenses while simultaneously boosting system resilience
during extended grid outages, based on an hourly electrical
and thermal load profile. This approach has been tested in a
hospital equipped with an EV charging station in Okinawa,
Japan through several case studies. Following a M1/M2/c queuing
model, the proposed grid-tied microgrid successfully integrates
EVs into the system and assures continued and economic power
supply even during grid failures in different weather conditions.

Index Terms—Multi-energy Microgrids; Resilience; Grid out-
ages; EV; Simulation and optimization.

I. INTRODUCTION

As the traditional natural resource-driven power systems
are vulnerable to the climate-induced extreme events such
as floods, typhoons and so on, maintaining energy resiliency
has become a necessity [1]. The recent rotating grid outages
in Texas caused by ice storms and extreme cold remind us
that we should not depend solely on the utility, but instead
protect and enhance our power and energy system resilience
through the use of distributed onsite energy resources (DER).
In these instances, microgrids, especially multi-energy micro-
grids (mMGs), have evolved as vital sources of power supply
consistency [2]–[4] .

In order to provide a resilient, effective, and reliable power
supply, there is a strong push for the production of op-
timal energy generation and the use of configurations for
modern interconnected systems that consider multiple energy
sources. Integrated mMGs have made significant strides in
incorporating the use of traditional power sources, renewable
energy generators, and energy storage to meet energy needs

Manuscript accepted for publication. (Corresponding author: H. Masrur)
H. Masrur and T. Senjyu are with the Department of Electrical

and Electronic Engineering, Faculty of Engineering, University of the
Ryukyus, Okinawa 903-0213, Japan (e-mail: k198676@eve.u-ryukyu.ac.jp;
b985542@tec.u-ryukyu.ac.jp).

M. Shafie-khah is with School of Technology and Innovations, University
of Vaasa, Finland (e-mail: miadreza.shafiekhah@uwasa.fi).

M. J. Hossain is with School of Electrical and Data Engineering, University
of Technology Sydney, Australia (e-mail: jahangir.hossain@uts.edu.au).

Fig. 1. Schematic diagram of a multi-energy microgrid

in all industries. In line with this development, the term
‘microgrid resiliency’ is coined and has attracted attention in
the integrated energy systems literature, with resilience-driven
prevention and response strategies leveraging optimization
methods, resiliency metrices and scenarios, control techniques,
and objectives [5], [6].

The provision of heat and electricity energy is a strongly
connected co-optimization task, which is one of the prob-
lems for designing and operating the multi-energy system. A
schematic of a multi-energy microgrid system is depicted in
Fig 1. The combined heat and power (CHP) unit contributes
to the high coupling of heating and electrical energy. Several
optimization and resilience metrics are presented in the exist-
ing literature. Hussain et al. presented an optimization scheme
and a resilience index that successfully satisfied the critical
load demand during the blackout period by considering uncer-
tainties and incremental costs within three different network
topologies [7]. Reference [8] also considered minimization
of load curtailment, cost reduction, and local load supply as
resilience measures to ensure optimal scheduling of micro-
grids when the main grid was down. Even so, these articles
did not take into account both electrical and heating load
demand. In [9], a methodology was discussed for the mMG,
which integrated the electricity and gas network under several
main grid interruptions. The proposed bi-level optimization
technique enhances the system resiliency by securing the
electricity and heat demand in the emergency period with
a reduction in the operational cost. However, they did not
consider the probability of outage survivability. Focusing on
the optimal sizing of the batteries, the proposed operation
of networked microgrids in article [10] can maximize the
annual profit while ensuring reliability and resiliency under
typical and extreme grid outage scenarios, although they did



not discuss the heating demand. In [11], the optimal design
and resiliency of microgrids are discussed without considering
heating load and EV penetration. Nonetheless, in exploring
the possibility of grid failure, the influence of EV integration
on multi-energy (thermal plus electricity demand) microgrids
should be examined in order to establish a sustainable and
resilient energy system.

Japan, like the rest of the world, is committed to reducing
greenhouse gas emissions by a significant amount by 2050,
and electric vehicles (EVs) will play a significant role in this
effort by replacing fossil fuel-powered automobiles [12]. So,
EVs need to be charged using renewable energy, and Japan
has been promoting housing-based charging where distributed
generators are already available in the form of microgrids [13].
EVs can introduce significant technical issues that can result
in additional investment to upgrade grid-connected microgrids.
Electricity distribution networks were not built with a high
penetration of electric vehicles in mind. Charging electric vehi-
cles at home can dramatically raise our typical demand, putting
a strain on the power grid’s poles and wires. However, if EV
charging/discharging is properly regulated, it may result in
more efficient networks, reduced rates, and improved treatment
for end-use sectors.

Recently, there has been a surge in studies on EVs incor-
porated into microgrids. Most studies concentrate on devel-
oping reliable EV charging and discharging patterns, control
strategies for vehicle-to-grid (V2G) and grid-to-vehicle (G2V),
energy management techniques, and power quality issues
attributed to DER-based microgrids [14]. While the majority
of them are focused on independent operation or integration
into homes and community microgrids [15]–[21], some are
involved in the electricity markets [22]–[24]. Typically, their
main goal remains the same: to run a cost-effective and reliable
operation. In some cases, both behind-the-meter and ancillary
services affect the optimal co-ordination of these EV-assisted
microgrids. For the successful operation of EV integrated
microgrids, it is critical to consider the intermittent nature of
renewable energy resources as well as variable EV parking
behaviors. Several articles such as [25]–[27] can be found that
discuss these uncertainties in the context of a real-time energy
management strategy. However, they have not considered the
impact of grid failures explicitly. On the other hand, although
numerous studies can be found discussing the heating and
electrical energy dispatch of microgrids, where some consider
the resiliency of their proposed model, EVs are not taken
into account [7]–[10], [28], [29]. In summary, according to
the authors’ best knowledge, studies of mMGs that consider
EVs and adopt a resilient operation scheme simultaneously
are limited, whereas unison of electrical power systems, heat
power, and transportation energy could exploit the benefits
of multi-energy sources. Further studies are required to fully
comprehend the optimal design and operation of multi-energy
systems that can offer better efficiency, flexibility, and carbon
footprint. Although resilience has been extensively studied in
the literature, outage survivability issues require further inves-
tigation for a clear understanding of resilience, particularly in
integrated mMGs.

To fill this gap, this paper presents a robust sizing method

and energy management scheme of a mMG to leverage re-
silience benefits considering EVs, renewable energy generator-
PV, conventional power sources- CHP unit, existing gas boiler,
thermal energy storage (TES) and battery. The contribution of
this work is threefold:

(1) An extensive modeling of all the power supply units
of the proposed microgrid is performed. Optimal sizing and
dispatch strategy of each source is modeled aiming at mini-
mum cost after careful consideration of a number of pragmatic
constraints, including the network constraints.

(2) A detailed EV charging station is modeled that is inte-
grated into the microgrid using the real-world charging station
data of Tokyo, Japan. The M1/M2/c queuing model is used,
which reflects the real-world situation of any EV charging
station, including arrival rate, charging rate, service time,
percentage of vehicles on the road, probability of simultaneous
charging, and expected EV charging demand.

(3) Finally, the operation of both electrical and heating
energy dispatch is tested under a prolonged grid outage in
different seasons and loading conditions, and a resiliency index
concerning the probability of outage survival of the micro-
grid incorporated with EV is developed which has not been
reported in the existing literature concurrently. The impact
of different percentages of critical load demand on outage
survivability is discussed as well.

The remainder of the paper is categorized as follows.
Section II describes the system model, section III discusses
about EV charging station modelling and Section IV delves
into the optimal sizing and operation of a microgrid. Section V
presents the results of optimization and simulation, as well as
a detailed discussion of case studies. The final section contains
concluding remarks and suggested future works.

II. SYSTEM MODEL

A. CHP Model

Topping cycle CHP units are modeled so that fuel (natural
gas) is converted to electricity and recoverable usable heat. The
resulting waste heat is captured from this process and used as
hot water throughout the facility. This hot water can be stored
in the TES, which is also depicted in the next subsection. The
following is the interaction involving heat and electric power
generation in a CHP plant [31]:

Qout = (
ηh
ηe

)Pouth
f
c (1)

where Pout and Qout denotes the electric and heat power gen-
eration from the CHP unit, respectively. hf

c is the consumption
rate of the fuel, i.e, natural gas. ηe and ηh are the electric and
heat recovery efficiency of the CHP plant. Both fuel burn rate
and heat recovery rate can be modeled with efficiency of CHP
unit as:

Re,h = ae,hPout + be,h (2)

where R denotes both the fuel rate and available usable heat
for electric (e) and heat generation (h) while a and b are the
heat recovery efficiency at full and half loading condition at
time t, respectively.



TABLE I
COMPARISON OF THE CURRENT STUDY WITH EXISTING LITERATURE

Ref. Microgrid System Grid
EV integration Resilience

Evaluation

Technique Charging
scheduling

Simultaneous
charging probability Real data

Demand type Storage CHP
Modeling

Optimization
technique

[11] Electrical BES No MILP Yes No Yes
[9] Electrical+Heating - Yes MIBLP No No Yes
[30] Electrical BES No MILP Yes No Yes
[21] Electrical BES No MOGA Yes Simple charging Yes No No No
[15] Electrical+ Heating BES+TES Yes MILP Yes Smart and uncontrolled charging Yes No Yes Yes

[26] Electrical BES No AMPL Yes Controlled and uncontrolled charging;
battery swapping Yes No No No

[24] Electrical BES No CPLEX No market price, arrival time of EVs,
and the residual energy level of EVs Yes No No Yes

[18] Electrical BES No MINLP No optimal location and sizing No No No No
[19] Electrical+ Heating None Yes - Yes Coordinated charging yes Yes Yes No
[23] Electrical None No MINLP Yes Charging management system Yes No No No

Current
study Electrical+ Heating BES+TES Yes MILP Yes M1/M2/c queuing

and Coordinated charging Yes Yes Yes Yes

B. Thermal storage model

A single-layered hot water TES tank with a thermocline
that divides the supply hot water from the returned water is
modelled for this study. A hot water TES can store hot water
from the boiler plant or the CHP heat exchange unit. This
hot water will be used to meet the hot water demands of the
facility. During the first hour of the scenario, stored energy
is considered to be 50% of the TES capacity. However, the
minimum energy storage value is 10% in normal operating
condition. The following equation determines the charging and
discharging rates, along with efficiency parameters [32]:

Xhs
t,h+1 = Xhs

th + Zhs,c
th ηhs,c −

Zhs,d
th

ηhs,d
∀ t, h (3)

Here, the Xhs refers to the capacity and Zhs,d
th is the charging

(c) and discharging (d) rate of the TES with ηhs indicating
the efficiency for technology t in time step h. The model
determines the size of the TES based on the cost-optimal
maximum volume of stored energy. We assume the TES can be
fully charged with either hot water or chilled water. Between
the maximum and minimum stored energy limits, the capacity
of stored hot or chilled water is a function of the water volume
stored on the tank’s supply side of the thermocline.

C. Modelling of Photovoltaic Module

The Photovoltaic modules converts sunlight into DC elec-
tricity. The following equation can be used to measure the PV
module’s output power (4):

PPV = CpPV ∗DPV (
Ir

IrSTC
)[1 + αp(Tc)− Tc,STC ] (4)

where, PPV is the PV module’s output power, DPV is the
solar PV array’s derating factor (%), CpPV is the PV array’s
rated capacity (kW), Ir is the solar irradiation on the PV
panel’s surface (kW/m2), Tc refers to the PV cell temperature
in the current time step (◦C), αp is the temperature coefficient
of power (%/◦C). IrSTC and Tc,STC are values calculated
under normal test conditions (STCs) (1kW/m2, 25◦C).

The following equation can calculate the PV efficiency at
the maximum power (MPP) and under STCs:

ηSTC =
CpPV

APV IrSTC
(5)

where ηSTC represents the PV module’s efficiency under
normal test conditions (%) and APV specifies the PV module’s
surface area (m2).

D. Battery storage model

Batteries aid to provide reliable and backup power supply
particularly when renewable energy sources are unavailable.
The battery capacity (Capbat) must be adapted by the follow-
ing equation in order to keep enough charge when PV power
is unavailable.

Capbat =

[
EloadDA

ηconηbatDOD

]
(6)

where Eload is the average energy demand (kWh/day), DA is
the days of autonomy, ηcon is the efficiency of converter, ηbat
is the efficiency of battery, and DOD is the depth of charge
of the battery. The model does not account for battery cycling
deterioration; instead, the battery is assumed to be substituted
once throughout the analysis period depending on calendar
degradation and factor in accumulated replacement costs.

III. MODELING OF TRANSPORTATION ELECTRIFICATION

In our study, a single EV charging facility was intro-
duced using the M1/M2/c queuing model. In this model, M1
represents the Non-homogeneous Poisson arrival rate at the
charging facility. The EV arrival rate is dependent on the
quantity of EVs on the road. If the number of vehicles on the
road increases, the arrival rate also increases, no matter what
the pricing or operational constraints are. The service time of
EVs, referred to as M2, follows the exponential distribution
and service time is affected by charge level, battery capacity,
battery state of charge (SoC), and battery charging behavior
(BCB).For charging stations, higher charging power typically
begins at full charge and lowers off when the battery SoC
is approached, which explains the BCB of EV charging. c
denotes the number of chargers at the charging site. For
our particular study area, it is expected that arrival at the
charging facility is proportionate to the number of vehicles
on the roadways. Based on this premise, we assume that EV
driving and usage habits are consistent with those of traditional
automobiles.



Fig. 2. Piecewise linear approximation for the typical BCB of EV [34].

To charge the battery, the BCB model is employed [33].
First, the charging time of arriving EVs must be estimated
using their SoC information. This needed knowing the mileage
(VMi ) covered by the EVs. The Tokyo Environmental Public
Service Corporation (PEPSC) survey data [13] can be used
to estimate this data. EV travel has been proven to follow
the long normal distribution, with a mean of 40 miles and a
variation of 20 miles [33]. Battery capacity (Bcapi

) and energy
consumption per mile (Em) are required in this model. Vehicle
type determines the data, and four vehicle classes are included.

The daily energy consumed (Eci ) by each class (i) of EVs
can be the calculated as following:

Eci =

{
Bcapi , if VMi ≥ VMimax

Emi
VMi

, if VMi
< VMimax

,∀i (7)

The maximum driving range of various EV classes is
calculated as follows:

VM max =
Bcapi

Emi

,∀i (8)

The SoC of the EVs that have arrived at the charging facility
can be computed as follows:

SoCi = 1− Eci

Bcapi

,∀i (9)

To account for the limitation of battery charging charac-
teristics, the SoC of the arriving EVs is considered to be
between 0.2 and 0.85. The needed mean charging time can
be determined using the piece-wise approximation of battery
charging characteristics as shown in Fig. 2 and information
about SoC of different classes (y) of EVs. So, the following
formula can be used to compute the average charging time:

T =
SoCiy − by

ay
,∀y ∈ (1− 4),∀i (10)

where, the slope and intercept of each linear element of the
battery charging characteristics are ay and by , respectively.

The M1/M2/c queuing analysis is used in order to calculate
the probability of a number of simultaneously charging EVs
at the charging facility,Pt(n).

Pt(n) =
ρn

n! Pt(0), n = 1, 2, . . . . . . , c,∀t

Pt(0) =
[∑c−1

n=0
ρn

n! +
ρc

c!(1−a)

]−1

,∀t
ρ = λ

µ , a = ρ
c

(11)

where, λ represents for mean inter-arrival time, t (minute), ρ
stands for EV occupation rate at charging station, and µ refers
to service time in minute. The divide of the occupation rate
and the number of EV chargers is indicated by the a symbol.

If the number of EVs arriving at the charging facility
exceeds the quantity of chargers, the EVs will have to wait
for service. The following equations are used to calculate the
likelihood of waiting EVs, P (n ≥ c) and the expected waiting
time, W̄ .

P (n ≥ c) =
ρc

c!

(1−a)
∑c−1

n=0
ρn

n! +
ρc

c!

W̄ = P (n≥c)
µc(1−a)

(12)

Finally, depending on the frequency of the number of EVs
charging at the same time, the total expected charging power
can be calculated as follows:

It,i = min
(

Bcapi

VlTt
, Imax

)
Papt

= It,iVl

E [Papt
] =

∑c
n=0 P (n)Papt

,∀t
(13)

where, Vl refers to the voltage level of the EV charger, I is the
charging current and Papt

is the active power demand from
charging EVs.

IV. MODELING OF MICROGRID: OPTIMAL SIZING,
DISPATCH STRATEGY AND RESILIENCE

This study have used a modified mixed-integer linear pro-
gram (MILP) to solve the optimization problem. It derives the
optimal selection, sizing, and dispatch scheme of power gener-
ators for a specific site while assuring the minimum life cycle
cost (LCC) over project lifetime. The overall methodology of
the proposed multi-energy microgrid is shown in Fig. 3.

A. Objective function

Total equipment expenses for battery, PV, CHP, and thermal
storage are included in the objective function.

1) System capital cost: The capital cost associated with
generating energy technology (PV, TES and CHP) is given
by:

Cet =
∑

l∈L,h∈H

(Ptlhc
e
h) (14)

where, Ptlh and ceh are the power rating and capital cost for
the technology t, serving load l, in time step h.

The battery capital cost of can be determined by [30]:

Cbat =
∑
t∈T

(Xtct) + (BkWhcbkWh) + (BkW cbkW ) (15)

where Xt and ct are the system size and capital cost for energy
technology t whereas cbkWh, cbkW , BkWh, BkW are referred
to the battery size, capacity and associated costs.

The annual system capital cost is the summation of the
capital costs of generating technologies and storage:

Ccap = Cet + Cbat (16)



Insert Meteorological data, financial Inputs, hourly
load (electrical & thermal) profile and utility rate

Insert Resiliency Inputs- critical load profile,
outage duration and outage start date and hour

Determine total EV charging demand based on
M1/M2/c queing model following (13)

Calculate total load demand (electrical, thermal,
critical and EV) and integrate to MILP model

Build the MILP model in Python (Pyomo) and
solve by invoking Gurobi solver

Objective: (42); Constraints: (21)-(39)

Optimal mix of technologies, size and cost,
optimal hourly dispatch, and outage survivability

End

Start

Input parameters

Pre- optimization calculation

Optimization and simulation

Output

Perform resiliency analysis following (40)-(41) for
all possible combination of power sources

Fig. 3. Overall workflow of the proposed method.

2) Operation & maintenance cost: The O&M cost of the
microgrid is expressed as [30]:

COM =
∑
t∈T

(Xtc
om
t ) (17)

where comt is the O&M cost per unit size of the system for
technology t($/kW).

3) Demand cost: The demand cost is defined as [30]:

CDn =
∑
r∈R

(drc
d
r) +

∑
m∈M

(dmcdm) (18)

where dr, dm are the peak demands while cdr and cdm represents
their demand costs in month m within ratchet r.

4) Grid energy cost: The power purchase cost from grid is
calculated by:

Cgrid =
∑

u∈UP ,h∈Hg

Xg
uhc

g
uh (19)

where, Xg
uh and cguh indicates the imported grid power and its

cost in demand tier u during time step h.
5) Total cost: The annual total cost of the system is given

by:
Ctot = Ccap + COM + CDn + Cgrid (20)

B. System constraints

The life cycle cost is minimized subject to the following
constraints:

1) Load constraints:∑
t∈T

(F
pd
tlhPtlhF

dgr
t ) ≤ Llh, ∀ h ∈ H (21)

∑
l ϵ L

Ptlh ≤ Xth, ∀ h ϵ H (22)

where, F pd
tlh is the annual production factor, F dgr

t is the
degradation factor of the generating source t and Llh indicates
the production size limitation. (21) requires the sum of the
energy on-site demand to be less than or equal to the maximum
load for each phase of all energy sources and (22) states the
production constraint that the rated power provided by the PV
system has to be equivalent to the system size selected in each
phase over all loads [11].

2) Battery charging and discharging: The following equa-
tions represent storage restrictions, such as battery charging
and discharging, while taking into account degradation and
battery state of charge at each time step:

B+
h =

∑
t∈T

(F
pd
tlhXtF

dgr
t ηB), ∀ h ∈ H (23)

BSOC
h = BSOC

h−1 + B+
h −B−

h , ∀ h ∈ H (24)

B−
h ≤ BSOC

h−1 , ∀ h ∈ H (25)

ZB+

h + ZB−

h ≤ 1, ∀ h ∈ H (26)

where B−
h = power discharged from the battery in time

step h (kW), ηB = battery efficiency, BSOC
h = charge stored in

the battery in time step h (kWh), ZB+

h = 1 if battery is being
charged in h time step (else 0), ZB−

h = 1 if battery is being
discharged in h time step (else 0).

3) Demand constraints: The demand rate limitations are
described by the next two equations. The demand for each
demand period or month must be larger than or equal to the
grid electricity used during that period or month [11].∑

h∈ Hr, l ∈L

Ptlh ≤ dr, ∀ r ∈ R (27)

∑
h ϵ Hm, l ϵ L

Ptlh ≤ dm, ∀ m ∈ M (28)

where, m ∈ M, r ∈ R, and l ∈ L are the sets of monnths,
ratchets, demands and loads, respectively.

4) Fuel constraints: A restriction on the amount of fuel
consumed by each fuel type is set by (29) which can be burnt
in various ways. (30) employs a linear function to connect
the output of a non-CHP, fuel-burning electricity-generating
technology to its equivalent usage. According to (31) any non-
CHP heating technology’s fuel usage is proportionate to its
hourly thermal output.∑

t∈T ,h∈H

X f
th ≤ gaff , ∀f ∈ F (29)

X f
th = hfm

t Pth + hfb
t Zt0

th, ∀t ∈ T , h ∈ H (30)

X f
th = hfm

t Xhs
th , ∀t ∈ T , h ∈ H (31)



where, X f
th indicates the amount of fuel burned, Xhs

th is the
thermal (heat) production, gaff is the fuel availability, hfm

t is
slope of the fuel rate curve, hfb

t is the y-intercept of fuel rate,
Zt0
th= 1 if operating in time step h (else 0), for technology t.
5) Thermal constraints: For required thermal CHP systems,

(32) states that the rated electricity supplied must equal the
rated thermal energy supplied times a predetermined ratio for
each time step.∑
d∈D,f∈F

Xrp
dtlhf =

∑
d∈D,f∈F

Xrp
dtlhfh

f
t ∀t ∈ T , l ∈ L, h ∈ H

(32)
where, Xrp

dtlhf indicates the rated power supply and hf
t refers

to the ratio of thermal to electric production for technology t
and fuel f .

The limits of charging and discharging power are repre-
sented in the following two equations:

0 ≤ P
thml,c/d
th ≤ P

thml,c/d
max,t k

thml,c/d
th , ∀t ∈ T , h ∈ H (33)

where, P thml,c/d
th denotes the charging (c) or discharging (d)

rate of thermal storage whereas P
thml,c/d
max,t is the maximum

rate of the same. k
thml,c/d
th is binary variable of the charg-

ing/discharging rate.
Also, simultaneous charge and discharge of the thermal

storage is restricted by:

0 ≤ kthml,c
th + kthml,d

th ≤ 1, ∀t ∈ T , h ∈ H (34)

The following equation ensures an equal amount of usable
heat between the first and last hour of operation planning:

Ethml
0 = Ethml

24 (35)

where, Ethml
0 and Ethml

24 denotes the stored energy at the first
and last hour, respectively.

6) Net energy balance: The next equation requires that
the electricity generated match the yearly electric load at the
facility across all electric loads, technologies, time stages, and
fuel transporters (CHP and TES), necessitating the site to
precisely attain electric net zero. During grid-isolated times,
this load-balancing condition is specially imposed.∑
d∈DE ,t∈T,h∈H

F p
dtlhF

B
ltdX

rp
dtlhsu = δl +

∑
d∈DE ,t∈T ,h∈H

PE
dtlhs

(36)
where, FB

ltd denotes the fixed fuel utilization. δl and PE
dtlhs are

indicators of annual and additional electric power consump-
tion, respectively.

7) Network Constraints: The formulations presented in this
section are predicated on the assumption that the proposed
energy management scheme does not cause congestion or
violate any network-related constraints, which is a common
assumption in (EV) integrated microgrid research [2], [15],
[17], [19], [21], [26]. However, depending on the network
parameters, this claim is not always true. In order to include
network constraints in the proposed method, power balancing
constraints in (36) should be replaced by the following network
power flow equations. Power flow constraints for integrated
charging station:

−Pmax
ev ≤

∑
n

etn + Ptlh = Xg
t ≤ Pmax

ev (37)

where Pmax
ev denotes the power flow limit for the EV charging

station. etn is the amount of charging/discharging power of nth

EV (etn = et+n − et−n ).
Voltage constraint:

V min
b ≤ V t

b ≤ V max
b (38)

Bus constraints:

−Pmax
Gb

≤ P t
Gb

≤ Pmax
Gb

−Qmax
Gb

≤ Qt
Gb

≤ Qmax
Gb{

P t
xb = −P t

bx

Qt
xb = −Qt

bx{
−P−

bx ≤ P t
bx ≤ Pmax

bx

−Q−
bx ≤ Qt

bx ≤ Qmax
bx

(39)

where b represents the bus where the integrated charging
station is connected and if a whole power network is evaluated,
x refers to all nearby buses. P t

Gb and Qt
Gb are the active

and reactive power transaction from (+) or to (-) the grid
connecting to the same bus b (P t

G = P t+
G − P t−

G )

C. Resilience evaluation

Energy Resilience is a complicated and vast process in and
of itself, and this study does not consider ‘infrastructure’ re-
silience, instead focuses on improving ‘operational’ resilience.
While we recognize the importance of the planning and adap-
tation stages, our primary focus in this work is on absorption
and, to a lesser extent, the recovery capability of the mMG. To
evaluate the resilience of the system, operationally stochastic
and energy-based metrics are developed for the restoration
of critical loads as well as power system infrastructure (e.g.,
damaged poles and lines) [35]. The system resilience is defined
in the time period [hs, he] as:

R =

∫ he

hs

∑
c∈C

WcPc(h)dh (40)

where C is the set of critical loads restored by microgrids,
Wc is the weight of a critical load c, and Pc(h) is the active
power of load c at time h. In particular, the resilience of the
system is measured in terms of probability of outage survival
which is given as following:

P̂ rob(h) =
∏

i:hi≤h

(
1− di

ni

)
(41)

where hi the time when at least one outage occurred, di is
the number of outage at time hi, and ni different combinations
of mMGs that survived up to time hi.

D. Integrated framework

The integrated overall optimization problem can be repre-
sented as follows:

minCtot (42)

subject to (2)-(6), (13), (20)-(39).



Fig. 4. Hourly simulation result of different status of EVs on a single day: (a) percentage of vehicles on roads per hour, (b) number of vehicles arrived to
the charging station, (c) simultaneous charging probability of Evs, and (d) expected energy demand of the vehicles.

V. CASE STUDIES

A. Test System and assumptions

We present a methodology for assessing a multi-energy
microgrid’s optimal size and operation strategy. Programmed
on Python-based Pyomo language [36] in a desktop computer
with Intel core-i7 3.20 GHz processor and 8 GB RAM, the
Gurobi optimizer is used to solve the MILP optimization
model.

Okinawa, a prefecture in Japan, is prone to natural disasters.
Every year, several typhoons hit this island, among other
calamities. The formulated approach is tested in hospitals in
Nishihara, a city in Okinawa. We expect the model to have
smooth islanding capacity in the event of an emergency, such
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Fig. 5. Hourly Electrical and heating load profile of the test system

as blackouts, because it is a grid-connected microgrid. The
hospital’s heating and electrical load demands are respectively
12,242 MMBtu and 7.75 MW. Fig. 5 shows the load profiles.
The hospital’s average electrical demand is 885.02 kW, with
a minimum of 555.08 kW (April 06) and a maximum of
1427.33 kW (September 28). With an average load of 1.40
MMBtu/hr, the hospital has the highest demand on January 2
(4.63 MMBtu/hr) and the least demand on September 28 (0.06
MMBtu/hr). Okinawa Electric Power Company is considered
the power supply provider. In this study, the net energy
metering was not taken into account, such that after charging
and satisfying demands, the extra energy produced by the
PV unit would be curtailed. Furthermore, the fuel (natural
gas) supply is expected to be uninterruptible throughout the
operation of the CHP and boiler unit. This study did not
consider net energy metering in order to keep the model simple
and feasible.

We employ electrical load profiles based on reports from the
US DOE Commercial Reference Buildings (new construction)
to capture the weekly and seasonal effects in the analysis, and
hot water usage is encapsulated for the thermal load profile.
The energy storage technology and associated cost character-
ization information is taken from [37]. The model optimizes
the battery power (kW-AC) and capacity (kWh) separately for
economic performance and resiliency. To calculate the output
of PV generation, we use PVWatts, a program developed by
NREL.

We assume that the EVs that are connected to the microgrid
are electric ambulances (EA). This model assumes the usage
of level-3 DC fast chargers with a maximum charging current



TABLE II
TEST CASES

Scenario Case EV Resilience Technologies

S1

1 No No ES+PV
2 Yes No ES+PV
3 No Yes ES+PV
4 Yes Yes ES+PV

S2

5 No No ES+PV+CHP+TES
6 Yes No ES+PV+CHP+TES
7 No Yes ES+PV+CHP+TES
8 Yes Yes ES+PV+CHP+TES

S3

9 No No CHP+TES
10 Yes No CHP+TES
11 No Yes CHP+TES
12 Yes Yes CHP+TES

Fig. 6. Optimal size and life cycle cost for different cases

of 63 A and a charging voltage of 400 V. To determine the
total predicted charging power of EVs, we first compute the
charging current of each EV. The charging power of a single
EV is then calculated. Fig. 4 shows the hourly values of
vehicles on the road (%), the number of vehicles arriving at the
charging station, and finally, the total expected EV charging
demand is measured and integrated into the hospital microgrid.

In this analysis, the critical load is set at 50% of the total
load. The outage is estimated to last 24 hours at this time.
The assigned outage case is expected to be a major outage
that occurs once every 25 years during the life of mMG.

B. Results

The test cases are divided into three scenarios in terms of
technology selection. Each scenario has two parameters- with
or without considering EV and resiliency that makes total 12
test cases as seen in Table II.

Fig. 6 refers to the optimal sizing results and system costs
of different cases. The average optimal size of PV for S1 is
around 11.9% greater than for S2. Also, average battery size
of PV for S2 is less than S1 by about 10.8%. The reason
behind this is quite obvious- the microgrid load demand of S2
is met by CHP and TES along with PV and battery. In terms
of CHP and TES sizing, S4 has nearly 81% and 5% more
capacity than S3, respectively. This is because the CHP needs
to supply the load demand solely with a little help from TES
and gas boiler.

S1 has a lower average cost than S2 and S3 by about
14% and 46.9%, respectively, even with the grid outages and
electric vehicles. The primary reason for this is the high cost

Fig. 7. Electrical Energy dispatch of case 7 under 24 hour outage during:
(a) peak load demand in September, (b) summer solstice in July, (c) winter
solstice in December

Fig. 8. Electrical Energy dispatch of case 8 under 24 hour outage during:
(a) peak load demand in September, (b) summer solstice in July, (c) winter
solstice in December

of the CHP unit. Regardless of resilience approach, the cost of
integrating EV into the system is always higher than the case
without EV. For example, the cost of case 6 that integrates EV
is almost double than case 5 considering the normal operation
of the grid. Again, case 8 is almost 89% more expensive
compared to case 7 considering the power cut.

The following subsections describe the hourly dispatch
strategy for electrical and heating energy balance under a pre-
defined 24 hour outage in the months of July, September, and
December. The outage periods are shaded in the corresponding
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Fig. 9. Heat Energy dispatch of case 7 under 24 hour outage during: (a) peak
load demand in September, (b) summer solstice in July, (c) winter solstice in
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figures.
1) Electrical energy dispatch: The dispatch strategy of each

type of power generation for case 7 is shown in Fig. 7.
During winter, most of the electricity demand is covered by
CHP as heating demand is more than 1.5 times that of the
summer season. Taking a two-day sample both in July and
December, it is found that PV and the grid are the main energy
suppliers, respectively, for case 7. This is the same for case 8
as shown in Fig. 8 irrespective of EV load. In fact, the grid
contribution is 1.57 times higher in December than in July,
whereas PV produces 1.66 times more in July compared to
December. Although the CHP supply is almost the same for
both cases, there is a significant difference in PV production.
In fact, case 7 uses 16.5 percent and 12.2 percent less PV
power to support the microgrid load. This is because of the
exclusion of EVs and the economic dispatch strategy of the
microgrid model. In all seasons and loading conditions, this
phenomenon results in lower and higher PV curtailment for
cases 7 and 8, respectively. The battery dispatch follows an
almost identical trend for both cases, considering the outage
and normal grid operation period. However, it should be noted
that the outage starting time and percentage of critical load
have a great impact on the dispatch strategy of the energy
storage along with other factors.

2) Heating energy dispatch: Figure 9 and 10 show the
hourly heating energy dispatch of case 7 and 6, respectively.
CHP always takes the lead when it comes to heating energy
delivery for all cases. Interestingly, TES serves the heat de-
mand primarily in July, followed by December and September
in both cases. This is because in the summer (July), CHP is
preoccupied with serving both electric and heat loads at the
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Fig. 10. Heat Energy dispatch of case 8 under 24 hour outage during: (a) peak
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same time. When both CHP and TES are unable to meet the
load demand, the boiler steps in as a backup. The boiler also
takes over if the CHP is not available due to maintenance and
such. CHP is responsible for charging the hot water TES in
addition to supplying heat. There is no impact of other power
generators such as grid, PV and battery as they are not involved
in serving heat demand.

C. Outage survivability

Our outage survivability model is exponential, rather than
non- or semi-parametric. Six cases (3, 4, 7, 8, 11, and 12) out
of 12 in three scenarios are considered resilient, meaning they
have all survived a 24-hour blackout. However, the probability
of outage survival is not the same for all cases. Fig. 11 shows
the outage survivability (%) for case 2 and 3. Because the



system model suggests a larger optimal size for the battery
and PV in case 4 due to the integration of EVs, it has a higher
survival hours than case 3. It should be noted that the survival
outage hours vary depending on the critical load demand, and
the higher the critical demands, the lower the survival hours.

D. Recommended financing

According to the findings, case 7 is the best option in terms
of the total cost and resilience approach. The winning system
includes 2,066 kW of PV, a 468 kW battery, and 371 kW of
CHP with 128.67m3 of thermal energy storage. However, if
EV integration is considered along with the least total cost
and resilience approach, case 8 stands out. The system size of
this case is 4,061 kW of PV, 963 kW of battery unit, 368 kW
CHP with 126m3 TES. It is worth noting that, while case 1
has the lowest cost of all the test cases, it excludes the heating
load demand.

VI. CONCLUSION AND FUTURE WORK

In this work, an optimal multi-energy microgrid is proposed
that satisfies both the electrical and heating load demand.
Formulated as a mixed integer linear program (MILP), it
reduces the total cost while measuring the outage survivability
for prolonged grid blackouts. A smart EV charging station is
modeled as well and integrated with the microgrid. The per-
formance of the proposed method is examined using real load
data from a hospital in Japan. It captures the efficiency benefits
from waste heat recovery via the CHP unit by modeling the
interaction of electrical and heat sources and imposing several
practical constraints. A total of twelve cases are evaluated,
divided into three scenarios in terms of EV integration and
resiliency approach. The results showed the robust dispatch
of the microgrid as it sustained the prolonged grid blackout
regardless of technology selection, seasonal variability (winter,
summer and peak) and EV integration. Case 8 with battery,
PV, CHP and thermal storage appeared to be the best option,
satisfying all of the assessing criteria such as heating and
electrical load demand, EV charging need, and endurance
against extreme events, with an acceptable size and life cycle
cost of the participating technology mix. In the future, the
proposed methodology could be extended to other vulnerable
critical facilities such as schools, data centers, airports, water
treatment plants, and so on. Net energy metering, demand
response, and cooling load can be added to the proposed
microgrid model as well. To investigate system resilience,
probabilistic techniques can be used with historical blackout
and brownout data as well.
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[34] M. Keskin, G. Laporte, and B. Çatay. Electric Vehicle Routing Problem
with Time-Dependent Waiting Times at Recharging Stations. Computers
& Operations Research, 107:77–94, Jul 2019.

[35] H. Gao, Y. Chen, Y. Xu, and C. Liu. Resilience-oriented critical load
restoration using microgrids in distribution systems. IEEE Trans. Smart
Grid, 7(6):2837–2848, 2016.

[36] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D.
Laird, Bethany L. Nicholson, John D. Siirola, Jean-Paul Watson, and
David L. Woodruff. Pyomo–optimization modeling in python, vol-
ume 67. Springer Science & Business Media, third edition, 2021.

[37] Energy Storage Technology and Cost Characterization Report | PNNL
[online]. Available: https://www.pnnl.gov/publications/energy-storage-
technology-and-cost-characterization-report.

Hasan Masrur earned a Master’s Degree in Electric
Power System Management from the Department of
Energy, Environment, and Climate Change at the
Asian Institute of Technology (AIT) in Thailand in
2017. He is currently pursuing a Ph.D. in Interdisci-
plinary Intelligent Systems Engineering at the Uni-
versity of the Ryukyus, Okinawa, Japan. He has been
involved in a number of research projects in both
academia and industry. Throughout his academic
career, he has received several research grants, in-
cluding the Marubun Exchange Research Grant, and

scholarships, including one from the Japanese government (Monbukagakusho:
MEXT).His research interests are in the areas of optimization, resilience, and
techno-economics of energy systems; energy management strategies; load
and demand side management; microgrids and smart grids; renewable and
sustainable energy technologies; energy storage systems; and power system
dynamics, stability, and control. His research findings have been published in
several peer-reviewed journals and conference proceedings.

Miadreza Shafie-khah (SM’17) received his first
PhD in electrical engineering from Tarbiat Modares
University, Tehran, Iran. He received his second PhD
in electromechanical engineering and first postdoc
from the University of Beira Interior (UBI), Cov-
ilha, Portugal. He received his second postdoc from
the University of Salerno, Salerno, Italy. Currently,
he is an Associate Professor at the University of
Vaasa, Vaasa, Finland. He is an Editor of the IEEE
TRANSACTIONS ON SUSTAINABLE ENERGY,
an Associate Editor of the IEEE Systems Journal,

an Associate Editor of the IEEE Access, an editor of the IEEE Open Access
Journal of Power and Energy (OAJPE), an Associate Editor for IET-RPG,
and the guest Editor-in-Chief of the IEEE OAJPE. He is a Top Scientist in
the Research.com Ranking in Engineering and Technology, and he has won
five Best Paper Awards at IEEE Conferences. His research interests include
electricity markets, power system optimization, demand response, electric
vehicles, price and renewable forecasting and smart grids.

M. Jahangir Hossain (M’10-SM’13) received the
B.Sc. and M.Sc. Eng. degrees from Rajshahi Uni-
versity of Engineering and Technology (RUET),
Bangladesh, in 2001 and 2005, respectively, and the
Ph.D. degree from the University of New South
Wales in 2010, Australia, all in electrical and elec-
tronic engineering. He is currently an Associate
Professor with the School of Electrical and Data En-
gineering, University of Technology, Sydney, Aus-
tralia. Before joining there, he served as an Associate
Professor in the School of Engineering, Macquarie

University, Senior Lecturer and a Lecturer in the Griffith School of Engineer-
ing, Griffith University, Australia for five years and as a Research Fellow in
the School of Information Technology and Electrical Engineering, University
of Queensland, Brisbane, Australia. His research interests include renewable
energy integration and stabilization, voltage stability, micro grids and smart
grids, robust control, electric vehicles, building energy management systems,
and energy storage systems.

Tomonobu Senjyu (Senior Member, IEEE) was
born in Saga, Japan, in 1963. He received the B.S.
and M.S. degrees in electrical engineering from
the University of the Ryukyus, Japan, in 1986 and
1988, respectively, and the Ph.D. degree in electrical
engineering from Nagoya University, Nagoya, Japan,
in 1994. He is currently a Full Professor in the
Department of Electrical and Electronic Engineering
at the University of the Ryukyus. He is currently
serving as a member of the Science Council of
Japan (SCJ). His research interests include renew-

able energy, power system optimization and operation, power electronics, and
advanced control of electrical machines. His work attracted several research
grants worth several million yen, and he published over 800 articles, including
a number of IEEE Transactions.


